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Wide variation in visual field configuration across avian species is hypoth-
esized to be driven primarily by foraging ecology and predator detection.
While some studies of selected taxa have identified relationships between
foraging ecology and binocular field characteristics in particular species,
few have accounted for the relevance of shared ancestry. We conducted a
large-scale, comparative analysis across 39 Anatidae species to investigate
the relationship between the foraging ecology traits of diet or behaviour
and binocular field parameters, while controlling for phylogeny. We used
phylogenetic models to examine correlations between traits and binocular
field characteristics, using unidimensional and morphometric approaches.
We found that foraging behaviour influenced three parameters of binocular
field size: maximum binocular field width, vertical binocular field
extent, and angular separation between the eye-bill projection and the direc-
tion of maximum binocular field width. Foraging behaviour and body mass
each influenced two descriptors of binocular field shape. Phylogenetic relat-
edness had minimal influence on binocular field size and shape, apart from
vertical binocular field extent. Binocular field differences are associated with
specific foraging behaviours, as related to the perceptual challenges of
obtaining different food items from aquatic and terrestrial environments.
1. Introduction
Morphological and phylogenetic diversity within the class Aves [1,2] has pro-
vided an ideal framework to investigate form and function associations using a
trait-based approach [3–5]. While phylogenetically informed, comparative
studies have examined evolutionary relationships between the key function of
foraging and anatomical traits of skull and bill shape [6,7], its application to sen-
sory organ structures has been largely neglected. Together with communication
[8,9], foraging is an important driver for sensory capacities in birds and is often
traded off against predator detection [10]. Although several avian species
depend on tactile [11,12], olfactory [13,14] and/or auditory cues [15,16] for feed-
ing, many others rely primarily upon vision to acquire their food [17]. Variation
within the ocular structures of birds [18–21] highlights the opportunities for
large-scale, trait-based comparative analyses of visual anatomy and properties
associated with key tasks, such as foraging. Visual fields present a useful trait
to study, since differences in visual field characteristics have been described
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Table 1. Full definitions of terms relating to visual field parameters.

term definition

monocular field the visual field of a single eye

binocular field the area where monocular fields overlap

cyclopean field the total visual field produced by the

combination of both monocular fields

maximum binocular

field width

the maximum binocular field width

measured within the binocular region

angular separation the location of the bill tip projection

within, or even outside of the binocular

field, with respect to the position of

maximum horizontal field width

vertical binocular

field extent

the degree to which binocularity extends

from beneath the bill to above the

head
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across a wide range of bird species and appear to be related to
foraging ecology [17].

The visual field is an important component of every visual
system, since its overall shape and extent defines the three-
dimensional space around the head from which visual
information can be extracted at any instant [10]. Variation in
eye size, optical structure and position within the skull deter-
mine the way in which visual fields of individual eyes
overlap [22,23], thus affecting not only the view around the
head but also the shape, size and position of the binocular
field. Interspecific differences in the size of specific visual
field features (the monocular, binocular, cyclopean fields
and blind area; see table 1 for definitions) are associated with
specific tasks, primarily foraging, chick provisioning, predator
detection and tracking conspecifics [24–27]. Variation in
visual field characteristics have also been found in closely
related species that occupy specific ecological niches for
obtaining food resources, for example, among ibises and
spoonbills (Threskiornithidae [28]), ducks, geese and swans
(Anatidae [29]), finches (Emberizidae [21]) and birds of prey
(Accipitridae and Cathartidae [30]). Within these groups,
numerous examples exist which suggest that foraging ecology
rather than phylogeny determine visual field parameters [10].
The visual fields of Aegypiinae vultures, for example, are
primarily adapted for their obligate carrion-feeding diet,
characteristically containing a small binocular region and
large blind areas above, below and behind the head [31].
However, active hunting white-headed vultures (Trigonoceps
occipitalis) have visual fields more similar to that of active-
hunting predatory raptors (e.g. accipitrid hawks), rather than
their close relatives [31]. More specifically, variation in the
visual field topography of Anatidae has been found to occur
between species considered to be primarily reliant upon tactile
or visual cues. Visually guided foraging ducks, including
Eurasian wigeons (Mareca Penelope) (selective grazers), blue
ducks (Hymenolaimus malacorhynchos) and long-tailed ducks
(Clangula hyemalis) (both dive for prey), have frontally posi-
tioned eyes and a wide binocular field with the bill tip
located close to the centre of the frontal binocular for the con-
trol of bill position to obtain food items ([10] and references
therein). Filter-feeding mallards (Anas platyrhynchos), northern
shovelers (Spatula clypeata) and pink-eared ducks (Malacor-
hynchus membranaceus) have dorsally positioned eyes and a
narrow binocular field with an extensive vertical length to pro-
vide comprehensive visual coverage of the celestial hemisphere
([10] and references therein). This literature supports the con-
cept that interspecific binocular field variation is primarily
associated with the perceptual challenges of foraging, rather
than phylogenetic relatedness.

Binocular field topography varies among species associ-
ated with the perceptual challenge of controlling bill (or
talons) position during specific foraging activities [23] and/
or chick feeding [26]. Binocularity enables accurate control of
the direction of travel of the bill (or feet), and their time to con-
tact with a target [25]. This is based on the bird’s detection of
symmetrical optic flow-fields generated by movement of the
head towards a target [10]. Consequently, binocular field topo-
graphy represents an important trait for further understanding
the evolution of avian vision. Binocularity is considered the
most pivotal component of the avian visual field. This is
owing to the two vital functions binocularity provides; (i)
tasks associated with locomotion and (ii) the accurate place-
ment of the bill with respect to the target [10]. Combined,
these two components provide the capacity to move, forage,
construct nests and feed young.

A phylogenetically broad assessment of visual field charac-
teristics and ecological traits, such as foraging, has not been
conducted prior to this study. To date, analyses of particular
visual field characteristics have involved targeted comparisons
among species selected for their ecology or phylogeny [23,32–
34]. These comparisons have examined single parameters, such
as binocular field width in the plane of the bill, maximum bin-
ocular field width, binocular field vertical extent, blind area
width (directly above and behind the head), lateral field
width and cyclopean field width [21,24,35,36]. More recently,
a multidimensional approach to binocular field analysis
among birds of prey (Accipitriformes species [30]) provided
new insights into binocular field shape associatedwith specific
foraging techniques. This morphometric analysis of binocular
field shape revealed additional information that was not
evident when using unidimensional (single parameter) com-
parisons of visual fields. Few visual field comparative
analyses have included a phylogenetic component [21,30,37],
which limits our understanding of evolutionary drivers on
visual field function.

The ecomorphological diversity within the ducks, geese
and swans (Anatidae [38]) provides an appropriate model
taxon for the trait-based comparative analysis of binocular
fields. Since they have precocial chicks [39], binocular vision
is not required for chick provisioning as occurs in other taxa
[26]. This allows us to focus on the association between binocu-
lar fields and foraging traits. The wide range of foraging
techniques, diets [38,39] and anatomical morphologies, e.g.
skull shape [40], bill structure [12,41] and gastrointestinal
tract [41,42], enables the Anatidae to exploit a wide variety of
foraging niches found in marine, freshwater and terrestrial
habitats [43]. Variation in binocular field topography (related
to bill tip position, binocular field width and vertical extent)
of the Anatidae has been described in species considered
to either be primarily reliant upon tactile or visual cues
[29,44–46]. This suggests that interspecific binocular field vari-
ation may be associated with the perceptual challenges of
foraging, rather than phylogenetic relatedness [10,25]. We
aim to provide, to our knowledge, the first phylogenetically
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Figure 1. (a) Vertical sections through the binocular fields of an Atlantic puffin, in the median sagittal plane defined by the vertically orientated equator of the
diagrams (taken from [23]). The line drawings of the heads of the bird show them in the approximate orientations adopted when the visual fields were measured.
(b) The mean ± s.e. angular separation of the retinal field margins as a function of elevation in the median sagittal plane in ruddy shelducks (n = 3). Positive values
indicate overlap of the field margins (binocular vision) and negative values indicate the blind area width. The coordinate system is such that the horizontal plane is
defined by the elevations −90° (behind the head), +90° (in front of the head), and 0° (directly above the head), shown in the photograph. The projection of the
eye-bill tip projection is 111°. The graph illustrates the three visual field parameters measured for this species: (i) the width of maximum binocular field overlap =
27°, (ii) the angular separation between the eye-bill projection and elevation of the maximum binocular field width (111− 90° = 21°), and (iii) the vertical extent
of the binocular field = 131°. (c) Horizontal sections through the visual fields of blue ducks and pink-eared ducks in a plane containing the frontal binocular field at
its maximum width (taken from [44]). This plane is indicated by the line through the eye in each of the drawings of the birds to the right of each visual field
diagram.
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informed comparative study of Anatidae species to test this
hypothesis using both unidimensional and multidimensional
approaches.

We hypothesized that both diet and foraging behaviour
would have a more predominant role in the evolution
of binocular field dimensions for Anatidae species than
phylogenetic relatedness. Our analyses firstly examines
three descriptors of binocular field size (maximum binocular
field width, vertical binocular field extent and angular separ-
ation between the eye-bill projection and the direction of
maximum binocular field width), and secondly explores the
descriptor of binocular field shape.
2. Material and methods
(a) Species and study locations
Research was conducted at two locations: U.S. Geological Survey
Patuxent Wildlife Research Center, Maryland, USA (October
2018) and the Wildfowl and Wetlands Trust, Slimbridge,
Gloucestershire, UK (July 2016, September 2018, January, Febru-
ary and December 2019). Species and the number of individuals
studied at these locations are listed in the electronic supplemen-
tary material, table S1. Visual field measurements were obtained
from 39 species (one swan, seven geese and 31 ducks), using new
data collected from 33 species and previously published data
from six species (electronic supplementary material, table S1).
The rationale and relevance of the binocularity are further
discussed in the electronic supplementary material, S1.

(b) Binocular field data
The ophthalmoscopic reflex technique was used to measure the
visual field characteristics of individuals for each species. This
followed the standardized and validated method as described
in detail in previous studies [28,34,44] (see the electronic
supplementary material, methods S2). Individual birds were
measured close to their enclosures and immediately returned
there following the completion of data collection.

Interspecific variation in binocular field topography was
assessed using both unidimensional and multidimensional
approaches. Unidimensional analysis was based on three binocu-
lar field parameters that were selected as response variables
[24,30,32]: the width of maximum binocular field overlap;
the angular separation between the eye-bill projection and the
direction of maximum binocular field width; and the vertical
extent of the binocular field (figure 1). Angular separation
defines the location of the bill tip projection within, or even
outside of the binocular field, with respect to the position of
maximum horizontal field width (figure 1). Negative values
represent the number of degrees the bill tip projection is above
the maximum binocular field width, while positive values
represent the number of degrees the bill tip projects below the
maximum binocular field width, when the bird’s head is held
in a natural resting position. For each species, mean values of
these three visual field parameters were used. The multidimen-
sional, morphometric approach provided a comparison of
mean binocular field shapes for each species (see below). This
used data from each 10° elevation in the median sagittal plane
of the head for each species (figure 1).
(c) Life-history data
Foraging behaviour information was gathered from primary lit-
erature [38,39,47]. The most common foraging methods were:
grazing (seizing of terrestrial vegetation), dabbling (seizing of
items at a water surface), filter feeding (extraction of small
items from the water column or from within water-filled sub-
strates) and diving (either pursuit diving for capture of mobile
prey at depth in the water column, or shallow diving to feed
on vegetation or prey attached to or within the substrate)
[39,48]. Subsequently, the primary foraging behaviour was deter-
mined for each species and classified into one of four categories:
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‘dabble filter’, ‘dive open’, ‘dive substrate’ and ‘graze’. Dabble
filter (n = 15) includes both dabbling (feeding on the surface of
the water or tipping headfirst into the water to reach submerged
food) and filter feeding (using lamellae in the bill to strain water
for food). Dive open (n = 3) refers to birds diving underwater
to capture prey from the water column, while dive substrate
(n = 12) refers to bird diving underwater to obtain food from
the substrate. Graze (n = 9) refers to the grazing of vegetation
in the terrestrial environment. These indicate whether foraging
primarily occurs in terrestrial (grazing) or aquatic environments
(dabbling and filtering, or diving). Dietary categories were classi-
fied according to those described in an existing dataset based
upon the primary dietary component [49], which provided
three categories: ‘plant seed’ (n = 24), ‘invertebrate’ (n = 11) and
‘omnivore’ (n = 4). Body mass of adult birds was taken as a
mean for both sexes [50].

(d) Phylogenetic methods and analyses
(i) Binocular field parameters
Statistical analysis and figure illustrations were conducted in R
v. 3.5.3 (R Core Team 2019) using the RStudio environment (R
Studio Team 2019). For the analysis, the explanatory variables
considered were primary diet, foraging behaviour and body
mass, while the response variables were the binocular field par-
ameters of maximum binocular width, angular separation and
vertical binocular extent (table 1). We modelled visual field par-
ameters to consider their shared phylogeny, since species are not
statistically independent [51,52]. We used the database www.
birdtree.org [53,54] for phylogenetic tree construction. Phylo-
genetic generalized least-squares (PGLS) models were fitted for
each binocular field parameter using the function ‘pgls’ from
the caper package [55]. We fitted PGLS models to test for an
association between the three life-history traits (primary diet,
foraging behaviour and log10 body mass) and the three binocular
field response variables (see above). A null model (containing no
predictors) was created for each visual field variable to measure
the phylogenetic autocorrelation of each response variable alone.
Eight PGLS model combinations were tested for each visual field
parameter (null model, full model, three models each containing
a single life-history trait and three models each containing two
traits). PGLS model fitting used the maximum-likelihood esti-
mate of λ. Full methodological details pertaining to collinearity,
data skewness, model selection and model averaging can
be found in the electronic supplementary material, methods S3.
Owing to dive open being a small category (n = 3), we re-ran
the entire analysis (as above) without the dive open category
included, to determine the possible impact that this category
was having on the results.

(ii) Binocular field shape
We used the morphometric approach for the comparative analy-
sis of binocular field shape across species. Binocular field shape
provides the geometric morphometric representation of the bin-
ocular field in two dimensions [30]. We followed the method
previously described for visual fields of Accipitriformes [30],
which relied upon outline analysis to translate shapes into quan-
titative variables in their application to a common multivariate
framework for comparative data analyses [56]. Full methodo-
logical details shape analyses can be found in the electronic
supplementary material, methods S3. Briefly, an elliptic Fourier
transform (EFT) was calculated on the x and y coordinates of
the binocular field outline shapes for each species [57]. This pro-
cess transformed these coordinates into two harmonic sums of
trigonometric functions to provide the best approximation of
the binocular shape outline [30], following the EFT principle
described using the Momocs package [56]. We conducted a prin-
cipal component analysis (PCA) on the matrix of Fourier
coefficients to obtain principal component (PC) factors for bin-
ocular field shape [30] within the Momocs package [56]. Based
on eigen factors, the scores of selected axes (PC1 and PC2),
were then used in PGLS model analyses for the examination of
binocular field shape variation as a function of the three life-
history traits (primary diet, foraging behaviour and log10 body
mass), which followed the statistical method previously
described for single binocular field parameters. In total, eight
PGLS model combinations were tested for each PC factor (null
model, full model, three models each containing a single trait)
and three models each containing two and a model selection
[58]. For PC1, subsequent conditional model averaging was con-
ducted with pairwise comparisons across diet and foraging
categories. Since there was a single top-ranked model for PC2,
model averaging was not necessary. All data are available as
the electronic supplementary material, and all full statistical
outputs from each model can be found in the electronic
supplementary material, tables S3–S7.
3. Results
(a) Single binocular field parameters
(i) Phylogenetic signal
Pagel’s λ was intermediate for vertical binocular extent (λ =
0.61), suggesting that this parameter tended to have correlated
values in close relatives, although not as correlated as expected
under a Brownian motion model of evolutionary change. On
the other hand, phylogenetic signal was low for angular separ-
ation (λ = 0.21) and maximum binocular width (λ < 0.001),
indicating that these did not tend to be more similar between
closely related species, thus suggesting these traits are driven
more by life-history traits (see figure 2 for phylogenetic trees).

(ii) Maximum binocular field width
The maximum binocular field width ranged from 16° in snow
geese Anser caerulescens to 38° in long-tailed ducks C. hyemalis.
Three competitive models (Akaike information criterion
(ΔAICc) < 2) were identified from model selection (electronic
supplementary material, table S3). Subsequent conditional
model averaging showed that foraging behaviourwas an impor-
tant predictor, since species using dabbling/filtering techniques
had significantly smaller maximum binocular field widths than
species diving in open water (β =−7.35, s.e. = 3.18, z = 2.31, p=
0.02). However, there were no significant differences in maxi-
mum binocular field width between all other foraging
categories (figure 2): dabble/filter feeders and substrate divers
(β =−2.95, s.e. = 1.96, z = 1.50, p = 0.13); open water divers and
substrate divers (β = 4.41, s.e. = 3.26, z= 1.35, p= 0.18), and gra-
zers and substrate divers (β=−2.14, s.e. = 2.31, z= 0.93, p =
0.36). Variation in maximum binocular field width among fora-
ging categories is illustrated (figure 2d). Neither log10 bodymass
(β = 0.31, s.e. = 3.16, z = 0.10, p= 0.92) nor primary diet predicted
maximum binocular field widths, as no significant differences
were found between dietary categories: invertebrate feeders
and plant/seed feeders (β = 0.88, s.e. = 2.32, z = 0.38, p= 0.79);
omnivores and plant/seed feeders (β=−3.67, s.e. = 2.88, z=
1.28, p= 0.20); invertebrate feeders and omnivores (β= 4.55,
s.e. = 3.06, z = 1.50, p = 0.14).

(iii) Angular separation
The angular separation between the eye-bill projection and
the direction of maximum binocular field width ranged

http://www.birdtree.org
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Lophodytes cucullatus
Mergellus albellus
Bucephala clangula
Bucephala albeola
Cygnus columbianus
Branta bernicla
Branta ruficollis
Branta canadensis
Branta leucopsis
Anser caerulescens
Anser albifrons
Anser brachyrhynchus
Malacorhynchus membranaceus

(c)

Figure 2. Phylogeny of Anatidae species (top). Branch colours indicate reconstructed ancestral states for binocular field traits (a) maximum binocular field width, (b)
angular separation and (c) vertical binocular field extent, with colours at the tree tips representing the current states of these traits. The predictor trait of foraging
behaviour is categorized by coloured bars adjacent to the tree. All colour coding is provided in the legend. For the sampled Anatidae species (n = 39) (bottom), box
plots showing mean (d ) maximum binocular field width, (e) angular separation and ( f ) vertical binocular field extent, across the four primary foraging categories.
The letters i and ii reflect significant differences ( p < 0.05) between categories. An alternate version of (d–f ) can be found as the electronic supplementary material,
figure S1.
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from −10° (i.e. the bill tip being 10° above the maximum
binocular field width elevation) in Canada geese Branta
canadensis to 95° (i.e. the bill tip being 95° below the maxi-
mum binocular field width elevation) in mallards Anas
platyrhynchus. Four competitive models (ΔAICc < 2) were
identified from model selection (electronic supplementary
material, table S4). Subsequent conditional model averaging
identified that foraging behaviour was a key predictor, as
grazing species had significantly smaller angular separation
than species using dabbling/filtering techniques (β =−15.93,
s.e. = 7.77, z = 2.05, p = 0.04) and those diving in substrate
(β =−19.68, s.e. = 8.19, z = 2.40, p = 0.02). There were no
significant differences in angular separation between the
other foraging categories: dabble/filter feeders and substrate
divers (β =−3.75, s.e. = 7.12, z = 0.53, p = 0.60); open water
divers and substrate divers (β =−12.79, s.e. = 11.34, z = 1.13,
p = 0.26). Variation in angular separation among foraging
categories is illustrated (figure 2e). Neither log10 body mass
(β =−14.04, s.e. = 11.31, z = 1.24, p = 0.21) nor primary diet
predicted angular separation, since no significant differences
were found between dietary categories: invertebrate feeders
and plant/seed feeders (β =−0.57, s.e. = 7.72, z = 0.07,
p = 0.94), omnivores and plant/seed feeders (β = 14.70,
s.e. = 10.04, z = 1.46, p = 0.14) and invertebrate feeders and
omnivores (β =−15.27, s.e. = 11.13, z = 1.37, p = 0.17).
(iv) Vertical binocular field extent
The vertical binocular field extent ranged from 90° in white-
winged scotersMelanitta deglandi to 210° in northern shovelers
S. clypeata andmallards. Three competitive models (ΔAICc < 2)
were identified from model selection (electronic supplemen-
tary material, table S5). Conditional model averaging showed
that dabbling/filter-feeding species had significantly greater
vertical binocular extents than grazing species (β = 32.93,
s.e. = 11.86, z = 2.78, p = 0.01). There were no significant
differences in vertical binocular field extent between
the other foraging categories: dabble/filter feeders and sub-
strate divers (β = 21.02, s.e. = 10.89, z = 1.93, p = 0.05); open
water divers and substrate divers (β =−5.25, s.e. = 18.16,
z = 0.29, p = 0.77); grazers and substrate divers (β =−11.92,
s.e. = 12.40, z = 0.96, p = 0.34). Variation in angular separation
among foraging categories is illustrated (figure 2f ). Neither
log10 body mass (β =−14.54, s.e. = 17.29, z = 0.84, p = 0.40)
nor primary diet predicted vertical binocular field extents,
as no significant differences were found between dietary
categories: invertebrate feeders and plant/seed feeders
(β =−10.35, s.e. = 10.81, z = 0.96, p = 0.34); omnivores and
plant/seed feeders (β = 17.39, s.e. = 14.76, z = 1.18, p = 0.24),
and invertebrate feeders and omnivores (β =−27.74,
s.e. = 15.87, z = 1.75, p = 0.08).
(v) Binocular field parameters
The reconstructed ancestral states of the binocular field
parameters associated with foraging behaviour for the
phylogeny of Anatidae are illustrated (figure 2). While the
maximum binocular field width and angular separation
appeared relatively conserved for species that dabble/filter
feed or graze, the vertical binocular extent showed greater
variation for species within these foraging groups. Those
species diving to forage in substrate showed great variation
in maximum binocular field width and vertical binocular
extent, yet their angular separation is more conserved.
Overall, variation in foraging behaviour categories deter-
mined binocular field size across species based on these
three binocular field parameters, with relatively little corre-
lation in the residual error of the model (for maximum
binocular field width and angular separation) linked to
phylogenetic relationships.



PC1 (71.6%)

PC1 (71.6%)

eigenvalues

(a)

(b)

eigenvalues

PC2 (12.6%)

PC2 (12.6%)

omnivore

plant seed

invertebrate

Ch

Hm

Hm

dive open

grazedabble filter

dive substrate

Dj

Dj

Cc

Cc

Ch

Figure 3. Results of principal component (PC) analysis showing binocular field shapes across 39 Anatidae species with respect to (a) primary diet, and (b) foraging
behaviour categories. Some species with extreme examples of binocular field shape within each diet and foraging category are labelled: Dendrocygna javanica (Dj),
Cygnus columbianus (Cc), Clangula hyemalis (Ch) and Hymenolaimus malacorhynchos (Hm).
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(b) Binocular field shape
The first two PCs accounted for 84.2% of the total variance
(71.6% for PC1, eigenvalue less than 0.0001; 12.6% for PC2,
eigenvalue less than 0.0001; figure 3). PCA for binocular
field shape showed that positive PC1 scores represent a
wider binocular field at and around the horizontal plane
with a larger shape at the lower edge (electronic supplemen-
tary material, figure S2), and positive PC2 scores represent a
narrower shape at the upper edge of the binocular field (elec-
tronic supplementary material, figure S2). For both PC1 and
PC2, negative scores produced a binocular field with an
inverted teardrop shape, while positive scores appeared
more elliptical in shape (electronic supplementary material,
figure S2).
(i) Phylogenetic generalized least-squares analyses
The phylogenetic signal was low for PC1 (λ < 0.0001) and PC2
(λ < 0.0001), indicating that species values for PC factors
are not more similar between closely related species than
among distantly related taxa in Anatidae.

For PC1, three competitive models (ΔAICc < 2) were
identified from model selection (electronic supplementary
material, table S6). Subsequent conditional model averaging
identified that foraging behaviour was a key predictor.
For species diving in open water and diving to forage in sub-
strate, both had significantly greater PC1 scores than species
using dabbling/filtering techniques (dive open β = 0.12, s.e. =
0.04, z = 2.76, p = 0.01; dive substrate β = 0.06, s.e. = 0.03,
z = 2.23, p = 0.03). There were no significant differences in
PC scores between grazers and dabble/filter feeders
(β = 0.06, s.e. = 0.03, z = 1.88, p = 0.06), nor between birds
diving into substrate and open water (β =−0.06, s.e. = 0.04,
z = 1.30, p = 0.20). Species diving in open water and substrate
generally had greater variation in binocular field shape with
higher PC1 scores, and thus wider binocular fields (above,
below and at the horizontal plane) in comparison to dab-
bling/filtering species, while the binocular field shape of
grazing species was highly conserved (figure 3b). Neither
log10 body mass (β = 0.04, s.e. = 0.05, z = 0.82, p = 0.41) nor
primary diet were key predictors for PC1, based on compari-
son between dietary categories: invertebrate feeders and
plant/seed feeders (β = 0.88, s.e. = 2.32, z = 0.38, p = 0.79);
omnivores and plant/seed feeders (β =−3.67, s.e. = 2.88,
z = 1.28, p = 0.20); invertebrate feeders and omnivores
(β =−0.02, s.e. = 0.03, z = 0.47, p = 0.64). For PC2, model
selection identified a single top-ranked model (ΔAICc < 2)
containing only the predictor of log10 body mass (electronic
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supplementary material, table S7). PC2 increased with log10
body mass (t37 = 2.14, p = 0.04; electronic supplementary
material, figures S3 and S4).

The reconstructed ancestral states of the PC1 and PC2
scores for the phylogeny of Anatidae are illustrated (electronic
supplementary material, figures S4 and S5). For foraging be-
haviour, the PC1 scores were relatively conserved for species
that dabble/filter feed or graze, yet PC1 scores were more
varied for diving species that forage in substrate. For body
mass, the PC2 scores varied widely in relation to log10 body
mass. While foraging behaviour probably drives variation in
PC1 (binocular field shape at and around the horizontal
plane), body mass influences interspecific variability in PC2
significantly (binocular field shape associated with the vertical
plane), with relatively little correlation in the residual error of
the models linked to phylogenetic relationships.

To determine the impact the small dive open category
(n = 3) was exerting on the findings, we re-ran all analyses
without the dive open category included (for full outputs,
see the electronic supplementary material, tables S8–S10).
These analyses were not conducted for PC2, as the null
model was the highest-performing model. For maximal bin-
ocular field width, the key findings from the full model (see
above) were that dabbling/filtering species were significantly
smaller than species diving in open water; removing open
water as a category removed this difference (electronic sup-
plementary material, table S8). For angular separation, all
findings remained the same, except now there is a significant
difference between the dietary categories of omnivores and
invertebrate feeders, with omnivores having a higher angular
separation (β = 31.79, s.e. = 12.33, z = 2.58, p = 0.01) (electronic
supplementary material, table S9). For vertical field extent, in
the original models dabbling/filter-feeding species had sig-
nificantly greater vertical binocular extents than grazing
species, and this significant difference persists. No predictors
were significant, however, with the null model performing
best (electronic supplementary material, table S10). Without
the dive open category present, the key findings for PC1
remain the same, with the differences between foraging
categories matching that in the original model.
4. Discussion
Foraging behaviour, rather than diet, was the primary driver
of binocular field size and binocular shape associated with
the horizontal plane among the Anatidae, while body mass
was the primary driver of the vertical extent of binocular
field shape. Phylogenetic relatedness was not a key determi-
nant of binocular field size or shape, although it did exert
some influence on the vertical extent of the binocular field.
The variation in binocular field characteristics probably
reflect the different perceptual challenges experienced by
different species when foraging in aquatic and terrestrial
environments. Our findings provide strong support for the
prediction that binocular field variation among birds is pri-
marily associated with foraging activities rather than shared
ancestry [59].

(a) Foraging behaviour
Foraging behaviour primarily determined three parameters
of binocular field size and shape: maximum binocular field
width, angular separation and the binocular field shape at
and around the horizontal plane (based on PC1 scores).
Both foraging behaviour and phylogeny determined vertical
binocular field extent, which highlighted the combined influ-
ence of foraging technique and species relatedness on this
binocular field parameter.

Dabbling and filter-feeding species had small maximum
binocular field widths, large angular separation sizes and
small binocular field shapes at and around the horizontal
plane. These findings probably relate to their reliance on tactile
cues from bill-tip organs and bill lamellae for detecting food
[12,60,61] since they have less need for accurate bill control.
The importance of bill-tip tactile sensitivity in these species is
indicated by the very high numbers of tactile units found in
their mandible bill-tip organs [12]. This is exemplified by
pink-eared ducks Mal. membranaceus [44] and mallards Anas
platyrhynchos [29] that filter feed on planktonic organisms
and have maximum binocular field widths of 19.6° and 22.0°,
respectively. Dabblingmarbled ducksMarmaronetta angustiros-
tris have the narrowestmaximumbinocular fieldwidth of 17.3°
and theymay be less reliant upon visual cues for foraging since
they feed close to the water’s surface primarily using bill
dipping [62].

Dabbling and filter-feeding species had significantly
greater vertical binocular extents than grazing species,
which reduces the size of the blind area above and below
the head. The former foraging group have higher densities
of mechanoreceptive formations in their bill-tip organ [12]
compared to the latter. This probably increases their tactile
sensitivity for the location of food items, hence visual infor-
mation from the binocular field is probably less important
for their feeding. Their reduced reliance upon the binocular
field for foraging activities may be traded off against an
increased ability to detect predators, when reduction in
blind area size provides more visual information from the lat-
eral and posterior fields [10,25]. The dorsally positioned eyes
of mallards and northern shovelers [29,46] provide the most
extensive binocular field lengths (210° for both) thus enabling
comprehensive visual coverage of the celestial hemisphere
[59]. During their foraging activities they can gather visual
information from all around and above the head, which is
important for predator detection [29].

By contrast, diving species that forage from the water
column had the widest maximum binocular fields and largest
binocular field shapes at and around the horizontal plane. This
may reflect the perceptual challenges of chasing and capturing
mobile prey from the water column [63], which requires infor-
mation from the binocular field to achieve accuracy in the
direction and timing of bill position to capture evasive prey
[25]. For example, smewsMergellus albellus (maximum binocu-
lar width 33.5°) dive to catch a variety of small fishes [64],
while blue ducks H. malacorhynchos (maximum binocular
field width 34.4°) chase mobile invertebrates, such as mayfly
(Ephemeroptera) and stonefly (Plecoptera) larvae [44]. This
idea is supported by seabirds from other taxa which dive in
open water (e.g. auks and penguins [23]) that also have large
maximum binocular field widths. Waterfowl diving to capture
prey may require greater maximum binocular field widths (as
measured in air) because of the reduction in width that occurs
when the eye enters water (owing to loss of corneal refraction),
as in penguins and albatrosses [65–67].

Anatidae species diving to obtain food from the substrate
had large mean angular separation sizes (the bill tip is furth-
est from the maximum binocular field width), as they may be
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less dependent upon visual discrimination of food items in
the bill. During winter, sea ducks (Merginae; e.g. buffleheads
Bucephala albeola and common eiders Somateria mollissima)
will forage on molluscs and crustaceans taken from the
seabed at variable depths [38]. Foraging often takes place in
turbid conditions which reduce prey visibility even at close
range [81]. Diving white-headed ducks Oxyura leucocephala
had the greatest angular separation (75°), which probably
relates to their winter foraging on saline lakes where they
consume submerged aquatic vegetation and invertebrates in
brackish water conditions [38], a task for which they probably
do not require precise bill positioning. Other avian species for
which precision bill control is not required for foraging, such
as woodcocks Scolopax rusticola, also have their bill projection
at the periphery of the binocular field [68] that leads to
increased angular separation.

Grazers (the majority being goose and swan species) had
small maximum binocular field widths, small angular separ-
ation sizes, small vertical binocular extents (this parameter
was also influenced by phylogeny), and narrow binocular
field shapes at and around the horizontal plane. They had
significantly smaller angular separation (the bill tip is
nearer to the maximum binocular field width) as compared
to species diving in substrate and dabbling or filtering for
food. Differences in bill tip position have previously been
described for grazing Eurasian wigeons Mar. penelope and
filter-feeding northern shovelers [29]. Grazing birds may
use the smaller angular separation to target specific types
of food that are grazed selectively; for example, Canada
geese have a small angular separation (−10°) and are able
to visually inspect objects at their bill tip to facilitate their
selective grazing of highly nutritious vegetation [27]. Other
avian species (e.g. herons [34]) also have their bill projections
falling approximately centrally within the binocular field
(closer to the maximum binocular field width) to enable
high precision control of bill position during foraging.

Grazingwaterfowl’s small vertical binocular extents (hence
large blind area sizes) would limit their ability to detect preda-
tors in relation to visual field function. However, other aspects
of ocular anatomy in grazing species may compensate for this
limitation. For example, the presence of an oblique visual
streak (high ganglion density) in the retina of Canada geese
provides high visual acuity [27]. Thuswhen their head position
has the bill parallel to the ground, they can see the ground and
sky simultaneously, which is beneficial for detecting aerial and
terrestrial predators [27]. Further research is required to deter-
mine whether there are other ocular adaptions in grazing
species that may balance the tasks of foraging, predator
detection and conspecific observation.
(b) Body mass
Body mass was the primary predictor of binocular field shape
associated with the vertical plane, based on PC2 scores. Anati-
dae species with higher body mass had greater PC2 scores
representing the shape at the upper edge of the binocular
field becoming narrower (electronic supplementary material,
figure S2). The relationship between body mass and this
aspect of binocular field shape may be linked to eye size,
since allometric analyses have demonstrated eye size (based
on eye diameter) being proportional to body mass in birds
[69]. Some high mass avian species with large eyes, including
eagles, vultures and hornbills [70] have optical adnexa
(e.g. enlarged brows, hair-like feathers on eyelids) that function
as sunshade devices to reduce the chance of the sun being
imaged on the retina. The presence of sun avoiding enlarged
brows, as found in some [30] raptor species, leads to a large
blind area over the head that reduces binocular field width at
the upper edge. Our study showed that high mass waterfowl
(with potentially larger eyes) had narrow binocular field
shapes at the upper edge, which leads to questions about
potential anatomical adaptions to avoid sun dazzling that
may have influenced this aspect of binocular field shape.

Body mass may influence visual parameters in other
ways. In general, larger species are less vulnerable to attacks
owing to their size [71]. For larger species, a strategy of
attempted concealment is less common as size alone can be
considered effective enough to deter predation [72]. Previous
ideas have posited that if flocking in birds itself evolved
owing to predation, flocking should be more prevalent in
smaller bird species. In some instances, this idea has held
true (e.g. Guianan tropical forest birds [71]). However, other
studies [72] have demonstrated either no effect of size on
flocking tendencies, or a positive relationship between body
mass and the likelihood to form flocks. A positive relation-
ship may indicate a simple aggregation of individuals
around a resource rather than being predation driven. In
the Anatidae, being in flocks, particularly for swans and
geese, may be about shared navigation, learning migration
routes and energetic benefits through v-formation flocking
[73,74]. Body mass is also related to the distances at which
birds are able to detect potential predators; larger bird species
have higher detection distances and higher flight initiation
distances [75]. Larger birds will, however, travel further to
reach cover or safety after fleeing a predator. In Anatidae,
this is more prevalent for terrestrial grazing species (swans,
geese, wigeons), which return to water for safety [57]. Swad-
dle & Lockwood [76] found that rather than body mass, it
was wing shape and hind limb length that influenced inter-
specific variation in predation rates. This is believed to be
linked to the relationship between body mass and take-off
ability; larger birds take longer to take off. Moreover, larger
species have comparatively lower energy requirements than
those of smaller species [77], and thus it is likely larger
species would not tolerate a high-risk scenario, and are gen-
erally less tolerant of predator approaches. This is despite
larger birds typically being harder to catch and subdue.
5. Conclusion
Our study provides to our knowledge, the first, phylogeneti-
cally informed, comparative analysis of visual fields in 39
species of ducks, geese and swans, showing that variation
in binocular topography and morphology are highly related
to foraging behaviour, with limited influence from phylogeny
and body mass. We propose that the plasticity of binocular
field dimensions and shape can be explained primarily by
differences in foraging behaviour traits, however, shared
ancestry has some influence on the vertical extent of the bin-
ocular field. We recommend using both unidimensional and
morphometric approaches in future visual field comparative
studies across other avian taxa within a phylogenetically
informed framework. These could include a wider variety
of relevant life-history traits (e.g. chick type, nest type, prey
or predator role) to further address evolutionary questions
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on avian vision. We also recommend incorporating phylo-
genomic techniques to better understand the genetic
controls on ocular structures that determine binocular
vision [78] across avian species.
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