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Abstract: Neuropilin 1 (NRP1) represents one of the two homologous neuropilins (NRP, splice
variants of neuropilin 2 are the other) found in all vertebrates. It forms a transmembrane glycoprotein
distributed in many human body tissues as a (co)receptor for a variety of different ligands. In addition
to its physiological role, it is also associated with various pathological conditions. Recently, NRP1
has been discovered as a coreceptor for the SARS-CoV-2 viral entry, along with ACE2, and has thus
become one of the COVID-19 research foci. However, in addition to COVID-19, the current review
also summarises its other pathological roles and its involvement in clinical diseases like cancer and
neuropathic pain. We also discuss the diversity of native NRP ligands and perform a joint analysis.
Last but not least, we review the therapeutic roles of NRP1 and introduce a series of NRP1 modulators,
which are typical peptidomimetics or other small molecule antagonists, to provide the medicinal
chemistry community with a state-of-the-art overview of neuropilin modulator design and NRP1
druggability assessment.

Keywords: neuropilins; computer-aided drug design; in silico drug design; receptor modulator
design; peptidomimetics; small-molecule antagonists; cancer; COVID-19; neuropathic pain

1. Introduction

Neuropilins (NRPs) represent transmembrane glycoprotein receptors important for
the proper functioning of diverse biological processes due to their broad tissue distribution.
They are mainly involved in neuronal development and axon guidance, angiogenesis [1],
immune functions [2], and, consequently, also in the regulation of several pathological pro-
cesses such as cancer, cardiovascular diseases [3,4], and viral infections [5]. NRPs lack direct
signalling capabilities and act as coreceptors associating with other receptors to transduce
a signal, primarily through various receptor tyrosine kinases [3]. There are two NRP types,
NRP1 and NRP2, that share 44% sequence identity and exhibit a common domain structure.
Their extracellular regions consist of 5 domains (Figure 1): a1/a2 domain, b1/b2 domain,
and c (MAM) domain. The a and b domains bind particular endogenous ligands that
trigger further signalling and provoke specific intracellular effects (Figure 1). In contrast,
the MAM domain was initially thought to mediate NRP oligomerisation, but it more likely
participates in the positioning of domains for their interactions with partner receptors by
shielding them from the membrane [6]. The extracellular region is connected through a
transmembrane (TM) domain to the short intracellular PSD-95/Dlg/ZO-1 (PDZ) binding
domain, which lacks catalytic activity [1,3]. The mostly identical domain composition
of NRP1 and NRP2 facilitates the involvement of both coreceptors in similar biological
processes, yet they are still different enough to allow for distinct biological functions [7].
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Figure 1. A general structural composition of NRP1 and NRP2 domains and the main NRP-
mediated biological responses. The a1/a2 domain, presented in blue circles, is homologous to CUB 
(for complement C1r/C1s, Uegf, Bmp1); the b1/b2 domain, presented in green squares, is 
homologous to blood coagulation factor V/VIII domains; and the c domain, presented as an orange 
ellipse is homologous to meprin, A5, and μ-phosphatase (MAM). The intracellular PDZ domain is 
represented as a yellow square. Endogenous ligands of the VEGF family bind to the b1/b2 domains, 
while SEMA3s bind to the a1/a2/b1 domains [1,3]. (a) VEGFs form a complex with NRP and VEGFR 
that activates signalling pathways involved in angiogenesis associated with cancer [3,8]. (b) 
SEMA3s form a complex with NRP and plexin to activate signalling pathways that regulate axonal 
guidance and the immune, respiratory, and cardiovascular system as well as tumour cell responses 
[3,8,9]. 

Extracellular domains of NRPs have defined, although not necessarily overlapping, 
binding sites that can accommodate various endogenous ligands and can interact with 
diverse receptors. NRPs are well known for their binding of class 3 semaphorins (SEMA3) 
[10,11] and selected members of the vascular endothelial growth factor (VEGF) family [12] 
that evoke different biological functions (Table 1). SEMA3s represent signalling proteins 
of a large and diverse semaphorins family, containing SEMA3A-3G subgroups that are 
involved not only in the guidance of axons and neural development [13] but also play 
important roles in immune, respiratory, and cardiovascular systems, as well as in 
pathological disorders, especially in tumour vasculature [3,8]. They bind with their C-
terminal region to the a1/a2 and b1 domains of NRP [3], and since their binding is not 
sufficient for signal transduction, NRPs need to associate with the SEMA3 main receptor 
Plexin to form SEMA3-NRP-Plexin complex and to transduce the signal [14–17]. The 
members of the SEMA3 class exhibit different preferences for binding to NRP1 and NRP2 
(Table 1), which results in various, more specific biological functions. 

  

Figure 1. A general structural composition of NRP1 and NRP2 domains and the main NRP-mediated
biological responses. The a1/a2 domain, presented in blue circles, is homologous to CUB (for
complement C1r/C1s, Uegf, Bmp1); the b1/b2 domain, presented in green squares, is homologous
to blood coagulation factor V/VIII domains; and the c domain, presented as an orange ellipse is
homologous to meprin, A5, and µ-phosphatase (MAM). The intracellular PDZ domain is represented
as a yellow square. Endogenous ligands of the VEGF family bind to the b1/b2 domains, while
SEMA3s bind to the a1/a2/b1 domains [1,3]. (a) VEGFs form a complex with NRP and VEGFR that
activates signalling pathways involved in angiogenesis associated with cancer [3,8]. (b) SEMA3s
form a complex with NRP and plexin to activate signalling pathways that regulate axonal guidance
and the immune, respiratory, and cardiovascular system as well as tumour cell responses [3,8,9].

Extracellular domains of NRPs have defined, although not necessarily overlapping,
binding sites that can accommodate various endogenous ligands and can interact with diverse
receptors. NRPs are well known for their binding of class 3 semaphorins (SEMA3) [10,11] and
selected members of the vascular endothelial growth factor (VEGF) family [12] that evoke
different biological functions (Table 1). SEMA3s represent signalling proteins of a large
and diverse semaphorins family, containing SEMA3A-3G subgroups that are involved not
only in the guidance of axons and neural development [13] but also play important roles
in immune, respiratory, and cardiovascular systems, as well as in pathological disorders,
especially in tumour vasculature [3,8]. They bind with their C-terminal region to the a1/a2
and b1 domains of NRP [3], and since their binding is not sufficient for signal transduction,
NRPs need to associate with the SEMA3 main receptor Plexin to form SEMA3-NRP-Plexin
complex and to transduce the signal [14–17]. The members of the SEMA3 class exhibit
different preferences for binding to NRP1 and NRP2 (Table 1), which results in various,
more specific biological functions.
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Table 1. The main groups and subgroups of the most important endogenous ligands binding to both
NRP receptors. x indicates binding to both NRPs.

Endogenous Ligand
Preferences for NRP Binding

Reference
NRP1 NRP2

SEMA

SEMA3A
SEMA3B
SEMA3C
SEMA3D
SEMA3F

SEMA3B
SEMA3C
SEMA3D
SEMA3F
SEMA3G

[2,9]

VEGF

VEGF-A
VEGF-A165
VEGF-A189

VEGF-B
VEGF-C
VEGF-D
VEGF-E

PIGF

VEGF-A
VEGF-A145
VEGF-A165

VEGF-C
VEGF-D

PIGF

[3,9]

FGF

FGF-1
FGF-2
FGF-4
FGF-7

FGF-2 [18]

HGF x x [19]

PDGF
PDGF-BB
PDGF-C
PDGF-D

PDGF-BB [3,20]

TGF-β TGF-β1 TGF-β1 [21,22]

miRNAs x x [2,23]

Vascular endothelial growth factor (VEGF) represents a family of signalling proteins
involved in the development of blood vessels, including pathological angiogenesis as in
cancer, vascular branching, and maturation, along with cardiovascular development [3,24].
The VEGF family consists of growth factors VEGF-A-D, as well as placenta growth factor
(PlGF), parapoxvirus VEGF-E, and snake venom VEGF-F [25]. They primarily stimulate
cellular responses by binding to their VEGF receptors (VEGFR). However, the binding of a
VEGF to a coreceptor NRP forms a VEGF-NRP-VEGFR complex that results in enhanced
VEGF signalling [24]. VEGFs bind to the b1/b2 domains of the NRP receptor, with the b1
domain being essential for the binding, while the b2 domain is required to ensure optimal
binding [1]. The binding of VEGF ligands to b1 proceeds through the VEGF C-terminus
sequence, containing a [R/K]XX[R/K] motif, called the C-end rule (CendR) [26]. Although
the SEMA3 ligands also bind to the b1 domain, their binding site differs from one of the
VEGF ligands [1]. As for SEMA3, there exists a distinct preference between NRP1 and
NRP2 for different VEGF ligands (Table 1), which then perform specific endogenous tasks.

NRPs have also been identified as binding partners of other growth factors (Table 1),
which demonstrates their versatility in regulating various signalling pathways. Thereby,
NRPs can interact with the Fibroblast Growth Factor (FGF), the Hepatocyte Growth Factor
(HGF), the Platelet-Derived Growth Factor (PDGF), the Transforming Growth Factor beta
(TGF-β), and their respective receptors [3,9,21]. Moreover, NRPs have been reported to act
as a receptor for extracellular microRNAs (miRNAs), which facilitates their internalisation
into cells resulting in several physiological and pathological conditions. Thus, miRNAs
have been associated with tumour progression, epithelial to mesenchymal transformation,
metastasis and disease prognosis [2].

NRPs play an essential role in angiogenesis and lymphogenesis in endothelial cells
through the binding of VEGF family members. The main pathway by which NRPs promote
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angiogenesis is through the formation of the NRP/VEGF/VEGFR complex, in which NRPs
act as co-receptors with VEGFRs and enhance VEGF-induced activation of intracellular
signaling pathways that consequently influence cell adhesion, migration, and permeability
during angiogenesis under both physiological and pathological conditions [27–29]. NRP1
is mainly expressed in vascular endothelial tissue, whereas NRP2 is mainly expressed in
lymphoid epithelium [30]. Although VEGF and its receptor, VEGFR govern angiogenesis,
some studies have provided evidence that NRP1 and NRP2 can also promote blood vessel
growth through alternative pathways [31,32].

Class 3 of NRPs endogenous ligands semaphorins also play an important role in
vascular development, mainly by inhibiting angiogenesis. The semaphorins SEMA3A,
SEMA3B, SEMA3D, SEMA3E, and SEMA3F interfere with VEGF-induced angiogenesis to
promote their antiangiogenic effects [33].

Due to NRPs interacting with a broad range of endogenous ligands and triggering
diverse physiological as well as pathological mechanisms, the modulation of their endoge-
nous ligand binding exhibits a high potential for drug development. Therefore, small
peptide ligands mimicking endogenous ligands have already been developed. Unfortu-
nately, they lack metabolic stability and display a low bioavailability [24]. Moreover, the
inhibition with monoclonal antibodies was also pursued, but significant side effects were
observed [34]. Consequently, peptidomimetics, as well as small molecules, are gaining
particular interest. Despite their limited size, they can interfere with the endogenous
ligands binding to NRPs and have been reported to inhibit their signalling and biological
functions [24]. Therefore, this article focuses on the latest findings on NRPs’ role in multiple
diseases and attempts to review the NRP small molecule antagonists that could be used as
successful therapeutic agents for the associated diseases.

2. NRP Binding of Endogenous Ligands

Despite NRP2 being an equivalently important target as NRP1, the latter has been more
studied and better characterised. Although NRPs bind a large set of diverse endogenous
ligands, little is known about the details of individual ligand interactions with its binding
domain on the NRP receptor. The most studied and explored is the binding of VEGF-A165
to the b1 domain of NRP1, which serves as a basis for developing NRP small molecule
antagonists (Figure 2). Due to the high structural similarity of both receptors, some of the
NRP1 antagonists are able to extend their inhibitory activity on the NRP2-related biological
signalling and functions. VEGF-A165 binds to the b1 domain of NRP1 with the C-terminal
CendR motif, which has a terminal arginine residue. CendR facilitates the binding into
a highly conserved b1 arginine binding pocket, consisting of amino acid residues Tyr297,
Trp301, Thr316, Asp320, Ser346, Thr349, Tyr353 and Trp411 that were all recognised in a
mutational analysis as crucial for a high VEGF-A165 affinity. The guanidine group forms a
salt bridge with Asp320, and the free carboxylate interacts through hydrogen bonds with
Ser346, Thr349, and Tyr353. Tyr297 and Tyr353 also participate in cation-π interactions with
the CendR arginine side chains (Figure 2) [35]. In an additional exploration of the binding
site region with synthetic ligands mimicking the terminal arginine, a hydration profile was
analysed, thus revealing a conserved water molecule identified as important for increasing
the ligand affinity by forming a hydrogen bond network between Trp301, Glu348, and the
ligands [36].

The fact that the protein ligands binding to the b1 domain of NRP1 share a common
C-terminal arginine motif is also evident from the recently solved crystal structure of
SARS-CoV-2 CendR bound to NRP-1 [37]. The comparison of VEGF-A165 and SARS-CoV-2
CendR revealed almost identical binding modes, which share the interactions with the
same key amino acid residues Tyr297, Trp301, Thr316, Asp320, Ser346, Thr349 and Tyr353
as depicted in Figure 2b. These residues seem to contribute to the binding affinity of all
CendR-containing ligands; therefore, an interruption of interactions with these residues is
deemed an attractive therapeutic approach.
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Figure 2. (a) A 2D representation of the VEGF-A165 CendR (KPRR) motif. Hydrogen bonding and
salt bridge interactions, crucial for the high affinity of the VEGF-A165 terminal arginine with its
NRP1 binding pocket, are depicted as yellow and light pink dots, respectively. (b) Superposition
of NRP1 crystal structure complexes with VEGF-A165 (PDB ID: 4DEQ) [38] and SARS-CoV-2 (PDB
ID: 7JJC) [37] CendR terminal residues bound into the NRP1 arginine binding pocket, yielding the
comparison of the ligand-binding modes. VEGF-A165-NRP-1 complex is presented in orange cartoon
and SARS-CoV-2 CendR-NRP-1 complex in green cartoon. NRP1 amino acid residues, significant for
forming hydrogen bonds with the terminal arginine, are depicted as sticks of corresponding colours.
Hydrogen bonding and salt bridge interactions are shown as yellow and light pink dots, respectively.

3. Neuropilin-Related Pathology
3.1. Pain

Endogenous VEGF family ligands have been found instrumental in the pathophysiol-
ogy of chronic pain in several diseases, including cancer, neuropathic pain, osteoarthritis,
rheumatoid arthritis, migraine, and diabetic complications. Although mainly involved in
the development and maintenance of pain, the best-studied VEGF-A165 shows not only
pro- but also anti-nociceptive effects leading to analgesia [39,40]. These effects are due to the
binding of different VEGF-A165 isoforms to their VEGFR receptors. The VEGF-A165a iso-
form is pronociceptive and leads to pain, while VEGF-A165b is considered anti-nociceptive,
and the ratio between the two isoforms represents the key factor determining the effect
on sensory neurons and pain levels [40,41]. VEGF-A binds to VEGFR and the coreceptor
NRP1, which associates NRP1 with pain. While VEGF-A165a binds to VEGFR and NRP1
receptors, VEGF-A165b does not contain a CendR motif and, therefore, cannot bind to
the NRP1 b1 domain [39,40]. Consequently, it appears that NRP1 is only involved in the
activation of the pain pathway, making the VEGF-A165a/NRP1 complex an interesting
target for reducing chronic pain.

3.2. Viral Entry

NRP receptors have been found to contribute to the infectivity of many viruses by
enhancing their host cell entry (Table 2). This mainly involves viruses that contain the
CendR motif, through which they bind to the b1 domain of the NRP1 receptor and this
promotes the host cell infection. Among them, Epstein–Barr (EBV) [42] and Human T-cell
lymphotropic virus type 1 (HTLV-1) [43,44] represent the best-studied ones. Recently, it was
identified that the SARS-CoV-2 virus, the causative agent of the latest COVID-19 pandemic,



Int. J. Mol. Sci. 2022, 23, 8402 6 of 23

also contains the CendR motif, which proposed NRP1 as its additional entry point into
human cells [37,45].

Table 2. NRP involvement in the entry and/or infectivity of viruses.

Virus NRP1 NRP2 Reference

HTLV-1 x [43,45]
EBV x [42]

SARS-CoV-2 x [37,45]
MCMV x [46]
EVA71 x [47]
LUJV x [48]

HCMV x [49]

Human T-cell lymphotropic virus type 1 (HTLV-1) represents the main cause of T-cell
lymphoma and leukaemia. Cell-to-cell contact forms the major route of HTLV-1 infection,
with NRP1 being essential for the viral entry. NRP1 is highly expressed in dendritic, T-cells,
and endothelial cells, which represent the main targets of the HTLV-1 infection [43]. HTLV-1
enters host cells via a three-step process. First, the viral surface unit attaches to the hep-
arin/heparan sulfate proteoglycan (HSPG) on the host cell surface. Then the HSPG/virus
surface complex interacts with the b1 domain of NRP1, which triggers conformational
changes of the viral surface that enable its interaction with glucose transporter GLUT-1,
yielding HTLV-1 fusion and cell entry [50].

Epstein–Barr virus (EBV) represents human herpesvirus 4 (HVV4) implicated in malig-
nancies of lymphoid or epithelial origin. Glycoprotein B (gB) in the virus envelope forms a
critical factor for the infection of B and epithelial cells, whereby NRP1 was demonstrated as
the main attachment point of gB, facilitating viral entry and the infection of nasopharyngeal
epithelial cells, while its connection to B cells remains unknown. Upon EBV binding to na-
sopharyngeal epithelial cells, furin cleaves gB, exposing a CendR motif that binds to NRP1
and promotes viral fusion and internalisation into host cells. Moreover, the binding of
EBV to NRP1 also activates receptor tyrosine kinase (RTK) signalling, which consequently
promotes EBV infection of nasopharyngeal epithelial cells, but the detailed mechanism
remains unknown [42]. With both viruses being highly involved in carcinogenic processes,
it is assumed that they compete with endogenous VEGF ligands for the binding to NRP1
and might trigger cell signalling to promote the formation of tumour vessels in cancer
tissues [51,52].

COVID-19 is primarily a disease of the respiratory system causing mild to severe
respiratory symptoms, although expression in the central nervous system (CNS) has also
been observed, implicating neurologic manifestations [53]. The entry of SARS-CoV-2 into
host cells is mainly mediated by the cellular receptor angiotensin-converting enzyme 2
(ACE2) [54,55]. However, due to relatively low levels of ACE2 in pulmonary tissues,
NRP1 was identified as an important partner for interacting with the virus and facilitating
its entry [37,45]. To infect human cells, the SARS-CoV-2 spike protein is cleaved by the
host furin protease at the S1/S2 junction [56], exposing a CendR motif, which binds
to the b1 region of NRP1 [26] and provides viral fusion. Higher expression of NRP1
potentiates the infectivity with SARS-CoV-2 due to an increased viral entry rather than an
enhanced binding [30]. NRP1 was also identified as a specific surface marker for T cells
and is constitutively expressed on the surface of CD4 and CD25 cells and its expression
is modulated depending the cell activation [57]. Furthermore, it was demonstrated that
NRP1, is expressed at high levels on T regulatory cells and can be used to separate nT reg
versus iT reg cells in certain physiological settings [58]. Namely, function of regulatory
T cells is maintained by NRP1—semaphorin pathway where T cell function and survival
is potentiated at inflammatory sites where is is especially important to limit anti-tumour
immune responses [59,60]. As the regulatory T cells have a crucial role in the immune
system by preventing autoimmunity, and maintaining immune homeostasis, their possible
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role and that of the surface NRP1 receptor in SARS-CoV-2 infection have been discussed [61].
Since COVID-19 represents a worldwide pandemic, there have been numerous reports of
infected individuals that did not develop COVID-19 symptoms [62,63]. In some cases, the
viral load of asymptomatic individuals has been equal to that of symptomatic individuals,
hinting that the virus might interfere with neuropathic pain signalling pathways. It was
found that the spike protein of SARS-CoV-2 competes with VEGF-A for the binding to
NRP1 and inhibits VEGF-A signalling. This results in analgesia in asymptomatic COVID
patients and might help spread the disease [64].

Some of the recent studies found that NRP1 may serve as an entry point also for other
viruses, including β-herpesvirus murine cytomegalovirus (MCMV) [46] and Enterovirus 71
(EVA71) [47]. Further investigations are needed to elucidate its exact role and mechanism.
Apart from NRP1, its homologous form NRP2 was found to contribute to the infection
by certain viruses as well, namely, Lujo virus (LUJV) [48] and human cytomegalovirus
(HCMV) [49] which use NRP2 as their viral entry point. NRPs could, therefore, form
promising therapeutic targets for preventing viral infections and related diseases.

3.3. Cardiovascular Diseases

NRPs are involved in angiogenesis and cardiovascular diseases. On one hand, the
knockout of NRP1 from cardiomyocytes and vascular smooth muscle cells causes car-
diomyopathy, aggravated ischemia-induced heart failure, and hereditary haemorrhagic
telangiectasia arteriovenous malformations, thus revealing its cardioprotective role [65,66].
On the other hand, NRP1 mediates the activation of human cardiac fibroblasts [67]. NRPs
significantly contribute towards cardiovascular disease and the latter represent a serious
comorbidity in COVID-19 patients [68–72].

3.4. Diabetes

The role of NRP in diabetes pathology was reviewed in 2002 by Mamluk et al. [73].
Especially after the outbreak of COVID-19 disease, NRP has been studied in more detail
as a viral co-receptor and via involvement in co-morbidity [69]. Its involvement can be
observed in diabetic nephropathy and the presence of NRP1 inhibitor proof-of-concept
peptide compounds is of great interest [74,75]. However, the association between NRP1 and
SARS-CoV-2 infection can be summarized in two of the most described scenarios [76,77].

Patients with diabetic nephropathy represent a group at higher risk for COVID-19
disease severity. NRP1 is found in the kidney, particularly in podocyte cells, where it
is important for proper podocyte function, such as adhesion to extracellular matrix pro-
teins, cytoskeletal reorganisation, and apoptosis. Its role is therefore important in diabetic
nephropathy, in which it has been demonstrated that suppression of NRP1 expression may
be responsible for podocyte damage and loss, leading to deterioration of renal function. It
is speculated that the high expression of NRP1 in the kidney of diabetic patients facilitates
the invasion of SARS-CoV-2 into this tissue, while the interaction of both processes leads
to depletion of NRP1, which then exacerbates the pathogenesis of diabetic nephropathy.
However, further research is needed to refine the current understanding of the potential
role of NRP1 in diabetic nephropathy, particularly in conjunction with COVID-19 [78,79].

It was discovered that insulin-producing pancreatic β-cells express ACE2 and TM-
PRSS2 at low levels, whereas NRP1 expression is high in patients with COVID-19 [80,81].
Infection of pancreatic β cells with SARS-CoV-2 attenuates pancreatic insulin levels and
secretion and induces β cell apoptosis, which was partially reduced by NRP1 inhibition.
Therefore, it could be speculated that NRP1 supports viral infection in patients with type II
diabetes [81].

3.5. Cancer

Cancer remains the second most common cause of death worldwide, responsible for
almost 10 million deaths in 2020 alone [82]. While cancer, in most cases, takes years to
develop into a life-threatening disease, it is usually discovered only after it has metastasised
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to other organs. Therefore, the metastatic potential of cancer cells remains one of the
main prognostic factors for the overall survival of cancer patients. Over the last 5 years,
more than 100 studies linking NRPs to various cancer types, mainly leukaemia, breast
cancer, colon and colorectal cancer, lung, and liver cancer, have been published. NRP1
overexpression in cancer cells has been associated with tumour aggressiveness, enhanced
cell proliferation, and metastasis. The literature on this topic is collected in Table 3 for the
reader’s benefit.

Moreover, the other member of the neuropilin family, NRP2, also contributes to the
cancer progression. For example, it was shown that NRP2 is expressed during macrophage
differentiation, promotes efferocytosis, facilitates tumour growth [83] and promotes mo-
bilisation [84]. In contrast, its deletion downregulates tumour-promoting genes, increases
secondary necrosis within tumours and impairs apoptosis [83]. NRP2, but not NRP1, is
expressed in cytokine-induced killer cells, which are responsible for the controlled apopto-
sis [85] of precancerous cells.

Table 3. Scientific literature collection on NRP1 and NRP2 involvement in different cancer types.

Cancer Type NRP1 NRP2 Reference

Leukaemia x [86–91]
Breast cancer x x [92–102]
Carcinoma x x [103–116]
Colon & Colorectal cancer x x [117–126]
Gastric cancer x [127–138]
Lung cancer x x [139–149]
Pancreatic cancer x [150–154]
Prostate cancer x x [155–157]
Melanoma x x [158–161]
Glioma x [162–168]
Liver cancer x [169]
Mammary stem cells cancer x [170,171]
Esophageal cancer x [172,173]
Stem cell cancer x [174,175]
Thyroid cancer x [176,177]
Multiple myeloma x [51]
Lymphoma x [178]
Bladder cancer x [179,180]
Tongue cancer x [181]
Cervical cancer x [182,183]
Gallbladder cancer x [184]
Endometrium cancer x x [185,186]

4. Neuropilin-1 Modulators

While peptide antagonists and monoclonal antibodies have failed to fulfil expecta-
tions [34], several NRP1 peptidomimetic as well as small molecule antagonists have been
developed and were able to successfully inhibit the VEGF signalling. Interestingly, some of
them (especially the small molecules) lack terminal arginine but were still able to achieve
the desired effect. Therefore, peptidomimetic and nonpeptide small molecule drugs may
represent an elegant and promising approach toward developing NRP1 antagonists. This
review summarises the latest drug discovery findings accordingly.

4.1. Peptidomimetics

Peptidomimetic antagonists have been developed prior to peptide compounds to pro-
vide higher stability and drug-like properties (Table 4). The anticancer therapeutic strategy
represents the largest part of NRP1 drug discovery efforts, aiming to prevent the VEGF
binding and restrict the intracellular signalling. To that end, the peptidomimetic antagonists
reported in the scientific literature were all developed for anticancer treatment and are imi-
tating the CendR motif of VEGF ligands. The first NRP1 peptidomimetic, named EG00229
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(compound 1 in Table 4), was based on mimicking the minimal peptide KPAR sequence
of VEGF-A165 that could retain its activity on NRP1. The C-terminal arginine, which
is supposedly crucial for this activity, was fully conserved and was connected through
sulfonyl amino thiophene to benzothiadiazole heteroaryl, mimicking the lysine of KPAR.
EG00229 inhibited the binding of VEGF-A to NRP1 with IC50 = 3 µM and was able to inhibit
the VEGF-A mediated biological function partially [35]. Moreover, EG00229 was able to
suppress glioma progression in mice [187]. The crystal structure of the EG00229-NRP1
complex confirmed its binding mode as similar to VEGF-A (Figure 2) with an identical
C-terminal arginine position (Table 4). Furthermore, the complex revealed an intramolecu-
lar hydrogen bond between amide NH and sulfonamide nitrogen that provides the stability
of the ligand conformation and is believed to be the reason for the overall biological ac-
tivity [35]. Aiming to improve the H-bonding network, the benzothiadiazole heteroaryl
moiety of EG00229 was replaced with methylaminoaryl-substituted dihydrobenzofuran,
providing the compound EG01377 (compound 2 in Table 4) with an improved inhibition of
VEGF-A binding to NRP1 with IC50 = 0.6 µM. Crystallographic studies revealed two crystal
complexes in higher and lower resolutions, which differ in the binding conformation of the
bulky aromatic moiety. The lower resolution structure was considered more correct and is
presented in Table 4, whereby the amine of methylaminoary forms an H-bond with Glu348.
Importantly, the compound exhibited good in vitro anti-angiogenic, anti-migratory and
antitumour effects and, therefore, yields a high potential for further in vivo studies [188].
In a recent in silico study, the binding mechanism of EG00229, EG01377 and SARS-CoV-2
CendR was investigated, indicating that EG01377 indeed provides the strongest binding
with the NRP1 b1 domain among all three studied ligands, and identified D320 as the key
binding residue [188].

The idea of replacing the amino-acid residue of peptide antagonists with sugar-based
fragments has emerged from yet another research group. Their peptidomimetics were pre-
pared based on the ATWLPPR heptapeptide, an effective antagonist of the VEGF binding to
NRP1 [189,190]. A rigid trioxabicyclo system mimics the LPP sequence linked with arginine-
like functionalities to provide the required C-terminal, while tryptophane/threonine-like
functionalities were introduced on the other end. The best binding compound 3 (Table 4)
with IC50 = 92 µM did not provide the desired efficiency [191]; therefore, further optimi-
sations were made on both residue-mimicking ends, exploring different structural motifs,
varying their lengths and spatial orientations. These modifications led to the discovery of
compound 4 (Table 4) with an improved inhibition of the VEGF-A binding to NRP1 with
IC50 = 39 µM [192].

Table 4. Peptidomimetic NRP1 antagonists.

Compound Binding Mode
Inhibition of

VEGF-A Binding
[µM]

Ref.

Cancer
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4.2. Small-Molecule Antagonists

The development of small molecule NRP antagonists is known to be challenging
due to a large and flat protein-protein binding interface. Still, some fully non-peptidic
small-molecule NRP1 antagonists have been successfully developed and exhibited potency
in inhibiting the NRP1 mediated biological functions. The main focus of small molecule
development was primarily on achieving anticancer activity. Nowadays, the knowledge
of NRPs’ involvement in several diseases has expanded the development and studying
of antagonists to new areas to provide novel therapeutic agents. Accordingly, the current
focus is directed toward searching for the desired and necessary small-molecule medicines
for the treatment of SARS-CoV-2 infections. The important small molecule antagonists are
collected in Table 5.

In 2014, the first fully non-peptidic VEGF-NRP antagonist was identified in a vir-
tual screening procedure. This hit compound 5 (Table 5), named NRPa-47, showed anti-
angiogenic and antitumour effects in in vitro and in vivo assays and inhibited both NRP1
and NRP2, with selectivity over proangiogenic receptors. According to molecular mod-
elling studies, its benzimidazole fragment was predicted to replace the C-terminal arginine
of VEGF-A and peptide/peptidomimetic antagonists. Thus, this compound represents an
auspicious starting point for the further development of cancer treatment medicine [193].
Pursuing ambitious research and development of NRP small molecule antagonists, the
same research group identified yet another set of compounds with a common original
molecular scaffold, whereby compound NRPa-308 (compound 6 in Table 5) emerged as
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the most promising new hit. NRPa-308, which structurally differs from NRPa-47, demon-
strated remarkable anti-angiogenic and anti-proliferative effects in vitro. It was able to
highly reduce (by more than 60%) the tumour growth of human breast cancer cell lines
MDA-MB-231 and BT549 [194,195]. The binding mode elucidated by molecular docking
calculations suggested that NRPa-308 forms H-bonds with Glu348 and Trp301 while its
aromatic ring inserted deeply in the NRP1 arginine binding pocket is stacked between
Tyr297 and Tyr353 displaying potential hydrophobic and/or aromatic interactions (Table 5).
Interestingly, the salt-bridge interaction with Asp320 was not identified as a crucial element
for the binding of antagonists [194]. Altogether, NRPa-308 represents one of the most
promising anticancer compounds targeting NRP1.

In the same year, another research group discovered several antagonists that can
inhibit VEGF-A binding to NRP1 in in vitro assays. These antagonists share a common
chlorobenzyloxy alkyloxy halogenobenzyl amine scaffold (compound 7 in Table 5). Accord-
ing to molecular docking calculations, the scaffold is involved in common interactions such
as H-bonds of the NH group with the OH group of Thr316, two-cycle substituted oxygen
atoms with the NH group of Trp301 and carboxylic group of Glu348. Stacking interactions
were observed with Trp301 and hydrophobic with Tyr353. Again, the salt bridge with
Asp320 was not observed among the compounds exerting antagonistic effects and sharing
a common scaffold; therefore, it seems this interaction should not be crucial for containing
a proper anticancer activity [196].

Yet another series of non-peptidic small-molecule NRP1 antagonists emerged from a
structure-based virtual screening, whereby compound 8 in Table 5 exhibited the strongest
activity with IC50 of 19.1 µM. Interesting about this compound is its binding mode, which
was elucidated by molecular dynamics simulations, and revealed the stacking of both
aromatic rings with three stable π-π interactions formed with Tyr297, Trp301 and Tyr353
(Table 5). The aromatic rings achieve a much higher occupancy of the arginine bind-
ing pocket compared to arginine-based fragments. Such a binding mode is most likely
responsible for the observed inhibitory activity [197].

Since it was discovered that VEGF-A/NRP1 signalling is also involved in neuropathic
pain behaviour, it became an interesting novel target for the analgesic treatment. With the
intention to find small molecule inhibitors that could interfere with the VEGF-A/NRP1 neu-
ropathic pain signalling, a virtual screening protocol was developed, yielding several com-
pounds with potential analgesic effects (compounds 9 and 10 in Table 5) [64]. As the newest
discoveries emphasised the involvement of NRP1 also in SARS-CoV-2 infections [37,45],
the hit compounds were further assayed for the SARS-CoV-2 spike-dependent antiviral
activity. Compounds 10 and 11 (Table 5) displayed more than 50% inhibition of the viral
activity, which represents the first step toward the development of small molecules with the
potential of inhibiting the SARS-CoV-2 viral entry. The research group also proposed a phar-
macophore model, which should maximise the binding pocket occupancy and contacts to
facilitate the further design of NRP1 small molecule antagonists [40]. This research is among
the first to consider the effect of hit compounds on multiple diseases, which represents a
vital step toward developing small-molecule inhibitors of the VEGF-A/NRP1 signalling for
the treatment of neuropathic pain, cancer, and potentially also of SARS-CoV-2 infections.

In an accelerated search for small molecule drugs active against SARS-CoV-2 infections,
fast and less costly in silico studies have disclosed a promising starting material for further
development. In addition to new chemicals, natural and FDA-approved drugs were also
investigated against NRP1 from the Egyption sequence in a molecular docking study,
which revealed that Hesperidine, Ravidasvir, Daclatasvir, Remdesivir, and Sofosbuvir
presumably form favourable interactions with NRP1 accompanied by the lowest binding
energy. This has raised the potential for drug-like natural products and existing drugs as
future NRP1 inhibitors [198]. Another study emerged by screening the accessible library of
drug-like small molecules and calculating their binding free energy, which in the end gave
10 compounds with a presumably more specific and stronger binding compared to the
known NRP1 inhibitors EG00229 and EG01377 [199]. In the latest in silico study molecular



Int. J. Mol. Sci. 2022, 23, 8402 12 of 23

compounds previously investigated in COVID-19 related studies were screened against
NRP1 to obtain that Nafamostat, Y96, Selinexor, Ebastine and UGS may emerge as good
candidates for preventing the binding of spike to NRP1 [200]. A growing interest and
related research results point toward the opportunity to develop efficient and selective
drugs against pathologies involving the NRP1 signalling.

Recently, our research group identified two additional compounds, 12 and 13 (Table 5),
in a spike-NRP1 binding assay that exhibited a stronger inhibition of the spike CendR
binding to NRP1 than the well-known NRP1 antagonist EG00229 (1). Both compounds
were able to inhibit more than 60% of the spike binding, while EG00229 inhibited only
50% of binding, suggesting that these compounds represent a good starting point for
the development of small molecule SARS-CoV-2 antagonists. The binding mode of both
compounds within the CendR binding pocket of NRP1 was predicted by molecular docking,
which revealed that both compounds presumably form strong hydrogen-bonding and salt
bridge interactions with key amino-acid residues Asp320, Ser346, Thr349, and Tyr353, as
shown in Table 5. According to the predicted binding modes, the binding pocket is not
fully occupied, leaving room for a further optimisation of compounds that could enhance
the binding and potentially lead to stronger antagonistic effects [201].

Table 5. Small-molecule NRP1 antagonists.

Compound Binding Mode Prediction
Inhibition of

VEGF-A Binding
[µM]
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Cancer
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Regarding semaphorins, attempts have been made to interfere with the SEMA3/NRP
binding. Natural compounds xanthofulvin and vinaxanthone (Figure 3) [201] were iden-
tified as SEMA3A inhibitors, whereby xanthofulvin displayed diminished binding of
SEMA3A to NRP1, suggesting a direct interference of the receptor-ligand association [202].
There are no reports on other small molecules targeting the SEMA3/NRP interaction.
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5. NRP2 Antagonists

Despite the long research and development of NRP1 antagonists, none of the pep-
tidomimetic or the small-molecule antagonists has advanced to clinical studies yet. Al-
though all discovery efforts are focused on NRP1, and no specific NRP2 antagonists are
known, there are indications that antagonists targeting NRP2 exclusively are needed. Re-
cently, some attempts were made toward the development of selective NRP2 benzamidine-
based antagonists of VEGF-C that exhibited a modest NRP2 potency and provided the basis
for further development of NRP2 small molecule antagonists targeting related pathological
functions [203].

6. Conclusions

In this article, we reviewed the physiological role of NRPs and their association
with various pathological conditions. In addition to the discovery of NRP1 as a SARS-
CoV-2 entry coreceptor along with ACE2, we have assembled the pathological roles of
NRPs and their involvement in clinical diseases, particularly highlighting the participation
of NRPs in cancer. NRPs, therefore, represent mature and viable therapeutic targets.
Structurally, neuropilin-1 and 2 contain several conserved motifs and domains suitable for
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a structure-based medicinal chemistry elaboration. In addition, NRPs possess an abundance
of endogenous ligands such as SEMA, VEGF, FGF, HGF, PDGF, TGF-β, and miRNAs that
facilitate viable ligand-based design approaches and mode of action studies (MOA). The
latter is evident from the chemical space of the most successful NRP1 modulators (and
chemical probes), which are typically peptidomimetics. However, a handful of other
NRP1 small-molecule antagonists have also been reported leaving ample room for future
developments. In case the inclined reader would like to learn more about specific NRP-
related pathologies, we have compiled the most relevant literature reports in Table 1. For
medicinal chemistry, we have provided the most important peptidomimetic and small
molecule antagonist structures along with their key receptor interactions in Tables 4 and 5.
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