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A B S T R A C T   

Adopting initiatives to extend the useful life of products or recovering their components for reuse, remanu-
facturing or recycling is a key issue in the attempt to protect the environment and minimise the demand for 
natural resources. To contribute to the performance of automated disassembly practices, this paper presents a 
multiobjective decision-making approach based on the optimisation of three goals in a robotic disassembly cell 
framework: enhancing the economic performance of the process, reducing energy consumption and mitigating 
the environmental impact. Two real-use cases are presented as demonstrators, supported by appropriate, updated 
information from industry. The design model allowed the authors to obtain the best robotic disassembly 
sequence plan, the correct disassembly direction, the best recovery option for the disassembled components – 
reuse, remanufacturing, recycling or disposal – and the most appropriate disassembly tools, finding the optimal 
or near-optimal solution that best balances the three sustainability goals. An Enhanced Discrete Bees Algorithm 
with a mutation operator was employed to find the solution for the optimisation. Moreover, a multiobjective Bees 
Algorithm, a Non-dominated Sorting Genetic Algorithm II and a Pareto Envelope-based Selection Algorithm II 
were adopted to solve the multiobjective optimisation problem using different iteration numbers and population 
sizes. The results provide insights into robotic disassembly processes, encouraging firms to adopt more auto-
mated and sustainable remanufacturing strategies.   

1. Introduction 

The end of life (EoL) of a product is a burden for the environment if it 
is simply disposed of in a landfill site, polluting the air, soil and water. 
The enormous waste generated each year worldwide is a growing cause 
of concern among governments (UNEP, 2017), which are promoting 
initiatives and solutions to recover products and their components. The 
circular economy (CE) has emerged as a research trend to benefit the 
environment, economy and society, defined as “a regenerative system in 
which resource input and waste, emission, and energy leakage are 
minimised by slowing, closing, and narrowing material and energy 
loops…” (Geissdoerfer et al., 2017). EoL recovery options generally 
include part reuse, remanufacturing, material recycling and, as the last 
choice, disposal (Lee et al., 2010; Xia et al., 2014). These alternatives 
focus on saving raw materials, improving manufacturing costs, and 

reducing environmental impact. 
Remanufacturing involves reducing waste, saving energy and opti-

mising resource consumption in manufacturing (Chiodo and Ijomah, 
2014), being one of the key sustainable alternatives to leverage re-
sources and prolong the remaining useful life of products, while helping 
preserve the environment. Remanufacturing recreates a product using 
components from EoL products (Lambert and Gupta, 2004). Matsumoto 
and Ijomah (2013) defined remanufacturing as “the process of returning 
a used product to at least its Original Equipment Manufacturer’s (OEM) 
performance specification from the customers’ perspective, and giving 
the resultant product a warranty that is at least equal to that of a newly 
manufactured equivalent”. Another definition of this term is formalised 
by the Remanufacturing Industries Council (RIC, 2017) as “a compre-
hensive and rigorous industrial process by which a previously sold, 
leased, used, worn, or nonfunctional product or part is returned to like- 
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new or better-than-new condition, from both a quality and performance 
perspective, through a controlled, reproducible, and sustainable pro-
cess”. Remanufacturing involves reducing waste, saving energy and 
optimising resource consumption in manufacturing (Chiodo and Ijomah, 
2014), as one of the key sustainable alternatives to leverage resources 
and prolong the remaining useful life of products while helping preserve 
the environment. 

The first and most crucial operation in remanufacturing is disas-
sembly (Lambert, 2003; Wang et al., 2013, 2014; Xia et al., 2014; Zhou 
et al., 2018), which distinguishes remanufacturing from conventional 
manufacturing (Priyono et al., 2016). Disassembly is defined as the 
process of separating products into parts and/or subassemblies with 
necessary inspection and sorting operations, which is one of the critical 
points in effective and efficient product reprocessing (Han et al., 2013). 
Disassembly is not simply the reverse of the assembly process (Brennan 
et al., 1994; Fan et al., 2013; Touzanne et al., 2001), but has its own 
unique characteristics (Jovane et al., 1998; McGovern and Gupta, 2011). 
Disassembly sequence planning (DSP) consists of defining a detailed 
plan for removing components or subassemblies from complete products 
(Lambert, 2003; Zhou et al., 2018), involving the selection of the best 
sequence for the disassembly process, taking into account the prefer-
ences and restrictions between components and fasteners. 

DSP is recognised in the literature as a nondeterministic polynomial 
time (NP)-complete and intractable problem, for whose resolution 
mathematical programming methods are unsuitable (Elsayed et al., 
2010, 2012; Gonçalves et al., 2005). Earlier studies used exact methods 
for simple problems (Johnson and Wang, 1998; Lambert, 1999, 2006), 
but these methods are unable to solve more complex problems in which 
there is a greater number of components and the product to be dis-
assembled is more complex. Recent studies have tended to use approx-
imate algorithms based on metaheuristics given their ability to find a 
near-optimal solution in a reasonable computational time. Thus, in 
recent years, the use of these methods has grown more than others. In 
this sense, the literature includes significant works focused on solving 
the DSP as a single-objective problem using different techniques based 
on metaheuristics, such as the genetic algorithm (GA) (Chunming, 2016; 
Go et al., 2012; Gonnuru et al., 2013; Kheder et al., 2015; Tseng et al., 
2018; Zhang et al., 2015), particle swarm optimisation (PSO) (Pornsing 
and Watanasungsuit, 2014; Zhong et al., 2011), ant colony optimisation 
(ACO) (Luo et al., 2016; Shan et al., 2007), artificial bee colony (ABC) 
(Percoco and Diella, 2013), the immune algorithm (IA) (Lu and Liu, 
2012), simulated annealing (SA) (Azab et al., 2011), fruit fly optimisa-
tion (FFO) (Qu et al., 2015), the Bees Algorithm (BA) (Laili et al., 2019; 
Liu et al., 2018a, 2020b), and, more recently, the flatworm algorithm 
(FA) (Tseng et al., 2020). Additionally, metaheuristic techniques have 
been applied to solve DSP as a multiobjective problem, such as the non- 
dominated sorting genetic algorithm (NSGA-II) (Meng et al., 2017; 
Shokohyar et al., 2014), the multiobjective GA (MOGA) (Hula et al., 
2003; Rickli and Camelio, 2013, 2014), the multiobjective evolutionary 
algorithm (MOEA) (Jun et al., 2007), and the multiobjective Bees Al-
gorithm (MOBA) (Xu et al., 2020). 

Disassembly processes tend to be naturally complex, as they entail 
managing different types of uncertainties due to missing, corroded or 
worn-out parts and components in the products to be disassembled (Laili 
et al., 2019; Vongbunyong et al., 2013a). Most disassembly processes 
were traditionally conducted manually (Liu et al., 2020a,a; Ong, Chang, 
& Nee, 2021; Vongbunyong, Kara, & Pagnucco, 2013a), but automated 
disassembly using robots is increasingly being applied, as robots provide 
great efficiency and an increased ability to handle uncertainties in dy-
namic disassembly processes (Vongbunyong et al., 2013a). Additionally, 
hazardous and dangerous disassembly tasks are done more efficiently 
and safely by robots. A number of research works involving robotic 
disassembly can be found in the literature: Torres et al. (2009) used 
decision trees to distribute tasks between robots; Elsayed et al. (2010) 
proposed GA to solve robotic disassembly sequence planning (RDSP); 
Elsayed et al. (2012) used robot vision and GA for dismantling 

computers and minimising disassembly time; Vongbunyong et al. (2015) 
proposed a cognitive robotic system for low-cost disassembly automa-
tion to replace humans; Barwood et al. (2015) set up a lab-scale robotic 
cell to disassemble electronic control units from vehicles; Vongbunyong 
et al. (2017) transferred skills from humans to robots with cognitive 
ability to disassemble an LCD screen; Li et al. (2018) proposed an 
automated robotic approach for disassembly electric vehicles; Liu et al. 
(2018a) minimised disassembly time using an Enhanced Discrete Bees 
Algorithm (EDBA) to solve RDSP; Liu et al. (2020b) used an improved 
discrete BA to enhance the disassembly efficiency in a collaborative 
disassembly sequence planning and disassembly line balancing robotic 
process; and Ramírez et al. (2020) proposed a model for robotic disas-
sembly that aimed to maximise profit. 

Most of the above research is based on approaches to maximise 
profit, minimise process time, minimise cost, or a combination of these, 
while in some cases, also considering environmental issues, formulated 
as either single- or multiobjective problems. Previous studies in the 
RDSP were single-objective optimisation problems. Moreover, there are 
only three studies on RDSP on sustainability issues. 

It is clear the management of EoL products is one of the main chal-
lenges to achieve the CE paradigm. Researchers and practitioners must 
work together to find solutions for recovering components, parts and 
raw materials from EoL products. This must be done using technical 
ways that allow balancing different goals at the same time, like eco-
nomic, energy, environmental, etc. The development of methodologies 
and procedures to help practitioners perform disassembly operations 
using industrial processes based on sustainability goals, and make the 
most appropriate decisions about the final use of the disassembled 
components is essential to encourage companies to better manage the 
recovery of EoL products. So, the purpose of this study is to fill the gap in 
the area of robotic disassembly by proposing a multiobjective decision- 
making approach to find the optimal or near-optimal solution that 
maximises profit, energy savings and environmental benefits using a 
robotic cell framework and two real industrial case studies as 
demonstrators. 

This paper makes several contributions to the literature. First, the 
proposed model determines a near-optimal solution for the problem, 
providing the disassembly sequence planning for the robotic process, the 
best recovery option for the components –reuse, remanufacturing, 
recycling or disposal–, the disassembly direction for all components, and 
the disassembly tools required to complete the disassembly operations. 
Second, this study is the first to provide insights to pinpoint how 
different iterations and population sizes (parameters used) can yield the 
same optimal results using statistical tests rather than visual graphical 
explanations. Third, the simulated solution approach closely replicates 
the real disassembly process, using real data and information from the 
use cases, describing the robotic cell framework and the disassembly 
tools, in addition to considering the feasible paths for the robot to move 
between disassembly points and with the tool magazine. 

The rest of the paper is organised as follows. Section 2 reviews the 
literature and related work. The proposed model and methodology are 
explained in Section 3. Section 4 describes the case studies, the robotic 
cell, and the experiments. Section 5 is devoted to presenting and dis-
cussing the results. Finally, Section 6 concludes the paper. 

2. Literature review 

DSP is defined as a systematic approach to determine the best 
sequence of activity in the segregation of a product in its end of life 
(Dong and Arndt, 2003) in a detailed plan (Lambert, 2003). As described 
by Zhou et al. (2018), DSP comprises three steps: disassembly mode 
(complete or partial), disassembly modelling (disassembly precedence 
relationships), and disassembly planning methods (objective and opti-
misation method). The most popular disassembly model is graph-based, 
followed by matrix-based, Petri Net, and other methods (Zhou et al., 
2018). 
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Table 1 
Comparison of previous studies.  

Study Recovery Option Decision Goals Disassembly Output Robotic 
operator 

Decision 
making 

Parameter 
Analysis 

Optimisation method  

REU REM REC DIS Economic Energy Environmental Sequence Recovery Direction Tool SO MO   

Hula et al. (2003)   v v v v  v v     v  MOGA 
Kongar and Gupta (2006) v  v  v   v     v   GA-PPX 
Jun et al. (2007) v v v v v    v     v  MOEA 
Shan et al. (2007)     v   v  v v  v   ACO 
Elsayed et al. (2010) v  v v v   v    v v   GA-PPX 
Zhong et al. (2011)     v   v     v   PSO and Dijkstra 
Azab et al. (2011) v  v  v   v     v   SA 
Ma et al. (2011) v v v v v   v v    v   Integer Programming 
Agrawal and Pande (2011)     v   v  v   v  Visual GA-PPX 
Jun et al. (2012) v v v v v    v    v   GA and Q-heuristic 
Go et al. (2012) v    v   v  v     Visual GA 
Elsayed et al. (2012) v  v v v   v    v v   GA-PPX 
Lu and Liu (2012)     v   v     v  Visual AIA 
Vongbunyong et al. (2012, 

2013a,b, 2015, 2017)            
v     

Li et al. (2013)     v  v v     v   PSO 
Percoco and Diella (2013) v  v v v  v v        ABC 
Rickli and Camelio (2013)  v v  v  v v      v Visual MOGA 
Gonnuru et al. (2013) v  v v v   v v    v   GA 
Xia et al. (2014) v  v  v   v     v   TLBO 
Shokohyar et al. (2014) v v  v v  v  v     v  NSGA-II 
Rickli and Camelio (2014)     v   v      v Visual MOGA 
Ondemir and Gupta (2014a) v v v v v  v v v     v  Linear Physical 

Programming 
Ondemir and Gupta (2014b) v v v v v  v v v     v  MILP 
Johnson and McCarthy (2014) v v v v v    v     v Sensitivity 

Analysis 
Integer Programming 

Kheder et al. (2015)     v   v   v  v  Visual GA-PPX 
Qu et al. (2015)     v   v     v   FFO 
Meng et al. (2016) v v v  v   v v    v   ICA 
Luo et al. (2016)     v   v     v   ACO 
Chunming (2016)     v   v     v   GA 
Alshibli et al. (2016) v  v v v       v v   Tabu search 
Meng et al. (2017) v v v  v  v v v     v  NSGA-II 
Tseng et al. (2018)     v   v  v v  v   Block based GA 
Liu et al. (2018a)     v   v  v v v v  Visual EDBA 
Alshibli et al. (2018) v  v v    v v   v v   SA 
Gao et al. (2018)        v  v v v v   ABC 
Laili et al. (2019)     v   v  v  v v   BA 
Tseng et al. (2020)     v   v  v v  v   Flatworm Algorithm 
Xu et al. (2020)     v   v  v  v  v Visual MOBA-Pareto 
Fu et al. (2021) v  v  v v  v      v Experiment 

Design 
MOMVO 

Gunji et al. (2021)   v v v v v v v    v   Stability graph cut-set 
Wang et al. (2021)        v    v  v  MOABC, MOPSO, NSGA- 

II, SPEA2 
This paper v v v v v v v v v v v v v v Statistical EDBA and MOBA-Pareto  

N
. H
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DSP belongs to the field of nondeterministic polynomial complete 
(NP) problems (Elsayed et al., 2012; Go et al., 2012; Huang et al., 2000; 
Kang and Xirouchakis, 2006; Meng et al., 2017; Tseng et al., 2018; Wang 
et al., 2013; Zhong et al., 2011). This means that to solve a complex case 
with an exact solution and using a consistent technique, high compu-
tational time is required because the number of possible sequences es-
calates exponentially with the number of components or parts (Go et al., 
2012; Kuo, 2013; Tovey, 2002). 

Most research on solving the DSP problem uses heuristic and meta-
heuristic mathematical programming (McGovern and Gupta, 2011). 
Zhou et al. (2018) reported that research mainly uses metaheuristic 
linear programming, rule-based methods and stochastic simulations to 
find the optimal disassembly sequence. Metaheuristic algorithms are 
known to be able to find a near-optimal solution in a reasonable 
computational time. Of the metaheuristic approaches, GA is the most 
frequently used to solve DSP, followed by PSO and ACO (Zhou et al., 
2018). A small number of other metaheuristic algorithms have also been 
used to solve DSP, such as BA, IA, ABC, SA and FFO (Azab et al., 2011; 
Liu et al., 2018a; Lu and Liu, 2012; Percoco and Diella, 2013; Qu et al., 
2015). To date, the most novel algorithm for solving DSP is FA, by Tseng 
et al. (2020). The BA (Pham et al., 2006) is a numerical optimisation 
technique inspired by honeybees’ natural foraging behaviour. The BA 
has been successfully applied in neural network training, manufacturing 
cell formation, machine job shop scheduling, control system tuning, 
dynamic control problems, data clustering, mechanical design optimi-
sation, image analysis, supply chain optimisation, robotic disassembly 
sequence and robotic disassembly line balancing (Laili et al., 2019; Liu 
et al., 2018a,b; Pham et al., 2006; Pham et al., 2014; Pham and Cas-
tellani, 2015; Yuce et al., 2013). 

Concerning decision-making methods, single-objective (SO) and 
multiobjective (MO) approaches have mainly been used. Talbi (2009) 
suggests that a robust optimisation must find a trade-off between the 
quality of the solutions and the robustness of the solutions if there is 
interference in the decision variables, defined as MO optimisation. The 

complexity of the MO problem increases as the size of the problem es-
calates (Talbi, 2009). The MO approach provides a set of solutions, 
known as the Pareto Optimal Solutions (POSs), when it is impossible to 
enhance one of the goals without degenerating at least one of the others 
(Talbi, 2009). 

The performance evaluation for MO optimisation is more compli-
cated than the SO because the output is not a single solution but a set of 
solutions (Halim et al., 2020; Talbi, 2009). Solution-quality indicators 
for MO optimisation are divided into convergence-based indicators, 
diversity-based indicators and hybrid indicators (Talbi, 2009). The 
number of non-dominated solutions is one of the most widely used in-
dicators to measure convergence speed, as proposed by Durillo et al. 
(2010). The diversity indicator measures the dispersion and extension of 
the solutions (Talbi, 2009), while the Hypervolume Indicator (HI) is a 
hybrid-based indicator to measure convergence and diversity (Cao et al., 
2015; Talbi, 2009). HI is the most popular method (Zitzler and Thiele, 
1998), and has become a standard indicator to measure the performance 
of MO optimisation algorithms (Zitzler et al., 2008). A higher HI is 
desirable because it shows a wider range of POSs (Halim et al., 2020). 
Another measurement of speed to compare the performance of algo-
rithms is the Number of Function Evaluation (NFE) (Halim et al., 2020). 
Unlike the computational time, which has the major drawback of 
depending on computer characteristics, NFE is an independent mea-
surement from the computer system (Talbi, 2009), and a reliable mea-
surement for computation complexity (Halim et al., 2020). Most 
researchers use NFE to compare algorithms in SO problems, while NFE is 
used to compare algorithms in MO problems (Deb and Jain, 2013; Sun 
et al., 2018). 

Solving the RDSP problem using BA was first presented by Liu et al. 
(2018a). In this work, an enhanced discrete bees algorithm (EDBA) 
using a mutation operator and EDBA without a mutation operator 
(EDBA-WMO) was proposed. The results show that EDBA using the 
mutation operator better minimises the total disassembly time 
compared to EDBA-WMO, the genetic algorithm with precedence 

Fig. 1. RDSP optimisation decision-making model.  
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preserve crossover (GA-PPX) and self-adaptive simplified swarm opti-
misation (SASSO). Studies of RDSP using BA have been conducted by 
Laili et al. (2019, 2022), Liu et al. (2018a), Chen et al. (2020) and 
Hartono et al. (2022a,b,c). Those studies primarily focus on single- 
objective optimisation, with the main objective being the mini-
misation of disassembly time, except for Hartono et al. who explored 
different objectives. This research notably introduces the first applica-
tion of a multiobjective Bees Algorithm (MOBA) to the autonomous 
identification of the optimal recovery strategy in RDSP. An explanation 
of the differences between the single-objective and multiobjective ver-
sions of the BA, along with the specific versions utilised in this study, 
will be provided in the next section. Within this study, the MOBA is 
employed to identify the optimal recovery strategy for each disassembly 
component, representing a novel aspect that has not been previously 
addressed in the literature. By leveraging its inherent decision-making 
capabilities, the MOBA dynamically evaluates and selects the most 
favourable recovery options for each component, taking into account 
the specified constraints and adeptly balancing the objectives. 

To better explain the contributions of this study and the research gap 
it aims to fill, Table 1 summarises and compares related previous 
research in DSP. Most of the previous research in DSP has proposed SO 
approaches, with there being a lack of MO optimisation techniques. 
Only six research works (Johnson and McCarthy, 2014; Jun et al., 2007, 
2012; Ma et al., 2011; Ondemir and Gupta, 2014a,b) consider the EoL 
recovery option as reuse, remanufacturing, recycling and disposal, using 
human/manual disassembly. RDSP using an MO approach with the Bees 
Algorithm as the optimisation method is presented in the work by Xu 
et al. (2020), but EoL recovery options are not considered. Only three 
studies have sustainability as a goal (Alshibli et al., 2018; Gao et al., 
2018; Wang et al., 2021). Of the types of goals considered in previous 
work, economic ones are the most commonly addressed. Our research, 
however, explores energy savings and environmental benefits as ob-
jectives to achieve sustainability, in addition to maximising profit. 

3. Model and methodology 

The RDSP decision-making model designed in this research consists 
of four stages: model building, model formulation, optimisation method- 
MO aggregate approach, and optimisation method-MO non-dominated 
approach. Fig. 1 shows a general overview of the proposed model, and 
the different stages are explained in the following sections. 

3.1. Stage 1: RDSP model building 

The first stage of the model is devoted to evaluating the interference 
between components and the precedence relationships between them to 
eliminate infeasible sequences (Zhou et al., 2018). At the beginning, the 
complete information on the products, components, properties and their 
recovery feasibility is collected. To this end, the model is provided with 
the information from the CAD design. Additionally, as opposed to 
manual disassembly, the model must be informed of the disassembly 
direction to define the suitable paths for the robot movements. Subse-
quently, feasible disassembly sequences and directions are generated 
using modified space interference matrix and interference matrix ana-
lyses, also called modified feasible solution generation (MFSG) (Liu 
et al., 2018a). Space interference matrix and interference matrix ana-
lyses were proposed by Jin et al. (2013, 2015) to represent disassembly 
precedence between components in six directions (X+, X-, Y+, Y-, Z+, Z- 
). The interference matrix M can be written as Eq. (1). 

M =

⎡

⎢
⎢
⎣

0 M12 ⋯ M1n
M21 0 … M2n

⋮ ⋮ ⋱ ⋮
Mn1 Mn2 ⋯ 0

⎤

⎥
⎥
⎦ (1)  

where each element in the matrix is a multidimensional vector that 

represents whether part j is blocking the movement of part i along X+, X- 
, Y+, Y-, Z+ or Z- direction. If it is blocking, Mij is 1, otherwise it is 0. Jin 
et al. (2013, 2015) defined the matrix for the negative direction as the 
transpose matrix of the positive direction. For example, matrix M for X- 
is the transpose matrix of X +. However, for case studies including bolts 
as fasteners, this methodology is unsuitable because, in the transpose 
matrix, the components fastened with bolts could be disassembled 
before the bolts, which it is not feasible. Therefore, this work considers 
the MFSG approach as proposed by Liu et al. (2018a), in which each 
matrix is separately evaluated to avoid this issue. It was also selected for 
its practicality in the disassembly process. 

3.2. Stage 2: RDSP model formulation 

Resolving the robotic disassembly process is proposed as a multi-
objective problem with the aim of identifying an optimal or near- 
optimal solution (OS) to best balance the three goals: profit (f1), en-
ergy savings (f2) and environmental benefits (f3), as shown in Eq. (2): 

OS = max(f1, f2, f3) (2) 

The three goals are assessed according to the disassembly process 
outcomes and the subsequent recovery and sale in the market of the 
components that have been disassembled, depending on the recovery 
option selected for each of them: reuse, remanufacturing, recycling, or 
disposal. 

3.2.1. Goal 1. Profit 
f1 is defined as shown in Eq. (3). The equation includes seven main 

addends: the total revenue obtained from the components to be reused 
or remanufactured, the total revenue obtained from the components to 
be recycled, the total disposal costs of the components to be disposed of, 
the total disassembly cost, the total recovery costs of the components to 
be reused or remanufactured, the overhead costs of the company and the 
depreciation costs of the machinery (robotic cell) used in the disas-
sembly process. 

f1 =
∑N

i=1

∑2

j=1
RPiri,jαi +

∑N

i=1
RCiri,3αi −

∑N

i=1
CDiri,4(1 − αi)

−

[
∑N− 1

i=1
tb(xi)αicT +

∑N− 1

i=1

(
PD(xi,M)

ve
+ tc(xi, xi+1) +

PD(M, xi+1)

ve

+ tu(xi,M) + tw(M,xi+1

)

γiαicT +
∑N− 1

i=1

(
PD(xi, xi+1)

ve

+ tz(xi, xi+1)

)

(1 − γi)αicT

]

−
∑N

i=1

∑2

j=1
rci,jri,jαi −

∑N

i=1

∑4

j=1
ohi,jri,jαi

−
∑N

i=1

∑4

j=1
dpi,jri,jαi

(3)  

where:  

• i is the index for each component and varies from 0 to N  
• j is the indicator of the recovery mode and equal to 1 if component i is 

assigned to be reused, 2 if it is to be remanufactured, 3 if it is to be 
recycled or 4 if it is to be disposed of.  

• RPi is the revenue obtained due to the component i to be reused or 
remanufactured not having been manufactured again for a new 
product  

• ri,j is an indicator of the recovery mode: 1 if mode j is assigned to 
component i  

• αi is an indicator that takes the value of 1 if component i is to be 
disassembled and 0 otherwise.  

• RCi is the revenue obtained from component i being recycled  
• CDi is the disposal cost of component i being disposed of 
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• tb(xi) is the basic time to perform disassembly operation xi  
• cT is the cost per unit of time 
• PD(xi,M) is the distance between the point of the disassembly oper-

ation xi and the position of the tool magazine (M)  
• ve is the line velocity of the industrial robot’s end effector  
• tc(xi,xi + 1) is the tool change time and depends on the tool type  
• PD(M,xi + 1) is the length between the position of the tool magazine 

(M) and the point of the disassembly operation xi + 1  
• tu(xi,M) is the penalty time for process direction changes along the 

path between xi and the tool magazine (M) and formulated as 
follows:  
- 0 if the direction is not changed.  
- p1 if the direction is changed by 90◦.  
- p2 if the direction is changed by 180◦.  

• tw(M,xi+1) is the penalty time for process direction changes along the 
path between the tool magazine (M) and xi+1, and is formulated as tu  

• γi is an indicator taking the value 1 if operation xi+1 requires 
changing the tool used in previous operation xi  

• PD(xi,xi+1) is the distance between the point of the disassembly 
operation xi and the point of disassembly operation xi+1  

• tz(xi,xi+1) is the penalty time for process direction changes along the 
path between xi and xi+1, and formulated as tu  

• rci,j is the recovery cost of component i being reused or 
remanufactured  

• ohi,j is the overhead cost assigned to component i to be disassembled  
• dpi,j is the depreciation cost assigned to component i to be 

disassembled 

3.2.2. Goal 2. Energy savings 
f2 represents the energy savings obtained as a result of the disas-

sembly process and the subsequent recovery of the components. As some 
of the disassembled components will be reused or remanufactured, the 
model considers the energy savings obtained due to these components 
not having been manufactured again in the production of new products. 
Eq. (4) shows the formulation of this goal, considering four main ad-
dends: the total reclaimed energy from the components to be reused or 
remanufactured, the total energy consumption of the robot in the overall 
disassembly process, the total energy consumption involved in recov-
ering the components to be reused, remanufactured or recycled, and the 
total energy consumption in the final treatment of the components to be 
disposed of. 

f2 =
∑N

i=1

∑2

j=1
ri,jgri,jfwαi −

∑N− 1

i=1

[

tb(xi)PR1γi +
PD(M, xi)PR2γi

ve

+ tc(xi, xi+1)PR2γi +
PD(M, xi+1)PR2γi

ve

+
PD(xi, xi+1)PR2(1 − γi)

ve

]
fwαi

3600
−
∑N

i=1

∑3

j=1
ri,jgci,jfwαi

−
∑N

i=1
ri,4gci,4fw(1 − αi)

(4)  

where, in addition to the variables and parameters defined in the 
formulation of f1, the following are considered:  

• gri,j is the energy reclaimed from component i being reused or 
remanufactured  

• fW is a conversion factor from kWh to monetary units  
• gd1,i(xi) is the energy consumption of the robot in the disassembly 

operation of component i  
• gd2,i(xi,M) is the energy consumption of the robot in the movement 

between the position xi and M  
• gd3,i(M) is the energy consumption of the robot in the tool change  
• gd4,i(M,xi+1) is the energy consumption of the robot in the movement 

between M and xi + 1  
• gd5,i(xi,xi+1) is the energy consumption of the robot in the movement 

between xi and xi + 1  

• gci,j is the energy consumption involved in recovering component i 
with mode j  

• PR1 is the power of the robot used in the disassembly operation  
• PR2 is the power of the robot used in the movements between the 

disassembly points 

3.2.3. Goal 3. Environmental benefits 
The third goal f3, assesses the environmental benefits reclaimed in 

the disassembly process and the subsequent recovery of components. As 
shown in Eq. (5), five addends are considered in the formulation of this 
goal: the total reclaimed environmental benefits from the components to 
be reused or remanufactured; the total environmental benefits caused by 
the process of recovering components to be reused, remanufactured or 
recycled; the total environmental benefits incurred in the treatment of 
components to be disposed of; the total environmental benefits incurred 
in the disassembly operations; and the total environmental benefits 
produced in the movements of the robot between the disassembly 
points. 

f3 =
∑N

i=1

∑2

j=1
ri,jeri,jαi −

∑N

i=1

×
∑3

j=1
ri,jeci,jαi −

∑N

i=1
ri,4eci,4(1 − αi) −

∑N− 1

i=1
ed(xi)αi −

∑N− 1

i=1
ed(xi, xi+1)αi

(5)  

where, in addition to the variables and parameters presented in the 
definition of f1 and f2, the following are defined:  

• eri,j is the reclaimed environmental benefits from component i being 
reused or remanufactured  

• eci,j is the environmental benefits in the recovering process of 
component i with mode j 

• ed(xi) represents the environmental benefits in disassembly opera-
tion xi.  

• ed(xi,xi+1) represents the environmental benefits produced by the 
movement of the robot between disassembly operations xi and xi+1, 
considering that the robot has to change the tool in M if operation 
xi+1 requires using a different tool to the one used in the previous 
operation xi. 

3.2.4. Constraints 
Finally, some constraints must be considered to complete the model 

formulation, as shown in Eqs.(6) to (9): 

∑4

j=1
ri,j = 1 ∀i (6)  

ri,1 + ri,2 + ri,3 ≤ αi (7)  

αi ≥ αi+1 (8)  

∑N

i=1
αi ≤ N − 1 (9) 

where  

• Eq. (6) guarantees that each component, i, has only one recovery 
mode.  

• Eq. (7) assures that all components to be reused, remanufactured or 
recycled must be disassembled.  

• Eq. (8) guarantees that if the disassembly operation of component i is 
the prerequisite of the disassembly operation of component i + 1, 
component i must be disassembled.  

• Eq. (9) guarantees the maximum number of total disassembled 
components. 
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3.3. Stage 3: RDSP optimisation method - multiobjective aggregate 
approach 

At this stage, the RDSP model performs multiobjective aggregate 
approaches optimisation to find an optimal or near-optimal solution for 
each goal, as described in the previous section. The aggregate approach 
sums all the goals and treats them as a single objective. EDBA, an 

improvement of the BA using a mutation operator as proposed by Liu 
et al. (2018a), is adapted to find suitable solutions applying different 
iteration and population sizes to test the performance of the algorithm. 
The pseudocode of EDBA is depicted in Fig. 2. 

The first step of the algorithm is focused on the parameter setting and 
the application of the stopping criteria (maximum iteration number). A 
number of scoutbees n are generated using MFSG for all feasible 

Fig. 2. EDBA pseudocode.  

Fig. 3. Illustration of neighbourhood search in this paper.  

N. Hartono et al.                                                                                                                                                                                                                                



Computers & Industrial Engineering 184 (2023) 109535

8

disassembly sequences. Then, n is sorted by the fitness value. The best of 
n are elite site bees, nep, and search in the elite sites, e, using a neigh-
bourhood strategy (swap, insert and mutation). The swap and insert 
operators move the disassembly sequence, direction, recovery mode and 
tools, whereas the mutation only changes the direction and the recovery 
mode, as depicted in Fig. 3. The mutation operator mutates the best bee 
of the nep to find the best fitness value. If the fitness value of the mutated 

bees is higher, then the best bee of nep is replaced and not changed 
otherwise. The process for selected sites m is similar to that with the elite 
sites e. The remaining bees n − m perform a random search using MFSG 
to explore the solution space. The population is sorted by fitness value 
and updates the best RDSP information until the maximum number of 
iterations is reached. 

Subsequently, a statistical test is carried out to find the number of 

Fig. 4. Statistical test decision flowchart.  

Fig. 5. MOBA pseudocode.  
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iteration and population sizes that result in the maximum fitness values. 
Fig. 4 shows the decision flowchart for the proposed statistical test. First, 
a descriptive test generates a boxplot graph to visually show the data 
distribution, median and outliers. A pretest is then performed to check 
the assumptions required to satisfy the parametric test: (i) the number of 
samples is higher than 30, (ii) the data fit a normal distribution, and (iii) 
the data belong to the same population. The parametric test is only 
carried out if the three assumptions are met. Otherwise, the nonpara-
metric test will be performed. The next step is devoted to determining 
whether there are significant differences between the groups. If there are 
no significant differences, then any iteration and population size could 
be used to find the maximum fitness value. However, if the statistical 
test shows that the independent groups have significant differences, a 
post hoc test is performed with pairwise multiple comparisons to 
determine which groups are significantly different from other groups. 

The results will pinpoint which groups can be used to find the maximum 
fitness value. 

3.4. Stage 4: RDSP optimisation method – multiobjective non dominated 
approach 

In the last stage, MO optimisation is applied to find the best balance 
of the three goals. As a result, a set of POSs and the image of this set in an 
objective space called the Pareto front (Talbi, 2009) is obtained. The 
POSs will help the decision-maker adopt the most appropriate choice for 
their preferences. 

This research proposes two approaches to solve MO problems. The 
first is a scalar approach using the aggregation method. This approach 
transforms the MO problem into an SO problem by linearly adding the 
objective function (Talbi, 2009). This first approach uses EDBA, since it 

Fig. 6. Gear pump A: (a) assembled view; (b) exploded view. Source: Liu et al. (2018a).  

Fig. 7. Gear pump B: (a) assembled view; (b) exploded view. Source: Grabcad Community (2020) and Ramírez et al. (2020).  
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is similar to an SO approach, as previously explained in Section 3.3. The 
second consists of a dominance-based MO optimisation approach to 
generate a set of POSs using MOBA. To compare the solutions, two 
additional optimisation algorithms, NSGA-II and PESA-II, are used. 

The last step of this stage is devoted to the performance analysis. To 
evaluate the performance of the three MO algorithms, the number of 
non-dominated solutions generated, HI and NFE, is applied. The number 
of non-dominated solutions was proposed by Durillo et al. (2010) to 
measure convergence speed. These criteria cannot be the sole indicator 
of measurement. A higher number of non-dominated solutions is pref-
erable, but diverse solutions can be achieved through a lower number of 
non-dominated solutions. Consequently, another indicator must be used 
to measure the performance of the algorithms. In this way, HI is applied 
to measure the convergence and diversity of the sets of solutions from 
the optimal Pareto front (Cao et al., 2015; Talbi, 2009). Linear nor-
malisation is needed to give a relatively equal contribution of objectives 
to the indicator value (Knowles et al., 2006), as shown in Eq. (10). In this 
research, the function is normalised in the range [01], and the reference 
point used is [1.2, 1.2, 1.2]. 

fnorm =
f − fmin

fmax − fmin
(10) 

In addition, HI is calculated by generating 10,000 samples using 
Monte Carlo simulation. The higher value of HI is the most preferable, 
due to its producing a wider range of POSs (Halim et al., 2020). Finally, 
NFE is applied to measure the speed in finding solutions. 

The pseudocode depicting the novel design of the MOBA for the 
RDSP is displayed in Fig. 5. The first step is to initialise the MOBA 
parameter setting, Pareto front set, and stopping criteria (maximum 
number of iterations). The generation of n scoutbees is similar to EDBA, 
using MFSG to help the generation of feasible disassembly sequences. 
The n scoutbees are then sorted using Pareto sorting and crowding dis-
tance calculation. The process is similar to EDBA for elite sites e and 
selected sites m. The difference is only that, in each site, the Pareto 
sorting and crowding distance calculation is applied to sort all the bees. 
After a random search is performed by the n − m bees to explore the 
solution space. The Pareto front set is then updated, and the best RDSP 
information is saved until the stopping criteria are met (maximum 
iteration reached). 

Table 2 
Gear pump A. Properties and disassembly requirements for all components.  

Item Name Material Volume Weight Disassembly point Disassembly tb(xi)    

(mm3) (g.) X Y Z tool (s) 

1 Bolt A Steel  1,006.5 7.9 49.4 105.5 − 12.6 Spanner-I 3 
2 Bolt B Steel  1,006.5 7.9 74.4 81 − 12.6 Spanner-I 3 
3 Bolt C Steel  1,006.5 7.9 74.4 45 − 12.6 Spanner-I 3 
4 Bolt D Steel  1,006.5 7.9 49.4 20.5 − 12.6 Spanner-I 3 
5 Bolt E Steel  1,006.5 7.9 24.4 45 − 12.6 Spanner-I 3 
6 Bolt F Steel  1,006.5 7.9 24.4 81 − 12.6 Spanner-I 3 
7 Cover Steel  68,552.5 538.1 49.4 63 − 20.6 Gripper-II 4 
8 Gasket Rubber  4,450.4 4.2 49.4 105.5 1.4 Gripper-I 3 
9 Gear A Steel  15,215.5 119.4 49.4 81 3.4 Gripper-I 6 
10 Gear B Steel  15,215.5 119.4 49.4 45 3.4 Gripper-I 6 
11 Driven Shaft A Steel  5,207.0 40.9 49.4 81 − 7.6 Gripper-I 4 
12 Base Steel  195,539.3 1535.0 49.4 81 49.4 Gripper-II 8 
13 Driven Shaft B Steel  18,267.2 143.4 49.4 45 152.4 Gripper-I 4 
14 Packing Gland Steel  2,709.0 21.3 49.4 45 91.4 Gripper-I 2 
15 Gland Nut Steel  12,046.9 94.6 49.4 45 96.4 Spanner-II 3  

Table 3 
Gear pump B. Properties and disassembly requirements for all components.  

Item Name Material Volume Weight Disassembly point Disassembly tb(xi)    

(mm3) (g.) X Y Z tool (s) 

1 Bolt A Steel  1,243.1 9.8 59.1 114 − 48.4 Spanner-I 4 
2 Bolt B Steel  1,243.1 9.8 90.3 89 − 48.4 Spanner-I 4 
3 Bolt C Steel  1,243.1 9.8 90.3 33 − 48.4 Spanner-I 4 
4 Bolt D Steel  1,243.1 9.8 59.1 8 − 48.4 Spanner-I 4 
5 Bolt E Steel  1,243.1 9.8 27.9 33 − 48.4 Spanner-I 4 
6 Bolt F Steel  1,243.1 9.8 27.9 89 − 48.4 Spanner-I 4 
7 Cover Steel  95,973.5 753.4 59.1 82 − 64.6 Gripper-II 5 
8 Gasket Rubber  5,496.3 5.2 59.1 114 − 31.4 Gripper-I 4 
9 Gear A Steel  21,301.7 167.2 59.1 82 − 30.9 Gripper-I 6 
10 Gear B Steel  21,301.7 167.2 59.1 40 − 30.9 Gripper-I 6 
11 Shaft A Steel  6,430.7 50.5 59.1 40 − 48.9 Gripper-I 4 
12 Base Steel  273,755.0 2149.0 59.1 114 7.1 Gripper-II 4 
13 Shaft B Steel  22,560.0 177.1 59.1 82 136.1 Gripper-I 8 
14 Gland A PTFE  3,243.6 7.1 59.1 94.8 34.1 Gripper-I 3 
15 Gland B PTFE  3,243.6 7.1 59.1 94.8 41.1 Gripper-I 3 
16 Gland C PTFE  3,243.6 7.1 59.1 94.8 48.1 Gripper-I 3 
17 Gland D PTFE  3,243.6 7.1 59.1 94.8 55.1 Gripper-I 3 
18 Gland E Steel  14,456.3 113.5 59.1 82 79.1 Gripper-I 3 
19 Bolt stud A Steel  998.1 7.8 35.1 82 89.1 Spanner-II 3 
20 Bolt stud B Steel  998.1 7.8 83.1 82 89.1 Spanner-II 3 
21 Nut A Steel  289.5 2.3 35.1 82 84.1 Spanner-III 4 
22 Nut B Steel  289.5 2.3 83.1 82 84.1 Spanner-III 4 
23 Nut C Steel  289.5 2.3 35.1 82 87.1 Spanner-III 4 
24 Nut D Steel  289.5 2.3 83.1 82 87.1 Spanner-III 4  
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4. Case studies and experiments 

4.1. Case studies 

A gear pump is a type of hydraulic pump consisting of two gears 
enclosed in a tight housing. It transforms kinetic energy in the form of 
motor torque, generated by a motor, into hydraulic energy through the 
oil flow generated by the pump. This flow of oil under pressure is nor-
mally used to generate the movement of the actuator installed in the 
machine or application. The main element of the pump is the coupled 
gear pair. The gear pair is made up of the drive shaft (driven by the 
motor shaft) and the driven shaft. The driving shaft rotates the driven 
shaft under the principle of displacement caused by the contact between 
the teeth of the shaft gears. When the pump is operated, the oil enters 
through the inlet (suction) hole of the pump due to the depression 
created by separating the teeth of one gear from those of the other. The 
oil is transported through the flanks of the gear teeth until it reaches the 
outlet hole of the pump, where when the teeth of the driving shaft meet 
those of the driven shaft, the oil is driven towards the outlet hole 
(pressure). The use of external gear pumps in industry is common 
because it is a compact, powerful, robust and cost-competitive product. 
From the perspective of EoL product recovery, the gear pump is of great 
interest for remanufacturers due to some of its components presenting 

low wear after its operative lifetime and use, allowing them to be reused 
or remanufactured to be included in new products. The other compo-
nents can be recycled or disposed of as the ultimate option. 

Two external gear pumps were selected as the case studies for this 
research: Gear Pump A (7.5 l/min) and Gear Pump B (10 l/min), as 
shown in Figs. 6 and 7. Table 2 and Table 3 show the definition and 
properties of all the components of both gear pumps. The information 
was obtained from the 3D models (Grabcad Community, 2020), the 
works by Liu et al. (2018a) and Ramírez et al. (2020), and specialised 
remanufacturers in the UK. Additionally, supplementary data 
(https://doi.org/10.25500/edata.bham.00000810) shows the path dis-
tance (PD) matrices for both gear pumps (Tables 1 and 2), for Gear Pump 
A and B, respectively, indicating the distance between adjacent disas-
sembly points considering all the paths allowed and the infeasible tra-
jectories that prevent forbidden ways from being selected in the 
disassembly process. 

4.2. Robotic cell 

A robotic cell made up of a robot and tool magazine (M) with a ro-
botic tool changer was designed for the simulations. Fig. 8 shows a 
general layout of the robotic cell, designed with the location of the 
robot, the tool magazine (M), and the selected gear, pump A or B, 

Fig. 8. Layout of the robotic cell.  

Fig. 9. Kruskal-Wallis test results for gear pumps A and B, multiobjective aggregate method.  
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according to the case study analysed. 
The robot selected was the KUKA LBR iiwa 14 R820 (KUKA, 2020), a 

7-axis lightweight robot with a jointed arm. This robot is prepared to 
manage a rated pay load of up to 14 kg, with a maximum reach of 820 
mm. The volume of the working envelope is 1.8 m3 and the pose 
repeatability (ISO 9283) is ± 0.15 mm. 

The tool magazine (M) is a device containing the tools needed to 
perform the disassembly operations. The robot is required to move up to 
the position of the tool magazine if the subsequent planned step in the 
disassembly process requires changing the tool. In the simulations, the 
tool magazine (M) is assumed to be located at the following position: x 
= 300, y = 200, z = 150. 

Fig. 10. Boxplot for the multiobjective aggregation method.  
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The gear pump disassembly process involves two main groups of 
disassembly operations to be performed: unfastening and pulling/ 
pushing. To unfasten bolts and nuts, three types of spanners are 
considered (Spanner-I, -II and -III). For the remainder of the disassembly 
operations, two types of grippers (Gripper-I and -II) are used. Table 2 
and Table 3 show the disassembly tool used in each disassembly 

operation, the coordinates of the disassembly point of each component 
with relation to the coordinates of the origin, and the basic time, tb(xi), 
needed to complete the disassembly operation. 

Fig. 11. POSs for gear pump A using MOBA, NSGA-II and PESA-II (Iteration 500, population size 50).  
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4.3. Key input data and calculation assumptions 

To perform the required calculations and simulations, a variety of 
input data were considered. In supplementary data (https://doi. 
org/10.25500/edata.bham.00000810), Tables S.3 and S.4 show the 
input data needed to evaluate the profit goal (f1) for gear pumps A and B; 
Tables S.5 to S.8 show the parameters required to assess the energy 

savings goal (f2) for both gear pumps, while Tables S.9 to S.12 present 
the corresponding parameters for the evaluation of the environmental 
benefits goal (f3). The authors note that most of the information and data 
specified in the referred tables were provided by remanufacturing and 
recycling companies in the UK and Spain during 2020. 

In addition to the input data included in the supplementary data 
(https://doi.org/10.25500/edata.bham.00000810) some calculation 

Fig. 11. (continued). 
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Fig. 12. POSs for gear pump B using MOBA, NSGA-II and PESA-II (Iteration 200, population size 70).  
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assumptions were considered, as follows:  

• The components are disassembled using non-destructive operations. 
In this way, the research considers the robot is able to complete all 
the disassembly tasks using standard operations as turning, 
unscrewing, removal, gripping, etc. 

• The task times are deterministic and known. Therefore, same oper-
ation is completed by the robot in the same time for all the parts 
being disassembled. 

• The disassembly process is sequential, being the disassembly oper-
ations performed one by one.  

• The disassembly mode is complete, involving dismantling the whole 
product into individual components.  

• The remanufacturing company is assumed to operate during one 8- 
hour shift per day, 220 days per year.  

• A forecast of the remanufactured gear pumps in the robotic cell is 
considered equal to 70,000 units per year for Gear Pump A and 
55,000 units per year for Gear Pump B, given that the robotic cell is 
operating with only one type of gear pump all the year. It is based on 
the information provided by remanufacturers of gear pumps in 
United Kingdom. 

Fig. 12. (continued). 
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• Based on a commercial quotation of a robot manufacturer, the 
upfront costs (investment) of the robotic cell are considered to be 
0.15 M€, and the hourly cost of the robotic cell is 120 €/h.  

• The study considers a straight-line depreciation of the machinery for 
an expected lifetime of 10 years.  

• Overhead costs are distributed according to the resources applied to 
each disassembly operation. In this way, and following Ramírez et al. 
(2020), a weight of 2 out of 10 is applied to the components to be 
reused, 5 out of 10 to the components to be remanufactured, 2 out of 
10 to the components to be recycled, and 1 out of 10 to the com-
ponents to be disposed of.  

• Based on the information provided by the manufacturer (KUKA, 
2020):  

o The linear velocity in the movement of the robot’s end-effector is 
equal to 12 mm/s.  

o The penalty times for process direction changes, p1 and p2, are 
assumed to be equal to 1 and 2 seconds, respectively.  

o The robot is expected to take 10 seconds to change the tool in the 
tool magazine (M). 

5. Results and discussion 

The algorithms presented in Section 3 were programmed and run 
using MATLAB 2020b on a computer with a 1.80 GHz Intel Core i7- 
8565U CPU. The statistical tests were conducted using MATLAB 
2020b and IBM SPSS Statistics 27. Both the MO aggregate and MO non- 
dominated approaches were performed using different iteration sizes 

Fig. 13. Number of POSs.  
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(100 to 500) and population sizes (50 to 80) and independently run fifty 
times. The algorithm’s stopping criterion is the number of iterations. 
The Bees Algorithm parameters used in this research were set as follows: 
number of elite sites (e) equal to 1, number of selected sites (m) equal to 
5, number of recruited bees around elite sites (nep) equal to 10, and 
number of recruited bees around selected sites (nsp) equal to 5. 

The first step to solve the MO problem in this study consisted of a 
scalar approach using an aggregation method, where the three goals 
were added together in a linear manner. The boxplot shown in Fig. 10 
presents the results for Gear Pump A, where the maximum fitness value 
is equal to 65.30 € given by iteration 500 and population size 70. 

Likewise, the maximum fitness value for Gear Pump B is 87.62 €, 
reached by iteration 100 and population size 70. The assumption 
checklist shows that these data should be processed using the 
nonparametric Kruskal–Wallis test. The statistical test also rejected the 

null hypothesis for both Gear Pumps A and B (see Fig. 9), and therefore, 
the Dunn-Sidak test was carried out. The results show that for Gear 
Pump A, the difference means are given by iteration 100 with population 
sizes of 50, 60, 70 and 80 and iteration 200 with population size 50. For 
Gear Pump B, the difference means are given by iteration 100 with 
population size 70 and iteration 200 with population size 50. The RDSP 
results for both gear pumps and the statistical test results are included as 
supplementary data (https://doi.org/10.25500/edata.bham.00000810) 
in Tables S.13 and S.14, and Figs. S.1 to S.3. 

Dominance-based MO was the second approach used in this study to 
generate a set of Pareto Optimal Solutions (POSs). The version of the 
MOBA used in this approach is depicted in Fig. 5 (Section 3). Two 
additional algorithms, NSGA-II and PESA-II were applied to conduct a 
comparison between the results. Fig. 11 for Gear Pump A and Fig. 12 for 
Gear Pump B present the POSs of the trade-off decision between the 

Fig. 14. Hypervolume Indicator using MOBA, NSGA-II and PESA-II.  
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three goals using the three proposed algorithms. Fig. 11d and Fig. 12d 
depict the aggregation of the results for the three algorithms. The results 
reveal that NSGA-II and PESA-II yield similar results to MOBA for Gear 
Pump A, whereas for Gear Pump B, the results are different for the three 
algorithms. Furthermore, from the analysis of these figures, it is evident 

that a simple visual comparison is not sufficient to prove that MOBA 
performs better than the other algorithms. Hence, a performance eval-
uation to obtain the total number of POSs, HI and NFE was carried out. 

Concerning the POSs generated, the line chart shown in Fig. 13 re-
veals that MOBA yields a higher number of POSs compared to NSGA-II 

Fig. 15. Number of Function Evaluation for gear pump A, Iteration 100 to 500, population 50, 60, 70 and 80.  
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and PESA-II in most cases and for both gear pumps. MOBA gives a higher 
number of POSs in 17 iterations for Gear Pump A and 19 iterations for 
Gear Pump B, from a total of 20 iterations and population sizes used for 

each case. The higher number of POSs shows the convergence speed, as 
proposed by Durillo et al. (2010). Moreover, a higher number of POSs 
means that the decision-maker has more choices and can then easily and 

Fig. 15. (continued). 
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accurately adjust the most suitable decisions. Therefore, a higher num-
ber of POSs is desirable. 

HI is the second performance indicator used in this work. The 
average HI is compared in each iteration (100 to 500) and population 
size (50 to 80) for all the experiments. MOBA provides a higher HI than 

NSGA-II and PESA-II for both gear pumps in every iteration and popu-
lation size. The HI line graph for gear pump A, depicted in Fig. 14a, 
shows that MOBA has a steady line compared to NSGA-II and PESA-II. 
With regard to gear pump B, as shown in Fig. 14b, the HI results 
reveal that MOBA fluctuates and then levels off after iteration 300 with 

Fig. 16. Number of Function Evaluation for gear pump B, Iteration 100 to 500, population 50, 60, 70 and 80.  

N. Hartono et al.                                                                                                                                                                                                                                



Computers & Industrial Engineering 184 (2023) 109535

22

population size 70, while NSGA-II and PESA-II present more variations. 
In conclusion, the MOBA performs better with the calculation of HI 
(relatively steady), also producing higher HI values. 

Likewise, NFE was evaluated for both gear pumps, as shown in 
Fig. 15 and Fig. 16, using MOBA, NSGA-II and PESA-II. The figures show 
the relationships between NFE and HI obtained from different iterations 
with the same population. For both gear pumps, the HI obtained from 

MOBA gives a steady line, whereas the NSGA-II and PESA-II present 
greater variation in each graph. Not only does MOBA show a steady 
behaviour and higher HI in each graph, but it also provides smaller NFEs 
for all scenarios. The results reveal that MOBA performs better than the 
other two algorithms due to its ability to yield a higher HI using a 
smaller NFE for any iteration and population size. 

Furthermore, Table 4 and Table 5 show the main RDSP outcomes for 

Fig. 16. (continued). 
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both gear pumps, obtained from the POSs using MOBA and the 
maximum HI values found. These tables show the results with all the 
information for the disassembly sequence, disassembly direction, 
disassembly mode, disassembly tool and maximum fitness value ach-
ieved for each of the three sustainability goals. Similar outcomes from 
the POSs using NSGA-II and PESA-II (for the highest HI) are presented in 
Tables S.15 to S.18 in Hartono et al. (https://doi.org/10.25500/edata. 
bham.00000810) which provides supplementary material for this 
article. 

To highlight the main outcomes and compare the results for the 
experimental cases under study, Table 6 shows the maximum fitness 
values for the near-optimal solutions obtained using the proposed MO 
approaches. 

Analysing the results for the MO aggregate method, it can be 
observed that higher results are obtained if the three goals are aggre-
gated compared to the results obtained by Goal 1, in which only the 
economic parameters are included. It can be deduced that the energy 
and environmental goals must be considered in addition to the tradi-
tional economic issues, proving that these noneconomic goals are also 
able to generate profits for firms. 

Furthermore, it can be seen that the MO dominance-based method 
yields different solutions compared to the other approaches. The 
maximum results obtained with the aggregate method differ from the 
dominance-based approach results because the aim of this latter method 
is to balance each goal, so there is a trade-off between goals. Balancing 
the three goals using the MO dominance-based approach provides a set 
of solutions for the decision-maker to select the most suitable choices in 
each case study. 

Finally, from the analysis of the results, the following insights are 
provided: 

• The MOBA offers a greater number of POSs than comparison algo-
rithms, resulting in a faster convergence speed.  

• The higher HI produced by the MOBA indicates that the convergence 
and diversity of the set of solutions are greater than those of the 
comparing algorithms.  

• The lower NFE indicates that MOBA is faster at finding solutions.  
• MOBA delivers consistent performance across all of the adjusting 

parameters (population sizes and maximum number of iterations).  
• This research demonstrates that, in addition to the objective of 

optimising the economic outcome of the disassembly process, the 
non-economic objectives considered in the work, such as energy 
savings and reduction of environmental impact, also contribute to 
the sustainability of the disassembly process from an economic point 
of view. The paper provides a procedure to measure the non- 
economic results in monetary units, allowing to demonstrate that 
robotic disassembly of end-of-life products improves the economic 
performance of the company from an overall point of view.  

• The modelling of the robotic disassembly process proposed in this 
work becomes a useful decision-making tool. This allows the 
researcher, or the practitioner, to define the decision-making process 
adjusting the balance of the sustainable goals or modelling compet-
itive behaviours between goals, assigning more relevance to one goal 
or another depending on the economic, energy and environmental 
conditions and the available information of the states of nature. 

6. Conclusions 

This paper presents a multiobjective optimisation decision-making 
approach to solve the problem of robotic disassembly of end-of-life 
products with three sustainability goals: profit, energy savings and 

Table 4 
Pareto Optimal Solutions of gear pump A (MOBA - Iteration 500, population size 50).  

No. Disassembly Sequence Disassembly Direction Disassembly mode Disassembly Tool f1 f2 f3 

1 1-2-3-6-5-4-15-7-11-9-10-14-13-8-12 2-2-2-2-2-2-1-2-2-2-2-1-2-2-2 1-1-1-1-1-1-1-1-1-1-1-1-1-4-1 1-1-1-1-1-1-2-4-3-3-3-3-3-3-4 65.669 0.8583 -0.195 
2 1-6-4-5-3-2-15-7-11-9-10-8-12-14-13 2-2-2-2-2-2-1-2-2-2-2-2-2-1-1 1-1-1-1-1-1-1-1-1-1-1-4-1-1-1 1-1-1-1-1-1-2-4-3-3-3-3-4-3-3 64.945 0.8627 -0.195 
3 1-6-5-4-3-2-7-11-9-10-8-15-12-14-13 2-2-2-2-2-2-2-2-2-2-2-1-2-1-2 1-1-1-1-1-1-1-1-1-1-4-1-1-1-1 1-1-1-1-1-1-4-3-3-3-3-2-4-3-3 65.443 0.8643 -0.195 
4 1-6-4-3-2-5-15-7-9-11-10-14-13-8-12 2-2-2-2-2-2-1-2-2-2-2-1-1-2-2 1-1-1-1-1-1-1-1-1-1-1-1-1-4-1 1-1-1-1-1-1-2-4-3-3-3-3-3-3-4 65.696 0.8588 -0.195 
5 2-1-3-4-5-6-15-7-9-11-10-8-12-13-14 2-2-2-2-2-2-1-2-2-2-2-2-2-2-2 1-1-1-1-1-1-1-1-1-1-1-4-1-1-1 1-1-1-1-1-1-2-4-3-3-3-3-4-3-3 64.699 0.8647 -0.195 
6 2-1-6-5-4-3-7-10-11-9-8-15-12-13-14 2-2-2-2-2-2-2-2-2-2-2-1-2-2-2 1-1-1-1-1-1-1-1-1-1-4-1-1-1-1 1-1-1-1-1-1-4-3-3-3-3-2-4-3-3 65.192 0.8656 -0.195 
7 2-1-6-5-4-3-15-7-10-11-9-13-14-8-12 2-2-2-2-2-2-1-2-2-2-2-2-1-2-2 1-1-1-1-1-1-1-1-1-1-1-1-1-4-1 1-1-1-1-1-1-2-4-3-3-3-3-3-3-4 65.781 0.8595 -0.195 
8 2-1-6-5-4-3-7-11-9-10-8-15-12-14-13 2-2-2-2-2-2-2-2-2-2-2-1-2-1-2 1-1-1-1-1-1-1-1-1-1-4-1-1-1-1 1-1-1-1-1-1-4-3-3-3-3-2-4-3-3 65.48 0.8646 -0.195 
9 2-4-1-6-3-5-7-9-11-10-8-15-12-13-14 2-2-2-2-2-2-2-2-2-2-2-1-2-2-2 1-1-1-1-1-1-1-1-1-1-4-1-1-1-1 1-1-1-1-1-1-4-3-3-3-3-2-4-3-3 64.805 0.862 -0.195 
10 3-2-5-4-6-1-15-7-10-9-11-8-12-14-13 2-2-2-2-2-2-1-2-2-2-2-2-2-1-1 1-1-1-1-1-1-1-1-1-1-1-4-1-1-1 1-1-1-1-1-1-2-4-3-3-3-3-4-3-3 64.864 0.8622 -0.195 
11 3-2-1-5-4-6-7-15-14-13-9-11-10-8-12 2-2-2-2-2-2-2-1-1-1-2-2-2-2-2 1-1-1-1-1-1-1-1-1-1-1-1-1-4-1 1-1-1-1-1-1-4-2-3-3-3-3-3-3-4 65.503 0.8602 -0.195 
12 3-4-5-6-1-2-7-10-11-9-8-15-12-14-13 2-2-2-2-2-2-2-2-2-2-2-1-2-1-2 1-1-1-1-1-1-1-1-1-1-4-1-1-1-1 1-1-1-1-1-1-4-3-3-3-3-2-4-3-3 65.456 0.8646 -0.195 
13 3-4-5-6-1-2-7-11-9-10-8-15-12-14-13 2-2-2-2-2-2-2-2-2-2-2-1-2-1-1 1-1-1-1-1-1-1-1-1-1-4-1-1-1-1 1-1-1-1-1-1-4-3-3-3-3-2-4-3-3 65.546 0.8646 -0.195 
14 3-4-6-1-2-5-15-7-10-11-9-14-13-8-12 2-2-2-2-2-2-1-2-2-2-2-1-2-2-2 1-1-1-1-1-1-1-1-1-1-1-1-1-4-1 1-1-1-1-1-1-2-4-3-3-3-3-3-3-4 65.841 0.8601 -0.195 
15 5-1-2-3-4-6-7-11-10-9-8-15-12-14-13 2-2-2-2-2-2-2-2-2-2-2-1-2-1-2 1-1-1-1-1-1-1-1-1-1-4-1-1-1-1 1-1-1-1-1-1-4-3-3-3-3-2-4-3-3 65.242 0.8624 -0.195 
16 5-2-4-3-1-6-7-11-9-10-8-15-12-14-13 2-2-2-2-2-2-2-2-2-2-2-1-2-1-2 1-1-1-1-1-1-1-1-1-1-4-1-1-1-1 1-1-1-1-1-1-4-3-3-3-3-2-4-3-3 65.198 0.862 -0.195 
17 5-4-3-2-1-6-15-7-10-11-9-14-13-8-12 2-2-2-2-2-2-1-2-2-2-2-1-1-2-2 1-1-1-1-1-1-1-1-1-1-1-1-1-4-1 1-1-1-1-1-1-2-4-3-3-3-3-3-3-4 65.915 0.8608 -0.195 
18 5-4-3-2-1-6-7-10-11-9-8-15-12-14-13 2-2-2-2-2-2-2-2-2-2-2-1-2-1-2 1-1-1-1-1-1-1-1-1-1-4-1-1-1-1 1-1-1-1-1-1-4-3-3-3-3-2-4-3-3 65.456 0.8646 -0.195 
19 5-4-3-2-1-6-7-11-9-10-8-15-12-13-14 2-2-2-2-2-2-2-2-2-2-2-1-2-2-1 1-1-1-1-1-1-1-1-1-1-4-1-1-1-1 1-1-1-1-1-1-4-3-3-3-3-2-4-3-3 65.149 0.8656 -0.195 
20 6-1-2-3-4-5-15-7-9-11-10-13-14-8-12 2-2-2-2-2-2-1-2-2-2-2-2-1-2-2 1-1-1-1-1-1-1-1-1-1-1-1-1-4-1 1-1-1-1-1-1-2-4-3-3-3-3-3-3-4 65.675 0.8586 -0.195 
21 6-3-5-1-2-4-15-7-10-9-11-14-13-8-12 2-2-2-2-2-2-1-2-2-2-2-1-2-2-2 1-1-1-1-1-1-1-1-1-1-1-1-1-4-1 1-1-1-1-1-1-2-4-3-3-3-3-3-3-4 65.561 0.8575 -0.195 
22 6-1-2-5-4-3-7-15-14-13-9-11-10-8-12 2-2-2-2-2-2-2-1-1-1-2-2-2-2-2 1-1-1-1-1-1-1-1-1-1-1-1-1-4-1 1-1-1-1-1-1-4-2-3-3-3-3-3-3-4 65.472 0.8599 -0.195 
23 6-1-2-3-4-5-7-10-11-9-8-15-12-13-14 2-2-2-2-2-2-2-2-2-2-2-1-2-2-1 1-1-1-1-1-1-1-1-1-1-4-1-1-1-1 1-1-1-1-1-1-4-3-3-3-3-2-4-3-3 65.126 0.8656 -0.195 
24 6-1-2-3-4-5-7-11-9-10-8-15-12-14-13 2-2-2-2-2-2-2-2-2-2-2-1-2-1-1 1-1-1-1-1-1-1-1-1-1-4-1-1-1-1 1-1-1-1-1-1-4-3-3-3-3-2-4-3-3 65.546 0.8646 -0.195 
25 6-1-2-3-4-5-7-11-9-10-8-15-12-13-14 2-2-2-2-2-2-2-2-2-2-2-1-2-2-1 1-1-1-1-1-1-1-1-1-1-4-1-1-1-1 1-1-1-1-1-1-4-3-3-3-3-2-4-3-3 65.149 0.8656 -0.195 
26 15-6-1-2-3-4-5-7-10-11-9-14-13-8-12 1-2-2-2-2-2-2-2-2-2-2-1-2-2-2 1-1-1-1-1-1-1-1-1-1-1-1-1-4-1 2-1-1-1-1-1-1-4-3-3-3-3-3-3-4 66.121 0.8595 -0.195 
27 15-1-2-3-4-5-6-7-10-11-9-14-13-8-12 1-2-2-2-2-2-2-2-2-2-2-1-2-2-2 1-1-1-1-1-1-1-1-1-1-1-1-1-4-1 2-1-1-1-1-1-1-4-3-3-3-3-3-3-4 66.162 0.8602 -0.195 
28 15-1-2-3-6-4-5-7-9-11-10-13-14-8-12 1-2-2-2-2-2-2-2-2-2-2-2-1-2-2 1-1-1-1-1-1-1-1-1-1-1-1-1-4-1 2-1-1-1-1-1-1-4-3-3-3-3-3-3-4 65.728 0.8562 -0.195 
29 15-6-4-5-2-3-1-7-11-9-10-8-12-14-13 1-2-2-2-2-2-2-2-2-2-2-2-2-1-1 1-1-1-1-1-1-1-1-1-1-1-4-1-1-1 2-1-1-1-1-1-1-4-3-3-3-3-4-3-3 65.117 0.8611 -0.195 
30 15-1-5-4-3-2-6-7-11-9-10-13-14-8-12 1-2-2-2-2-2-2-2-2-2-2-2-1-2-2 1-1-1-1-1-1-1-1-1-1-1-1-1-4-1 2-1-1-1-1-1-1-4-3-3-3-3-3-3-4 65.869 0.8572 -0.195 
31 15-2-5-4-6-1-3-7-11-9-10-8-12-14-13 1-2-2-2-2-2-2-2-2-2-2-2-2-1-2 1-1-1-1-1-1-1-1-1-1-1-4-1-1-1 2-1-1-1-1-1-1-4-3-3-3-3-4-3-3 65.09 0.8615 -0.195 
32 15-6-5-4-3-2-1-7-9-10-11-13-14-8-12 1-2-2-2-2-2-2-2-2-2-2-2-1-2-2 1-1-1-1-1-1-1-1-1-1-1-1-1-4-1 2-1-1-1-1-1-1-4-3-3-3-3-3-3-4 65.737 0.856 -0.195 

Notes: 
Disassembly direction: 1 = Y + direction and 2 = Y- direction. 
Disassembly mode: 1 = reuse, 2 = remanufacturing, 3 = recycle, 4 = disposal. 
Disassembly tool: 1 = Spanner-I, 2 = Spanner-II, 3 = Gripper-I, 4 = Gripper-II. 
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environmental benefits. The proposed model considers all the factors 
involved in the robotic disassembly of the components and their sub-
sequent recovery option—reuse, remanufacturing, recycling or dis-
posal—in an attempt to maximise the three goals in terms of economic 
outcomes and reducing in energy and environmental impact. 

The model designed is able to find the optimal or near-optimal so-
lutions, obtaining the maximum fitness values for the three sustain-
ability goals and providing a balance between them, using the Pareto 
front to make the best trade-off decisions. The disassembly sequence, 
disassembly directions, disassembly tools, and the most suitable recov-
ery option for the disassembled components are the main outcomes of 
the model. This study introduces a novel approach in the area of RDSP 
by leveraging the BA autonomously to identify the optimal recovery 
strategy for each disassembly component while considering constraints 
and effectively balancing objectives, filling a gap in prior RDSP research. 
Real case studies based on two models of industrial gear pumps were 

used as demonstrators. The definition of these case studies was sup-
ported by extensive and updated information obtained from the litera-
ture and companies specialised in remanufacturing. The experiments 
conducted for the proposed case studies were simulated in a robotic cell 
with the appropriate disassembly tools and feasible robot paths and 
directions, demonstrating the suitability and effectiveness of the model. 
Therefore, the outcome of the simulated solutions resembles the actual 
robotic disassembly process. 

Furthermore, our research has several implications for both re-
searchers and industrial practitioners. First, this is a pioneering study 
using two different multiobjective approaches in robotic disassembly. 
The results show that optimal solutions based on the multiobjective 
aggregate approach, or the combination and balance of these in a mul-
tiobjective methodology, provide greater choices for decision-makers to 
select the best strategy according to their preferences. Second, the re-
sults show that MOBA performs better than NSGA-II and PESA-II in 

Table 5 
Pareto Optimal Solutions of gear pump B (MOBA - Iteration 200, population size 70).  

No. Disassembly Sequence Disassembly Direction Disassembly mode Disassembly Tool f1 f2 f3 

1 1-2-3-5-6-24-23-21-22-4-20-19-18-17- 
7-13-9-10-8-12-14-16-15-11 

2-2-2-2-2-1-1-1-1-2-1-1-1-1- 
2-1-2-2-2-2-2-1-1-1 

1-1-1-1-1-1-1-1-1-1-1-1-1-4- 
1-1-1-1-4-1-4-4-4-1 

1-1-1-1-1-3-3-3-3-1-2-2-4-4- 
5-4-4-4-4-5-4-4-4-4 

73.107 7.954 0.7415 

2 1-2-4-6-3-23-24-22-21-19-20-5-18-17- 
7-13-11-9-16-8-10-15-14-12 

2-2-2-2-2-1-1-1-1-1-1-2-1-1- 
2-1-2-2-1-2-2-1-1-1 

1-1-1-1-1-1-1-1-1-1-1-1-1-4- 
1-1-1-1-4-4-1-4-4-1 

1-1-1-1-1-3-3-3-3-2-2-1-4-4- 
5-4-4-4-4-4-4-4-4-5 

74.145 7.9613 0.7415 

3 1-2-6-3-4-5-24-22-23-21-20-19-7-18- 
17-10-16-8-13-15-14-11-9-12 

2-2-2-2-2-2-1-1-1-1-1-1-2-1- 
1-2-1-2-1-1-1-2-2-1 

1-1-1-1-1-1-1-1-1-1-1-1-1-1- 
4-1-4-4-1-4-4-1-1-1 

1-1-1-1-1-1-3-3-3-3-2-2-5-4- 
4-4-4-4-4-4-4-4-4-5 

74.831 7.9615 0.7415 

4 1-2-6-3-23-21-24-22-5-20-19-4-18-17- 
7-16-9-10-13-8-12-15-11-14 

2-2-2-2-1-1-1-1-2-1-1-2-1-1- 
2-1-2-2-1-2-2-1-1-2 

1-1-1-1-1-1-1-1-1-1-1-1-1-4- 
1-4-1-1-1-4-1-4-1-4 

1-1-1-1-3-3-3-3-1-2-2-1-4-4- 
5-4-4-4-4-4-5-4-4-4 

70.865 7.9432 0.7415 

5 1-3-5-4-6-23-24-21-22-2-19-7-20-9- 
10-8-18-13-12-17-11-16-15-14 

2-2-2-2-2-1-1-1-1-2-1-2-1-2- 
2-2-1-1-2-1-2-1-1-1 

1-1-1-1-1-1-1-1-1-1-1-1-1-1- 
1-4-1-1-1-4-1-4-4-4 

1-1-1-1-1-3-3-3-3-1-2-5-2-4- 
4-4-4-4-5-4-4-4-4-4 

70.496 7.9422 0.7415 

6 1-3-5-6-4-2-23-21-24-22-19-20-7-8- 
18-11-13-9-17-16-15-10-14-12 

2-2-2-2-2-2-1-1-1-1-1-1-2-2- 
1-2-1-2-1-1-1-2-1-2 

1-1-1-1-1-1-1-1-1-1-1-1-1-4- 
1-1-1-1-4-4-4-1-4-1 

1-1-1-1-1-1-3-3-3-3-2-2-5-4- 
4-4-4-4-4-4-4-4-4-5 

76.096 7.9709 0.7415 

7 1-6-5-2-24-23-21-22-3-4-20-19-18-17- 
13-7-16-9-8-10-12-15-11-14 

2-2-2-2-1-1-1-1-2-2-1-1-1-1- 
1-2-1-2-2-2-2-1-2-2 

1-1-1-1-1-1-1-1-1-1-1-1-1-4- 
1-1-4-1-4-1-1-4-1-4 

1-1-1-1-3-3-3-3-1-1-2-2-4-4- 
4-5-4-4-4-4-5-4-4-4 

70.549 7.9413 0.7415 

8 2-1-6-5-3-23-24-21-22-20-19-4-7-18- 
11-13-10-8-17-9-16-15-14-12 

2-2-2-2-2-1-1-1-1-1-1-2-2-1- 
2-1-2-2-1-2-1-1-1-1 

1-1-1-1-1-1-1-1-1-1-1-1-1-1- 
1-1-1-4-4-1-4-4-4-1 

1-1-1-1-1-3-3-3-3-2-2-1-5-4- 
4-4-4-4-4-4-4-4-4-5 

74.503 7.962 0.7415 

9 2-3-5-4-1-24-22-6-20-23-21-19-7-8- 
10-9-18-13-12-14-11-17-15-16 

2-2-2-2-2-1-1-2-1-1-1-1-2-2- 
2-2-1-1-2-2-1-1-2-1 

1-1-1-1-1-1-1-1-1-1-1-1-1-4- 
1-1-1-1-1-4-1-4-4-4 

1-1-1-1-1-3-3-1-2-3-3-2-5-4- 
4-4-4-4-5-4-4-4-4-4 

68.936 7.9354 0.7415 

10 2-3-1-5-4-23-24-22-21-6-19-20-7-8-9- 
18-10-11-17-16-15-14-13-12 

2-2-2-2-2-1-1-1-1-2-1-1-2-2- 
2-1-2-2-1-1-1-1-1-2 

1-1-1-1-1-1-1-1-1-1-1-1-1-4- 
1-1-1-1-4-4-4-4-1-1 

1-1-1-1-1-3-3-3-3-1-2-2-5-4- 
4-4-4-4-4-4-4-4-4-5 

73.147 7.9544 0.7415 

11 2-4-3-5-6-23-21-24-22-1-20-19-18-17- 
13-7-16-11-8-9-15-10-14-12 

2-2-2-2-2-1-1-1-1-2-1-1-1-1- 
1-2-1-2-2-2-1-2-1-2 

1-1-1-1-1-1-1-1-1-1-1-1-1-4- 
1-1-4-1-4-1-4-1-4-1 

1-1-1-1-1-3-3-3-3-1-2-2-4-4- 
4-5-4-4-4-4-4-4-4-5 

73.822 7.9598 0.7415 

12 3-1-2-6-5-4-24-23-21-22-20-19-18-7- 
8-17-16-9-10-11-15-14-13-12 

2-2-2-2-2-2-1-1-1-1-1-1-1-2- 
2-1-1-2-2-2-1-1-1-2 

1-1-1-1-1-1-1-1-1-1-1-1-1-1- 
4-4-4-1-1-1-4-4-1-1 

1-1-1-1-1-1-3-3-3-3-2-2-4-5- 
4-4-4-4-4-4-4-4-4-5 

74.214 7.9614 0.7415 

13 3-6-5-1-2-24-22-23-21-20-19-4-7-18- 
10-8-17-9-13-11-16-15-14-12 

2-2-2-2-2-1-1-1-1-1-1-2-2-1- 
2-2-1-2-1-2-1-1-1-2 

1-1-1-1-1-1-1-1-1-1-1-1-1-1- 
1-4-4-1-1-1-4-4-4-1 

1-1-1-1-1-3-3-3-3-2-2-1-5-4- 
4-4-4-4-4-4-4-4-4-5 

74.581 7.9617 0.7415 

14 4-2-5-1-6-3-24-23-21-22-19-20-18-17- 
16-7-8-15-10-9-13-14-11-12 

2-2-2-2-2-2-1-1-1-1-1-1-1-1- 
1-2-2-1-2-2-1-1-2-2 

1-1-1-1-1-1-1-1-1-1-1-1-1-4- 
4-1-4-4-1-1-1-4-1-1 

1-1-1-1-1-1-3-3-3-3-2-2-4-4- 
4-5-4-4-4-4-4-4-4-5 

75.35 7.9673 0.7415 

15 4-3-6-5-1-2-23-24-22-21-20-7-19-9- 
10-18-8-13-12-14-15-11-16-17 

2-2-2-2-2-2-1-1-1-1-1-2-1-2- 
2-1-2-1-2-2-2-2-2-2 

1-1-1-1-1-1-1-1-1-1-1-1-1-1- 
1-1-4-1-1-4-4-1-4-4 

1-1-1-1-1-1-3-3-3-3-2-5-2-4- 
4-4-4-4-5-4-4-4-4-4 

71.661 7.9483 0.7415 

16 4-5-3-24-23-22-21-19-20-1-6-2-7-18- 
9-10-13-8-17-16-12-14-11-15 

2-2-2-1-1-1-1-1-1-2-2-2-2-1- 
2-2-1-2-1-1-2-2-1-1 

1-1-1-1-1-1-1-1-1-1-1-1-1-1- 
1-1-1-4-4-4-1-4-1-4 

1-1-1-3-3-3-3-2-2-1-1-1-5-4- 
4-4-4-4-4-4-5-4-4-4 

73.343 7.9576 0.7415 

17 4-6-5-3-2-1-24-22-23-21-19-20-7-18- 
8-9-10-11-17-16-15-14-13-12 

2-2-2-2-2-2-1-1-1-1-1-1-2-1- 
2-2-2-2-1-1-1-1-1-1 

1-1-1-1-1-1-1-1-1-1-1-1-1-1- 
4-1-1-1-4-4-4-4-1-1 

1-1-1-1-1-1-3-3-3-3-2-2-5-4- 
4-4-4-4-4-4-4-4-4-5 

75.716 7.9715 0.7415 

18 5-3-1-6-4-2-24-23-22-21-19-20-7-8- 
10-9-18-17-11-13-16-15-12-14 

2-2-2-2-2-2-1-1-1-1-1-1-2-2- 
2-2-1-1-2-1-1-1-2-1 

1-1-1-1-1-1-1-1-1-1-1-1-1-4- 
1-1-1-4-1-1-4-4-1-4 

1-1-1-1-1-1-3-3-3-3-2-2-5-4- 
4-4-4-4-4-4-4-4-5-4 

75.252 7.9679 0.7415 

19 5-4-6-2-24-23-21-22-20-19-3-18-17-1- 
7-13-16-11-9-15-10-8-14-12 

2-2-2-2-1-1-1-1-1-1-2-1-1-2- 
2-1-1-2-2-1-2-2-1-2 

1-1-1-1-1-1-1-1-1-1-1-1-4-1- 
1-1-4-1-1-4-1-4-4-1 

1-1-1-1-3-3-3-3-2-2-1-4-4-1- 
5-4-4-4-4-4-4-4-4-5 

73.636 7.9576 0.7415 

20 5-4-1-3-6-2-24-23-21-22-20-19-18-17- 
16-7-13-8-10-11-9-15-14-12 

2-2-2-2-2-2-1-1-1-1-1-1-1-1- 
1-2-1-2-2-2-2-1-1-2 

1-1-1-1-1-1-1-1-1-1-1-1-1-4- 
4-1-1-4-1-1-1-4-4-1 

1-1-1-1-1-1-3-3-3-3-2-2-4-4- 
4-5-4-4-4-4-4-4-4-5 

77.308 7.9814 0.7415 

21 5-6-1-3-2-23-21-24-22-4-19-20-7-18- 
17-16-10-9-13-15-8-12-14-11 

2-2-2-2-2-1-1-1-1-2-1-1-2-1- 
1-1-2-2-1-1-2-2-1-1 

1-1-1-1-1-1-1-1-1-1-1-1-1-1- 
4-4-1-1-1-4-4-1-4-1 

1-1-1-1-1-3-3-3-3-1-2-2-5-4- 
4-4-4-4-4-4-4-5-4-4 

72.971 7.953 0.7415 

22 6-3-1-4-2-23-21-24-5-19-7-22-20-18- 
17-8-9-10-13-16-12-14-11-15 

2-2-2-2-2-1-1-1-2-1-2-1-1-1- 
1-2-2-2-1-1-2-2-2-2 

1-1-1-1-1-1-1-1-1-1-1-1-1-1- 
4-4-1-1-1-4-1-4-1-4 

1-1-1-1-1-3-3-3-1-2-5-3-2-4- 
4-4-4-4-4-4-5-4-4-4 

70.074 7.9414 0.7415 

23 6-5-4-1-2-23-24-22-21-3-19-7-20-18- 
8-17-10-9-13-16-12-14-11-15 

2-2-2-2-2-1-1-1-1-2-1-2-1-1- 
2-1-2-2-1-1-2-2-2-2 

1-1-1-1-1-1-1-1-1-1-1-1-1-1- 
4-4-1-1-1-4-1-4-1-4 

1-1-1-1-1-3-3-3-3-1-2-5-2-4- 
4-4-4-4-4-4-5-4-4-4 

72.057 7.9526 0.7415 

24 6-5-3-24-22-23-21-19-20-2-1-4-18-7- 
8-9-13-10-12-17-14-11-15-16 

2-2-2-1-1-1-1-1-1-2-2-2-1-2- 
2-2-1-2-2-1-2-1-2-2 

1-1-1-1-1-1-1-1-1-1-1-1-1-1- 
4-1-1-1-1-4-4-1-4-4 

1-1-1-3-3-3-3-2-2-1-1-1-4-5- 
4-4-4-4-5-4-4-4-4-4 

70.718 7.9447 0.7415 

25 24-4-3-5-6-1-2-23-21-22-20-19-18-17- 
16-7-15-11-13-8-14-10-9-12 

1-2-2-2-2-2-2-1-1-1-1-1-1-1- 
1-2-1-2-1-2-1-2-2-1 

1-1-1-1-1-1-1-1-1-1-1-1-1-4- 
4-1-4-1-1-4-4-1-1-1 

3-1-1-1-1-1-1-3-3-3-2-2-4-4- 
4-5-4-4-4-4-4-4-4-5 

73.864 7.9612 0.7415 

Notes: 
Disassembly direction: 1 = Y + direction and 2 = Y- direction. 
Disassembly mode: 1 = reuse, 2 = remanufacturing, 3 = recycle, 4 = disposal. 
Disassembly tool: 1 = Spanner-I, 2 = Spanner-II, 3 = Spanner- III, 4 = Gripper-I, 5 = Gripper-II. 
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diversity and convergence speed to find near-optimal results for the 
RDSP. Third, this research uses statistical methodology to identify the 
most appropriate parameters to select the combination of numbers of 
iterations and population sizes that best fit the optimal or near-optimal 
solutions for the RDSP problem, something which no previous works 

have done. Fourth, the model allows the disassembly operations to be 
simulated with great similarity to the real processes. This is of interest 
for industrial practitioners from the perspective of the required in-
vestments and the operations management issues involved in the robotic 
disassembly process to be implemented in the factory. Fifth, the prac-
tical approach of this research is unquestionable, as is the great help this 
tool could provide for companies in managing EoL products, optimising 
disassembly processes and achieving sustainability goals. 

Future research could extend this study in three ways. First, re-
searchers could study how the model best performs considering un-
certainties in the initial condition of the components to be disassembled, 
taking into account that not all the products present the same state after 
their useful life. Second, the model could be applied to partial or se-
lective disassembly processes, providing solutions that obtain the 
optimal disassembly level or stopping point of the process that achieves 
the best outcomes in terms of sustainability. Third, a mixed integer 
linear model could be developed in order to obtain optimal solutions for 
the RDSP problem using mathematical programming solvers. 

Table 6 
Summary of the best near-optimal solutions.  

Gear 
pump 

Bees Algorithm  MOBA NSGA-II PESA-II 

A Goal 1 +
2 + 3 

65.305 
€ 

Goal 
1 

66.162 € 65.946 € 65.658 €   

Goal 
2 

0.866 € 0.862 € 0.861 €   

Goal 
3 

–0.195 € − 0.195 € − 0.195 €    

HI =
0.6782 

HI =
0.6528 

HI =
0.6255 

B Goal 1 +
2 + 3 

87.625 
€ 

Goal 
1 

77.308 € 75.187 € 75.523 €   

Goal 
2 

7.981 € 7.967 € 7.970 €   

Goal 
3 

0.741 € 0.777 € 0.741 €    

HI =
0.9441 

HI =
0.8862 

HI =
0.8681 

Multiobjective Aggregate Method Multiobjective Dominance-based Approach. 

Table A1 
Acronyms.  

ABC Artificial Bee Colony 
ACO Ant Colony Optimisation 
BA Bees Algorithm 
CAD Computer Aided Design 
CE Circular Economy 
DIS Disposal 
DSP Disassembly Sequence Planning 
EDBA Enhanced Discrete Bees Algorithm 
EDBA-WMO Enhanced Discrete Bees Algorithm without Mutation Operator 
EoL End-of-life 
FA Flatworm Algorithm 
FFO Fruit Fly Optimisation 
GA Genetic Algorithm 
GA-PPX Genetic Algorithm with Precedence Preserve Crossover 
HI Hypervolume Indicator 
IA Immune Algorithm 
LCD Liquid Crystal Display 
MFSG Modified Feasible Solution Generation 
M Tools magazine 
MO Multiobjective 
MOBA Multiobjective Bees Algorithm 
MOEA Multiobjective Evolutionary Algorithm 
MOGA Multiobjective Genetic Algorithm 
MOMVO Multiobjective Multiverse Optimiser 
MRO Material Recovery Opportunities 
NFE Number of Function Evaluation 
NP Non-Deterministic Polynomial 
NSGA-II Non-dominated Sorting Genetic Algorithm - II 
OEM Original Equipment Manufacturer 
OS Optimal Solution 
PD Path Distance 
PESA-II Pareto Envelope based Selection Algorithm - II 
POSs Pareto Optimal Solutions 
PSO Particle Swarm Optimisation 
RDP Robotic Disassembly Process 
RDSP Robotic Disassembly Sequence Planning 
REC Recycling 
REM Remanufacturing 
REU Reuse 
RIC Remanufacturing Industries Council 
SA Simulated Annealing 
SASSO Self-Adaptive Simplified Swarm Optimisation 
SO Single-objective 
TLBO Teaching Learning Based Optimisation  

Table A2 
Parameters.  

CDi Disposal cost of the component i 
cT Cost per unit of time 
dpi,j Depreciation cost 
e Number of elite sites 
eri,j Reclaimed environmental benefits from the component i 
eci,j Environmental benefits in the recovering process of component i with 

mode j 
ed(xi) Environmental benefits in the disassembly operation xi 

ed(xi, xi+1) Environmental benefits between xi and xi+1 

f1 Profit goal 
f2 Energy savings goal 
f3 Environmental benefits goal 
fW Conversion factor from kWh to monetary units 
gd1,i(xi) Energy consumption of the robot in the operation xi 

gd2,i(xi, M) Energy consumption of the robot from xi to M 
gd3,i(M) Energy consumption of the robot in the tool change 
gd4,i(M, 

xi+1) 
Energy consumption of the robot from M to xi+1 

gd5,i(xi, 
xi+1) 

Energy consumption of the robot from xi to xi+1 

gci,j Energy consumption for recovering component i with mode j 
gri,j Reclaimed energy 
i Indicator of component 
j Indicator of recovery mode 
m Number of selected sites 
n Number of scout bees 
nep Number of recruited bees around elite sites 
nsp Number of recruited bees around selected sites 
N Total number of components 
ohi,j Overhead cost 
PD(xi, M) Path distance from operation x1 to M 
PD(M, xi+1) Path distance from M to operation xi+1 

PD(xi, xi+1) Path distance from operation xi to operation xi+1 

PR1 Electric power of the robot used in the disassembly operation 
PR2 Electric power of the robot used in the movements between the 

disassembly points 
ri,j Indicator of recovery mode 
rci,j Recovering cost 
RCi Recycling revenue of component i 
RPi Retail price of the component i 
tb(xi) Basic time of the operation xi 

tc(xi, xi+1) Tool change time 
tu(xi, M) Penalty time in the path between operation xi and M 
tw(M, xi+1) Penalty time in the path between M and operation xi+1 

tz(xi, xi+1) Penalty time in the path between operation xi and operation xi+1 

ve Line velocity of the industrial robot’s end effector 
xi Disassembly operation of component i 
xi+1 Disassembly operation following to xi 

αi Indicator equal to 1 if the component i is disassembled, and 
0 otherwise 

γi Indicator equal to 1 if xi+1 requires to change the tool, and 0 otherwise  
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Appendix A. Nomenclature and acronyms 

Notations and related descriptions for acronyms and parameters are 
presented in Tables A.1 and A.2. 
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