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a b s t r a c t

The orientable domination number, DOM(G), of a graph G is the largest domination
number over all orientations of G. In this paper, DOM is studied on different product
graphs and related graph operations. The orientable domination number of arbitrary
corona products is determined, while sharp lower and upper bounds are proved for
Cartesian and lexicographic products. A result of Chartrand et al. (1996) is extended by
establishing the values of DOM(Kn1,n2,n3 ) for arbitrary positive integers n1, n2 and n3.
While considering the orientable domination number of lexicographic product graphs,
we answer in the negative a question concerning domination and packing numbers in
acyclic digraphs posed in Brešar et al. (2022).
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Domination is one of the most explored topics in graph theory. On the other hand, this concept has not received as
uch attention in directed graphs. There are several ways in which domination in graphs transfers to directed graphs,
otably in-domination, out-domination, twin domination, and reverse domination. The most standard one, however, is
ut-domination, which is then referred to simply as domination. For some recent papers on domination in digraphs see
apers [6,9,10] and a recent survey [11].
Chartrand, VanderJagt and Yue defined and studied two invariants on undirected graphs that are based on the

omination number of the orientations of the graph [5]. The concept presented in [5], which is the main topic of this
aper, is defined as follows. Given an undirected graph G, the orientable domination number of G is

DOM(G) = max{γ (D) : D is an orientation of G}.

Replacing max with min in the above definition gives the (ordinary) domination number γ (G) of G. The first result on
orientable domination number, although stated in a different language, was proved by Erdős [7] who found the following
bounds for DOM(Kn), where n ≥ 2: log2 n− 2 log2(log2 n) ≤ DOM(Kn) ≤ log2(n+ 1). Interestingly, the exact values of the
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orientable domination number of complete graphs are still not known. Szekeres and Szekeres [17] improved the upper
bound of Erdős to arrive at the following result:

log2 n − 2 log2(log2 n) ≤ DOM(Kn) ≤ log2 n − log2(log2 n) + 2. (1)

Lu, Wang and Wong [12] gave a short proof of the above upper bound. Dominating sets in tournaments were studied
in [15] and used in [1].

One of the main open problems in domination in graphs is Vizing’s conjecture from [18], which considers domination
in the Cartesian product of graphs (see the survey paper [2] and the references therein). A number of papers are devoted
not only to the conjecture itself, but also to several other domination invariants in various graph products. With this paper
we initiate the study of orientable domination in graph products and with respect to related graph operations.

In the next section, we establish notation and mention some preliminary results needed throughout the paper. In
Section 3, we determine the orientable domination number of the corona G ⊙ H of arbitrary graphs G and H , which is
xpressed as a function of the orientable domination numbers of G and H . In Section 4, we prove a sharp lower and
pper bound on the orientable domination number of the Cartesian product of two graphs G and H . We also pose the
izing-like problem, whether DOM(G□H) ≥ DOM(G)DOM(H) holds for all graphs G and H , and observe that it holds if
t least one of G or H is bipartite. In Section 5, we prove a sharp lower and upper bound on DOM(G ◦ H), where G ◦ H is
he lexicographic product of graphs G and H . We continue with generalized lexicographic products, where the main focus
s given to complete multipartite graphs. We establish the values of DOM(Kn1,n2,n3 ) for arbitrary positive integers n1, n2
nd n3, by which we extend a result of Chartrand et al. [5]. We also study the orientable domination number in specific
lasses of lexicographic product graphs. In particular, a specific orientation of the graph C2k+1 ◦ Ks allows us to provide
negative answer to the problem from [3] asking whether the domination number of an acyclic digraph is equal to its
acking number.

. Notation and preliminaries

Let D = (V (D), A(D)) be a digraph. If (u, v) ∈ A(D), then we say that u dominates v or that v is dominated by u. A set
⊆ V (D) is a dominating set of D if each vertex in V (D)\ S is dominated by a vertex in S. The domination number, γ (D), of
is the smallest cardinality of a dominating set of D. A dominating set of D of cardinality γ (D) is a γ -set of D or simply
γ (D)-set. An undirected graph G can be considered as a digraph in which A(G) is a symmetric binary relation on V (G).
he order of a (di)graph G will be denoted by n(G).
A vertex u is an in-neighbor of v if (u, v) ∈ A(D) and an out-neighbor of v if (v, u) ∈ A(D). The open out-neighborhood of

v is the set of out-neighbors of v and is denoted by N+

D (v). The closed out-neighborhood of v is the set N+

D [v] defined by
+

D [v] = N+

D (v)∪{v}. In a similar manner one defines the open in-neighborhood N−

D (v) of v and the closed in-neighborhood
−

D [v] of v. The in-degree of v is the number |N−

D (v)| and the out-degree of v is |N+

D (v)|. If the digraph D is clear from the
ontext, then we may omit the subscript D of the above notations.
Let G be an undirected graph. An orientation of G is a digraph in which every edge from G is directed in one of the two

ossible directions. Formally, an orientation of G is defined by a mapping f : E(G) → V (G) × V (G), such that if uv ∈ E(G),
hen f (uv) ∈ {(u, v), (v, u)}. We denote this orientation of G by Gf , while we refer to f as the orienting mapping. Note that
y this definition, we can formulate DOM(G) as max{γ (Gf ) : f is an orientating mapping of G}.
The following observations are from [4, Observations 3 and 4].

Lemma 2.1. Let G and H be two graphs.

(i) If H is an induced subgraph of G, then DOM(G) ≥ DOM(H).
(ii) If H is an spanning subgraph of G, then DOM(G) ≤ DOM(H).

We also recall the following result from [4, Lemma 3].

Lemma 2.2. Let G be a graph, and let V1, . . . , Vk be subsets of V (G) such that V (G) = V1 ∪· · ·∪Vk. Letting Gi be the subgraph
of G induced by Vi for all i ∈ [k], we get

DOM(G) ≤

k∑
j=1

DOM(Gi).

Let G be a graph. We denote the independence number, matching number, vertex cover number, and edge cover number
of G by α(G), α′(G), β(G), and β ′(G), respectively. It is well-known that α(G) + β(G) = n(G) and α′(G) + β ′(G) = n(G) in
any graph G. If G is bipartite, then α′(G) = β(G) by the famous Kőnig–Egerváry theorem.

We will use yet another result of Caro and Henning [4, Theorem 2(a) and Theorem 4(a)].

Theorem 2.3. If G is a graph, then

(i) DOM(G) ≥ α(G), and equality holds if G is bipartite.
′
(ii) DOM(G) ≤ n(G) − α (G).
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3. Corona graphs

Let G and H be two graphs. The corona, G⊙H , of G and H is the graph obtained from the disjoint union of G and n(G)
opies of H , which we denote by Hu for every u ∈ V (G), and then joining each u ∈ V (G) to all vertices of Hu. The join of G
and H is the graph G + H obtained from the disjoint union of G and H by connecting each vertex of G with each vertex
f H .
We start with a simple observation about the join with K1.

emma 3.1. If G is a graph, then DOM(G + K1) ∈ {DOM(G),DOM(G) + 1}.

roof. By Lemma 2.1(i), DOM(G+K1) ≥ DOM(G), since G is an induced subgraph of G+K1. Let V (K1) = {u}, and consider
n arbitrary orientation (G+ K1)f . The restriction of this orientation to G can be dominated by a set S of at most DOM(G)

vertices. Then S ∪ {u} dominates (G + K1)f . We conclude that DOM(G + K1) ≤ DOM(G) + 1. □

Clearly, DOM(K2) = 1 and DOM(K3) = 2. By (1) and Lemma 2.1(i), for every k ≥ 2 there exists nk ∈ N such that
OM(Knk ) = k and DOM(Knk+1) = k + 1. Hence, the sequence of complete graphs contains an infinite subsequence for
hich the larger value in the conclusion of Lemma 3.1 is attained. (Since the bounds in (1) increase slowly, indices nk
ith DOM(Knk ) = DOM(Knk+1) appear more often.) More generally, let G be an arbitrary graph. Combining Lemma 2.1(i)
nd Eq. (1), we infer that the sequence of graphs (G + Kn)n≥1 contains a subsequence of graphs which attain the larger
alue in the conclusion of Lemma 3.1.
The condition in the conclusion of Lemma 3.1 is crucial for determining the orientable domination number of corona

raphs, as shown in Theorem 3.2. Another, more explicit example of a sequence of graphs that enjoy the studied condition,
s obtained by the class of even paths.

Let n be any even positive integer, and let Gn = Pn + K1. We also let V (Gn) = {x, x1, . . . , xn}, where x is the universal
ertex of Gn, and vertices x1, . . . , xn of the path of order n are indexed in the natural order. Consider the orienting mapping
of Gn defined as follows: f (xixi+1) = (xi, xi+1) for i ∈ [n − 1] and

f (xxj) =

{
(x, xj); j odd,
(xj, x); j even.

Note that DOM(Pn) = n/2, and we claim that DOM(Gn) = n/2 + 1. By Lemma 2.2, DOM(Gn) ≤ DOM(Pn) + DOM(K1) =

n/2+ 1. Let D be a minimum dominating set of (Gn)f . Since V ((Gn)f ) \N+
[x] = {xi : i is even}, and no two vertices of this

set are dominated in (Gn)f by a single vertex, we infer that x ∈ D implies |D| = n/2+1. Now suppose that x /∈ D and that
|D| ≤ n/2. Since D is a dominating set of (Pn)f and γ ((Pn)f ) = n/2, it follows that |D| = n/2. On the other hand, x1 ∈ D
since x1 has no in-neighbor in (Pn)f . Moreover, |D ∩ {x2i−1, x2i}| = 1 for each i ∈ [n/2] since D dominates (Pn)f and has
cardinality n/2. Since x1 ∈ D, it follows immediately that D = {x2i−1 : i ∈ [n/2]}. This is a contradiction since D does not
dominate x. Hence, |D| ≥ n/2 + 1.

We conclude that DOM(Pn) = n/2 and DOM(Pn + K1) = n/2 + 1.

Theorem 3.2. If G and H are two graphs, then

DOM(G ⊙ H) =

{
DOM(H)n(G); DOM(H + K1) = DOM(H),
DOM(H)n(G) + DOM(G); DOM(H + K1) = DOM(H) + 1.

Proof. By Lemma 3.1, DOM(H + K1) ∈ {DOM(H),DOM(H) + 1}.
First, consider the case when DOM(H + K1) = DOM(H). Consider the subgraph X of G ⊙ H induced by

⋃
u∈V (G) V (Hu).

Clearly, X is the disjoint union of n(G) copies of H , hence DOM(X) = n(G)DOM(H). By Lemma 2.1(i), DOM(G ⊙ H) ≥

(G)DOM(H). Consider next the spanning subgraph Y of G⊙H obtained from G⊙H by removing all the edges of G. Then,
is the disjoint union of n(G) copies of H ⊙ K1, and so DOM(Y ) = n(G)DOM(H ⊙ K1) = n(G)DOM(H). By Lemma 2.1(ii),
OM(G ⊙ H) ≤ DOM(Y ) = n(G)DOM(H).
Second, let DOM(H + K1) = k + 1, where k = DOM(H). Considering the induced subgraphs G and Hu for all u ∈ V (G),

emma 2.2 implies that DOM(G ⊙ H) ≤ DOM(H)n(G) + DOM(G). For the reversed inequality, we construct an orientation
of G⊙H as follows. Let h be an orientation of H +K1 such that γ ((H +K1)h) = DOM(H +K1), and let g be an orientation
f G such that γ (Gg ) = DOM(G). Now, the orientation f of G ⊙ H is defined by using h on the edges of the subgraph H ′

u
nduced by V (Hu)∪ {u} for each u ∈ V (G), and by using g on the edges of G in G⊙H . Let D be a minimum dominating set
f (G ⊙ H)f . We claim that |D ∩ V (H ′

u)| ≥ k. The inequality follows from the fact that all vertices in V (Hu) are dominated
nly by vertices in H ′

u, and γ ((H + K1)h) = k + 1. Indeed, if |D ∩ V (H ′
u)| ≤ k − 1, then we get a contradiction because

D ∩ V (H ′
u)) ∪ {u} would be a dominating set of (H ′

u)h of size at most k. Let V1 = {u ∈ V (G) : |D ∩ V (H ′
u)| = k}, and

= V (G) − V . We note that u ∈ V implies u /∈ D for otherwise (H ′ ) would be dominated by k vertices. For the same
2 1 1 u h
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reason, every u ∈ V1 has to be dominated by a vertex in D ∩ V2. This implies that V2 is a dominating set of Gg , which
yields |V2| ≥ DOM(G). Therefore,

|D| ≥ |V1|k + |V2|(k + 1)
= k(|V1| + |V2|) + |V2|

= DOM(H)n(G) + |V2|

≥ DOM(H)n(G) + DOM(G),

and this completes the proof. □

4. Cartesian products

Recall that the Cartesian product of two graphs G and H , denoted G□H , is the graph with vertex set V (G□H) =

V (G) × V (H), where two vertices (u, v) and (x, y) are adjacent in G□H if either u = x and vy ∈ E(H), or v = y and
ux ∈ E(G). The Cartesian product of digraphs is defined analogously; see [8].

We first give general bounds for DOM(G□H).

Theorem 4.1. For any graphs G and H,

DOM(G□H) ≥ max{DOM(G)α(H), α(G)DOM(H)},
DOM(G□H) ≤ min{DOM(G)n(H), n(G)DOM(H)},

and the bounds are sharp.

Proof. Let A be an α(H)-set and let Gf be an orientation of G so that γ (Gf ) = DOM(G). Let Hg be an arbitrary orientation
of H . Define the following mapping h : E(G□H) → V (G□H) × V (G□H) by

h((ui, vj)(uk, vℓ)) =

⎧⎨⎩
((ui, vj), (uk, vj)); j = ℓ and f (uiuk) = (ui, uk),
((ui, vj), (ui, vℓ)); i = k and vj ∈ A,
((ui, vj), (ui, vℓ)); i = k, {vj, vℓ} ∩ A = ∅ and g(vjvℓ) = (vj, vℓ).

Considering the orientation (G□H)h, for each v ∈ A, the only way to dominate vertices in V (G)×{v} is by vertices within
V (G) × {v}. Thus, γ ((G□H)h) ≥ α(H)DOM(G). Reversing the roles of G and H , we have

DOM(G□H) ≥ max{DOM(G)α(H), α(G)DOM(H)}.

Partition the vertex set of G□H into subsets V (G) × {v}, for all v ∈ V (H), and denote the subgraphs induced by these
subsets by Gv . Applying Lemma 2.2, we get

DOM(G□H) ≤

∑
v∈V (H)

DOM(Gv) = n(H)DOM(G).

To see that the upper bound is sharp, consider bipartite graphs G and H such that α(H) = n(H)/2 and α(G) = n(G)/2.
hus, V (H) can be partitioned into α-sets B and B′, and V (G) can be partitioned into α-sets A and A′. Since G□H is bipartite,
e get DOM(G□H) = α(G□H), by Theorem 2.3(i). Note that (A × B) ∪ (A′

× B′) is an α-set of G□H , thus

DOM(G□H) = |A| · |B| + |A′
| · |B′

| = (|A| + |A′
|)n(H)/2 = n(G)n(H)/2.

On the other hand,

min{DOM(G)n(H), n(G)DOM(H)} = min{α(G)n(H), α(H)n(G)} = n(G)n(H)/2,

hich shows that the upper bound is indeed attained for such graphs G and H .
The lower bound is also sharp and can be attained by taking the graphs K3 and P3. Let X = P3 □ K3. Set V (P3) = {a, x, y}

ith E(P3) = {ax, ay}, and V (K3) = [3]. Consider an arbitrary orientation Xf of X . Assume without loss of generality that
(a, 1), (a, 2)) ∈ A(Xf ). If ((a, 1), (x, 1)) ∈ A(Xf ), then the vertex (a, 1) together with one vertex from each of the edges of the
atching {(x, 2)(x, 3), (a, 3)(y, 3), (y, 2)(y, 1)} gives us γ (Xf ) ≤ 4. More generally, if a vertex of Xf dominates a vertex in its
opy of K3 and a vertex in its copy of P3, then we can find a dominating set of cardinality at most 4. Using this argument, we
an assume that ((x, 1), (a, 1)), ((x, 2), (x, 1)), ((a, 2), (x, 2)), ((a, 3), (a, 2)) ∈ A(Xf ) and ((x, 3), (a, 3)), ((x, 2), (x, 3)) ∈ A(Xf ).
Now, the vertex (x, 2) together with one vertex from each of the edges of the matching {(a, 3)(y, 3), (a, 2)(y, 2), (a, 1)(y, 1)}
yields γ (Xf ) ≤ 4. We have thus seen that DOM(P3 □ K3) ≤ 4. The equality

DOM(P3 □ K3) = 4 (2)

now follows from the fact that DOM(P □ K ) ≥ α(P )DOM(K ) = 2 × 2. □
3 3 3 3
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Fig. 1. The orientation Gf of G = K3 □ K3 .

We think that the lower bound in Theorem 4.1 might not be attainable for graphs G and H with large enough
rder. We can verify that the lower bound is not attained in the case when G and H are nontrivial, connected bipartite
raphs. The lower bound then reads α(G□H) ≥ α(G)α(H), by Theorem 2.3(i). It was proved by Vizing that α(G□H) ≥

(G)α(H)+min{n(G)−α(G), n(H)−α(H)} for any non-trivial graphs G and H; see [8]. Thus, the lower bound in Theorem 4.1
s not attained if both G and H are nontrivial, connected bipartite graphs.

Vizing’s conjecture [18] from 1968 concerning the ordinary domination number of a graph in the Cartesian product
f graphs is one of the main open problems in graph domination. The conjecture states that for any two graphs G and H
he domination number γ (G□H) of the Cartesian product of G and H is at least as big as the product γ (G)γ (H) of their
omination numbers. The inequality ψ(G ∗H) ≥ ψ(G)ψ(H), where ψ is a graph invariant and ∗ is a product operation in
raphs is often referred to as a Vizing-like inequality.
We point out that if G or H is bipartite, then Theorem 4.1 says

DOM(G)DOM(H) = max{DOM(G)α(H), α(G)DOM(H)} ≤ DOM(G□H).

e suspect a Vizing-like bound holds for DOM(G□H) which we formally pose as a problem.

roblem 1. Is it true that DOM(G□H) ≥ DOM(G)DOM(H) holds for any two graphs G and H?

In studying the above problem, it is important to note that given two directed graphs D1 and D2 it may be the case
hat γ (D1 □D2) < γ (D1)γ (D2). For example, we know that γ (

−→
C3 ) = 2 for the directed cycle

−→
C3 . However, one can easily

erify that γ (
−→
C3 □

−→
C3 ) = 3.

On the other hand, we can find an orientation showing that DOM(K3 □ K3) ≥ 4; see Fig. 1. Let G = K3 □ K3. Note that
he black vertices are a dominating set of Gf . To see that γ (Gf ) ≥ 4, suppose there exists a dominating set D of Gf of
ardinality 3. Since each vertex of Gf has out-degree 2, then D is an independent set in K3 □ K3. One can easily verify
hat each of the six α-sets of K3 □ K3 is not a dominating set of Gf . Thus, γ (Gf ) = 4 ≤ DOM(G). Noting that P3 □ K3 is a
panning subgraph of K3 □ K3, combined with (2), and using Lemma 2.1(ii), we infer DOM(K3 □ K3) ≤ 4. We conclude that
OM(K3 □ K3) = 4.
Next, we focus on the prism of a cycle. Theorem 4.1 implies that DOM(Cn □ K2) ≤ n.

roposition 4.2. If n ≥ 2, then DOM(Cn □ K2) = n.

roof. Let V (Cn) = {v1, . . . , vn} with vertices ordered in the natural order and let V (K2) = [2]. Let (Cn □ K2)h be the
rientation of Cn □ K2 with arcs

{((vi, j), (vi+1, j)) : i ∈ [n], j ∈ [2], vn+1 = v1}
⋃

{((vi, 1), (vi, 2)) : i ∈ [n]}.

et D be a dominating set of (Cn □ K2)h, and Di = D∩{(v, i) : v ∈ V (Cn)}, for i ∈ [2]. Note that each vertex of the form (vi, 1)
s dominated by a vertex in D1, which implies that there exists no i ∈ [n] such that {(vi, 1), (vi+1, 1)} ∩ D = ∅. Hence, the
et S of vertices in {(v, 2) : v ∈ V (Cn)} that are not dominated by D1 is independent. We derive that in order to dominate
he vertices of S one needs at least |S| vertices from D2, which implies |D| = |D1| + |D2| ≥ |D1| + |S| = |V (Cn)|. □

Given a graph G let bip(G) denote the maximum order of a bipartite induced subgraph of G.

roposition 4.3. If G is a graph, then

bip(G) ≤ DOM(G□ K ) ≤ n(G).
2
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Proof. The upper bound follows from Theorem 4.1. For the lower bound consider the largest bipartite induced subgraph
f G and let S and T be the sets of its bipartition. Since (S × {1}) ∪ (T × {2}) is an independent set, it follows from

Theorem 2.3(i) that DOM(G□ K2) ≥ |S| + |T | = bip(G). □

If G is bipartite, then bip(G) = n(G), thus Proposition 4.3 implies DOM(G□ K2) = n(G).

5. Lexicographic products

Let G and H be two graphs. The lexicographic product G ◦ H of G and H is the graph with V (G ◦ H) = V (G) × V (H) and
wo vertices (x, y) and (u, v) are adjacent in G ◦ H if either xu ∈ E(G), or x = u and yv ∈ E(H).

roposition 5.1. If G and H are arbitrary graphs, then

α(G)DOM(H) ≤ DOM(G ◦ H) ≤ min{DOM(G)n(H),DOM(H)n(G)}.

roof. To prove the lower bound consider the following orientation of G ◦ H . Let Hf be an orientation of H such that
(Hf ) = DOM(H). For each x ∈ V (G) consider the subgraph of G ◦ H induced by the set {(x, y) : y ∈ V (H)}, and denote it
y Hx. Clearly, Hx is isomorphic to H . Orient the edges of Hx consistent with the orienting mapping f . (That is, if f maps
b ∈ E(H) to the arc (a, b) ∈ V (H)×V (H), then let (x, a)(x, b) ∈ E(G◦H) be mapped to ((x, a), (x, b)) ∈ V (G◦H)×V (G◦H).)
he edges among vertices with distinct first coordinates are oriented as follows. Let A be an α-set of G. For each u ∈ A
nd v ∈ NG(u) and any h, h′

∈ V (H), let the edges (u, h)(v, h′) ∈ E(G ◦ H) be oriented from (u, h) to (v, h′). The latter
rientation yields that vertices in Hx, where x ∈ A, can only be dominated by vertices in Hx. This establishes the lower
ound.
Since G□H is a spanning subgraph of G ◦ H , the upper bound follows immediately from Theorem 4.1 and

emma 2.1(ii). □

If G is bipartite, then Theorem 2.3(i) and Proposition 5.1 imply

DOM(G)DOM(H) ≤ DOM(G ◦ H) ≤ DOM(G)n(H),

hich in turn implies that

DOM(G ◦ Ks) = DOM(G)DOM(Ks) = s · DOM(G).

This shows that both bounds in Proposition 5.1 are sharp. In particular, the ‘‘Vizing-like’’ bound DOM(G)DOM(H) ≤

OM(G ◦ H) does not hold in general, as can be seen by taking G = K3 = H . Note that K3 ◦ K3 = K9. In [5, p. 60]
hartrand et al. proved that DOM(K9) = 3, while DOM(K3)2 = 4.
The situation when G is not bipartite is much more complex. Proposition 5.1 gives the upper bound ks + s for

OM(C2k+1 ◦ Ks), which we are able to improve as follows.

Proposition 5.2. If k ≥ 2 and s ≥ 2, then

ks ≤ DOM(C2k+1 ◦ Ks) ≤ ks +

⌊
s + 1
2

⌋
.

Proof. Throughout the proof we write G = C2k+1 ◦ Ks. The lower bound follows directly from the lower bound in
roposition 5.1. For the upper bound note that G is a Hamiltonian graph. Hence, if s is even, n(G) is even, and thus G
as a perfect matching. By Theorem 2.3(ii), DOM(G) ≤ n(G) − n(G)/2 = ks + s/2 = ks + ⌊

s+1
2 ⌋. On the other hand, s odd

mplies that α′(G) =
n(G)−1

2 , and so DOM(G) ≤
(2k+1)s+1

2 = ks + ⌊
s+1
2 ⌋. □

.1. Generalized lexicographic products

The lexicographic product G ◦ H of graphs G and H can be described as the graph obtained from G by replacing each
ertex u of G with an isomorphic copy of H , say Hu, and adding all the edges between Hu and Hv whenever uv ∈ E(G).
his can be generalized by replacing each vertex u of G by an arbitrary graph Hu. If H = {Hu : u ∈ V (G)} is a collection
f graphs associated with the vertices of G, then the graph constructed in this way is called the generalized lexicographic
roduct and is denoted by G ◦ H; see [16].
Let G be a graph and H = {Hu : u ∈ V (G)} be a collection of graphs associated with the vertices of G. The argument in

he proof of Proposition 5.1 yields the following lower bound and Lemma 2.2 gives the upper bound. If X is an independent
et of G, then∑

u∈X

DOM(Hu) ≤ DOM(G ◦ H) ≤

∑
u∈V (G)

DOM(Hu).

Chartrand et al. [5] considered the orientable domination number in several families of graphs. In particular, they
etermined the orientable domination number of the graphs K = K ◦K for all positive integers n. In this subsection,
n,n,n 3 n
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we extend their result by considering arbitrary complete multipartite graphs. Note that Kn1,...,nk is the generalized
exicographic product with the first factor Kk and the collection of k edgeless graphs of order n1, . . . , nk, respectively.

Given a non-decreasing sequence n1 ≤ n2 ≤ · · · ≤ nk of positive integers, where k ≥ 2, the vertices of the graph
n1,...,nk can be partitioned into independent sets A1, . . . , Ak such that |Ai| = ni for every i ∈ [k] and for 1 ≤ i < j ≤ k,
very vertex of Ai is adjacent to every vertex of Aj. We use this notation throughout the remainder of this subsection. If
= 2, then Kn1,n2 is a complete bipartite graph, and DOM(Kn1,n2 ) = n2 by Theorem 2.3(i).
We start by proving a lower and an upper bound that hold for an arbitrary complete multipartite graph.

roposition 5.3. Given a non-decreasing sequence n1 ≤ n2 ≤ · · · ≤ nk of positive integers, where k ≥ 2, we have

nk ≤ DOM(Kn1,...,nk ) ≤ max{nk, k}.

roof. The lower bound follows from Theorem 2.3(i), since nk = α(Kn1,...,nk ). Set X = Kn1,...,nk . For the proof of the upper
ound, consider an orientation Xf of X such that γ (Xf ) = DOM(X). If one of the sets Ai, where i ∈ [k], is a dominating set
f Xf , then DOM(X) ≤ ni ≤ nk, as claimed. Otherwise, for each i ∈ [k], there exists a vertex xj ∈ V (X) \ Ai such that xj
ominates all vertices of Ai. Hence, the set {x1, . . . , xk} is a dominating set of Xf , giving DOM(X) ≤ k, as claimed. □

The following result immediately follows from Proposition 5.3, and resolves the orientable domination of a large class
f complete multipartite graphs.

orollary 5.4. If n1 ≤ n2 ≤ · · · ≤ nk is a non-decreasing sequence of positive integers, where nk ≥ k ≥ 2, then
DOM(Kn1,...,nk ) = nk = α(Kn1,...,nk ).

Finally, we concentrate on complete tripartite graphs and extend the result on DOM(Kn,n,n) from [5].

Theorem 5.5. If 1 ≤ n1 ≤ n2 ≤ n3, then

DOM(Kn1,n2,n3 ) =

{ n3; n3 ≥ 3,
3; n1 = n2 = n3 = 2,
2; otherwise.

Proof. If n3 ≥ 3, then DOM(Kn1,n2,n3 ) = n3, by Corollary 5.4. Hence, let n3 ≤ 2, and consider the following cases. To see
that DOM(K2,2,2) = 3, first note that DOM(K2,2,2) ≤ 3, by Proposition 5.3. The orientation (K2,2,2)f of K2,2,2 depicted in the
ollowing table, where we list the closed out-neighborhoods of each of the vertices of K2,2,2:

u x1 x2 x3 x4 x5 x6
N+

[u] x1, x5, x6 x2, x4, x6 x1, x2, x3 x1, x4, x5 x2, x3, x5 x3, x4, x6

shows that γ ((K2,2,2)f ) = 3, since no two vertices dominate the oriented graph.
By Lemma 2.1(i), DOM(K1,2,2) ≥ 2 since K3 is an induced subgraph of K1,2,2. Let f be any orienting mapping of K1,2,2

such that DOM(K1,2,2) = γ ((K1,2,2)f ). If either of A2 or A3 is a dominating set of (K1,2,2)f , then γ ((K1,2,2)f ) = 2. Therefore
assume that neither of A2 or A3 is a dominating set of (K1,2,2)f . Thus A2, resp. A3, is dominated by a vertex x2, resp. x3.
Note that x2 ̸= x3, for otherwise γ ((K1,2,2)f ) = 1, which is a contradiction. In such a situation, it is easy to see that {x2, x3}
is a dominating set of (K1,2,2)f = 2. Therefore, DOM(K1,2,2) = 2.

Note that K1,1,2 is isomorphic to K4 − e while K1,1,1 is isomorphic to K3, and clearly DOM(K4 − e) = 2 = DOM(K3),
which concludes the proof. □

5.2. Domination and packing in an acyclic orientation of C2k+1 ◦ Ks

The classical result of Meir and Moon [13] states that the domination number of a tree T is equal to the 2-packing
umber of T , which is defined as the maximum number of pairwise disjoint closed neighborhoods in T . In [3] this result
as extended to the context of digraphs. (See also Mojdeh, Samadi and Yero [14, Theorem 5] where the special case of this
esult was proved for orientations of trees.) The extension uses the following notion — the digraph version of a 2-packing.
subset P of V (D) is a packing of a digraph D if there are no arcs joining vertices of P and for every two vertices x, y ∈ P

here does not exist v ∈ V (D) such that {(v, x), (v, y)} ⊆ A(D). The packing number, ρ(D), of D is the cardinality of a largest
acking in D.
The mentioned extension to digraphs [3, Theorem 1.2] asserts that if T is a digraph whose underlying graph is a tree,

hen ρ(T ) = γ (T ). The authors then asked whether the result can be extended to all acyclic digraphs; see [3, Problem
]. Recall that a digraph is acyclic if it contains no directed cycles. In particular, an acyclic digraph contains no opposite
rcs, hence it is an orientation of an undirected graph. The mentioned problem reads as follows: Is ρ(D) = γ (D) if D is
n acyclic digraph?
We now use the lexicographic product to answer this question in the negative. The following construction will be

sed. Consider the lexicographic product C ◦ K , where k ≥ 2 and s ≥ 2. Let V (C ) = {v , . . . , v }, and let
2k+1 s 2k+1 1 2k+1
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V (Ks) = {w1, . . . , ws}. Let X = C2k+1 ◦Ks, and define the orientation using the following mapping f : E(X) → V (X)×V (X).
For every i ∈ [2k] and j, k ∈ [s], let

f ((vi, wj)(vi+1, wk)) = ((vi, wj), (vi+1, wk)),

and for every j, k ∈ [s], let

f ((v1, wj)(v2k+1, wk)) = ((v1, wj), (v2k+1, wk)).

Theorem 5.6. If k ≥ 2, s ≥ 2, and f is the orienting mapping as defined above, then

γ ((C2k+1 ◦ Ks)f ) = s + 2k − 2 and ρ((C2k+1 ◦ Ks)f ) = s + k − 1.

Proof. Set X = C2k+1 ◦ Ks for this proof, and for each i ∈ [2k + 1] let Vi = {(vi, wj) : j ∈ [s]}.
Let D be a minimum dominating set of Xf . Note that the in-degree of each vertex from V1 is 0, which implies that

these vertices belong to every dominating set of Xf , thus also to D. Hence the vertices from V1 ∪V2 ∪V2k+1 are dominated
by the vertices from V1, where V1 ⊆ D. Consider an arbitrary set Vi, where i ∈ {3, . . . , 2k}. In order to dominate vertices
of Vi either all of them lie in D or Vi−1 ∩ D ̸= ∅. If Vi is dominated by a vertex (vi−1, wj) (from Vi−1 ∩ D), then we set
xi = (vi−1, wj). Otherwise, if D ∩ Vi = Vi, then set xi = (vi, w1). In this case, further set xi+1 = (vi, w2) (note that xi+1
dominates Vi+1). The resulting mapping, which assigns xi to Vi is one-to-one, which implies that V1 ∪ {x3, . . . , x2k} ⊆ D,
hence γ (Xf ) ≥ s+ (2k+ 1)− 3 = s+ 2k− 2. On the other hand, V1 ∪ {(v2, w1), (v3, w1), . . . , (v2k−1, w1)} is a dominating
set of cardinality s + 2k − 2, which gives the first formula.

To establish the packing number of Xf , first note that in every packing P of Xf , we have |P ∩ Vi| ≤ 1 holds for all
i ∈ {2, 3, . . . , 2k + 1}. Indeed, if {(vi, wj), (vi, wk)} ⊆ P , then the arcs going from (vi−1, w1) to each of the two vertices
imply that P is not a packing. Now, if |Vi ∩ P| = 1, then |Vi−1 ∩ P| = 0 = |Vi+1 ∩ P|. Hence, |P ∩ (V2 ∪ · · · ∪ V2k)| ≤ k.
Moreover, if |P ∩ (V2 ∪ · · · ∪ V2k)| = k, then V2 ∩ P ̸= ∅ and V2k ∩ P ̸= ∅, which implies that V1 ∩ P = ∅ = V2k+1 ∩ P .
This yields |P| = k < s + k − 1. On the other hand, if |P ∩ (V2 ∪ · · · ∪ V2k)| ≤ k − 1, we have |P| ≤ s + k − 1 because
|P ∩ (V1 ∪ V2k+1)| ≤ s. However, the set V1 ∪ {(v3, w1), (v5, w1), . . . , (v2k−1, w1)} is a packing of cardinality s + k − 1, and
is thus a maximum packing of Xf . Thus, ρ(Xf ) = s + k − 1. □
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