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Abstract. Software is increasingly embedded in a variety of physical
contexts. This imposes new requirements on tools that support the design
and analysis of systems. For instance, modeling embedded and cyber-
physical systems needs to blend discrete mathematics, which is suitable
for modeling digital components, with continuous mathematics, used for
modeling physical components. This blending of continuous and discrete
creates challenges that are absent when the discrete or the continuous
setting are considered in isolation. We consider robustness, that is, the
ability of an analysis of a model to cope with small amounts of impreci-
sion in the model. Formally, we identify analyses with monotonic maps
between complete lattices (a mathematical framework used for abstract
interpretation and static analysis) and define robustness for monotonic
maps between complete lattices of closed subsets of a metric space.

Keywords: Analyses; Robustness; Domain theory.

1 Introduction

In a discrete setting one can achieve absolute precision4, in a continuous setting
there are two pervasive and unavoidable sources of imprecision:

1. imprecision in measurements, namely predictions based on a mathematical
model and observations on a real system can be compared only up to the
precision of instruments used for measurements on the real system, and

2. imprecision in representing continuous quantities in computer-assisted tools
for modeling and analyzing hybrid/continuous systems.

Thus, a real number x:R in mathematics, becomes x± ε in physics, with ε > 0
measurement error, in theory of computation becomes an interval [x, x] with x
and x belonging to a subset of R with exact finite representations (e.g., floating-
point or rational numbers) [8]5. However, any x:R can be approximated by

? Copyright c© 2019 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0)

4 This does not exclude the possibility of using imprecise (aka loose) specifications.
5 Representing a real with a float, as done in traditional numerical methods, means

that the imprecision in computations is either ignored or is tracked manually.



proper rational intervals [x, x] with arbitrarily small imprecision, i.e., for any
δ > 0 there are rational numbers x and x such that x < x < x and 0 < x−x < δ.

Approximability extends to continuous maps on R. First, a continuous map

f on R has a Scott continuous natural extension f(I)
M
= {f(x)|x: I} on the cpo

IR of intervals ordered by reverse inclusion. Scott continuity implies that the
imprecision of f(I) goes to 0 when the imprecision of I goes to 0. Second, f can
be replaced by a Scott continuous F mapping proper rational intervals to proper
rational intervals such that F ([x]) = [f(x)] = f([x]), thus f(I) ⊆ F (I). When f
is not continuous, one can find a monotonic F on IR such that:

1. ∀x:R.F ([x]) = [f(x)], but F fails to be Scott continuous, or
2. F is Scott continuous, ∀I: IR.f(I) ⊆ F (I), but ∀x:R.F ([x]) = [f(x)] fails.

In both cases “F (I) converges to f(x) when I converges to x” fails.

Robustness. In [6], we introduced robustness, a property of monotonic maps
between complete lattices of (closed) subsets in metric spaces. Intuitively, ro-
bustness requires that small changes to the input I of a map F cause small
changes to its output, where the definition of small relies on the metrics. Often,
analyses can be identified with monotonic maps between complete lattices. For
instance, reachability analysis can be cast as a monotonic map F on the complete
lattice P(S) of subsets of the state space S, that takes a set I of initial states
and outputs the set R(I) of states reachable from I, thus I ⊆ R(I) = R2(I).

If S is a metric space, then one has the mathematical framework to measure
imprecision. The picture below shows the initial state s of three systems (red,
green and blue) consisting of a ball that can move (in a one-dimensional space)
under the effect of gravity. We assume that initially the speed is 0, thus from s
only s is reachable, i.e., Rr({s}) = Rg({s}) = Rb({s}) = {s}, but:

– the red ball (top) is unstable, i.e., a small change s′ to s
means that Rr({s′}) includes some states far from s;

– the green ball (middle) is stable, i.e., a small change s′ to s
implies that all states in Rg({s′}) are close to s;

– the blue ball (bottom) is stable, if a small change s′ affects
only the position (while the speed remains 0); it is unstable,
if the speed can change (and there is no friction).

These claims on s can be recast as follows: Rg is robust at {s}, Rr is not.

Contributions. This paper presents mainly results published in [6,7], namely:

1. A definition of imprecision in the context of metric spaces (Sec 2), related to
the noise model in [3] and δ-safety in [5]. The main point is that imprecision
makes a subset S of a metric space S indistinguishable from its closure S.

2. A notion of robustness [6] (Sec 3) for monotonic maps A:C(S1) → C(S2),
the restriction to closed subsets is due to indistinguishability of S and S.

Moreover, it includes a result (Thm 1 in Sec 4), which subsumes those in [6,7] and
provides an almost complete picture on existence of best robust approximations.



2 Imprecision in Metric Spaces

Definition 1. Given a metric space S, with distance function d, we define:

1. B(S, δ)
M
= {y|∃x:S.d(x, y) < δ}, where S:P(S) and δ > 0. Intuitively, B(S, δ)

is the set of points in S with imprecision < δ. B(S, δ) is open, because it is the
union of open balls B(s, δ) with s:S, moreover B(B(S, δ), δ′) ⊆ B(S, δ+ δ′).

2. S:C(S) is the closure of S:P(S), i.e., the smallest C:C(S) such that S ⊆ C.
For S:P(S) and δ > 0 the following holds: S ⊆ S ⊆ B(S, δ) = B(S, δ). Thus,
in the presence of imprecision, S and S are indistinguishable.

3. Sδ
M
= B(S, δ) is the δ-fattening of S:P(S). Intuitively, Sδ is the set of points

in S with imprecision ≤ δ. In fact, B(S, δ) ⊆ Sδ ⊆ B(S, δ′) when 0 < δ < δ′.
For S:P(S) the following holds: S =

⋂
δ>0B(S, δ) =

⋂
δ>0 Sδ. Thus, the

closure S is the set of points that are in S with arbitrarily small imprecision.

We consider some examples of metric spaces motivated by applications.

Example 1 (Discrete). A set S can be viewed as a discrete metric space, i.e.,
d(s, s′) = 1 when s 6= s′, and any subset is closed and open. Thus, C(S) = P(S).
More generally, if S is δ-discrete, i.e., ∀s, s′:S.s 6= s′ =⇒ δ ≤ d(s, s′), then
∀S:P(S).Sδ = S, i.e., an imprecision ≤ δ amounts to absolute precision.

Example 2 (Euclidean). Euclidean spaces Rn (and Banach spaces) are used for
modeling continuous and hybrid systems [4]. For C:C(Rn), δ-fattening has a
simpler alternative definition, namely Cδ = {y|∃x:C.d(x, y) ≤ δ}.

Example 3 (Products, sub-spaces, sums). The product S0 × S1 of two metric

spaces is the product of the underlying sets with metric d(x, y)
M
= max

i:2
di(xi, yi).

A subset S′ of S inherits the metric, thus can be considered a metric space S′.
If S′ is also closed, then C(S′) ⊆ C(S) and the δ-fattening of S:P(S′) is Sδ ∩ S′.

The sum
∐
i:I Si of an I-indexed family of metric spaces is {(i, x)|i: I ∧x:Si}

with metric d((i, x), (j, y))
M
= if i = j then di(x, y) else 1. The following hold:

P(
∐
i:I Si) ∼=

∏
i:I P(Si), i.e., a subset in the sum is a sum

∐
i:I Si of subsets.

Similarly, C(
∐
i:I Si) ∼=

∏
i:I C(Si). Moreover, (

∐
i:I Si)δ =

∐
i:I(Si)δ for δ ≤ 1.

Remark 1. A hybrid system on a Euclidean space S is a pair H = (F,G) of
relations on S, equivalently it is a subset F + G of the metric space S2 + S2.
Thus, closure and δ-fattening are applicable to hybrid systems and subsets of S.

3 Analyses and Robustness

We identify analyses with arrows A: Po(X,Y ) in the category Po of complete
lattices and monotonic maps between them. The partial order ≤ allows to define
over-approximations and compare them. We consider ≤ as an information order,
thus: x0 ≤ x means that x0 is an over-approximation of x, x1 ≤ x0 means that
x1 is a bigger over-approximation than x0 (hence, less informative).



The complete lattice ⊥ < > of truth values, usually denoted Σ, is isomorphic
to P(1) with 1 being the singleton set {fail}, namely > (true) corresponds to ∅
(cannot fail), while ⊥ (false) corresponds to {fail} (may fail). Safety analyses are
arrows A: Po(X,Σ), and over-approximations may give false negatives.

Example 4. Safety analysis for transition systems on S corresponds to the arrow

Sf : Po(P(S2) × P(S) × P(S), Σ) such that Sf (R, I,B) = > M⇐⇒ R∗(I) and B
are disjoint, i.e., the set R∗(I) of states reachable from the set I of initial states
by (finitely many) R-transitions is disjoint from the set B of bad states.

Complete lattices do not have the structure to quantify imprecision. Thus, we
restrict to complete lattices of the form C(S), with S a metric space, and use
δ-fattening (Sec 2) to bound imprecision. Namely, given an over-approximation
C ′ of C:C(S), i.e., C ⊆ C ′ (or equivalently C ′ ≤ C), we say that the imprecision

of C ′ in over-approximating C is ≤ δ M⇐⇒ C ⊆ C ′ ⊆ Cδ.
For a metric space S, there is an adjunction in Po (Galois connection) be-

tween P(S) and C(S). In particular, every S:P(S) has a best over-approximation
S:C(S). In other words, C(S) is an abstract interpretation of P(S) [1].

Definition 2 (Robustness [6]). Given A: Po(C(S1),C(S2)) with S1 and S2
metric spaces, we say that:

– A is robust at C
M⇐⇒ ∀ε > 0.∃δ > 0.A(Cδ) ⊆ A(C)ε.

– A is robust
M⇐⇒ A is robust at every C.

Robustness is a trivial property of analyses in a δ-discrete setting (Ex 1).

Proposition 1. If S1 is δ-discrete, then every A: Po(C(S1),C(S2)) is robust.

Most analyses are not cast in the right form to ask whether they are robust, but
usually one can show that they have the right form up to isomorphisms in Po.

Example 5. We consider analyses for (topological) transition systems [2].

1. Reachability RfR: Po(P(S),P(S)) for a transition system R on S is not a map
on closed subsets, but can be replaced by the arrow C 7→ RfR(C) on C(S).
This is the canonical way to turn arrows on P(S) into arrows on C(S), but it
may fail to be idempotent. A better choice is the best idempotent arrow on
C(S) over-approximating RfR, denoted RsR and called safe reachability in

[6], i.e., RsR(C)
M
= the smallest C ′:C(S) such that C ⊆ C ′ and R(C ′) ⊆ C ′.

2. Reachability Rf : Po(P(S2) × P(S),P(S)) for transition systems on S. First,
we replace P(S2) × P(S) with the isomorphic P(S2 + S) (see Ex 3). Second,
we proceed as done for RfR. In particular, we can replace Rf with safe reach-
ability Rs: Po(C(S2)× C(S),C(S)) for closed transition systems on S.

3. Safety Sf : Po(P(S2)×P(S)×P(S), Σ) is definable in terms of reachability Rf ,

namely Sf (R, I,B)
M⇐⇒ Rf (R, I)#B, where # is the disjointness predicate.

Any replacement for Rf induces a corresponding notion of safety, e.g., safe

safety Ss: Po(C(S2)× C(S)× C(S), Σ) is Ss(R, I,B)
M⇐⇒ Rs(R, I)#B.



4 Best Robust Approximations

Intuitively, when an analysis A: Po(C(S1),C(S2)) is robust at C, A(C) is useful
also in the presence of small amounts of imprecision. This is obvious for analyses
A: Po(C(S1), Σ), where robustness at C means A(Cδ) = A(C) when δ is small.

Definition 3. Given A: Po(C(S1),C(S2)), we say that:

– A′: Po(C(S1),C(S2)) is a robust approximation of A
M⇐⇒

A′ is robust and ∀C.A′(C) ≤ A(C).

– A�: Po(C(S1),C(S2)) is a best robust approximation of A
M⇐⇒

A� is a robust approximation of A such that A′(C) ≤ A�(C) for every robust
approximation A′ of A and C.

When S1 is δ-discrete (i.e., ∃δ > 0.∀x.B(x, δ) = {x}) every A: Po(C(S1),C(S2))
is robust, thus A� = A. When S1 is not δ-discrete, the following result ensures
existence of best robust approximations.

Theorem 1. If S2 is a compact metric space, then A: Po(C(S1),C(S2)) has a

best robust approximation A� given by A�(C) =
⋂
{A(Cδ)|δ > 0}.

Proof. If A′ is a robust approximation of A, then A′(C) ≤ A�(C). In fact

– A′(C) = because C ′ =
⋂
ε C
′
ε for every C ′:C(S2)

–
⋂
εA
′(C)ε = because A′ is robust

–
⋂
δ A
′(Cδ) ≤ because A′ approximates A

–
⋂
δ A(Cδ) = A�(C).

We now prove that A� is robust. S2 compact implies C(S2) continuous lattice and
C ′ε � C ′ for C ′:C(S2) and ε > 0 (see [6, Appendix A.1]). When C ′ = A�(C) we
have ∀ε > 0.∃δ > 0.C ′ε ≤ A(Cδ), since C ′ε � C ′ and {A(Cδ)|δ > 0} is directed.
But A(Cδ) ≤ A�(Cδ′) when δ′ < δ, thus ∀ε > 0.∃δ′ > 0.C ′ε ≤ A�(Cδ′). ut
When S1 is not topologically discrete, i.e., ∀x.∃δ > 0.B(x, δ) = {x} fails, and
S2 is not compact, there are A: Po(C(S1),C(S2)) with no A�.

Example 6. If S1 is not discrete, then there exists x and a sequence (xn|n) such
that ∀n.0 < d1(xn+1, x) < d1(xn, x)/2. If S2 is not compact, then there exists a
sequence of distinct elements (yn|n) with no accumulation points, therefore any
subset of {yn|n} is closed. We claim that the map A: Po(C(S1),C(S2)) such that
A(C) = {yn|∃m.xm ∈ C ∧m ≤ n} has no best robust approximation. The proof
is similar to that in [6, Ex 4.6].

The table below combines the results in [6,7] and in this paper to give an almost
complete picture on existence or non-existence of best robust approximations for
analyses A: Po(C(S1),C(S2)), which depends only on properties of the metric
spaces S1 and S2:

existence of A� S2 compact S2 not compact

S1 δ-discrete ∀A.A� = A (trivial case)
S1 discrete but not δ-discrete ∀A.A� exists

????
S1 not discrete ∃A.A� does not exist

The only grey spot is when S1 is topologically discrete, but not δ-discrete.



H S0 s Sf Ss Sr SR

HE [0, 1]
0 [0] Sf S0 S0

0 < s ≤ 1 [s, 1] Sf Sf Sf

HD [0, 1]
0 S0 S0 S0 S0

0 < s ≤ 1 (0, s] S0 S0 S0

HT {(x, y)|0 ≤ x ≤ y ≤ 1}
(0, 1) S∗(0) Sf Sf Sf b = 0
(0, 1) S∗(b) Sf ∪ S(0) Ss Ss 0 < b < 1
(0, 1) S∗(1) Sf Sf S0 b = 1

For HE and HD we take H0 = (F0, G0) with F0 = [0, 1]× [−1, 1] and G0 = [0, 1]2.
For HT = (F,G) we take H0 = (F ,G0) with G0 = {(y, y)|y: [0, 1]} × {(0, y)|y: [0, 1]},
and we use the notation S(b)

M
= [0, b]× [b] and S∗(b)

M
= ∪nS(bn) for subsets of S0, where

b: [0, 1]. In the limit cases b = 0, 1 one has S∗(0) = S(1) ∪ S(0) and S∗(1) = S(1).
The differences in the approximations of the reachable states are highlighted in bold.

Table 1. Safe and robust over-approximations of the set of reachable states.

5 Examples

Finally, we compare different reachability analyses for three hybrid systems:

HE a quantity x grows according to ODE ẋ = x when 0 ≤ x < 1, and stays
constant when it reaches the threshold 1, i.e., ẋ = 0 when x = 1.

HD a quantity x decreases according to ODE ẋ = −x when 0 < x ≤ 1, and it is
instantaneously reset to 1 when it is 0, i.e., x+ = 1 when x = 0.

HT a timer x grows while the timeout y stays constant, i.e., ẋ = 1&ẏ = 0 when
0 ≤ x < y ≤ 1, when x reaches y it is reset and the timeout updated, i.e.,
x+ = 0&y+ = by when 0 < x = y ≤ 1 (with b constant in the interval [0, 1]),
moreover x+ = 0&y+ = 1 when 0 = x = y ≤ 1, i.e., y is reset to 1.

Table 1 gives for each H above (and initial state s) the following sets:

– Sf
M
= RfH(s) set of states reachable (from s) in finitely many transitions, Sf

is always a subset of the set S of the states reachable in finite time;

– Ss
M
= RsH(s) superset of S computed by safe reachability;

– Sr
M
= Rs�H(s) superset of Ss robust w.r.t. over-approximations of s;

– SR
M
= Rs�(H, s) superset of Ss robust w.r.t. over-approximations of H & s.

Note that Sr depends on a compact subset S0 (including s and the support of
H), and SR depends also on a compact hybrid system H0 (with support S0 and
over-approximating H). In particular, H0 constrains the over-approximations of
H. The inclusions [s ∈]Sf ⊆ Ss ⊆ Sr ⊆ SR[⊆ S0] hold always, Table 1 shows
that any of the inclusions can be either strict or an equality.
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