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Abstract

Mechanical integration is an idea dating back to the late 1800’s discovered by
James Thomson, brother of Lord Kelvin. This idea was then expanded to build
a calculating machine, called a differential analyzer, by Vannevar Bush (M.I.T)
in 1929. The Marshall University Differential Analyzer Team has followed in
the footsteps of Dr. Bush and a gentleman named Dr. Arthur Porter, who was
the first to build a differential analyzer in England when he was a student of
Dr. Douglas Hartree. He built his machine of Meccano components, the British
version of Erector Set. In the early days of Arthur Porter’s research, the machine
was used to solve ordinary differential equations and the results were compared
to those of more sophisticated differential analyzers of that time. Dr. Porter’s
research proved that the Meccano differential analyzer was well suited for many
dynamical systems applications. The Team has recently constructed the only
two publicly accessible differential analyzers in the USA, a mini two integrator
machine and a larger four integrator machine built in the spirit of the Porter
Meccano Manchester Differential Analyzer. They are continuing in the spirit of
Dr. Porter’s work. In this work we will give a brief overview of the Marshall
Differential Analyzer Project, the mechanics of the machine and the mathematics
that can be described by the mechanics. An example will be presented to unify
the mechanics and the mathematical concepts.

1 Introduction

This idea of using mechanical interrelationships to solve differential equations was a
compilation of several different works all organized by one man named Vannavar Bush.
In the late 1800’s a machine was built to solve linear differential equations of any order.
Its inventor, James Thomson, discovered the disk and globe relationship, which uses
successive approximations to evaluate an integral. However, the scientists of the time
could not overcome the complication of torque amplification. So using the machine for
non-linear purposes was an unrealized concept.
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Bush envisioned a new machine that would go well beyond the scope of the former.
With the help of several machinists, he designed the torque amplifier. The torque
amplifier worked like a capstan pulley and would bypass the problem by tracking the
motion of the wheel then transferring that same motion to the rest of the machine.
Since torque was no longer an issue, the applications that could be modeled on the
differential analyzer by differential equations were useful issues such as making ballistics
tables for bouncing bombs, and gun-fire control, as well as applications in electrical
engineering.

Unfortunately, the differential analyzer was replaced by modern computers and fell
out of the history book. It has been our task for the past several years to revive the
differential analyzer and continue Bush’s’ work. Along our journey we have found that
using the differential analyzer provides an elegant visual interpretation of an equation
as well as many other mathematical concepts. Our goal from the beginning has been
to provide students and teachers alike with an alternative perception of abstract math-
ematics using the differential analyzer. In particular, we have compared the theory of
integration with mechanical integration by using the Riemann sum.

2 The Components of the Machine

The Differential Analyzer is an analogue computer designed to solve ordinary differen-
tial equations. The construction of such a machine includes four major components.
The first of these components is the integrator, which will be discussed in great detail
later in this work. This component is the most important because integration is the
primary mechanical operation for solving differential equations with the differential
analyzer.

Basically the integrator consists of rotating disk, a wheel, and a lead screw. The
disk is mounted on a carriage so that it is allowed to move in a strictly linear man-
ner. Additionally, while the disk is being turned, this motion moves the wheel. Now,
the rotation of the lead screw moves the carriage, so that the set up is essentially a
continuously variable gear ratio.

The next component is the torque amplifier; this allows the motion of the wheel
to be transferred to the connecting parts of the machine. The need for the torque
amplifier is strictly for mechanical purposes; since the force of friction from the disk to
the wheel is considerably small, the output of the wheel doesn’t have enough torque
to turn the moving parts of the machine.

The last two components of the machine, the input and output tables, are very
similar in design. The former allows us to translate a graph in normal Cartesian
coordinates in terms of shaft rotations and feed the motion into the machine. The
latter will draw a plot of the solution against time or any other motion created by
the machine representing terms of the associated differential equation. These two
components will also be discussed in more detail later.
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3 The Mechanics of Integration

To understand specifically how the differential analyzer integrates, one must first know
precisely what the machine is doing mechanically. As previously mentioned the inte-
grator unit consists of three main components, the disk, wheel, and the lead screw.
Mathematically, the motion of these components represent the independent variable,
the integral, and the integrand, respectively. It is important to note that the motion
of the wheel is strictly one-dimensional, that is, the wheel picks up successive arcs of
some fixed concentric circle on the disk. This is due to the fact that the wheel is fixed
and cannot move in a linear direction by design. The only movement picked up by the
wheel is along an arc of a circle. The disk however, is allowed to turn as well as move
in a linear direction. This is possible by means of a spline shaft, or key-way rod.

Now, integration takes place because the wheel adds up all differences in gear-ratios
the very instant they are created. These gear ratios are now called the derivative. So
the derivative is essentially the rotation of the lead screw. Also note here that the
derivative is the function to be integrated. The rotation of the wheel depends on the
rotation of the disk. With dependence on the distance from the center of the disk to
the edge of the wheel, the number of turns of the wheel is dependent on the number
of turns of the disk. This is because the derivative is defined to be some change in
distance which is essentially a change in gear ratio.

Consider the following cases:
Case 1:
Suppose the derivative distance is initially set one inch from center, and remains

constant. Additionally, assume that the radius of the wheel is measured to be one inch.
Therefore, if the disk turns n times, then the wheel turns n times as well. This tells us
that if the derivative distance equals the radius of the wheel, then the wheel:disk ratio
is one-to-one.

Case 2: Let’s suppose the derivative distance is set to two inches instead, and
everything else is as in Case 1. So, if the disk turns once, then the wheel turns twice.
We see that the disk:wheel ratio is 1:2 in this case.

Case 3: Finally, let’s assume the same initial derivative distance as in Case 2 but
we want to now rotate the disk through a portion of a turn. Since one turn equals 2π
radians, if the disk turns one-half turn it turns through π radians. So if the disk turns
π radians then the wheel will turn half as much as in Case 2, which is once. Note that
the disk:wheel ratio is still 1:2.

Now we can see that the rotation of wheel depends on the derivative distance and
the number of turns of the disk. Note that the derivative distance is defined to be the
distance from the center of the disk to the edge of the wheel. So, if the wheel position
is fixed through some portion of a turn of the disk, the wheel is turned that portion of
turn multiplied by the disk:wheel ratio.

For convenience, let r denote the derivative distance, s denote the output of the
wheel, and ∆θ denote some portion of a turn of the disk. The next question is “What’s
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the disk:wheel ratio?”. The wheel acts like a gear. However, since the wheel does
not have gear teeth, the radius of the wheel is used to find the ratio, similar to the
calculation for a pulley. If we let the radius of the wheel be denoted by a, we have
disk:wheel ratio = r:a ratio. Now we gather that the wheel output s = (r/a) ∗ ∆θ.
Since a is constant s = (1/a) ∗ r ∗∆θ.

In other words, the output of the wheel is represented by an arc length with respect
to some prescribed concentric circle on the disk. This is how the machine integrates
a constant function r = f(θ), where the derivative distance r remains constant. For
example, suppose r = a, so that the disk:wheel ratio is 1. As mentioned previously,
the disk is the independent variable, so for θ = 1, 2, 3, ....., s = 1, 2, 3, ..., respectively.
Denoting θ as the independent variable and s as the dependent variable, a Cartesian
plot of these values will be the line s = θ.

As another example, suppose r = 2a then a Cartesian plot of these values is also
a line s = 2θ etc.. With respect to the plot, the rate of change is constant and so the
function is linear, and with respect to the integrator on the differential analyzer, the
derivative distance is constant so the output is linear. This is the correlation between
the machine and the mathematics. In this particular linear case this linear function is
precisely the integral value of the constant function evaluated over some real interval.
Of course this idea can be extended to the piecewise continuous case as follows. (See
Figure 1.)

Here we are given three discrete values for r. For each value, the wheel is displaced
by the carriage at some fixed distance rn. The disk is then rotated through some
portion of a turn ∆θ. At the start of each portion of a turn the disk rotation is
stopped and the carriage is displaced to provide a new derivative distance r. Hence,
each time this is done the wheel picks up an arc length proportional to the rotation
of the disk. Continuing in this manner for some n finite trials, with each trial having
an arc length defined by si = ri∆θi, i = 1, 2, ..., n, the total arc length for all these
piecewise continuous arcs is defined by

n∑
i

ri∆θi; (1)

taking into account our changing gear ratios, the number of turns of the output is
defined by

(1/a) ∗
n∑
i

ri∆θi. (2)

At this point we are only considering functions that are piecewise continuous, and
more specifically, only piecewise constant functions. As a result the integral is a piece-
wise linear function. However, we are interested in finding integrals of all functions
that can be described by turns of the lead screw and the disk. As a point of fact, the
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Figure 1: The Discrete Case

summation of arc lengths is a Riemann sum and the general rule of finding the integral
of any function is the same as finding them for a constant function.

For example, suppose the derivative distance is now linear, that is, has a constant
rate of change. This can be achieved by taking the output from one trial of the
discrete case and letting it drive the derivative distance for another integrator. So
in a mechanical sense, the gear ratios are always changing by some constant factor.
What the differential analyzer does to deal with this constant change, is partition the
interval, and then take refinements of it. Imagine the three discrete cases from figure
1 as being very small increments of a portion of a turn. (See Figure 2.)

In this case the derivative distance moves in a continuous manner so that the con-
secutive arc lengths are very small. The arcs can be a portion of any of the infinite
number of concentric circles that can be represented on the disk. If the derivative dis-
tance is changed by any amount then the wheel will always rest on a unique concentric
circle. This provides us with a definition of the integral since we know the definition
for a given arc length defined for a unique circle. The definition, as mentioned in the
former cases for n finite trials, will become an integral as each refinement of a partition
of ∆θ becomes further refined.

In other words the independent variable interval becomes more refined as the deriva-
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Figure 2: The Zoomed in View

tive distance changes continuously. These refinements of some partitions of an interval
are what is needed to define an integral. The big question now is “how does the dif-
ferential analyzer refine a partition?” It does so by design. Remember that the wheel
always makes contact with the disk, and the wheel always rests on some arbitrary con-
centric circle, so at any instant in time (which is defined on the machine as the turning
of the disk) the wheel picks up an arc length. As long as the angular velocity of the
lead screw does not exceed that of the disk, the wheel will instantaneously add up all
rates of change in the form of arc lengths.

In order to be mathematically precise, the thickness of the wheel’s edge must be
defined as the limit of all refinements of a partition, so that the integral is not just
an approximation of the theoretical value. However, realistically when working with
the differential analyzer, all results are relative to some predetermined value. One can
assume that the thickness of the wheel’s edge is of negligible value. In this case suppose
the wheel’s edge is very thin. In fact make it as sharp as a razor blade. Then define
one unit as an inch in linear distance. The comparison of one inch to the thickness of a
razor blade will provide a very considerable range from one unit to the next. Moreover,
a measured value is only as accurate as the tool we use to measure it, the tool in this
case being the wheel. So if we assume that the thickness of wheel is infinitely small
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then the theoretical value is achieved, as a mathematician would expect.

4 Solving Differential Equations

Now that we know how the machine integrates, we can focus on using the machine
to solve differential equations. The method of solving differential equations with the
differential analyzer is a term-wise process. The operator starts with the highest order
derivative and reduces the order by one by passing the motion through an integrator.
This process is repeated until the dependent variable is obtained. This is done by con-
necting the output of one integrator to the input (derivative distance drive/leadscrew)
of another integrator. The number of times this process should be repeated depends
on the order of the equation. Thus the higher the order of the equation, the higher the
number of integrators required. The set-up is comparable to that of the programming
of a computer. When the motion representing the dependent variable (the solution) is
obtained, the connection back to the highest order derivative must be made (closing
the circuit) according to the differential equation.

In many cases, the differential equation may contain several terms. In such a case,
all terms must be added with the use of a differential gear (adder). Sometimes, an
operator may use several adder units to add up all the terms of the equation. The
last step (closing the circuit) is perhaps the most important. The differential equation
must be put in the form such that the highest order derivative is the only term on one
side of the equation to determine how the final connection must be made. That is, the
input shaft of the integrator with the highest order derivative must be connected to a
shaft that represents the other side of the differential equation.

Consider the D.E. ÿ = −y, or, in other words the statement that acceleration is
always equivalent to the negative of position of a moving object. We need a synthetic
view of the procedure and a general rule for the programming of the machine. Thanks
to Bush the founder of the D.A., we can draw a schematic diagram of the connections.
(See Figure 3.)

The rectangular space(s) at the top of the diagram represent integrator(s), and
the lines beneath them represent an avenue of connections (bus shafts) that connect
the integrators together. The interconnections of the integrators are what describe
a particular differential equation. There are three very important facts of notations
involved when drawing a schematic for the D.A. Looking at an integrator, the vertical
shaft furthest to the right will always represent the independent variable. Note that
this is not necessarily time. The vertical shaft coming off the wheel is the integral and
the third shaft represents the derivative distance.

Although, the movement of all components takes place at any moment in time, one
can follow the path of motion by starting (in this case) with the second derivative.
Beginning with ÿ, we label the input of the first integrator as this second derivative.
Following that motion through the output of the first integrator, it then becomes the
first derivative. That motion leads to the input of the second integrator and through
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Figure 3: The Bush Schematic of an Integrator

the output of the second integrator. At this point it becomes the dependent variable
y. Notice the round highlighted circle around the connection from the output of the
second integrator to the connecting bus shaft. A dot represents a connection and this
red circle represents a sign change. In a mechanical sense, a sign change simply means
a reverse in the direction of turn relative to the output of the second integrator. So
now this shaft represents negative of y, or −y. Lastly, the final connection is made
from this shaft to the input of the first integrator; recall that the input of the first
integrator was called ÿ, so that −y = ÿ. Note that if we had simply called the original
first input y′′ then that equation represented would be, y = − ∫ ∫

y′′dxdx, in which we
would differentiate this equation twice with respect to the independent variable. This
is equivalent to ÿ = −y, which was what we wanted. (See Figure 4.)

Now that the machine has been programmed to solve the equation ÿ = −y, the
solution is represented by the shaft labeled y. At an operator’s discretion, a plot of
y against the independent variable can be created by means of an output table. Two
different output tables are depicted in the diagram, one is the solution plotted against
the independent variable x, and the other is the solution parametrically plotted against
its derivative. The former is a sine curve and the latter is a circle, this is due to the
fact that the initial conditions were set such that, ÿ(0) = 0, and ẏ(0) = 1. The initial
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Figure 4: Simple Harmonic Motion : ÿ = −y

conditions are set by the initial derivative distances on each integrator; that is, the
highest order derivative corresponds to the first integrator, etc.

The output table is a very simple design. The table rests on a carriage (like the
integrator) and is allowed to move linearly in the horizontal direction. Also there is a
pen attachment that is mounted on a carriage. It moves in a linear manner as well but
perpendicular to the motion of the carriage. As the table and pen move the graph is
plotted on paper attached to the carriage (the operation is similar to an Etch-e-Sketch).
Since the movements of both pen and table are governed by lead-screw attachments,
an operator can attach the appropriate bus shaft to these lead-screw attachments
providing a plot of the relationship between two terms related to differential equation.

The input table is similar in construction to the output table, but serves a different
purpose. The input table allows an operator to translate a Cartesian plot, provided
by an output table, into shaft rotations. This is done by adding a hand crank to
the pen attachment; when the table is moved by some variable (time for instance) an
operator must turn the crank in order for the pen to maintain consistency with the
existing curve. The number of shaft rotations of the crank will represent the curve as a
function of time. The rotation of this crank, fed back in the avenue of interconnections
by a bus shaft to the appropriate shaft, is prescribed by the differential equation.
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Figure 5: The Schematic for an Interesting Nonlinear Example

The function of an input table is usually to produce some non-homogenous term of
the differential equation, so that the addition of this term may integrated back into the
machine to provide the final connection. The schematic for the previous example is that
of a linear differential equation with a closed form solution. However, the differential
analyzer will solve non-linear equations as well. This is the beauty and power of this
magnificent machine. Future projects will be studies of classes of solutions of particular
classes of nonlinear equations. The schematic in Figure 5 describes a non-linear D.E.
that doesn’t have a closed form solution.

5 Some Final Remarks

The goal of the Marshall University Differential Analyzer Project is to provide student
and teacher alike with a visual interpretation of abstract mathematical concepts. The
differential analyzer has provided an alternative view of integration and differential
equations. Additionally, studying the use of mechanical interrelationships to make
comparisons of variable interactions is our part of our ongoing research. We also have
made plans to provide students in a pilot program the opportunity to learn about
the D.A. at the high school level. The differential analyzer was a tool used for many
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reasons. It was lost in the midst of a computer revolution and replaced by faster
stronger machines. Although the value of time is an issue, so is the value of learning.
The differential analyzer has become a teaching tool used to create an environment
where critical thinking skills are essential for even the simplest of tasks.
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