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FINITE SUM REPRESENTATIONS OF ELEMENTS IN R
AND R2

LEWIS T. DOMINGUEZ AND RACHELLE R. BOUCHAT

Communicated by Jonathan Brown

Abstract. In February 2017, a number theoretic problem was posed in Mathematics Mag-
azine by Souvik Dey, a master’s student in India. The problem asked whether it was possible
to represent a real number by a finite sum of elements in an open subset of the real numbers
that contained one positive and one negative number. This paper not only provides a solution
to the original problem, but proves an analogous statement for elements of R2.
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1. Introduction

The work in this paper was inspired by a problem proposed by Souvik Dey in the February
2017 Mathematics Magazine [1], namely:

Let S be an open subset of the set R, such that S contains at least one positive
number and one negative number. Then every real number can be written as
a finite sum of (not necessarily distinct) elements of S.

In this paper we will also consider an extension of this problem to R2. When considering
the problem in R, we can think of the number line being broken into three distinct parts:
{a : a < 0} ∪ {0} ∪ {a : a > 0}. Thinking of the problem posed by Souvik Dey, we can now
think of it as saying that we must have an element from each of the sets other than {0}.
Upon considering R2, we can then think of the coordinate plane as being broken into five
distinct parts: {(a, b) : a, b > 0} ∪ {(a, b) : a < 0, b > 0} ∪ {(a, b) : a = 0 or b = 0} ∪ {(a, b) :
a, b < 0} ∪ {(a, b) : a > 0, b < 0}. The four distinct sets, excluding {(a, b) : a = 0 or b = 0}
correspond to the four quadrants in R2. Throughout this paper, we will use the notation:

Q1 = {(a, b) : a, b ∈ R and a, b > 0} Q3 = {(a, b) : a, b ∈ R and a, b < 0}
Q2 = {(a, b) : a, b ∈ R and a < 0, b > 0} Q4 = {(a, b) : a, b ∈ R and a > 0, b < 0}

Using this notation, we now propose an analogous statement for R2:

Let S be an open subset of the set R2, such that S contains at least one point
in each of Q1, Q2, Q3, and Q4. Then every element of R2 can be written as
a finite sum of (not necessarily distinct) elements of S.

In the next section of the paper, we will consider some of the background material that
will be necessary for the proof of this main result, seen later as Theorem 3.1.
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2. Background Material

To better understand the problem presented by Souvik Dey, as well as the extension to
R2, we will need to understand what an open set looks like in Rn. Specifically, we will need
to consider what an open set looks like in R2 using the standard Euclidean distance. Let us
first consider what an open set looks like in Rn, as in the book of Walter Rudin (Definition
2.8 in [2]).

Definition 2.1.

(1) Given ε ∈ R+ and (a, b) ∈ R2, the set

N(a,b),ε =
{

(x, y) :
√

(x− a)2 + (y − b)2 < ε
}

is called an open neighborhood around (a, b).
(2) A set E ⊂ Rn is called an open subset of Rn provided that for each x ∈ E, there

exists ε ∈ R+ such that Nx,ε ⊂ E.

If we consider what this definition means in R2, this implies that every open set has the
form ∪iN(ai,bi),εi , where each of the N(ai,bi),εi are open disks. Hence, every open set in R2 can
be thought of as an arbitrary union of open disks.

Another property that will be integral to the paper is the density of the rationals in the
real numbers. This can seen in the following theorem (Theorem 1.20 in [2]).

Theorem 2.1. If x, y ∈ R and x < y, then there exists q ∈ Q such that x < q < y.

Essentially, the fact that the rationals are dense in the real numbers implies that between any
two distinct real numbers, you can find a rational number. Moreover, this can be extended
to the following theorem about the density of the Q2 in R2.

Corollary 2.1. Fix ε ∈ R+, and let (a, b), (c, d) ∈ R2 such that a 6= c and b 6= d. Then there
exists (p, q) ∈ Q2 such that (p, q) ∈ {(x, y) : a < x < c and b < y < d}.

Proof. The result follows immediately by projecting the points (a, b) and (c, d) first onto
the x-axis and secondly onto the y-axis, and then applying Theorem 2.1.

This result says that for any rectangular region in R2, we are guaranteed to be able to find
a point in the interior of this region whose x- and y-coordinates are both rational.

3. The Main Result

We begin by considering an open set, S, in R2 that contains an element of each of the four
quadrants. By considering Definition 2.1, it immediately follows that any open set S ⊂ R2

that contains a point from each of the four quadrants must also contain a set of the form:
N(a1,b1),ε1 ∪N(a2,b2),ε2 ∪N(a3,b3),ε3 ∪N(a4,b4),ε4

where ε1, ε2, ε3, ε4 ∈ R+ and (a1, b1) ∈ Q1, (a2, b2) ∈ Q2, (a3, b3) ∈ Q3, and (a4, b4) ∈ Q4.
Furthermore, by setting ε = min{ε1, ε2, ε3, ε4}, we get that

N(a1,b1),ε ∪N(a2,b2),ε ∪N(a3,b3),ε ∪N(a4,b4),ε ⊂ S.

In order to prove the main result, we will first show that (0, 0) can be written as a linear
combination of elements from the open set S.
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Lemma 3.1. Let S be an open set in R2 containing the points (a1, b1) ∈ Q1, (a2, b2) ∈ Q2,
(a3, b3) ∈ Q3, and (a4, b4) ∈ Q4. Then there exist n,m, s, t ∈ N such that

n(p1, q1) +m(p2, q2) + s(p3, q3) + t(p4, q4) = (0, 0)

where (pi, qi) ∈ N(ai,bi),ε with (pi, qi) ∈ Q2 for i ∈ {1, 2, 3, 4} and some ε ∈ R+.

Proof. Let S be an open set in R2 containing the points (a1, b1) ∈ Q1, (a2, b2) ∈ Q2,
(a3, b3) ∈ Q3, and (a4, b4) ∈ Q4. Then, by Definition 2.1, there exists ε ∈ R+ such that

N(a1,b1),ε ∪N(a2,b2),ε ∪N(a3,b3),ε ∪N(a4,b4),ε ⊂ S

where N(ai,bi),ε ⊂ Qi for i ∈ {1, 2, 3, 4}. Furthermore, by Corollary 2.1 we may find (pi, qi) ∈
Q2 such that (pi, qi) ∈ N(ai,bi),ε for i ∈ {1, 2, 3, 4}. Furthermore:

(p1, q1) =

(
n11

n12

,
m11

m12

)
(p3, q3) =

(
−n31

n32

,
−m31

m32

)

(p2, q2) =

(
−n21

n22

,
m21

m22

)
(p4, q4) =

(
n41

n42

,
−m41

m42

)
where nij,mij ∈ N for i ∈ {1, 2, 3, 4} and j ∈ {1, 2}. Set n0 = n12n21 and m0 = n22n11.
Then it follows that the linear combination

n0(p1, q1) +m0(p2, q2) =

(
0,
n12n21m11m22 + n11n22m12m21

m12m22

)
Letting c1 = n12n21m11m22 + n11n22m12m21, we get

(3.1) n0(p1, q1) +m0(p2, q2) =

(
0,

c1
m12m22

)
.

Similarly, set s0 = n32n41 and t0 = n31n42. Then it follows that the linear combination

s0(p3, q3) + t0(p4, q4) =

(
0,
−(n32n41m31m42 + n31n42m32m41)

m32m42

)
.

Letting c2 = n32n41m31m42 + n31n42m32m41 we get:

(3.2) s0(p3, q3) + t0(p4, q4) =

(
0,
−c2

m32m42

)
.

Now consider u0 = m12m22c2 and v0 = m32m42c1. Then it follows that:

(3.3) u0

(
0,

c1
m12m22

)
+ v0

(
0,
−c2

m32m42

)
= (0, 0).

Combining together Equations 3.1, 3.2, and 3.3 provides

(3.4) u0n0(p1, q1) + u0m0(p2, q2) + v0s0(p3, q3) + v0t0(p4, q4) = (0, 0).



14 L. T. Dominguez and R. R. Bouchat

Since nij,mij > 0 for all i ∈ {1, 2, 3, 4} and j ∈ {1, 2} it follows that u0n0, u0m0, v0s0, v0t0 ∈
N. Setting n = u0n0, m = u0m0, s = v0s0, and t = v0t0 the result follows immediately from
Equation 3.4.

It will also be essential that we can scale a point in R2 to be arbitrarily close to (0, 0). To
do this, we will need the following two functions.

Definition 3.1. Let x ∈ R.
(1) The floor function, denoted bxc, assigns to the input x the greatest integer that is

less than or equal to x.
(2) The ceiling function, denoted dxe, assigns to the input x the least integer that is

greater than or equal to x.

These two functions can now be used to perform the necessary scaling.

Lemma 3.2. Let (z1, z2) ∈ R2, and let ε ∈ R+. Then there exists β ∈ N such that
1

βb|zx|+ 1cb|zy|+ 1c
(z1, z2) ∈ N(0,0),ε.

Proof. Let (z1, z2) ∈ R2, and let ε ∈ R+. Set ∆ =
|zx|+ |zy|

εb|zx|+ 1cb|zy|+ 1c
. Then

√(
zx

∆b|zx|+ 1cb|zy|+ 1c

)2

+

(
zy

∆b|zx|+ 1cb|zy|+ 1c

)2

≤

√(
zx

∆b|zx|+ 1cb|zy|+ 1c

)2

+

√(
zy

∆b|zx|+ 1cb|zy|+ 1c

)2

=
|zx|+ |zy|

∆b|zx|+ 1cb|zy|+ 1c

= ε

Choosing β = d∆e produces the desired result.

Now, we are ready to prove the main result of the paper, which is an extension of the
original problem posed in the February 2017 edition of Mathematics Magazine (see [1]).

Theorem 3.1. Let S be an open set in R2 containing the points (a1, b1) ∈ Q1, (a2, b2) ∈ Q2,
(a3, b3) ∈ Q3, and (a4, b4) ∈ Q4. Furthermore, let (z1, z2) ∈ R2. Then there exist n,m, s, t ∈
N such that

nx1 +mx2 + sx3 + tx4 = (z1, z2)

where xi ∈ N(ai,bi),ε ⊂ S for i ∈ {1, 2, 3, 4} and some ε ∈ R+.

Proof. Let S be an open set in R2 containing the points (a1, b1) ∈ Q1, (a2, b2) ∈ Q2,
(a3, b3) ∈ Q3, and (a4, b4) ∈ Q4. Then from Lemma 3.1, there exists n0,m0, s0, t0 ∈ N and
ε ∈ R+ such that

(3.5) n0(p1, q1) +m0(p2, q2) + s0(p3, q3) + t0(p4, q4) = (0, 0)

where (pi, qi) ∈ N(ai,bi),ε ⊂ S with (pi, qi) ∈ Q2 for i ∈ {1, 2, 3, 4}. Moreover, Lemma 3.2
provides a β ∈ N, for any ε ∈ R+, such that

1

βb|zx|+ 1cb|zy|+ 1c
(z1, z2) ∈ N(0,0),ε.
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Thus, we can find a β ∈ N such that
1

∆
(z1, z2) + (pi, qi) ∈ N(pi,qi),ε′ ⊂ N(ai,bi),ε ⊂ S

where ε′ ∈ R+ and ∆ = βb|zx|+ 1cb|zy|+ 1c. It follows that ∆ ∈ N and

x1 =
1

4n0∆
(z1, z2) + (p1, q1) ∈ S x3 =

1

4s0∆
(z1, z2) + (p3, q3) ∈ S

x2 =
1

4m0∆
(z1, z2) + (p2, q2) ∈ S x4 =

1

4t0∆
(z1, z2) + (p4, q4) ∈ S.

Furthermore,
n0∆x1+m0∆x2+s0∆x3+t0∆x4 = (z1, z2)+∆ [n0(p1, q1) +m0(p2, q2) + s0(p3, q3) + t0(p4, q4)]

Then, by Equation 3.5
n0∆x1 +m0∆x2 + s0∆x3 + t0∆x4 = (z1, z2) + ∆(0, 0) = (z1, z2).

The claim follows by setting n = n0∆, m = m0∆, s = s0∆, and t = t0∆.

We can further use this main result to return to the original problem posed by Souvik
Dey.

Corollary 3.1. Let S be an open subset of the set R, such that S contains at least one
positive number and one negative number. Then every real number can be written as a finite
sum of (not necessarily distinct) elements of S.

Proof. Let S be an open subset of R such that there exists a, b ∈ S with a < 0 and
b < 0. Moreover, let r ∈ R. Then (r, 0) ∈ R2. Since S is an open subset of R, it follows that
S×S = {(x, y) : x, y ∈ S} is an open subset of R2. Moreover, (a, a), (a, b), (b, a), (b, b) ∈ S×S
with (b, b) ∈ Q1, (a, b) ∈ Q2, (a, a) ∈ Q3, and (b, a) ∈ Q4. By Theorem 3.1, there exist
n,m, s, t ∈ N and x1,x2,x3,x4 ∈ S × S such that
(3.6) nx1 +mx2 + sx3 + tx4 = (r, 0).

Let (xi)1 denote the first coordinate of xi for i ∈ {1, 2, 3, 4}. Then from Equation 3.6, it
follows that:

n (x1)1 +m (x2)1 + s (x3)1 + t (x4)1 = r.

Since xi ∈ S × S for i ∈ {1, 2, 3, 4}, (xi)1 ∈ S for i ∈ {1, 2, 3, 4} and the result follows.

4. Conclusion

From the initial problem posed by Souvik Dey (see [1]), we were able to generalize the
problem to R2. There is still the possibility to extend this problem to Rn. We end with the
following conjecture regarding this general problem.

Conjecture 1. Let S be an open set in Rn containing the points (x1i, x2i, . . . , xni) where
i ∈ {1, 2, . . . , 2n} such that each of these points lies in one of the 2n distinct regions of
Rn determined by the (n − 1)-dimensional hyperplanes partitioning Rn. Furthermore, let
(z1, z2, . . . , zn) ∈ Rn. Then there exist c1, c2, . . . , c2n ∈ N such that

2n∑
i=1

ci(x1i, x2i, . . . , xni) = (z1, z2, . . . , zn)

′
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