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Multi-Level Spatial Comparative Judgement Models To Map Deprivation

Rowland G. Seymour* David Sirl Simon Preston * James Goulding®

Abstract

While current comparative judgement models provide strong algorithmic efficiency, they remain
data inefficient, often requiring days or weeks of extensive data collection to provide sufficient pair-
wise comparisons for stable and accurate parameter estimation. This disparity between data and
algorithm efficiency is preventing widespread adoption, especially so in challenging data-collection
environments such as mapping human rights abuses. We address the data inefficiency challenge
by introducing the finite element Gaussian process Bradley—Terry mixture model, an approach that
significantly reduces the number of pairwise comparisons required by comparative judgement mod-
els. This is achieved via integration of prior spatial assumptions, encoded as a mixture of functions,
each function introducing a spatial smoothness constraint at a specific resolution. These functions
are modelled nonparametrically, through Gaussian process prior distributions. We use our method
to map deprivation in the city of Dar es Salaam, Tanzania and locate slums in the city where poverty
reduction measures can be carried out.

Key Words: Bradley—Terry, Preference Learning, Bayesian Computation, Gaussian Processes

1. Introduction

Comparative judgement models, such as the Bradley—Terry model Bradley and Terry (1952),
rank and estimate the features of a group of objects by modelling a set of pairwise com-
parisons made between them. The use of the approach now proliferates across a range of
domains, due to the fact that, while attribution of a single, consistent value to some object
can be an extremely difficult task, assessing an object’s relative value in comparison with
another can be trivial - whether in reflecting the superiority of one sports team over another
Cattelan et al. (2012); the relevance of a document compared to rivals in a set of search
results Radlinski and Joachims (2007); or even the ability of one animal to outfight a com-
petitor for a mate Stuart-Fox et al. (2006). More recently, comparative judgement studies
have been used in social good applications, such as mapping deprivation (Seymour et al.,
2022b) and violence against women and girls (Seymour et al., 2023).

Bradley-Terry models are of increasing interest to the machine learning community, as
we seek to generate large, accurately labelled data sets to underpin modelling processes. In
many contexts, traditional labelling methods are impractical, from assessment of disease
risk in challenging clinical environments, to the collection of UN Sustainable Development
Goal (SDGQG) indicators, such as levels of poverty, modern slavery and gender-violence,
in countries with limited infrastructure. In such conditions standard data-collection tech-
niques can be logistically challenging, prohibitively expensive and rapidly out of date.
While comparative judgement models offer an attractive alternative, current models re-
main data inefficient, often requiring days or weeks of extensive data collection to provide
sufficient pairwise comparisons for stable and accurate parameter estimation. This dispar-
ity between data and algorithmic efficiency is hampering widespread adoption - and much
practical pressure remains to minimise the number of comparisons required to accurately
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recover ground-truth qualities for the objects of concern. Furthermore, as comparative
judgement models describe the relative difference in qualities of objects, novel methods
are required to provide results which are readily interpretable by non-scientific practition-
ers.

Addressing these issues, we introduce a finite element Gaussian process Bradley—Terry
mixture model (GP-BT), applicable to any context where spatial correlations exist. Data
efficiency improvements are achieved by adding structure into the model via explanatory
variables, and leveraging prior assumptions about them encoded as a mixture of functions.
These covariates can be of any dimension, but we focus on the spatial case due to its wide
applicability, with each function introducing spatial smoothness constraints into the model
at a specific resolution. These functions are modelled nonparametrically, placing a Gaus-
sian process (GP) prior distribution on each and developing an efficient Markov chain
Monte Carlo algorithm to learn function structure. Incorporating spatial constraints into
the model allows the features of each object in the set to depend on the features of nearby
objects, greatly reducing the amount of data that needs to be collected. As the model uses
multi-level spatial constraints, we are able to model the spatial pattern in features at dif-
ferent resolutions and tailor the results to the needs of the end user. Practical implications
of this new technique are demonstrated via two real-world case-studies: modelling depri-
vation patterns across the UK and providing the highest-resolution predictions to date of
poverty levels across the 452 subwards of Dar es Salaam, Tanzania

2. Background

The Bradley—Terry (BT) model was first outlined in Bradley and Terry (1952) and has been
widely used for analysing such comparative data (other examples including analysis the
ability of major league baseball teams Phelan and Whelan (2018), ranking chess players
Caron and Doucet (2012) and in educational assessment Pollit (2012)). The model de-
scribes the probability one object of a set ‘beats’ another when the two are compared. It
does this by assigning a quality to each element of the set and describing the probability
of one element beating another as a function of the qualities of the two elements being
compared. In the standard BT model the quality of each object is a separate parameter,
i.e. each object is independent of all other objects. Inference for the model parameters
has typically been done by maximising the likelihood function (e.g. Davidson (1970),
Hunter (2004)), but more recently attention has turned to Bayesian methods. As the poste-
rior density is intractable, the authors of Adams (2005) proposed a Metropolis-Hastings
algorithm to explore the density. In Guiver and Snelson (2009), the authors proposed
an expectation-propagation method, which has computational advantages for large data
sets. Expectation maximisation methods, based on minorization-maximisation described
in Hunter (2004), have also been developed Caron and Doucet (2012). Bayesian hierarchi-
cal models which infer the model parameters and hyperparameters are developed in Phelan
and Whelan (2018). As far as Bayesian nonparametric methods are concerned, using a
Dirichlet Process prior distribution to infer the model parameters has been proposed, and
a GP method has been developed for a preference learning model Chu and Ghahramani
(2005).

Current methods for including structure in the BT model have been almost exclusively
parametric, mainly through linear predictors, e.g. Springall (1973), Stern (2011). For con-
texts where objects naturally have some spatial association, these methods are unsuitable
as linear predictors cannot describe complex spatial structure. We instead take a Bayesian
nonparametric approach and use a mixture of GP prior distributions to model the spatial
structure in Euclidean space and at a number of resolutions. This provides a flexible frame-



work which can model non-linear spatial structures, which reduces the amount of data
required for accurate estimates. By decomposing the quality of the objects at different
resolutions, we can provide results which can be meaningfully interpreted.

We evidence both the effectiveness of this approach in reducing the data collection bur-
den and demonstrate the interpretability of the output via two studies, set in the context of
urban modelling. The GP-BT model is applicable to domains where data is both noisy and
hard to collect, and therefore highly relevant to data such as UN SDG indicators. In this
vein we go on to demonstrate the applicability of the technique via two real-world case-
studies estimating deprivation levels. In the first, we analyse spatial trends in deprivation
levels in England. As the deprivation levels are known, we evidence how we can consid-
erably reduce the amount of data compared to the standard model without comprising the
quality of the results. In the second study, we estimate the deprivation levels across the 452
subwards of Dar es Salaam, Tanzania; using significantly less data than would previously
have been required and providing more insight to the results than comparable methods.

The structure of the remainder of the paper is as follows. In §3 we describe the standard
BT model, then describe the mixture model framework and the Bayesian nonparametric ap-
proach that we use to incorporate spatial structure. We apply our model to two data sets.
In §4, we investigate deprivation in local authorities areas in England, where the true de-
privation level is known. We find several trends in deprivation levels at various spatial
resolutions and compare the efficiency of our model to existing methods. We then describe
the results of our model applied to a comparative judgement data set for deprivation in
Dar es Salaam, Tanzania in §5. We show that our Bayesian nonparametric spatial struc-
ture considerably reduces the amount of data that needs to be collected and gives insight
into geographic trends in deprivation. Finally, we make concluding remarks and discuss
possible extensions for this work.

3. Model

Our underlying framework, from a mathematical viewpoint, is that we have a set of N
objects whose relative qualities A; € R (¢ = 1,..., N) we wish to infer from the outcomes
of a set of pairwise comparisons. We first review the standard BT model which assumes
that the qualities \; are independent quantities for each object, then describe our method for
incorporating geographically-induced correlations between physically proximate objects
into the modelling before concluding with a summary of our model fitting procedure.

3.1 The Bradley-Terry Model

For a comparison between object ¢ and object j, the outcome is modelled as
Y ~ Bernoulli(m;;); (1)

in which Y = 1 indicates that ¢ beats j and Y = 0 indicates that j beats i; and 7;; is the
probability, dependent on the qualities \; and \; of objects ¢ and j respectively, that i will
beat j. The Bradley—Terry model assumes

exp(Ai)

i = logit(m;;) = A; — A, 2
Tij exp(A;) + exp(A;) = logit(m) J 2)

where logit(7) = log(w) — log(1 — 7). The data set consists of K pairwise comparisons
of these objects: we write (i, jx) (k = 1,..., K) for the objects compared in the k-th
comparison and yj, to denote the outcome. For identifiability of the {);}, it is necessary to
impose a single linear constraint such as ZZ]\L 1 Ai = 0, and for the experimental design —



i.e. the particular choice of which pairwise comparisons (i, ji) are made — to be such that
if the objects are regarded as nodes of a graph and y;, denotes a directed edge from i, to jg,
then there is a path from i to j for all ¢+ and 5 Hunter (2004). We discuss the experimental
design further in §4 and §5.

Given K independent judgements, the likelihood function for the qualities (A1, ..., An)
is the product

K
ﬂ-(y | >\17 e )\N) = H W;U:Jk (1 - Wik,jk)l_yk ) (3)
k=1

where Y= (y17 ey ZUK)
The principal contribution of this paper is to incorporate spatial structure into the

Bradley-Terry model by assuming \; = f(«;), i.e. the quality of an object is a func-
tion of its spatial position &; € RY. This is in principle a completely arbitrary function and
for the purposes of inference we will assume a finite element mixture framework, which
we now describe.

3.2 Finite Element Mixture Framework

To allow for the quality of each object to be modelled on a number of spatial resolutions,
we construct a finite element mixture framework Gelman et al. (2013). This is valuable as
it allows us to leverage the different kinds of spatial structures that exist in the domain in
which the objects reside. Different resolutions of spatial structure might stem from local
neighbourhood relationships in a city, perhaps, to trends that run across districts, through to
city wide structures such as a north-south divide. It is the leveraging of such patterns that
will allow us to vastly reduce the number of comparison required to recover ground truth
qualities. We provide this facility by associating each comparison with one of M functions;
thus the overall structure is given by

Ai = prfi(x) + ..+ o fu (),

where py,...,py > 0 are mixture weights subject to the constraint Z%zl Pm = 1 and
fi,--., far are arbitrary functions chosen so that the mixture class is suitably rich. In
our application we will take f, ..., fas to be functions characterising spatial variation on
different length scales; see §3.3.

For each of the K comparisons, we introduce a latent variable z; whose value deter-
mines to which component of the mixture comparison & corresponds. The distribution of
zr is given by P(z, = m) = py, (m = 1,..., M), so p,, is the probability that compar-
ison k corresponds to the m"™ component of the mixture. For subsequent use we define
P = {p1,...,prm} The result of comparison k thus has the conditional distribution

(@) C ) exp( fm(®:))
k) o exp(fn(®i) + exp(fm ()
being the probability of ¢ beating j when f,, is used for the comparison. Augmenting the

model in equation (3) to take into account the set of latent variables z = {z1,..., 2Kk},
gives the mixture model likelihood function

(yx | 2z = m) ~ Bernoulli (7r

K —
ﬂ-(y|z7p7f17"'7fM):H(ﬂ‘g:?z)yk (1—7TZ(:;2>1 yk. (4)
k=1

Although we could propose parametric forms for the functions f;,, when fitting models,
it is difficult to justify any particular parametric form. We instead use Bayesian nonpara-
metric methods to model these functions.



3.3 The Bayesian Nonparametric Approach

Bayesian nonparametric models are a class of models which have an infinite-dimensional
parameter space. We choose this parameter space to be the set of all possible solutions
to the problem in question. For example, for a regression problem, we typically choose
this to be the space all continuous functions. Bayesian nonparametric models allow us to
make more general assumptions about the generating process, instead of strict parametric
assumptions.

To model the functions f,, we use a GP. A GP distribution on a function f: R* — R
is completely described by its mean function y and covariance function k. Denoted

[~ gP(u()a k('v ))7

a GP can be defined as an infinite collection of random variables, any finite subset of which
follow a multivariate normal distribution Rasmussen and Williams (2006). That is, for a
collection of points X = (x1,--- ,x,), then

JF~ MVN(/J’(X)’ K(Xv X))

where MVN denotes the multivariate normal distribution, f = (f(x1), -+, f(@n)), u(X)
(u(x1), -, p(xy,)) and K (X, X) is an n-by-n covariance matrix with (i, 7)™ element
equal to k(x;, ;).

The GP can be viewed as a prior distribution over the space of all plausible functions
which satisfy the (weak) assumptions specified via the covariance function. In this article,
our choice of covariance function is the squared exponential

Bl @i 0,0) = o exp (172 ||z — @413)

With this covariance function, samples drawn from the GP prior distribution are continu-
ous and smooth. The squared exponential covariance function has two hyperparameters:
a?, which specifies the signal variance; and the length scale parameter [, which can be
loosely interpreted as the number of units we must move in the input space to see appre-
ciable change in the function value. We follow the common practice of taking () to be
identically zero Rasmussen and Williams (2006).

3.4 Fitting our GP-BT Model

Having developed our model in the preceding subsections we now describe how we fit it
in our Bayesian framework to infer posterior distributions for the quality of each object or
subward, given the pairwise comparison data y. The parameters we infer are the functions
fi,---, fur at the points @, the GP variance hyperparameters a® = {a?,...,a3,}, the
mixture weights p and the latent variables z. The posterior distribution of these parameters
is given by

ﬂ-(p>z7f17"°7fM7a2 | y) O(ﬂ-(y ‘ Z,p,fl,...,fM)ﬂ'(Z)ﬂ'(p)
M
x T 7(fm | ai)m(ag)- 5)
m=1

The first term on the right hand side of this formula is the likelihood function (4). The
remaining terms are the prior distributions on the model parameters. When applying our
algorithm we use independent uniform (i.e. uninformative) prior distributions on z, and the



prior distribution on p is uniform on its simplex of possible values. We place independent
GP prior distributions on f1,..., far: fimn ~ GP (0, k(-, ;b)) and iy <o < ... <y
are chosen to reflect appropriate, context-dependent, spatial resolutions. We place indepen-
dent inverse-Gamma prior distributions on the variance hyperparameters, 2.

The resulting posterior distribution has a non-standard form and we generate samples
from it using an MCMC algorithm. We now describe the individual steps in the MCMC
algorithm, and the full algorithm is given in Algorithm 1. As we are using a conjugate prior
distribution for the component weights p, the full conditional distribution is a Dirichlet
distribution

p |z ~Dir(x1 + n1,...,Xm +nr),

where n,, is the number of comparisons associated with component m, and y; are pa-
rameters from the prior distribution. As we use a uniform prior distribution, we set x; =
...xp = 1. We can sample from this distribution directly using a Gibbs sampler. The
prior distributions for the variance parameters are also conjugate and the full conditional
distribution for the m!" variance hyperparameter is

A2 | o ~Anv-I (9o + nn /2, wo + FEK(X, X;1,0,) " .0 /2).

The parameters ¢y and wq are the rate and scale of the prior distribution. We follow Gel-
man (2006) and set ¥y = wg = 0.1, as this results in a prior distribution that is somewhat
uninformative. Regarding the latent variables zj, the full conditional probability that com-
parison k is associated with component m of the mixture is

Yk | 2k =M
m(zw =m |y, s f1, -5 fu) = M( | ) N
>t T(r | 26 = m’)

The full conditional distribution for f,,, the deprivation at spatial resolution [, is

w(fn | P20l scnlfn [02) [[ (=2)" (1- ) "

k;zp=m

To generate samples for each function f,,,, we use an under-relaxed proposal mechanism in
a Metropolis-Hastings algorithm Neal (1998), as this allows us to update each function as
a block and reduce the computational complexity.

The code to implement this algorithm is available at gi thub.com/123anon/gpbt.
The time taken to execute the MCMC algorithm largely depends on the number of com-
parisons K. The computational and memory requirements for the GPs are negligible, since
their size only depends on the number of objects V.

4. Deprivation in England

We now carry out a simulation study based on real deprivation data, as this allows us
to better explore the applicability of the GP-BT model. The UK Ministry for Housing,
Communities and Local Government publish an Index of Multiple Deprivation (IMD) for
each of the 317 local authority areas in England McLennan et al. (2019). In this example,
we generate simulated comparative judgement data sets of various sizes using the IMD
for each area. To mimic real world data collection, we assume a judge takes 20 seconds
to make a single comparison, which equates to 180 comparisons per hour. To represent
fieldwork lasting {1, 2, 5, 10, 20, 30} hours, we simulate {180, 360, 900, 1800, 3600,
5400} comparisons. To generate the comparisons, we simulate from model (3) and choose
pairs of areas uniformly at random from the list of all possible pairs. We fit the GP-BT



Algorithm 1 MCMC Algorithm for the GP-BT Model

1: Initialise the chain with values f1(0)7 cee ](\9[>, a2 p0) and z(©)
On iteration i of the MCMC algorithm do
: form < 1, M do
Propose f/, = V1 — 52 4 §uyn, Where vy, ~ GgP(o0, k(-, - a2l® lm))
m(yl2® O S )

w(ylz® p®, (D fO 0

W N

4: Accept with probability pge. =

5. end for
6: form «+ 1, M do

. AT ;
7: Sample o2+ | £y ~ inv-T <¢g + =, wo + %f%) K(X,X; l,lm)lf%)>

8: end for

9: form «+ 1, M do

10: Sample P from 7r(p7(f1+1) | z()) using a Gibbs step
11: end for

12: for k + 1, K do

13: for m < 1, M do

14: Compute ﬂ(zgﬂ) =m |y, pitY, fl(l‘H)’ o f](\2+1))
15: end for

16: Sample z,(jﬂ) according to these weights

17: end for

model to the data sets modelling the patterns in deprivation at three spatial resolutions. We
set the length scale parameters to 12, 50, and 100km, as these are the 1%, 10** and 25"
percentiles of the distances between each pair of local authority areas. This will help us
identify trends within cities, across urban conurbations and at regional levels. We run the
MCMC algorithm for 1,000,000 iterations, removing the first 500,000 as a burn-in period.
Model fit is computed via the mean absolute error

1 A
MAE = — S [\ — Ail,
N;\ |

where J\; is the estimated deprivation in area 7; specifically the MLE in the standard BT
model and the posterior median in the other models. We compare the GP-BT model to the
standard BT model, for which we use the BradleyTerry?2 R package Turner and Firth
(2012). For small data sets that do not feature all the areas, we cannot compute MLEs for
the standard BT model and the corresponding MAE is undefined. The results are shown in
Table 1.

Judge hours | # Comparisons | Standard BT | GP-BT
1 180 - 0.709
2 360 - 0.684
5 900 - 0.610
10 1,800 1.562 0.485
20 3,600 0.409 0.341
30 5,400 0.369 0.311

Table 1: MAE for the standard BT and GP-BT models for the six English local authority
area data sets. The model with the smallest error is shown in bold.



Results show that use of the GP-BT model significantly reduce the amount of data
we require to achieve comparable results to the standard model. For example, in order to
achieve an MAE of around 0.35 with the standard model we would need to collect 5,400
comparisons - but with the GP-BT model we can reduce this by a third, to only 3,600
comparisons. This is equivalent to reducing the fieldwork from 30 judge hours to 20 judges
hours, making logistical costs of employing the GP-BT model cheaper, quicker and easier
than the standard model.

In Figure 1 we show the results for the GP-BT model with 5,400 comparisons. The long
length scale GP shows a north-south divide, with the south being generally less deprived
than the north of the country. The medium length scale GP locates large conurbations,
for example urban areas around Manchester, Liverpool and Newcastle. The short length
scale GP identifies patterns in individual cities, for example areas in London or around
Birmingham. We are able to accurately estimate the deprivation levels by combining the
GPs. The standard BT model is more computationally simpler, taking 5 minutes compared
to 5 hours. However, the burden of having to collect vastly more data for the standard BT
model to achieve comparable accuracy to GP-BT is a considerable weakness, and besides,
the 5 hour run time of the GP-BT model is tolerable in practice.

5. Deprivation in Dar es Salaam, Tanzania

We now demonstrate the effectiveness of the GP-BT model via a real-world case study.
Our data, collected for this study, consists of 75,078 pairwise comparisons of subwards in
the city of Dar es Salaam, Tanzania, a city with approximately 6.5 million people. The
data for this project is in the BSBT R package (Seymour et al., 2022a) and was described
in Seymour et al. (2022b). The city has almost doubled in size in the last 10 years United
Nations Department of Economic and Social Affairs (2019), and the majority of citizens
live in informal residences Limbumba and Ngware (2016). This has left official statistics
concerning poverty rapidly out of date. With household surveying being logistically chal-
lenging and prohibitively expensive, the use of comparative judgement offers a potentially
valuable alternative.

Data for the analysis was collected in sifu over the course of two weeks in August 2018.
172 judges, all residents of the city itself, were recruited to take part in the project. Dar
es Salaam consists of 452 subwards, and to estimate the deprivation of each, judges were
shown pairs of subwards via a web interface. Subwards presented for comparison to each
participant were chosen uniformly at random from sets of subwards that the participant had
indicated prior familiarity with.

We run the MCMC algorithm for 1,500,000 iterations, removing the first 500,000 as
a burn-in period. Using all 75,078 comparisons, this takes around 10 hours to run. The
results are shown in Figure 2. The long length scale component identifies a city wide trend
of higher affluence in the north of the city and towards the coast, with affluence decreasing
further inland and towards the south of the city. The medium length scale function high-
lights several interesting areas in the centre of the city, which have extremely low levels of
affluence, these areas are both slum areas with very low quality housing and little access to
utilities. Immediately next to one slum area is the university, which the model seemingly
correctly predicts is an affluent area. The medium length scale element of our model is
flexible enough to capture the difference between these extreme areas. The short length
scale function acts as a correction element, taking account of both the long and medium
length functions.

The estimates for z, p and a? have little physical interpretation and the posterior esti-
mates for the weights p and o are given in table 2. The latent variables z correlate highly
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Parameter Posterior Median 95% Credible Interval
Pshort 0.398 (0.379, 0.415)
Pmedium 0.218 (0.203, 0.233)
Plong 0.385 (0.402, 0.537)
2
?short 0.502 (0.441, 0.574)
Ymedium 0.857 (0.674, 1.05)
%ong 1.20 (0.976, 1.44)

Table 2: Estimates and credible intervals for the weights p and variance hyperparameters

o’

with the estimates for p.

6. Conclusion

In this paper we present a novel extension to the Bradley—Terry model for analysing com-
parative judgement data, allowing the incorporation of knowledge or assumptions about
a very general spatial structure in the qualities of objects. The Bayesian nonparametric
framework that we present allows us to build flexible spatial correlations into the model,
letting the model learn about a subward from data on its neighbours, reducing the amount
of fieldwork required. Our model’s leveraging of spatial correlation can not only recover
ground-truth qualities of objects, but provide more interpretable and relevant analysis for
non-scientific practitioners. Our model is far more data efficient that the standard model,
making our model attractive to practitioners working in unstable or difficult environments.
Also, by decomposing the deprivation into processes on different length scales allows re-
sults from the GP-BT model can be interpreted in a more meaningful way.

There are a number of possible directions in which our model may be fruitfully ex-
tended and further explored. Another way to make the results interpretable would be to
cluster objects both spatially and by quality. A Bayesian nonparametric method which
would be suited to this is the Chinese Restaurant Process Pitman (2006). In the context of
cities, we could cluster nearby subwards into neighbourhoods by deprivation. Another issue
which is particularly pertinent for data of the type we consider is that of judge reliability;
i.e. the possibility of identifying the extent to which different people making judgements
are consistent with each other. There are natural ways to extend the present work to enable
inference for model selection and judge reliability using data augmentation methods.
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