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Abstract

To assess environmental health of a stream, field, or other ecological object,
characteristics of that object should be compared to a set of reference objects
known to be healthy. Using streams as objects, we propose a k-nearest neighbors
algorithm (Bates Prins and Smith, 2006) to find the appropriate set of reference
streams to use as a comparison set for any given test stream. Previously, inves-
tigations of the k-nearest neighbors algorithm have utilized a variety of distance
functions, the best of which has been the Interpolated Value Difference Metric
(IVDM), proposed by Wilson and Martinez (1997). We propose two alterna-
tives to the IVDM: Wilson and Martinez’s Windowed Value Difference Metric
(WVDM) and the Density-Based Value Difference Metric (DBVDM) developed
by Wojna (2005). We extend the WVDM and DBVDM to handle continuous
response variables and compare these distance measures to the IVDM within
the ecological k-nearest neighbors context. Additionally, we compare two ex-
isting attribute weighting schemes (Wojna 2005) when applied to the IVDM,
WVDM, and DBVDM, and we propose a new attribute weighting method for
use with these distance functions as well. In assessing environmental impairment,
the WVDM and DBVDM were slight improvements over the IVDM. Attribute
weighting also increased the effectiveness of the k-nearest neighbors algorithm in
this ecological setting.

∗This research was supported by NSF grant NSF-DMS 0552577 and was conducted during an
8-week summer research experience for undergraduates (REU).
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1 Introduction

When determining the health of ecological objects, test objects of unknown health
status are compared to a set of reference objects, which are assumed to be healthy. In
this application, we consider a set of n streams that are all assumed to be unimpaired.
These streams form our set of reference streams. Using various biological metrics known
to be correlated with stream health, the metric values of test streams, or streams of
unknown impairment status, will be compared to the metric values of that test stream’s
k nearest neighbors. Since ideal metric values vary based on a variety of factors, we
seek to determine which k neighbors are most similar to the test stream. To find the
neighbors, we use a distance function defined on pre-selected predictors. Very generally,
the distance between any reference stream and test stream can be defined as:

DIST (x,y) =
m∑

a=1

dista(xa, ya) (1)

where x and y are streams between which we desire to find the distance, a indicates the
ath predictor, m is the number of predictors, and xa and ya are the values of predictor
a for observations x and y respectively. In our application, we define x to be a test
stream and y to be a reference stream, meaning that x is not included in the reference
dataset, but y is. Then dista is defined as:

dista(xa, ya) =





vdma(xa, ya) if predictor a is categorical
C∑

c=1

|Pa,xa,c − Pa,ya,c|2 otherwise
(2)

where vdma is the Value Difference Metric (VDM) defined on predictor a (Wilson and
Martinez [3]), c is an indicator for the output class, C is the total number of output
classes, and Pa,xa,c is the conditional probability that the output class is c given that
predictor a has value x. In mathematical terms, Pa,xa,c = P (c|xa).

Because predictors may be either categorical or continuous, a good distance func-
tion must allow for both. Spencer et al. [2] discuss the problem of scaling the possible
contributions of continuous predictors to be equivalent to the possible contributions of
categorical predictors. We analyze three different distance functions that incorporate
both categorical and continuous predictors: the Interpolated Value Difference Metric
(IVDM) (Wilson and Martinez [3]), the Windowed Value Difference Metric (WVDM)
(Wilson and Martinez, [3]), and the Density-Based Value Difference Metric (DBVDM)
(Wojna [5]). Though all these methods were originally developed to classify objects
into categories (i.e. for use with categorical response variables), the IVDM was modi-
fied to handle continuous responses by Spencer et al. [2]. Because the biological metrics
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we are considering are continuous, we have modified the WVDM and the DBVDM to
handle continuous responses as well. In addition, we hypothesize that not all predictors
are equally effective at determining stream similarity. We seek to incorporate predictor
effectiveness into our distance functions by utilizing predictor weighting. We consider
three weighting schemes for use with the proposed distance functions: Weights Opti-
mizing Distance (Wojna [5] Algorithm 1), Weights Optimizing Classification Accuracy
(Wojna [5] Algorithm 2), and Scaled Misclassification Ratio Weighting Method. When
weighting is introduced, the distance is defined as:

DISTweighted(x,y) =
m∑

a=1

weighta · dista(xa, ya) (3)

where weighta is the weight for the ath predictor and is assumed constant for all
streams.

In this paper, we compare the IVDM, WVDM, and the DBVDM, applying weights
to each method and comparing the weighted methods with the unweighted. We also
compare the effectiveness of the three different weighting schemes.

2 The Windowed Value Difference Metric (WVDM)

The WVDM was introduced by Wilson and Martinez [3] and functions similarly to
the IVDM of those authors. However, instead of sampling values of Pa,x,c only at the
midpoint of each of the predictor’s discretized ranges, the WVDM samples Pa,x,c at
every value of predictor a that occurs in the reference dataset.

The WVDM was originally proposed to handle classification problems i.e., problems
with categorical responses. Here we extend the WVDM to continuous responses. To
do this, we first discretize the response into C output classes. Let J = {1, 2, ..., n}
represent the indices for the n objects in the reference dataset. The output class
associated with the response R observed at observation p is defined as follows:

discretize(Rp) =





C if Rp ≥max{Rj}, j ∈ J
1 if Rp ≤min{Rj}, j ∈ J
b(Rp−minj∈J{Rj})/wc+ 1 j ∈ J , otherwise,

(4)

where w indicates the width of each output class. We define w = 1
C
|max{Rj}−min{Rj}|,

where j ∈ J .
After discretizing the response variable, the WVDM uses the general distance equa-

tions (1) and (2), or (3) instead of (1) if using weights. In using equation (2), we need
to calculate Pa,xa,c and Pa,ya,c. To find these values, we first calculate Pa,xa,c for each
value, xa, of predictor a occurring in the reference dataset by considering the number
of observations with values of predictor a that fall within a window centered at xa

with width wa, defined as wa = 1
s
· |max(xaj

) − min(xaj
)| where j ∈ J . A value for

EPUMD 4, 2010 No. 3



Distance Functions and Attribute Weighting 4

s is chosen to determine window size, but the value of s is somewhat arbitrary and
has been shown to have little bearing on results (Wilson and Martinez [3], Spencer et
al. [2]). Then Pa,xa,c is the proportion of observations in the window for xa that have
output class C.

Once the values of Pa,xa,c are calculated for all values of xa occurring in the reference
dataset, probabilities can be calculated for any value of xa, whether it occurs in the
reference dataset or not. If xa occurs in the reference dataset, Pa,xa,c is known based
on the calculations performed in the previous step. If xa does not occur in the training
set, choose x1, x2 such that x1, x2 are values of predictor a occurring in the reference
dataset and x1 < xa < x2. Then Pa,xa,c is found by linear interpolation between Pa,x1,c

and Pa,x2,c. For test values lying outside the range of reference values, the convention
of Wilson and Martinez [3] was followed; values were interpolated toward zero.
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Figure 1: Probability Profiles from WVDM (left) and DBVDM (right) methods

Problems with the WVDM can arise if the reference dataset is too sparse [5]. Since
the window width wa is fixed for each predictor, it may not capture enough observations
to calculate accurate probabilities, and in other cases, the window may be too small
to capture any observations. In this case, Na,x = 0, which causes problems since
Na,x is the denominator of Pa,x,c. One solution to this problem is to use the DBVDM
(Density-Based Value Difference Metric), which sets the window using a fixed number
of observations rather than a fixed width. This method also allows us to calculate Pa,x,c

the same way for all test values, whether their values fall within the reference set range
or not.
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3 The Density-Based Value Difference Metric (DB-

VDM)

The DBVDM is an adaptation to the WVDM developed in [5]. The WVDM determines
a constant width for the moving window; the number of observations that fall inside this
window is variable. The DBVDM, however, has a constant number of observations in
all windows, while the width of the windows is variable. Like the WVDM, the DBVDM
samples Pa,xa,c at every value of predictor a that occurs in the reference dataset. The
DBVDM uses the general formula for a distance function (equations (2) and (1) or (3)
if weighted).

The DBVDM method was developed to handle the problems that could occur with
the WVDM, namely that of sparse reference data. Including a fixed number of obser-
vations in every window addresses this issue. We have extended the DBVDM to handle
a continuous response by using equation (4) to discretize the response into C output
classes. We then calculate Pa,xa,c for each predictor a in the reference dataset by con-
sidering each value xa of predictor a occurring in the reference data and selecting the
nw observations with values of predictor a that are closest to xa. These nw observations
form the window for the value xa. In the event of a tie between closest observations,
we randomly select observations from the tied values. Pa,xa,c is then defined as the
proportion of observations in the window centered at xa with output class c.

Figure 1 shows graphs of Pa,xa,c for c = {1, 2, 3, 4, 5, 6} for the WVDM and DBVDM
methods. Here, xa represents values of a predictor (catchment area in this example).
The vertical lines represent values of catchment area for a test stream (x, dashed line)
and a reference stream (y, dashed/dotted line). Here, xa = 2.172 and ya = 3.40. The
WVDM distance is calculated by taking the sum of squared differences between Pa,xa,c

and Pa,ya,c for each c, i.e. differences between probabilities associated with points of
the same shape lying on different vertical lines. Because we calculate Pa,xa,c at all the
reference values rather than only s reference values as is done in the IVDM, we obtain
a more accurate probability profile with the WVDM and DBVDM. Notice the discrete
horizontal lines occurring in the DBVDM plot; this is due to the fact that Pa,xa,c is
always calculated with the same denominator (nw), so there are only nw +1 possiblities
for the value of Pa,xa,c.

4 Attribute Weighting Schemes

We now discuss three approaches to determining the value of weighta, the weight for
predictor a used in the distance function given in (3).
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4.1 Weights Optimizing Distance (Wojna Algorithm 1)

The first weighting method we tested on our data was the algorithm optimizing distance
in Wojna [5]. This approach gives higher weights to predictors that put a large distance
between two sites with different output classes. From our 87 streams, a random test
sample (Stest) of size 30 was selected, leaving 57 streams in a training set. The nearest
neighbor of each stream x in the test set is found using all predictors. If the output
class of x does not match the output class of x’s nearest neighbor (nearest(x)), x is
included in the set misclass. Define dist(x, y) as the total distance between test stream
x and reference stream y and define dista(x, y) as the distance between test stream x
and reference stream y using only predictor a. We then define a global misclassification
ratio MR and a predictor-specific misclassification ratio MR(a) as follows:

MR =

∑

x∈misclass

dist(x, nearest(x))

∑
x∈Stest

dist(x, nearest(x))
, MR(a) =

∑

x∈misclass

dista(x, nearest(x))

∑
x∈Stest

dista(x, nearest(x))
, (5)

where nearest(x) is the same reference stream in the numerator and denominator of
both MR and MR(a) and is found using all predictors.

Then if MR(a) > MR, the weight for predictor a is additively increased by the
value modifier, initially defined to be 0.9. This entire process, beginning with random
selection of Stest, is then repeated l times, multiplying modifier by 0.9 each time. After
running simulations with varying values of l, we followed Wojna’s convention and used
l = 20; more iterations did not improve the results. The interested reader can refer to
Wojna [5] for further details on this method.

4.2 Weights Optimizing Classification Accuracy (Wojna Al-
gorithm 2)

Wojna [5] also proposes a weighting method that optimizes classification accuracy. This
weighting scheme gives higher weights to predictors that define the nearest neighbor
of a particular stream to be a stream of the same output class. The weight for each
attribute is initialized to be 1. Like the previous method, this weighting scheme first
selects a random set of 30 streams to be the test set (Stest) and uses the remaining 57
streams as reference streams. Using the given distance function, for each of the 30 test
streams (x), the method finds the nearest neighbor in the reference set with the same
output class as the test stream (nearest(x)) and the nearest neighbor in the reference
set with an output class different from the test stream (nearest(x)). The distances to
these neighbors are calculated using all predictors. Next, the method calculates correct
as the number of streams x ∈ Stest that are closer to nearest(x) than to nearest(x),
using distances based on all predictors. Then correct(a) is similarly calculated, using
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distances based only on predictor a (but still using the same streams for nearest(x)
and nearest(x), found using all predictors). If correct(a) > correct, the weight for
predictor a is additively increased by the value modifier, initially defined to be 0.9.
This entire process is repeated l times, multiplying modifier by 0.9 each time. We
again used l = 20 iterations.

4.3 Scaled Misclassification Ratio Weighting Method

In addition to the two methods created by Wojna, we tested a weighting method of
our own design. The main criterion for measuring the effectiveness of predictor a was
the misclassification ratio for that predictor i.e. MR(a), defined in (5). The steps
for this algorithm are the same as those in the algorithm optimizing distance (Wojna
Algorithm 1) until the weights are calculated. After finding the values of MR(a)

and MR, predictor a is simply assigned a weight of MR(a)
MR

. We hypothesized that
assigning weights directly related to MR(a) would improve the weighting scheme. The
other weighting scheme simply increments the weight for predictor a if MR(a) > MR
without accounting for the magnitude of the difference between MR(a) and MR. By

assigning predictor a the weight MR(a)
MR

, we hoped to better incorporate the magnitude
of the difference into the weighting system.

5 Data

Our analysis was based on the data used by Bates Prins and Smith [1]. This dataset
consisted of n = 87 reference streams in the mid-Atlantic highlands region. For each
stream, six different biological metrics (responses) were measured. These metrics in-
clude Ephemeroptera richness (EPHERICH), Plecoptera richness (PLECRICH), total
taxa richness (TOTLRICH), tolerant taxa richness (TOLRRICH), proportional abun-
dance of tolerant taxa of aquatic microinvertebrates (TOLRPIND), and proportional
abundance of the three most common taxa (DOM3PIND). Predictors considered in our
analysis included log-transformed catchment area (AREA), latitude (LAT), longitude
(LON), total rapid bioassessment protocol habitat score (RBP), and Level III Ecore-
gion (ECO) as assigned by the EPA. All predictors are continuous except for ecoregion,
which has 6 levels. Further details regarding the data can be found in Bates Prins and
Smith [1].

All analysis was done in R Versions 2.9.0 and 2.4.1.

6 Methods of Comparison

Our comparison of the IVDM, WVDM, and DBVDM methods and our analysis of
the effectiveness of attribute weighting was done using the leave-one-out approach
described in Bates Prins and Smith [1]. Using the leave-one-out method and the
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mean squared error of prediction (MSE), the best neighborhood size (k) along with
the optimal subset of predictors was chosen. A low MSE indicated good choices of
k and predictors. Each stream in our dataset in turn was treated as a test stream of
unknown output class and unknown impairment status, and the k and predictor subset
generating the lowest MSE were chosen. The distance function was then used to find
the k nearest neighbors of the “test” stream. The response values of these neighbors
were used to determine the scaled response value of the test stream, which determined
the test stream’s impairment status as described in Bates Prins and Smith [1]; following
their convention, a cutoff of α = 0.05 was used. Each of our “test” streams in actuality
comes from our reference dataset, which is composed of streams known to be minimally
impaired, so the impairment status for all the reference streams should be found to be
not impaired. For each metric, classification accuracy (percentage of reference streams
classified as not impaired) was measured; a classification rate of 100 indicates a good
distance function. These two criteria (MSE and classification rate) served as a basis
for our comparisons.

We also experimented with different window widths for the WVDM and DBVDM,
different numbers of input classes for the IVDM, and different numbers of output classes
for all three distance functions. Following the convention of Wilson and Martinez [3, 4]
and Spencer, Bates Prins, and Beckom [2], we used a heuristic approach in choosing
values of s and C for the WVDM. Because ecoregion has 6 levels, we first set s = 6
and C = 6. After testing this case, we tried two smaller window widths (s = 8 and
s = 12) and one larger window width (s = 4). We set C = 6 initally based on Wilson
and Martinez’s tests [3], but also tried using different numbers of output classes by
setting C = 3, C = 9, and C = 12. The same choices for C were used in the DBVDM.
For the window size in the DBVDM, we originally set nw = 12, which corresponded
to 13.7% of the reference dataset. This was based on Wojna’s choice of nw = 12 in
proportion to the size of his datasets [5]. We also used a smaller window (nw = 8) and
a larger window (nw = 16) in testing this method. We chose our “large-window” nw

to correspond approximately to our “large-window” s, and our “small-window” nw to
correspond to our “small-window” s. We note that 87/6 = 14.5 (so n/s is close to 16,
our chosen value of nw), and also that 87/12 = 7.25 (so n/s is close to 8, our chosen
nw). Because of this correspondence, we were able to make a fair comparison between
weighting methods.

7 Results

In extending the WVDM and DBVDM to handle continuous response variables, we
found that these methods are at least comparable to the IVDM, and in most cases,
they perform better than the IVDM in terms of both MSE and classification rate, even
without attribute weighting. In particular, the DBVDM performs well as measured by
MSE, generating lower MSEs than the IVDM and WVDM for 5 of the 6 metrics. For
the last metric (DOM3PIND), the WVDM generated a lower MSE than the IVDM, so
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for all metrics, the IVDM is outperformed in terms of MSE. Table 1 gives the best MSE
values for each distance function without weighting. MSE and classification rates for
IVDM in Table 1 were taken from Spencer et al [2]; all WVDM and DBVDM measures
are original work.

In terms of weights, for all metrics, a weighted distance function was optimal in
terms of MSE, with Wojna’s algorithm optimizing distance performing best for three
metrics (EPHERICH, TOLRRICH, and DOM3PIND), Wojna’s algorithm optimizing
classification accuracy performing best for two metrics (PLECRICH and TOLRPIND),
and our scaled misclassification ratio weighting scheme performing best on one metric
(TOTLRICH). For four of the six metrics, our scaled misclassification ratio scheme
performed similarly to the best weighting scheme.

In terms of classification accuracy, our scaled misclassification ratio weighting me-
thod performed best on 3 of the metrics (PLECRICH, TOTLRICH, and TOLR-
RICH), Wojna’s method optimizing classification accuracy performed best on one met-
ric (DOM3PIND), and unweighted distance functions were optimal on the other two
metrics, although the differences were small. Table 2 details the distance functions’
performance with weighting schemes.

We were also interested in these distance functions’ ability to use both categorical
and continuous predictors in determining distances. The inclusion of ecoregion, a
categorical variable, as a predictor in our optimal predictor subsets is an indicator that
these distance functions were somewhat successful at mixing the two types of attributes.
In the unweighted methods, ecoregion was chosen as a predictor by at least two distance
functions for 3 of the 6 metrics (EPHERICH, TOLRPIND, and DOM3PIND). For
the weighing methods, ecoregion was frequently chosen when analyzing those three
metrics as well. Ecoregion was never chosen as a predictor for any of the other three
metrics. Ecoregion’s inclusion in the predictor set for half of the metrics indicates that
these distance functions are somewhat successfully mixing continuous and categorical
attributes.

8 Discussion

In our analysis of optimal distance functions and weighting methods, we found the
WVDM to be a slight improvement over the IVDM, and we found the DBVDM to be
substantially better than the IVDM in terms of MSE. Classification accuracy was not
diminished when using the DBVDM. We believe the improvements over the IVDM are
due to the fact that the WVDM and DBVDM calculate the values of Pa,xa,c with more
precision than does IVDM. The window of variable width in the DBVDM appears to
be the reason for its good performance, since window size is the only difference between
the DBVDM and the WVDM. Using the same number of observations in each window
eliminates the problems of empty windows, windows with very few observations, and
test sites with predictor values lying outside the predictor’s range in the reference
dataset. The weighting methods also improved MSE, but there was no clear pattern as
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Table 1: The minimum mean squared error (MSE) obtained by each method without
attribute weighting. The MSE is listed along with the k, subset of predictors, s or nw,
and C associated with that MSE. Also included is RATE, the percentage of times a
reference stream was correctly classified as unimpaired. Low MSEs and high classifi-
cation rates are desirable. The lowest MSE for each metric is in bold. A Xindicates
the inclusion of a predictor in the nearest-neighbor distance calculation.

EPHERICH
Method MSE RATE k AREA LAT LON RBP ECO Width C
IVDM 8.57 94 21 X X s=6 6
WVDM 8.03 97 14 X X X s=4 9
DBVDM 7.82 95 18 X X nw=16 9

PLECRICH
Method MSE RATE k AREA LAT LON RBP ECO Width C
IVDM 3.74 98 11 X X s=12 6
WVDM 3.85 94 15 X X s=12 9
DBVDM 3.54 95 14 X X nw=12 9

TOTLRICH
Method MSE RATE k AREA LAT LON RBP ECO Width C
IVDM 134.03 92 20 X X s=12 6
WVDM 125.0 92 15 X X s=4 9
DBVDM 118.9 93 14 X X nw=12 6

TOLRRICH
Method MSE RATE k AREA LAT LON RBP ECO Width C
IVDM 2.49 97 25 X X s=6 6
WVDM 2.47 91 21 X s=6 6
DBVDM 2.51 93 21 X nw=16 3

TOLRPIND
Method MSE RATE k AREA LAT LON RBP ECO Width C
IVDM 0.00614 95 15 X s=6 6
WVDM 0.00598 95 7 X X X X s=6 9
DBVDM 0.00580 94 7 X X X X nw=16 9

DOM3PIND
Method MSE RATE k AREA LAT LON RBP ECO Width C
IVDM 0.0186 95 18 X X s=6 6
WVDM 0.0167 94 20 X X X s=4 3
DBVDM 0.0162 94 11 X X X nw=16 9

EPUMD 4, 2010 No. 3



Distance Functions and Attribute Weighting 11

Table 2: The minimum mean squared error (MSE) obtained by each method using
each weighting scheme. The classification rate associated with that MSE is also listed.
The best MSE for each distance function within a metric is in bold. For each metric,
the best overall MSE and classification rate are in boxes.

EPHERICH
Method MSE Classification Rate

No Weights Wojna 1 Wojna 2 Scaled MR No Weights Wojna 1 Wojna 2 Scaled MR

IVDM 8.57 8.83 8.43 8.28 94 93 94 90

WVDM 8.03 8.26 8.13 8.19 97 95 95 95

DBVDM 7.82 7.71 8.25 7.77 95 95 94 95

PLECRICH
Method MSE Classification Rate

No Weights Wojna 1 Wojna 2 Scaled MR No Weights Wojna 1 Wojna 2 Scaled MR

IVDM 3.74 3.54 3.79 3.72 98 94 93 98
WVDM 3.85 3.80 3.84 3.81 94 94 94 94

DBVDM 3.54 3.56 3.51 3.58 95 95 94 98

TOTLRICH
Method MSE Classification Rate

No Weights Wojna 1 Wojna 2 Scaled MR No Weights Wojna 1 Wojna 2 Scaled MR

IVDM 134.0 122.7 123.1 123.2 92 93 92 92
WVDM 125.0 126.6 123.3 124.7 92 93 91 93

DBVDM 118.9 120.2 119.0 116.9 93 94 92 95

TOLRRICH
Method MSE Classification Rate

No Weights Wojna 1 Wojna 2 Scaled MR No Weights Wojna 1 Wojna 2 Scaled MR

IVDM 2.49 2.51 2.49 2.50 97 90 94 97
WVDM 2.47 2.47 2.47 2.47 91 91 91 91

DBVDM 2.51 2.43 2.51 2.45 93 92 93 94

TOLRPIND
Method MSE Classification Rate

No Weights Wojna 1 Wojna 2 Scaled MR No Weights Wojna 1 Wojna 2 Scaled MR

IVDM 0.00614 0.00591 0.00590 0.00597 95 92 94 93

WVDM 0.00598 0.00586 0.00590 0.00590 95 93 94 92

DBVDM 0.00580 0.00592 0.00565 0.00593 94 94 92 94
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DOM3PIND
Method MSE Classification Rate

No Weights Wojna 1 Wojna 2 Scaled MR No Weights Wojna 1 Wojna 2 Scaled MR

IVDM 0.0186 0.0155 0.0163 0.0165 95 94 97 94
WVDM 0.0167 0.0166 0.0171 0.0166 94 91 93 95
DBVDM 0.0162 0.0158 0.0160 0.0162 94 94 95 95

to when each weighting scheme would be optimal; the best weighting scheme appears
to be dependent on the metric. The scaled misclassification ratio method performed
best in terms of classification accuracy, while the other methods performed better in
terms of MSE. Based on these experiments, we recommend the DBVDM with some
choice of weighting scheme.

All results incorporated variable selection by way of the forward selection process
described in Bates Prins and Smith [1]. It can be argued that all predictors should
be used in calculating distances to nearest neighbors (the calculation is faster and it
makes use of all available information) but that the predictors should be weighted in
terms of importance or accuracy. We ran all three distance functions with weights (all
schemes) but without variable selection, and found that eliminating variable selection
(even when using attribute weighting) noticeably increased MSE. We hypothesize that
variable selection is still worthwhile, even when using attribute weighting, because
the weighting methods do not always give higher weights to those predictors that are
selected in variable selection. This is due to the fact that variable selection uses MSE as
its criteria for important predictors, while the attribute weighting does not. Applying
both weighting and selection gives the best overall results.

One question we came across was that of how to calculate Pa,xa,c for values lying
outside the range of reference values in the WVDM. Recall that w indicates window
width and J indicates the reference set. Our analysis simply calculated Pa,xa,c = 0
when xa = max xaj

+ w
2

and when xa = min xaj
− w

2
, j ∈ J . This means that if our test

value was in the window of max xaj
or min xaj

, interpolation was performed as usual.
If the test value was so extreme that it fell outside that window, probabilities for all
output classes were calculated as 0. Instead of using this approach, another option
is to set Pa,xa,c for any xa < min xaj

to be equal to Pa,min xaj ,c and similarly, to set
Pa,xa,c for any xa > max xaj

to Pa,max xaj ,c. This method seemed to make more sense
because intuitively, it seemed that every test stream should have a nonzero probability
of being in at least one output class. Due to the lack of interpolation and the method
of determining observations in the windows in the DBVDM, this alternative proposal
is actually occurring in that method. We tested the WVDM using this alternative
approach for outlying test values and found that it had little bearing on the results,
possibly because we only tested a small number of outlying values. Future research
may include investigating better ways of handling outlying test values.
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Though we recommend the DBVDM with a weighting scheme for use, these methods
are not flawless. Both the DBVDM and the WVDM are computationally more intensive
than the IVDM, so running these methods on large datasets may take more time than
desired. Attribute weighting also adds more time in computation. As in the IVDM,
the choice of window size and output class size is somewhat subjective. In our analysis,
using different window sizes or output class sizes changed some MSE values by a small
amount, but in general, the choice of s, nw, or C had little bearing on results (Spencer
et al [2]). The choices of the values for s, nw, and C did not follow any clear pattern,
and our optimal results for these values were based on experimentation. Finally, more
research is needed as to what values of l (number of iterations) and |Stest| (test set
size) are optimal for a small dataset like ours. There is also some subjectivity in the
choice of initial value of modifier in Wojna’s algorithms: setting its initial value to 0.9
and its subsequent values to powers of 0.9 generates attribute weights that are sums
of the geometric series 1 + 0.9 + 0.92 + ... + 0.9r where r is the number of times the
weight is increased, and these weights have a maximum value of 10. Different values of
modifier will generate different values for the maximum attribute weight. Choosing a
different value for modifier would not affect results, but it is somewhat arbitrary. One
solution to this problem would be to use our scaled misclassification ratio scheme that
uses the actual misclassification ratios rather than an arbitrary modifier to determine
predictor weights.

Overall, the DBVDM and weighting schemes were improvements over the IVDM,
providing good distance functions that utilize categorical and continuous predictors
and have the flexibility to be used in many settings.
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