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РЕФЕРАТ 

 

 

Дипломна робота: 71 с., 4 ч., 1 табл., 34 рис., 44 джерела.  

ЕЛЕКТРОЕНЦЕФАЛОГРАМА, ОБРОБКА БІОМЕДИЧИХ СИГНАЛІВ, 

АНАЛІЗ СИГНАЛІВ, СПЕКТРАЛЬНИЙ АНАЛІЗ, ПЕРЕТВОРЕННЯ ФУР’Є, 

РЕЄСТРАЦІЯ ЕЕГ, ПРОГРАМУВАННЯ PYTHON, СПЕКТРАЛЬНАЯ 

ПОТУЖНІСТЬ, ДЕТРЕНДОВИЙ АНАЛІЗ КОЛИВАНЬ 

 

Об’єктом розгляду є електрична активність головного мозку людини. 

Предмет роботи – методи аналізу електроенцефалограм під час дії різноманітних 

стимулів.  

Метою роботи є вивчення природи виникнення електричних сигналів мозку, 

методи їх реєстрації та аналізу для дослідження реакції на візуальні 

емоційнонавантажені стимули.  

У першому розділі описуються загальні поняття про природу виникнення 

електричного сигналу мозку людини, а також нейрофізіологічні ознаки 

присутності різних частотних складових сигналу за певних станів людини. 

У другому розділі наведено принципи реєстрації сигналів 

електроенцефалограми (ЕЕГ) та описано пристрої, що здатні це виконувати. Також 

розглянуто опис основної системи накладання сенсорів (електродів) на голову 

людини. В кінці розділу наведено приклад компактного 8-канального 

енцефалографа власної розробки, що здатен реєструвати сигнали ЕЕГ та 

передавати їх по бездротовому зв’язку на мобільні прилади (смартфон, планшет).  

Третій розділ описує основні математичні методи аналізу ЕЕГ сигналів. 

Основними є методи спектрального та вейвлет-аналізу та аналіз детрендових 

коливань, за допомогою яких можна отримати детальне представлення про роботу 

мозку,  шляхом виявлення різноманітних патернів в частотних діапазонах. 

У четвертому розділі описується практичне застосування методів 

спектрального та Detrended Moving Average аналізів на експериментальній базі 
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даних ЕЕГ для 48 здорових волонтерів, запис ЕЕГ для яких проводився під час 

демонстрації певних емоційнонавантажених візуальних стимулів. Також в цьому 

розділі наведені результати виконаного аналізу разом з їх нейрофізіологічним 

тлумаченням. 
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ABSTRACT 

 

 

Diploma project: 71 p., 4 p., 1 table, 34 figures, 44 references. 

ELECTROENSEPHALOGRAM, BIOMEDICAL SIGNAL PROCESSING, 

SIGNAL ANALYSIS, SPECTRAL ANALYSIS, FOURIER TRANSFORM, EEG 

REGISTRATION, PYTHON PROGRAMMING, SPECTRAL POWER, DFA, DMA 

An important place in the study of brain activity is occupied by the study of its 

electrical potentials. Electroencephalography (EEG) is a method of graphical recording 

of brain biopotentials, which allows analyzing its physiological maturity and condition, 

the presence of focal lesions, general brain disorders and their nature. It consists of 

recording and analyzing the total bioelectric activity of the brain — an 

electroencephalogram (EEG). EEG can be taken from the scalp, from the surface of the 

brain, as well as from deep brain structures. As a rule, an electroencephalogram is 

understood as a surface recording, that is, made from the intact head surface. 

EEG is most often used to diagnose epilepsy, which causes EEG disorders. It is 

also used to diagnose sleep disorders, deep anesthesia, coma, encephalopathy, and brain 

death. EEG was used as the main method for diagnosing tumors, stroke, and other focal 

brain diseases, but when it became possible to obtain high-resolution anatomical images 

using magnetic resonance imaging (MRI) and computed tomography (CT) techniques, 

the use of EEG declined. Despite its limited resolution, the EEG continues to be a valuable 

tool for research and diagnosis. 

The object of consideration is the electrical activity of the human brain. The subject 

of the work is methods of analyzing electroencephalograms during the action of various 

stimuli. The aim of the work is to study the nature of the occurrence of electrical signals 

of the brain, methods of their registration and analysis to study the response to visual 

emotional stimuli. 

The first chapter describes general concepts about the nature of the occurrence of 

an electrical signal in the human brain, as well as neurophysiological signs of the presence 

of various frequency components of the signal in certain human states. 
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The second chapter describes the principles of recording electroencephalogram 

signals and describes devices that can perform this. The description of the main system 

for applying sensors (electrodes) to the human head is also considered. At the end of the 

section, an example of a compact 8-channel encephalograph of our own design is given, 

which is able to register EEG signals and transmit them wirelessly to mobile devices 

(smartphone, tablet). 

The third section describes the basic mathematical methods for analyzing EEG 

signals. The main methods are spectral and wavelet analysis and detrended oscillation 

analysis, which can be used to get a detailed picture of brain function by identifying 

various patterns in frequency ranges. 

The fourth section describes the practical application of spectral and Detrended 

Moving Average analysis methods on an experimental EEG database. Here, initially the 

EEG records were made for 48 healthy volunteers whose EEG recording was performed 

while demonstrating certain emotionally loaded visual stimuli. Stimuli were selected 

from the International Affective Pictures System (IAPS) based on their average emotional 

valence values. In order to assess the induced changes of the brain’s electrical activity, 

the EEG-bands were subdivided in a following way: θ1 [3.5, 5.8], θ2 [5.9, 7.4], α1 [7.5, 

9.4], α2 [9.5, 10.7], α3 [10.8, 13.5], β1 [13.6, 25], β2 [25.1, 40] Hz.  

As a result, Power Spectral Density (PSD) were visualized as a map on the 

schematic figure of the head used to render the statistical significance test, demonstrating 

that variations in powers for our signals were caused by non-identical forms of visual 

effect rather than being an accident. These details were also shown in the heads charts.  

The study of changes in power spectrum density showed neurodynamics triggered 

by visual stimulation experience. However, when comparing PSD values obtained during 

the presentation of the first and second neutral series, it was discovered that when 

processing neutral images followed by negative stimuli, a well-defined activation focus 

developed in the left parietal region of the cortex in the θ2 subband. 

The DMA algorithm revealed statistically important variations in the left temporal 

and frontal regions of the cortex, which were marked by more pronounced activation 
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during the perception of neutral faces in the presence of positive images. This may be the 

start of a new path of improved inner focus and meaningful emotional experiences. 

As a result, the sex-related aspects of the emotional valence effect on neutral face 

perception were discovered by analyzing EEG-based brain neurodynamics in the 

mechanism in perception in human faces of various modalities. The stimulation of two 

large cognitive networks in the brain: mental or theta-network and cognitive beta-

network, was the key distinction. 
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INTRODUCTION 

 

 

Human brain plays the main part in all processes in the body. Signals that appear 

in it control all functions and general states of our organism. Therefore, understanding of 

neural features and neurophysiological properties is extremely important as well as 

methods of its registration and analysis.  

 Electroencephalography (EEG) is an electrophysiological method of registration 

and monitoring electrical activity of the human brain on the scalp skin. Here special 

electrodes are used, that are situated on the scalp noninvasively. The EEG signals are the 

measurement of currents of neural impulses in the cerebral cortex that appear as a result 

of activation of brain cells (neurons) by the generating signals inside the dendrites. 

Particularly these currents are catched by sensors (electrodes) of electroencephalograph.  

 Investigation of cognitive processes inside the brain can be done by analyzing EEG 

signals during different irritations. All kinds of human activities such as eye movement, 

lip movement, remembrance, attention, hand clenching etc., can be detected on visualized 

EEG signals. These abovementioned states are closely connected with particular 

frequency bands that help to understand main trends in human’s brain activity. So, EEG 

is a highly efficient method that acquires and shows consequences of changes in the brain 

states. For analysis the raw EEG signal that has been extracted will be preprocessed that 

includes acquisition of signal, removal of artifacts, signal averaging, threshold value of 

the output, enhancement of the resulting signal, and edge detection. The next step is a 

feature extraction algorithm where the most important features are chosen for further 

classification. The signal will then be categorized using linear, nonlinear, adaptive, 

clustering, and fuzzy approaches, as well as neural networks. 

 In this work, the main principles and definitions of brain activity were described as 

well as design of registration and analysis of EEG signals. All these things were used to 

work with real experimental data. The focus here is on the study of 

electroencephalographic data gathered throughout the experiment, which are designed to 

specific states of brain activity during various forms of emotional visual stimuli. EEG 
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data was received from the group of 48 healthy volunteers to which special images with 

emotional load were shown. In this case for analysis Power Spectral Density (PSD) and  

Detrended Moving Average (DMA) analysis methods were used. Additionally, to provide 

the accuracy and relevance of results the statistical significance evaluation was applied. 
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1 BRAIN ACTIVITY AND ITS FEATURES 

1.1 Lobes of human brain 

 

 

The brain is the most essential functioning organ of our body, it regulates and 

directs all of our muscles and nerves. The brain is split into two hemispheres, the left and 

right hemispheres [1]. Each hemisphere is divided into four lobes: Frontal, Temporal, 

Parietal, and Occipital. The Frontal lobe, which is situated below the forehead, is the main 

lobe. Speech and expression are regulated by the left Frontal lobe. Planning, scheduling, 

problem solving, recall, self-regulation, decision making, selective focus, and managing 

actions and emotions are all topics included in this course. As the frontal lobe is damaged, 

it may have an impact on feelings, speech and memory. 

The temporal lobe is situated on the sides of the brain, behind the Frontal lobe and 

under the Parietal lobe. This is the part of the brain that controls sound and voice 

recognition in different forms of memory. During the injury, it can cause hearing, 

language, and sensory issues [2]. The Occipital lobe is located at the back of the head and 

is responsible for sensory vision and processing. When the Parietal lobe, which is situated 

behind the frontal lobe and absorbs sensory input from various areas of the body, is 

injured, it causes vision and perception problems. It may result in an inability to identify 

and classify body parts (Figure 1.2). 

 

Figure 1.2 − Structure of human brain and its lobes 

 

From the medical history, it is well known that specific action/activity/states are 

controlled by particular part of the brain. For example, Table 1.1 represents cranial nerve 
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and its associative functionalities [3]. Electrode locations for EEG recordings are 

determined by the functional activity of the brain and its corresponding site. 

Table 1.1 − Functions of Cranial nerves  

 

 

 

 

 

 

 

 

 

 

 

 

  

№ Name Function 

1 Olfactory Smell 

2 Optic Vision 

3 Oculomotor Eye movement 

4 Trochlear Eye movement 

5 Trigeminal Facial sensation 

6 Abducent Eye movement 

7 Facial Face movement 

8 Vestibulocochlear Hearing and balance 

9 Glossopharyngeal Taste 

10 Vagus Involuntary muscles 

11 Accessory Voluntary neckmuscle 

12 Hypoglossal Tongue movement 
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1.2 EEG generation 

 

 

Electrical dipoles between the soma (body of a neuron) and apical dendrites, which 

branch from neurons, are produced by combined postsynaptic graded potentials from 

pyramidal cells, generating electrical potential differences (Figure 1.3). The positive ions 

of sodium, Na+, potassium, K+, calcium, Ca++, and the negative ion of chlorine, Cl−, are 

pumped through the neuron membranes in the direction controlled by the membrane 

potential to produce current in the brain [4].  

The human head is made up of many layers, including the hair, skull, brain (Figure 

1.4), and several thin layers in between. The impulses are attenuated one hundred times 

more from the brain than by soft tissue. The majority of noise, on the other hand, is 

produced either inside the brain (internal noise) or over the scalp (external noise) (system 

noise or external noise). As a result, only broad numbers of active neurons can produce 

enough potential for the scalp electrodes to register. These signals are later amplified 

greatly for display purposes. When the central nervous system (CNS) is full and 

functioning, approximately 1011 neurons are created [2]. This equates to 104 neurons per 

cubic mm on average. Synapses connect neurons together to form neural networks. 

Synapses are found in about 5 ×1014 synapses for adults. With age, the amount of synapses 

per neuron rises, although the number of neurons declines. The cerebrum, cerebellum, 

and brain stem are the three portions of the brain that may be separated anatomically. The 

cerebral cortex is made up of deeply convoluted surface layers that cover both the left and 

right lobes of the brain.  

Figure 1.3 − Structure of a neuron 
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Figure 1.4 − The three main layers of the brain including their approximate 

resistivities and thicknesses (Ω = ohm) 

 

Movement initiation, cognitive perception of sensation, complex interpretation, 

and emotional and behavioral processing all take place in the cerebrum. The cerebellum 

preserves equilibrium by coordinating voluntary muscle motions. Respiration, pulse 

regulation, biorhythms, and neurohormone and hormone parts are all regulated by the 

brain stem [5].  

EEG research clearly paves the way for the detection of a wide range of brain 

diseases and other anomalies in the human body. The EEG signs obtained from a person 

(and even from animals) can be used to investigate the following clinical problems [5, 2] 

1. monitoring the brain development; 

2. controlling anaesthesia depth (servo anaesthesia); 

3. testing afferent pathways (by evoked potentials); 

4. investigating mental disorders; 

5. assisting in experimental cortical excision of epileptic focus; 

6. locating areas of damage following head injury, stroke, and tumour; 

7. investigating epilepsy and locating seizure origin; 

8. effects testing drugs for convulsive effects; 

9. providing a hybrid data recording system together with other imaging 

modalities; 

10. monitoring alertness, coma, and brain death; 

11. testing epilepsy drug; 



17 
 

12. investigating sleep disorders and physiology; 

13. monitoring cognitive engagement (alpha rhythm); 

14. producing biofeedback situations. 

This list confirms the rich potential for EEG analysis and motivates the need for 

advanced signal processing techniques to aid the clinician in their interpretation.  
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1.3 Rhythms of brain activity 

 

 

 Visual inspection of EEG signs may be used to detect a variety of neurological 

problems. The appearance of brain patterns in EEG signals is well-known by scientific 

specialists in the area. The amplitudes and rhythms of certain signals shift in healthy 

adults when they transition from one stage to another, such as wakefulness and sleep. 

Over age, the properties of the waves shift as well. The varying frequency ranges of the 

five main brain waves differentiate them. These frequency bands from low to high 

frequencies respectively are called alpha (α), theta (θ), beta (β), delta (δ), and gamma (γ). 

The alpha and beta waves were introduced by Berger in 1929. Jasper and Andrews (1938) 

used the term ‘gamma’ to refer to the waves of above 30 Hz. The delta rhythm was 

introduced by Walter (1936) to designate all frequencies below the alpha range. He also 

introduced theta waves as those having frequencies within the range of 4–7.5 Hz. The 

notion of a theta wave was introduced by Wolter and Dovey (1944) [6].  

Delta waves (Figure 1.5) lie within the range of 0.5–4 Hz. These waves are most 

often correlated with deep sleep, but they can also be seen in the waking state. It's possible 

to confuse artefact messages from the big muscles of the neck and jaw with the real delta 

reaction. This is due to the fact that muscles emit massive signals near the skin's surface, 

while the signal of importance originates deep inside the brain and is severely attenuated 

when it passes across the skull. However, it is very straightforward to see whether a 

reaction is triggered by unnecessary activity by implementing basic signal analysis 

methods to the EEG.  

Figure 1.5 − Delta waves 

 

Theta waves (Figure 1.6) lie within the range of 4–7.5 Hz. It's possible that term 

theta was selected to allude to its thalamic roots. When awareness begins to lapse into 
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drowsiness, theta waves emerge. Access to unconscious content, artistic motivation, and 

deep reflection have all been linked to theta waves. A theta wave is often followed by 

other frequencies and seems to be linked to arousal levels. Healers and experienced 

mediators are believed to have an alpha wave that steadily decreases in magnitude over 

time. Infancy and adolescence, the theta wave is quite significant. In the waking human, 

larger contingents of theta wave activation are rare and are triggered by a variety of 

pathological issues. Theta wave pattern variations was investigated for maturational and 

emotional research [2]. 

Figure 1.6 − Theta waves 

 

Alpha waves (Figure 1.7) appear in the posterior half of the head and are usually 

found over the occipital region of the brain. They can be found in all areas of the brain's 

posterior lobes. The frequency of alpha waves is between 8 and 13 Hz, and they usually 

behave as a circular or sinusoidal formed signal. In extreme instances, though, it may 

manifest as sharp waves. In such cases, the negative component appears to be sharp and 

the positive component appears to be rounded, similar to the wave morphology of the 

rolandic mu (μ) rhythm. Alpha waves are considered to represent both a calm 

consciousness and a lack of focus or concentration. The alpha wave is the most common 

rhythm of all of brain function, and it can extend across a wider spectrum than commonly 

thought. In the beta wave spectrum, a peak can be observed on a daily basis at frequencies 

up to 20 Hz, and has the properties of an alpha wave state rather than a beta wave state. 

Again, a reaction at 75 Hz, which occurs in an alpha environment, is quite common. With 

their eyes closed, most people emit any alpha waves, which is why it's been suggested 

that it's only a waiting or scanning pattern generated by the brain's visual regions. Opening 

the eyes, experiencing new stimuli, fear, and internal focus or attention all help to mitigate 

or remove it. Albert Einstein was able to solve complicated mathematical problems when 

staying in the alpha state, including the presence of beta and theta waves. An alpha wave 
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has a higher amplitude over the occipital areas and has an amplitude of normally less than 

50 μV. An alpha wave's genesis and physiological importance are unclear, and further 

study is needed to understand how this phenomenon emerges from cortical cells. 

Figure 1.7 − Alpha waves 

 

A beta wave (Figure 1.8) is the electrical activity of the brain varying within the 

range of 14–26 Hz (though in some literature no upper bound is given). Normal people 

have a beta pulse, which is the brain's normal waking cycle synonymous with active 

thought, active interest, concentration on the outer environment, or solving concrete 

issues. When an individual is in a panic condition, a high-level beta wave may be 

detected. The frontal and central regions of the brain display a lot of rhythmical beta 

action. A central beta rhythm is linked to the rolandic mu rhythm, and it can be disrupted 

by motor movement or tactile stimuli. The amplitude of beta rhythm is normally under 

30 μV. Similar to the mu rhythm, the beta wave may also be enhanced because of a bone 

defect and also around tumoural regions [7]. 

Figure 1.8 − Beta waves 

 

The frequencies above 30 Hz (mainly up to 45 Hz) correspond to the gamma waves 

(sometimes called the fast beta wave). Detection of these rhythms may be used to confirm 

the presence of some brain conditions, despite the fact that their amplitudes are very 

limited and their frequency is uncommon. The frontocentral field contains elevated EEG 

frequencies and the maximum rate of cortical blood supply (as well as oxygen and glucose 

uptake). The gamma wave band has also been demonstrated to be a good predictor of 
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event-related synchronization (ERS) in the brain, and it can be used to show the locus for 

right and left index finger activity, right toes, and the very general and bilateral region for 

tongue movement [2]. 

Figure 1.9 − Gamma waves 

 

Waves with frequencies significantly higher than the EEG's usual activity range, 

typically in the 200–300 Hz range, have been discovered in animal cerebellar regions, 

although they have not been linked to clinical neurophysiology [7].  

Figure 1.10 shows the typical normal brain rhythms with their usual amplitude 

levels. In general, the EEG signals are the projection of neural activities that are 

attenuated by leptomeninges, cerebrospinal fluid, dura matter, bone, galea, and the scalp. 

Cartographic discharges show amplitudes of 0.5–1.5 mV and up to several millivolts for 

spikes. However, on the scalp the amplitudes commonly lie within 10–100 μV.  

Figure 1.10 − Raw EEG signal and the extractions of signal 
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The above rhythms will last for a long time if the subject's condition does not shift, 

because they are roughly cyclic in nature. On the other hand, there are other brain 

waveforms, which may: 

 Have a wide frequency range or appear as spiky-type signals, such as K-

complexes, vertex waves (which occur during sleep), or a breach rhythm, 

which is an alpha-type rhythm that is observed predominantly over the 

midtemporal region (under electrodes T3 or T4), as well as some seizure 

signals. 

 Be a transient such as an event-related potential (ERP) and contain positive 

occipital sharp transient (POST) signals (also called rho (ρ) waves). 

 They come from defective areas of the brain, such as tumoral brain lesions. 

 Be spatially localized and cyclic in nature, but be quickly disrupted by bodily 

movement, such as the mu rhythm. Mu stands for motor and is closely linked 

to the motor cortex. In terms of amplitude and frequency, Rolandic (central) 

mu is similar to posterior alpha. The topography and physiological 

relevance, on the other hand, are substantially different. The mu rhythm may 

be used to explore cortical functioning and variations in brain (mainly 

bilateral) activity in response to actual and virtual motions. The mu rhythm 

has also been employed in feedback training for a variety of applications, 

including epileptic seizure condition therapy [6].  

Also with educated eyes, it may be hard to recognize and sense brain patterns from 

scalp EEGs. Advanced signal processing equipment, on the other hand, should be able to 

separate and analyze the target waveforms from inside the EEGs. As a result, defining 

foreground and background EEG is highly arbitrary and highly dependent on 

abnormalities and applications [7]. 
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1.4 Conclusions for Chapter 1 

 

 

 For those who work with signals for the identification, evaluation, and treatment of 

brain abnormalities and diseases, a thorough understanding of neuronal functions and 

neurophysiological properties of the brain, as well as the processes influencing signal 

generation and processing, is essential. EEG signals are the electrical ones that appear as 

a result of activation of brain cells.  

Analysis of EEG rhythms gives the description of the human’s brain state, because 

each frequency band is connected with a particular kind of activity. So, using different 

methods of extraction of signals for special bands we can provide all necessary 

information for understanding processes in the brain. 
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2 RECORDING OF EEG SIGNAL AND ITS MEASUREMENT 

2.1 General Principles of EEG Recording 

 

 

Simple galvanometers were used to record the first electrical neural processes. To 

amplify extremely fine fluctuations in the pointer, a mirror was employed to reflect the 

light reflected to the galvanometer on the wall. A mirror placed on a moveable coil was 

subsequently added to the d'Arsonval galvanometer, and light focused on the mirror was 

reflected when a current went through the coil. Lippmann and Marey [8] invented the 

capillary electrometer. Einthoven created the string galvanometer in 1903 as a more 

sensitive and precise measurement tool. For a few decades, this was a common tool that 

allowed for photographic recording. 

 A variety of delicate electrodes, a series of differential amplifiers (one for each 

channel), filters, and needle (pen)-type registers make up more recent EEG systems. The 

multichannel EEGs could be graphed on either plane or grid paper. Researchers began 

searching for a computerized device that could digitize and store signals soon after this 

system was introduced to the market. As a result, it was quickly realized that EEG signals 

must be in digital form in order to be analyzed. This necessitated signal sampling, 

quantization, and encoding. When the number of electrodes rises, so does the data amount 

in terms of bits. Variable configurations, stimulations, and sampling frequency are 

possible for computerized devices, and others are fitted with basic or specialized signal 

processing tools for signal processing. 

The conversion from analogue to digital EEG is performed by means of 

multichannel analogue-to-digital converters (ADCs). Fortunately, EEG signals have a 

restricted effective bandwidth of around 100 Hz. This bandwidth may be regarded even 

half of this figure for many applications. As a result, sampling the EEG signals at a 

minimum frequency of 200 samples/s (to meet the Nyquist criteria) is sufficient. 

Sampling frequencies of up to 2000 sample/s may be employed in certain situations where 

a greater resolution is needed for depiction of brain processes in the frequency domain 

[7].  
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2.2 EEG Device and Its Characteristics 

 

 

Electroencephalography is a technique that reads electrical potential from the brain 

and measured using special device called Electroencephalogram (EEG). This device 

comprised of electrodes, conductive gel, amplifiers and Analog to Digital converter as 

shown in Figure 2.1. The electrodes or leads are used to conduct electrical activity from 

the scalp of the brain. Different types of electrodes are used in general for EEG analysis 

[3].  

 

Figure 2.1 − (a) Electroencephalograph; (b) Electrodes for EEG recording 

 

The EEG recording electrodes and their proper function are crucial for acquiring 

high-quality data. Different types of electrodes are often used in the EEG recording 

systems, such as [7]: 

• disposable (gel-less, and pre-gelled types); 

• saline-based electrodes; 

• needle electrodes; 

• reusable disc electrodes (gold, silver, stainless steel, or tin); 

• headbands and electrode caps. 

Electrode caps are often used in multichannel recordings with a high number of 

electrodes. Commonly used scalp electrodes consist of Ag–AgCl disks, less than 3 mm 

in diameter, with long flexible leads that can be plugged into an amplifier. These 
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electrodes placed on the scalp with small amount of conductive gel (Ag-Cl) applied under 

the disk. Disk will be with gold, tin and silver compositions. The cost of the electrode is 

low and life may depend upon metal used on disk and insulating medium on wire. These 

electrodes have chance to fall down from the scalp which leads higher chances of artifacts 

[9]. EEG cap is another type, which allows you to choose various numbers and sizes of 

electrodes. EEG caps are also available for reusable disks that are injected with 

conductive gel into the cap's openings. It is recommended for multi-channel capture, but 

one problem with this cap is that if one electrode fails, the whole cap must be replaced, 

and it is impossible to track down the failed electrode [3].  

High impedance between the brain and the electrodes, as well as high impedance 

electrodes, may cause distortion and even obscure the EEG signals. Impedance monitors 

are often included in commercial EEG recording systems. The electrode impedances 

should be less than 5 kOhm and balanced to within 1 kOhm of each other for a decent 

recording. The impedances are tested after each trial for more precise measurement. The 

distribution of potentials across the scalp (or cortex) is not uniform due to the layered and 

spiral structure of the brain. Some of the findings of source localisation utilizing EEG 

signals may be affected as a consequence of this [7]. 
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2.3 EEG Electrodes Placement on the Human Head 

 

 

 The typical electrode setting (also known as 10–20) for 21 electrodes (excluding 

the earlobe electrodes) is suggested by the International Federation of Societies for 

Electroencephalography and Clinical Neurophysiology, as shown in Figure 2.2. The 

reference electrodes are often the earlobe electrodes A1 and A2, which are linked to the 

left and right earlobes, respectively. The 10–20 approach eliminates eyeball placement 

and takes into account certain fixed lengths by measuring particular anatomic features 

and then utilizing 10 or 20% of that distance as the electrode spacing. On the left are the 

odd electrodes, while on the right are the even electrodes.  

Figure 2.2 − Point labels of 10-20 electrode placement system 

 

For setting a larger number of electrodes using the above conventional system, the 

rest of the electrodes are placed in between the above electrodes with equidistance 

between them. For example, C1 is placed between C3 and Cz. Extra electrodes are 

sometimes used for the measurement of EOG, ECG, and EMG of the eyelid and eye 

surrounding muscles [7]. 

The electrodes are arranged according to 10-20 standards for EEG placement. 

These electrodes are labeled by letters (F-Frontal, T-Temporal, C-Central, P-Parietal) 

which indicates the lobes of the brain. Midline region is referred by a label with 'z'. Odd 
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numbers indicate left hemisphere and even numbers are used to indicate right hemisphere. 

For example, C3 is located on left central lobe. An additional sensor is used to record 

special applications such as, heart rate, skin conductance, eye movements, and 

respiration. 

EEG atlas with respect to electrode position is given the Figure. 3. Cortex around 

Cz, C3 and C4 locations deals with sensory and motor functions. Pz, P3 and P4 are related 

to cognitive processing. T4 and T6 represent emotional memory while T3 and T5 stands 

for verbal memory functions. Oz, O1 and O2 deals with visual processing stimuli. Fz is 

placed near intentional and motivational centers, F8 and F7 are located close to emotional 

and verbal expressions. F3 and F4 are located at motor planning activities. Fpz, Fp1 and 

Fp2 deals with attention and judgment impulses [3].  

The placement of electrodes, also known as Montages, is done in one of two ways: 

Referential or Bipolar electrodes. The potential difference between each electrode and the 

reference electrode is recorded in the Referential process. When setting the reference 

electrode on the tip of the nose or the base of the foot, it is not ideal. Related ear refers to 

the placement of reference electrodes on both ear lobes. Potential variations between 

paired active electrodes are reported in the bipolar system. It binds the electrodes in a 

logical order, forming a Longitudinal or Transverse form [10]. 
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2.4 Multichannel EEG Signals Recorder 

 

 

There are more than a few articles that describe the developed prototypes of EEG 

recording systems. In [11], a computationally powerful system with 32 dry active 

electrodes (based on TLC272 precision OP) for long-term monitoring of an epileptic 

patient is presented. The battery-powered design featured a 24-bit resolution of the 

ADS1299 analog-to-digital converter. EEG data can be processed in real time on a 

dedicated ARM processor with a frequency of 1 GHz or transmitted to the host computer 

via Wi-Fi for analysis and further processing. Although the main purpose of the work was 

to create a stand-alone system with a more productive processor, the maximum battery 

life of 25 hours was the main limitation when working under maximum load. Because the 

device was not optimized in size, it required longer wires and the use of active electrodes. 

A similar approach was used in [12]. When developing its EEG collection system 

to solve the problem of monitoring the steady state of visually evoked potentials 

(SSVEP). The 16-channel Beagle Bone Black device (based on the AM3358 ARM 

Cortex-A8 1 GHz processor) was developed with two ADS1299 ADCs and is capable of 

sampling at 1 ksps. The authors claimed that their system was superior to others due to 

the built-in computing power and the ability to run up to 12 hours on two lithium batteries. 

In [13], an inexpensive 7-channel, small, and battery-powered EEG solution was 

developed for long-term monitoring of patients with schizophrenia. The board used one 

ADS1299 ADC controlled by a SAM G55 microcontroller. The authors claimed that their 

system captures analog data with a sampling rate of 250 Hz and transmits them via 

Bluetooth. It was reported that the power consumption is 69 mA with all active channels. 

Similarly, in [14] presented an inexpensive 8-channel EEG recording device for 

use in the neurocomputer interface. The device was developed on a STM32F4 

microcontroller, one ADS1299 and a Bluetooth module, the design was focused on small 

size and low power consumption. The sampling rate of 250 Hz was used to record the 

EEG using wet electrodes with gold cups. 
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The article [15] presented a tiny 4-channel device that is inserted into the ear. Based 

on the ideas of the OpenBCI project, the authors developed a BCI board with an ADS1299 

ADC, which was connected using an Atmega328 microcontroller. Raw EEG data was 

sent via Bluetooth to a remote computer host for processing. 

The idea of building a compact, cheap, simple and energy efficient device was 

taken as a basis. The ADS1299 frontend and a microcontroller with modern wireless 

interfaces and the ability to connect to a desktop computer were chosen as the basis. The 

recommended sensors are dry cup electrodes, which is one of the most popular solutions. 

The device itself will record signals from 8 channels. The power source will be one 

lithium-ion battery, which will provide about 10 hours of active operation. 

The decision to build an 8-channel device is based on the fact that it will make the 

device very compact and versatile. So it can be used for the general scheme of the 8-

channel arrangement of electrodes (Figure 2.3). 

Figure 2.3 − General scheme of 8-channel electrode placement system 

 

This principle allows to locate problem areas and make the first assessment of the 

patient's condition. In the future, the electrodes can be placed more locally, which will 

give a complete picture of the state of activity of the brain. This fact is decisive. This will 

allow the device to be used both for stationary examinations and for use by mobile 

ambulance crews. The small number of electrodes allows to work with both adults and 

even babies, as the electrodes can be placed quite neatly and accurately in small areas. 
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The selected microcontroller will ensure the versatility and simplicity of the device 

during the software development stages, and wireless interfaces will create all the 

conditions for easy use of the device in any conditions. The general block diagram that 

describes the device is presented in Figure 2.4. 

Figure 2.4 − Block diagram of the electroencephalograph 

 

The basis of the EEG recorder is the frontend ADS1299, it provides the required 

number of channels, noise level, ADC resolution, which are described in the requirements 

for the project. All the received information is transmitted first to the microcontroller 

ATmega2560, and then to the periphery of the interfaces. 

The ATmega 2560 microcontroller is chosen because of its availability and 

simplicity. This unit is the central "core" of the famous Arduino Mega board, so there is 

a large number of ready-made libraries and a developed environment for programming. 

It is possible also further update the device software with ready-made methods: using a 

special USBAsp programmer, the connector for which is installed in the recorder. 

This EEG recorder has two data interfaces: 

● Wi-Fi module (ESP8266-12E) 

● Bluetooth module (HM-11) 

The above modules provide stable wireless information exchange. The models 

themselves were chosen for reasons of accessibility and simplicity. Another advantage is 

that these boards are available ready-made with antennas and the necessary additional 

components on a solid textolite substrate. This is an outstanding parameter, as it ensures 

the correct operation of the board, because the introduction of such modules "directly" 

has many additional design features related to frequency bands, antenna shape and more. 
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Ready-made modules simplify the design and ensure correct operation, while maintaining 

its simplicity. 

This device also has a USB connector, which transfers information via the CP2102 

module, which connects the microcontroller and the USB port. 

All of the above interfaces make the EEG recorder quite versatile, providing the 

ability to analyze brain activity both with a computer and using a smartphone or tablet, 

connecting via a wireless channel. 

To ensure patient safety during the examination and the simultaneous connection 

of the recorder to the USB port, a galvanic isolation was added to the ADUM2402B 

board, which will protect the patient from possible breakdowns and surges from the port 

connected to the computer. This board is quite modern, cheap and simple, retaining all 

the necessary features. 

To ensure correct timing of the frontend and the microcontroller, a quartz oscillator 

(HC735-2.048MHZ) and a resonator (CSTCE16M0V) were connected to the special 

outputs, respectively, the operating frequencies of which were selected according to the 

technical description of the boards (datasheet). 

The recorder is powered by a lithium-ion battery NCR18650PF (3.7 V). This 

choice will provide a fairly long service life and relatively high efficiency, and also makes 

the device convenient in terms of weight and dimensions, which, of course, will be 

reflected in the use of the device. 

Branching of power supply into two main directions: "analog" and "digital" power 

supply; was implemented in two blocks. Analog power (5 V) is based on the MT3608 

chip, which is very simple, small and extremely cheap. Additional passive elements in 

this unit were selected according to the existing design of the finished device. The digital 

power supply (3.3 V) is built on the TPS7A2033 chip, which is already a ready-made 

voltage reducer, so only protective capacitors have been added here. 

The main number of passive elements was taken in accordance with the technical 

recommendations for each individual board. The calculation was performed separately 

for the voltage booster unit based on MT3608. According to the technical 

recommendation [16]: 
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VOUT = VREF × (1 +
R1

R2
) , де VREF = 0,6 V  

R1

R2
=

VOUT

VREF
− 1 =

5

0,6
− 1 = 7,5   

R2 = 1 kOhm →  R1 = 7,5 kOhm  

According to the scheme: R18 = 1 kOhm, R17 = 7,5 kOhm  

Also for part of the DC-DC step up circuit on MT3608 the other part of the passive 

components is selected according to the technical recommendation for stable operation 

(Figure 2.5) [17]: 

L1 = 22 μH, D1 - SS34, C2 = 22 μF, C3 = 22 μF. 

Figure 2.5 − MT3608 connection 

 

To calculate the RC filters at the inputs of the electrode connection, we use the 

information that the resistance of the electrode is taken ≈50 kOhm, then, based on the 

information from the description of ADS1299 Demonstration Kit [18], choose the value 

of the input resistors 5.1 kОhm. Then according to the set frequency range of 

measurement (0,1-200 Hz), we have: 

𝑓 =
1

2𝜋𝑅𝐶
 → 𝐶 =  

1

2𝜋𝑅𝑓
=  

1

2∙3,14∙55∙103∙200
≈ 13 (nF)   

To provide a certain "margin" in frequency, the nominal capacitors are selected 10 

nF. 
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Therefore, C1, C9-C16 are selected at 10 nF each. Also, according to the 

demonstration set, a shunt capacitor C21 = 1 μF was chosen (Figure 2.6). 

Figure 2.6 − HC735 connection 

 

The nominal values of the components for the 3.3 V digital voltage converter were 

selected according to the manual for the main component TPS7A2033 (Figure 2.7) [19]: 

C5 = 1 μF, C4 = 1 μF. 

Figure 2.7 − Power connection for TPS7A2033 

 

Capacitor ratings C6 = 1 μF, C17 = 0.1 μF, C29 = 10 μF, C30 = 0.1 μF, C24 = 1 

μF, C25 = 1 μF, C26 = 100 μF, C18 = 1 μF, C19 = 0.1 μF , C20 = 0.1 μF, C27 = 0.1 μF, 

C23 = 1 μF, C22 = 0.1 μF; were selected according to the unipolar power supply circuit 

from the technical documentation for ADS1299 (Figure 2.8) [20]. 
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Figure 2.8 − Unipolar power supply circuit for ADS1299 

 

Resistors R6 = 24 kОhm, R7 = 47 kОhm are selected from the configuration of the 

power connection of the board CP2102 (Figure 2.9) [21]. 

Figure 2.9 − Power supply CP2102 

 

The values of capacitors C34 = 0.1 μF, C35 = 0.1 μF are selected from the general 

information about the power connection with a more correct mode of operation than the 

direct connection of voltage and ground, without a shunt capacitor. 

Resistors R19 = R20 = R21 = 10 kОhm are ground-loop resistors, so the value was 

chosen according to the basic understanding of their functionality. 

The shunt resistor R8 = 1 MОhm is standard for the CSTCE16MOV resonator 

mounted on the Arduino Mega board (Figure 2.10) [22]. 
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Figure 2.10 − Connection of resonator and capacitors to ATmega2560 

 

Capacitors on the power connectors of the microcontroller are selected according 

to a similar principle: С7 = С31 = С32 = С33 = 0.1 μF. 

For the WiFi module on the ESP8266, special connection resistors are selected 

from the technical literature (Figure 2.11) [23]. 

Figure 2.11 − Power connection to ESP8266 

 

Taking into account all the selected components, the battery life of the device is 

calculated. The ATmega2560 microprocessor works at currents of ~ 30mA, the frontend 

ADS1299 − ~ 50mA, the low-power Bluetooth module − ~ 50mA, the greatest energy 

costs will fall on the WiFi module − ~ 100mA. 
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So, in total we have ~ 230mA. The NCR18650PF battery, which has a capacity of 

2900mAh, at this load will provide an active mode of operation of about 10-12 hours, 

taking into account different temperature conditions and the quality of the battery. 
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Figure 2.13 − Visualization of the 8-channel encephalograph’s circuit board  

 

The developed device fully corresponds to the task and the chosen concept. The 

dimensions of the board are 132mm x 94mm. Given the fact that it is already a ready-

made device, then, even taking into account the body, the dimensions remain compact. 

Combined with energy efficiency of up to 10 hours of active operation, this is 70-80 

measurements. This result is very good. All these parameters provide good efficiency 

both in stationary mode for diagnosis and as a portable device for use by doctors in work 

outside the clinic on the go. Wireless interfaces provide a stable connection to modern 

mobile devices. The use of the selected microcontroller and a special programming port 

makes the process of firmware and subsequent software updates quite easy. One can use 

a ready-made Arduino development environment with all libraries, which is a universal 

solution, through which the board can be used not only for patient analysis, but also as a 

training model for research in the direction of analysis of brain activity signals. 
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2.5 Conclusions for Chapter 2 

 

 

In this chapter principles of recording EEG signals were shown. To receive 

electrical signals, the complex of electroencephalograph and a set of special electrodes 

are used. According to the international system “10-20” all electrodes are put on the scalp 

skin, each of them makes the recording for one channel. Particularly this placement helps 

to efficiently detect electrical signals from all regions of the human brain. 

 Also in this chapter the construction of a compact EEG recorder was shown. Here, 

there are descriptions of all necessary components that are needed to create an 8-channel 

EEG recorder. This device can be useful in the sphere of urgent medicine to measure 

brain activity signals apart from the hospitals, it will help in detecting pathological 

patterns during patient’s transferring. 
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3 METHODS OF EEG SIGNAL PROCESSING 

3.1 Artefacts of EEG and Independent Component Analysis (ICA) 

 

 

The raw EEG signals will likely be contaminated by undesirable non-cerebral 

origin signal called artifacts or noises. These artifacts are caused by biological sources 

and external sources. The existing of the artifacts in EEG signal attenuates the brain 

originating signal which could lead to misinterpreting the brain activity and misdiagnosis 

of the brain disorder. Thus, the first step in analyzing EEG signal is to remove the artifacts 

while enhancing the brain signal. There are several techniques which have been used in 

separating and removing the artifacts, including notch filter and fixed linear filter. Notch 

filter is often used to filter the line interference noise in case the data acquisition system 

of the EEG is unable to cancel out the 50 Hz line frequency. However, the use of filter 

such as a low - pass filter (LPF) and high-pass filter (HPF) are not advisable since linear 

filtering could possibly attenuate the brain signals as well, since the frequency band for 

both artifacts and brain signals could be overlapped. Researchers have developed many 

techniques for artifact removal, including regression-based methods, component-based 

methods and adaptive filtering methods [24].  

Independent component analysis (ICA) is a computer approach for separating 

multivariate signals into additive subcomponents in signal processing. This is 

accomplished by assuming that the subcomponents are non-Gaussian signals that are 

statistically independent. Blind source separation is a specific instance of ICA. The 

"cocktail party problem," which involves listening in on one person's conversation in a 

noisy room, is a frequent example application [25]. 

Linear independent component analysis can be divided into noiseless and noisy 

cases, where noiseless ICA is a special case of noisy ICA. Nonlinear ICA should be 

considered as a separate case [26]. 

The data are represented by the observed random vector 𝒙 = (𝑥1, … , 𝑥𝑚)𝑇 and the 

hidden components as the random vector 𝒔 = (𝑠1, … , 𝑠𝑛)𝑇. The task is to transform the 

observed data 𝒙, using a linear static transformation 𝑾 as 𝒔 = 𝑾𝒙, into a vector of 
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maximally independent components 𝒔 measured by some function 𝐹(𝑠1, … , 𝑠𝑛) of 

independence. 

Linear noiseless ICA 

The components 𝑥𝑖 of the observed random vector 𝒙 = (𝑥1, … , 𝑥𝑚)𝑇 are generated 

as a sum of the independent components 𝑠𝑘, 𝑘 = 1, … , 𝑛: 

𝑥𝑖 = 𝑎𝑖,1𝑠1 + ⋯ + 𝑎𝑖,𝑘𝑠𝑘 + ⋯ + 𝑎𝑖,𝑛𝑠𝑛  

weighted by the mixing weights 𝑎𝑖,𝑘. 

The same generative model can be written in vector form as 𝒙 = ∑ 𝑠𝑘𝒂𝑘
𝑛
𝑘=1 ,  where 

the observed random vector 𝒙 is represented by the basis vectors 𝒂𝑘 = (𝒂1,𝑘, … , 𝒂𝑚,𝑘)
𝑇

. 

The basis vectors 𝒂𝑘 form the columns of the mixing matrix 𝑨 = (𝒂1, … , 𝒂𝑛 ) and the 

generative formula can be written as 𝒙 = 𝑨𝒔, where 𝒔 = (𝑠1, … , 𝑠𝑛)𝑇. 

Given the model and realizations 𝒙1, … , 𝒙𝑁 of the random vector 𝒙, the task is to 

estimate both the mixing matrix 𝑨 and the sources 𝒔. This is done by adaptively 

calculating the 𝒘 vectors and setting up a cost function which either maximizes the non-

gaussianity of the calculated 𝑠𝑘 = 𝒘𝑇𝒙 or minimizes the mutual information. In certain 

circumstances, the cost function may employ a priori knowledge of the probability 

distributions of the sources [26]. 

The original sources 𝒔 can be recovered by multiplying the observed signals 𝒙 with 

the inverse of the mixing matrix 𝑾 = 𝑨−1, also known as the unmixing matrix. Here it 

is assumed that the mixing matrix is square (𝑛 = 𝑚). If the number of basis vectors is 

greater than the dimensionality of the observed vectors, 𝑛 > 𝑚, the task is overcomplete 

but is still solvable with the pseudo inverse [26, 27]. 

Linear noisy ICA 

With the added assumption of zero-mean and uncorrelated Gaussian noise 

𝑛~𝑁(0, 𝑑𝑖𝑎𝑔(𝛴)), the ICA model takes the form 𝒙 = 𝑨𝒔 + 𝑛. 

Identifiability 

The independent components are identifiable up to a permutation and scaling of 

the sources. This identifiability requires that [27]: 

 At most one of the sources 𝑠𝑘 is Gaussian, 
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 The number of observed mixtures, 𝑚, must be at least as large as the number 

of estimated components 𝑛: 𝑚 ≥ 𝑛. It is equivalent to say that the mixing 

matrix 𝑨 must be of full rank for its inverse to exist. 

Independent Component Analysis is one of the component-based methods which 

are extensively used in the pattern analysis and biosignal analysis. ICA separates the 

noises from the EEG signals by decomposing the signals into several independent 

components depending on statistical independence of signals. The advantage of ICA is 

that it does not require an additional channel reference since the algorithm itself does not 

require a priori information. However, ICA needs a visual inspection to identify the 

artifact independent components make it time consuming and subjective [28]. 

Figure 3.1 − Independent Component Analysis for EEG signal 

 

After the elimination of the artifacts, the significant features of the EEG signals 

will be extracted using feature selection techniques. The feature extraction and selection 

techniques are important to identify certain properties that can effectively be used in 

classifying the EEG signals. There are several approaches used in feature extraction 

including time-domain analysis, frequency-domain analysis and time-frequency domain 

analysis. The features such as minimum, maximum, mean, standard deviation and energy 

are commonly used in time-domain analysis. The disadvantages of time-domain approach 
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are high sensitivity of the selected features and the demand for higher storage capabilities 

[24]. 
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3.2 Fast Fourier Transform (FFT) Method 

 

 

Spectral analysis of a signal involves decomposition of the signal into its frequency 

(sinusoidal) components. In other terms, spectral analysis techniques may be used to 

break the initial signal from its subspectral components. Since it is timeshift invariant, the 

Fourier transform is considered the best transition between time and frequency domains 

among spectral analysis techniques. The Fourier transform pairs are written as follows 

[29]: 

𝑋(𝑘) = ∑ 𝑥(𝑛)𝑊𝑁
𝑘𝑛𝑁−1

𝑛=0   

𝑥(𝑘) =
1

𝑁
∑ 𝑋(𝑛)𝑊𝑁

−𝑘𝑛𝑁−1
𝑛=0   

where 𝑊𝑁 = 𝑒−𝑗(2𝜋/𝑁) and 𝑁 = 𝑙𝑒𝑛𝑔𝑡ℎ[𝑥(𝑛)].  

The Fourier transforms of the EEG signals shown in Figure 3.2.  

Figure 3.2 − Spectrum of the EEG signal: (a) Full scale; (b) “Main EEG bands” scale 

(1.5-45 Hz) 

This method employs mathematical means or tools to EEG data analysis. 

Characteristics of the acquired EEG signal to be analyzed are computed by power spectral 

density (PSD) estimation in order to selectively represent the EEG samples signal [30]. 
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3.3 Short-time Fourier Transform (STFT) Method 

 

 

Spectrogram is the most often technique used to analyze signal in time-frequency 

domain. It is done by applying Short Time Fourier Transform (STFT) on a signal then 

mapping it into a two-dimensional function of frequency and time [31].  

To compute the STFT, firstly, the signal is partitioned into several segments of 

short-time signals by shifting the time window with some overlapping. A Hamming 

window technique then applies to maintain the continuity between the beginning and the 

last points in the frames which can prevent leakage effect in the spectrum. Then Discrete 

Fourier Transform (DFT) is computed to each segment to acquire each local frequency 

spectrum. The general STFT equation is given by equation: 

𝑆(𝑚, 𝑘) = ∑ 𝑠(𝑛 + 𝑚𝑁′)𝑤(𝑛)𝑒−𝑗
2𝜋

𝑁
𝑛𝑘𝑁−1

𝑛=0   

where 𝑘 = 0, 1, … , 𝑁 − 1 

𝑆(𝑚, 𝑘) indicates the m-index time-frequency spectrogram. 

𝑁 − window segment length. 

𝑁′ − the shifting step of the time window. 

𝑤(𝑛) − window method of an N -point sequence. 

𝑁′ should be smaller than 𝑁 in order to make overlap between time windows. This 

step is done to comprehensively capture the signal temporal features and changes. The 

spectrogram is defined as the magnitude of 𝑆(𝑚, 𝑘), which is represented as 𝐴(𝑚, 𝑘). 

𝐴(𝑚, 𝑘) =
1

𝑁
|𝑆(𝑚, 𝑘)|2  
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STFT can give different results on spectrogram resolution issues. There exists 

contradiction in selection of time resolution and frequency resolution. Wide window 

length will give better frequency resolution but poor time resolution meanwhile narrower 

window length will give good time resolution but poor frequency resolution. By choosing 

appropriate window length and overlap, a better visualization in spectrogram can be 

obtained [32]. The spectrogram of the EEG signals is shown in Figure 3.3. 

Figure 3.3 − Raw EEG signal and its spectrogram 
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3.4 Wavelet transform  

 

 

Wavelet transform decomposes a signal into a set of functions called wavelets. 

These are obtained from a single prototype wavelet, called mother wavelet, by dilatations 

and contractions, as well as by shifts [33]. 

In a study written by Alfred Haar in 1909, the word "wavelet" was first used. Jean 

Morlet and his team at the Marseille Theoretical Physics Center, operating under Alex 

Grossmann in France, were the first to introduce the wavelet principle in its current 

theoretical form. Wavelet analysis techniques were mostly established by Y. Meyer and 

his collaborators, who also assured that the methods were widely distributed. Stephane 

Mallat's work in 1988 is the source of the key algorithm. Wavelet study has grown in 

popularity since then. Such study is especially involved in the United States, where 

scientists like Ingrid Daubechies, Ronald Coifman, and Victor Wickerhauser are leading 

the way. 

On the basis of the input signal 𝑥(𝑡), WT may be continuous WT (CWT) or discrete 

WT (DWT). The CWT is expressed as 𝐶𝑊𝑇(𝑎, 𝑏) = ∫ 𝑥(𝑡)𝜓𝑎,𝑏
∗ (𝑡)𝑑𝑡, where * denotes 

the complex conjugate, a 𝑎 ∈  𝑅 represents the scale parameter, and 𝑏 ∈ 𝑅 represents 

the translation. The function 𝜓𝑎,𝑏(𝑡) is obtained by scaling the prototype wavelet 𝜓(𝑡) at 

time 𝑎 and scale 𝑏, and is defined as 𝜓𝑎,𝑏(𝑡) =
1

√𝑎
𝜓 (

𝑡−𝑏

𝑎
). 

Generally, in wavelet applications, orthogonal dyadic functions are chosen as the 

mother wavelet. This transform is often discretized in 𝑎 and 𝑏 on a dyadic grid, with the 

time remaining continuous. The commonly used mother wavelet is defined as 𝜓𝑗,𝑘(𝑡) =

2−𝑗/2𝜓(2−𝑗𝑡 − 𝑘), where {𝜓𝑗,𝑘(𝑡), 𝑗, 𝑘 ∈ 𝑍} is for 𝐿2(𝑅) [29]. 
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Wavelet transforms of the EEG signals are shown in Figure 3.4. Also by using 

WT, one can view the shapes of the subspectral components of the EEG signal in time 

domain to be different from those in Fourier transform. 

Figure 3.4 – Wavelet transform 
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3.5 Detrended fluctuation analysis (DFA) 

 

 

The DFA method has become a used technique to determine the fractal scaling 

properties and the detection of long-range correlations in noisy and non-stationary time 

series. Detrended fluctuation analysis is a simple mathematical method but very efficient 

to investigate the power-law of long-term correlations of non-stationary time series. It is 

necessary to obtain the characteristics of the local fluctuations at different time-scales 

[34]. 

Detrended Fluctuation Analysis is a technique for measuring the same power law 

scaling observed through R/S Analysis. It was introduced specifically to address non-

stationaries. Like R/S Analysis, a synthetic walk is created, however a detrending 

operation is performed where a polynomial (originally and usually, linear) is locally fit to 

the walk within each window to identify the trend and then that trend is subsequently 

removed. DFA is typically described as enabling correct estimation of the power law 

scaling (Hurst exponent) of a systems' signal in the presence of (extrinsic) non-

stationaries while eliminating spurious detection of long-range dependence. This 

purported protection against non-stationaries effects is attributed to the “detrending” 

operation performed and is thought to provide an important distinction from spectral or 

other approaches. Empirically, it has been found that when estimating scaling in well-

defined test cases, such as fractional Brownian noise, DFA performs well compared to 

other heuristic techniques, including R/S Analysis and is competitive, in the limit of large 

window sizes. The combination of DFA being specifically designed to seamlessly deal 

with non-stationaries (intent) and its relatively good performance on simple test cases 

(observation) has solidified the opinion that DFA is effectively a turn-key approach: one 

can simply feed data in and obtain a meaningful parameterization as embodied by the 

scaling parameter (Hurst exponent). As a result, DFA is a popular approach and is 

specifically chosen if non-stationaries are either suspected or known to exist [35]. 

DFA algorithm consists of two steps: 
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1) the data series 𝑥(𝑘) is shifted by the mean  and integrated (cumulatively 

summed), 𝑦(𝑘) = ∑ (𝑥(𝑖) − 〈𝑥〉)𝑘
𝑖=1 , then segmented into windows of various 

sizes ∆𝑛; 

2) in each segmentation the integrated data is locally fit to a polynomial 𝑦∆𝑛(𝑘) 

(originally and typically, linear) and the mean-squared residual 𝐹(𝑛) 

(“fluctuations”) is found: 𝐹(𝑛) = √
1

𝑁
∑ [𝑦(𝑘) − 𝑦𝑛(𝑘)]2𝑁

𝑘=1 , where 𝑁 is the 

total number of data points. Note that 𝐹2(𝑛) can be viewed as the average of 

the summed squares of the residual found in the windows. The 𝑛-th order 

polynomial regressor in the DFA family is typically denoted as DFAn, with 

unlabeled DFA often referring to DFA. 

This procedure tests for self-similarity (fractal properties) as it performs a measure 

(the dispersion of the residual of integrated fluctuations about a regressor) at different 

resolutions (window sizes). If power law scaling is present then a double logarithmic 

(“log-log”) plot of 𝐹(𝑛) versus 𝑛, often termed the fluctuation plot, is expected to be 

linear and a scaling exponent α can be estimated from a least-squares fit. This scaling 

exponent 𝛼 is a measure of correlation in the noise and is simply an estimate of the Hurst 

exponent H. 

The standard view, following the original reasoning, is that by removing local 

polynomials non-stationaries can be “detrended” [35]. 

The scaling exponent 𝛼 is calculated as the slope of a straight line fit to the log-log 

graph of 𝑛 against 𝐹(𝑛) using least-squares. The Hurst exponent has been generalized 

into this exponent. Because the expected displacement in an uncorrelated random walk 

of length 𝑁 grows like √𝑁, an exponent of 
1

2
 would correspond to uncorrelated white 
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noise. The outcome is fractional Gaussian noise when the exponent is between 0 and 1, 

with the exact value providing information about the series self-correlations [36]: 

 𝛼 < 1/2: anti-correlated 

 𝛼 ≈ 1/2: uncorrelated, white noise 

 𝛼 > 1/2: correlated 

 𝛼 ≈ 1: 1/f-noise, pink noise 

 𝛼 > 1: non-stationary, unbounded 

 𝛼 ≈ 3/2: Brownian noise 

 

Figure 3.5 – Assessment of scaling exponents of time series 𝑥𝑖 by detrended fluctuation 

analysis (DFA). (A,D,G) Examples of time series. (B,E,H) Integrated series (blue solid 

lines) of the time series shown in the left hand panel. (C,F,I) Log-log plot of  𝐹(𝑛) vs. 𝑛. 

The scaling exponent 𝛼 is estimated by the slope of the linear fit (red dashed lines) [37] 
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3.5.1 Detrending moving average (DMA) algorithm 

 

 

According to the DFA, the time series is first divided in boxes of equal lengths, 

then trends are estimated as least-squares polynomial fitting of different orders m in each 

non-overlapping and equally spaced box of length 𝑛. The DMA algorithm has been 

proposed as an alternative technique to quantify long-range correlations. 

The main ingredient of the DMA algorithm is the generalized variance 𝜎𝐷𝑀𝐴
2 (𝑛) of 

the time series {𝑦(𝑖)}𝑖=1
𝑁  with respect to the trend {�̃�𝑛(𝑖)} at scale 𝑛: 

 

                                    𝜎𝐷𝑀𝐴
2 (𝑛) =

1

𝑁−𝑛+1
∑ [𝑦(𝑖) − �̃�𝑛(𝑖)]𝑖

2
,                                (3.1) 

 

where �̃�𝑛(𝑖) is defined as a time-dependent average function of 𝑦(𝑖). In the simplest 

case, called backward DMA, �̃�𝑛(𝑖) can be estimated as the ordinary moving average: 

�̃�𝑛(𝑖) =
1

𝑛
∑ 𝑦(𝑖 − 𝑘)𝑛−1

𝑘=0 , and the range of the summation in (3.1) is from 𝑛 to 𝑁 [38].  

For random walk-type processes with diffusive behavior, such as the fractional 

Brownian motion, the power-law increase of the root-mean square deviation 𝜎𝐷𝑀𝐴(𝑛) 

with the moving average window size 𝑛: 𝜎𝐷𝑀𝐴(𝑛)~𝑛𝛼, provides an estimate of the 

scaling exponent 𝛼 and thus of the Hurst exponent H. For long-range correlated time 

series {𝑥(𝑖)}𝑖=1
𝑁  with non-diffusive behavior, such as fractional Gaussian noise, the 

integrated series (cumulative sum), 𝑦(𝑖) = ∑ 𝑥(𝑗)𝑖
𝑗=1 , as a sample path of a random walk 

driven by {𝑥(𝑖)} is investigated and quantified in terms of the scaling exponent 𝛼. 
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Figure 3.6 – Graph of DMA analysis of EEG signal in “log-log” scale 
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3.6 Conclusions for Chapter 3 

 

 

In this chapter main math methods of EEG analysis were shown in combination 

with practical examples that were visualized using Python programming language. Every 

method helps to extract special patterns from the raw EEG signal: it can be spectral 

powers, artefacts or pathological elements in frequency bands, some similarities during 

all records, etc.  

 For instance, spectral analysis (done by the Fast Fourier Transform (FFT)) of the 

signal involves the decomposition of the signal into its frequency (sinusoidal) 

components. In other words, the output signal can be divided into its subspectral 

components using spectral analysis methods. Then, spectrogram is the most popular type 

of analysis used to study the signal in the frequency-time domain. This is done by 

applying a Short-Time Fourier Transform (STFT) to the signal and then mapping it to a 

two-dimensional frequency and time function.  Wavelet analysis is useful in detecting 

special patterns (called wavelets) in the EEG signals. DMA/DFA is a simple 

mathematical method, but very effective for studying the law of long-term correlations of 

nonstationary time series. 
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4 ANALYSIS OF BRAIN REACTION TO EMOTIONAL FACES 

 

 

Facial expressions are considered to be one of the most complex and evolutionary-

important visual stimuli, endowed with a wide range of characteristics and attributes for 

the brain to process. According to recent discoveries, our ability to detect, recognize and 

evaluate facial expression is an integrative product of experience and inherited 

predisposition, which both shape perception [39]. 

Our current study aimed to discover the short-term alterations in the neural 

mechanisms mediating the perception of emotionally neutral faces, caused by the 

emotional background of either positive or negative valence. To do that, EEG-data was 

collected during the presentation of the relevant visual stimuli and was further analyzed 

with Power Spectrum Density (PSD) to discover the strength of activation and Detrending 

Moving Average (DMA) method to discover long-range spatiotemporal correlations in 

EEG. 

 

 

4.1 Subjects and data collection 

 

 

48 healthy volunteer students of Taras Shevchenko National University of Kyiv 

(29 females) aged 18-24 (Mean age = 21, SD=1,76) participated in the study. The 

participants were enrolled in the study based on the following exclusion criteria: addiction 

to psychoactive substances, clinical manifestations of mental, cognitive, or neurological 

impairments, use of psychiatric medications, visual system lesions (impaired acuity, color 

blindness). 

The image demonstration procedure and recording of the cerebral cortex's induced 

activity were performed using the software and hardware complex "Neurocom" (KhAI 

Medica, Kharkiv, Ukraine) according to a specially created template. Electrodes were 

applied to the scalp following the international "10-20" system. 
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4.2 Experiment design 

 

 

The EEG data was recorded during the sequential demonstration of four 3-minute-

long image series, where a single stimulus was on-screen for 5 sec. The experimental 

design was organized so that each series containing (1) neutral stimuli was preceded by 

(2) positive and (3) negative images. Examples of images shown on Figure 4.1.  

Recordings were also made during the resting state with both closed and open eyes. 

Figure 4.1 – Examples of images for stimulating: (1) – neutral, (2) – positive, (3) – 

negative 

 

Stimuli were selected from the International Affective Pictures System (IAPS) 

based on their average emotional valence values. Therefore, neutral emotional faces (M 

= 4.22, SD = 1.64 to M = 5.84, SD = 1.62) were demonstrated among positive (M = 6.94, 

SD = 1.42 to M = 8.03, SD = 1.13) and negative (M = 4.22, SD = 1.64 to M = 5.84, SD 

= 1.62) emotional faces. 

In order to assess the induced changes of the brain’s electrical activity, the EEG-

bands were subdivided in a following way: θ1 [3.5, 5.8], θ2 [5.9, 7.4], α1 [7.5, 9.4], α2 

[9.5, 10.7], α3 [10.8, 13.5], β1 [13.6, 25], β2 [25.1, 40] Hz. The following analysis 

methods were applied to each EEG band separately. 
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4.3 Methods used for analysis of brain activity 

4.3.1 Power spectral density estimation 

 

 

EEG signals for all types of visual stimuli were analyzed using the power spectral 

density (PSD).  

First, Fast Fourier Transform was used to obtain the spectrum, which was squared 

to obtain the estimate of PSD. The average powers of EEG were calculated for all 

channels in the abovementioned frequency bands. Normalized powers for each band were 

obtained by summarizing powers in particular frequency ranges according to selected for 

the study. These sums of powers were divided by the total power of the whole signal, so, 

finally, normalized powers were obtained. 

 

 

4.3.2 Detrended moving average analysis 

 

 

The Detrending Moving Average (DMA) algorithm has been widely used in its 

several variants for characterizing long-range correlations of random signals and sets 

(one-dimensional sequences or high- dimensional arrays) either in time or spatial 

domains. 

To get the DMA of EEG components in particular frequency range, first the 4th 

order Butterworth bandpass filter was used, with the passband matched to the required 

frequency range. Then, for each filtered signal the analytic signal was obtained by the 

Hilbert Transform, to get the envelope as an absolute value of the analytic signal [40]. 

Further, the envelope was used to perform the DMA analysis. 

By the DMA analysis long-range correlation properties of EEG signals over time 

were found. Scaling exponents, estimated from DMA analysis log-log plots, were 

calculated and were shown on the head’s map for all necessary channels and frequency 

bands. 
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4.3.3 Statistical significance evaluation 

 

 

Statistically significant differences in PSD and scaling exponents distributions 

were obtained for trials during perception of neutral faces preceded by positive (n1) and 

negative (n2) images. 

For PSD values in every frequency range, the Wilcoxon signed-rank test (testing 

two generalized n1/n2 trials without gender separation) and Mann-Whitney rank test 

(testing female/male groups for the same set of trails) were used to identify the channels 

for which the median values of the attributes were significantly different for both trials 

(n1, n2). The difference between medians was then determined for these channels, and its 

map throughout the skull surface was examined. The visualization was the following: if 

the difference between medians was greater than 0, “+1” was assigned for the 

corresponding EEG channel, if the difference was less than 0, “-1” was assigned, if there 

were not any significant differences “0” was assigned. As a result, the map across the 

head surface was obtained. 

The statistical tests for DMA scaling exponents were conducted in the same way. 

If the median value of the scaling exponent for n1 trial is statistically different from that 

in n2 trial in some channel, it is used for further analysis. 

As all frequency bands (θ1, θ2, α1, α2, α3, β1, β2) that were analyzed in this work 

are derived from the same EEG recording, p-value correction was applied. To account for 

the multiple comparisons using step down method using Sidak adjustments [41] was used. 

 

 

 4.4 Experiment results 

 

 

For visualization purposes, the head heatmaps were used. First, the values were 

normalized between minimal and maximum values, so differences in color showed main 

features of signals clearly. 
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As a result, PSDs were visualized as a map on the schematic figure of the head 

used to make the statistical significance evaluation that showed that differences in powers 

for our signals were not accidental but caused by non-identical types of visual impact. 

These data were shown in the heads maps as well. 

The analysis of power spectrum density alterations revealed neurodynamics 

elicited by visual stimuli perception (Figure 4.2). However, the comparison of PSD values 

obtained during the demonstration of the first and second neutral series showed the 

formation of a well-pronounced activation focus in the left parietal region of the cortex 

(P3) in θ2 subband while processing neutral images preceded by negative stimuli (Figure 

4.3). This evidence allows us to assume that the negative emotional context enhances 

verbalization and association-related cognitive processes, while positive background 

increases memory-related neurodynamics. 

Figure 4.2 − Topographic distribution of PSD values during perception of different 

stimulus 
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 The comparison made between the male and female (Figure 4.3) experimental 

groups demonstrated that in men both positive and negative emotional backgrounds 

significantly increased activation processes within the prefrontal and frontal cortical 

regions in the β2 subband, which marked the increase in internal attention, verbalization, 

and emotional regulation mechanisms [42]. At the same time, in the β1 subband, a 

pronounced generalization of enhanced activation among the majority of cortical regions 

in the male group reflected the increase in visual spatial attention-related processes. 

Figure 4.3 − Regions of statistically significant differences of PSD values 

 

Results obtained using the DMA algorithm showed statistically significant 

differences in left temporal and frontal areas of the cortex, which were characterized by 

a more pronounced activation during the perception of neutral faces in the context formed 

by positive images (Figure 4.4 and Figure 4.5). This might mark the enhancement of inner 

attention and positive emotional experience trail [43]. 
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Figure 4.4 − Topographic distribution of DMA alpha values during perception of 

different stimulus 

 

Figure 4.5 − Regions of statistically significant differences of DMA alpha values 
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Intergroup analysis demonstrated that the male group had significantly increased 

activation levels in occipito-parietal cortical regions within the β1 EEG-subband when 

processing the neutral faces in the presence of positive background, which once again 

highlights the increased activity of the cognitive beta-network. A similar picture in the β1 

subband was observed during the analysis of the neutral image processing modulated by 

negative emotional context. However, in women, a wide network of connections covering 

temporal, central, and frontal regions was detected in the α3 subband, which might be 

explained by specific working memory mechanisms and lack of downstream cortical 

control and suppressive function of attention upon mental imagery and emotions [44]. 

 

 

4.5 Conclusions for Chapter 4 

 

 

In this chapter real experimental EEG data were analyzed by using special methods 

such as Power spectral density (PSD) estimation, Detrended Moving Average (DMA) 

analysis and Statistical significance evaluation. 

As a result, the analysis of the EEG-based brain neurodynamics in the process of 

perception of human faces of different modalities revealed the sex-related manifestations 

of the emotional valence influence on neutral face perception. The main differences 

consisted in the activation of two major cognitive networks of the brain:  emotional or 

theta-network and cognitive beta-network. Thus, whereas the data obtained from PSD 

values distribution is suitable for evaluating alterations in cortical activation and 

inhibition processes, the DMA method is able to provide information about the cortical 

networks’ functioning stability. 
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CONCLUSIONS 

 

 

The study of electrical potentials in the brain holds a significant role in the 

understanding of brain function. Electroencephalography is a branch of electrophysiology 

that studies the patterns of the total electrical activity of the brain removed from the 

surface of the skin of the scalp, as well as the method of recording such potentials. Also, 

EEG is a non-invasive method for studying the functional state of the brain by registering 

its bioelectric activity. 

Electroencephalography measures voltage fluctuations resulting from ion current 

in neurons in the brain. Clinically, an electroencephalogram is a graphic representation 

of the spontaneous electrical activity of the brain over a period of time, recorded from 

multiple electrodes on the brain or the surface of the scalp. EEG is a sensitive method of 

investigation, it reflects the slightest changes in the function of the cerebral cortex and 

deep brain structures in the time dimension, providing millisecond time resolution that is 

not available to other methods of studying brain activity. 

Electroencephalography provides a qualitative and quantitative analysis of the 

functional state of the brain and its reactions to the action of stimuli. EEG recording is 

widely used in diagnostic and therapeutic work (especially often in epilepsy), in 

anesthesiology, as well as in the study of brain activity associated with the 

implementation of functions such as perception, memory, adaptation, etc. 

On the electroencephalograms, the rhythmicity of the electrical activity of the brain 

is noticeable. There are a number of rhythms, denoted by the letters of the Greek alphabet. 

Electroencephalography is also used to identify event — related potentials-brain 

responses that are the direct result of a particular sensation, cognitive, or motor event. 

The electrical function in the human brain is the subject of the work. Methods of 

studying electroencephalograms during the operation of different stimuli are the focus of 

the project. The aim is to learn more about the origin of brain electrical impulses, as well 

as the methods for registering and analyzing them, in order to better understand how the 

brain responds to visual emotional stimuli.  
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Initially the EEG records were made for 48 healthy volunteers whose EEG 

recording was performed during seeing emotionally charged visual stimulation. The 

International Affective Pictures System (IAPS) was used to select stimuli depending on 

their average emotional valence values. The EEG-bands is subdivided in the following 

way to measure the mediated differences in brain electrical activity: θ1 [3.5, 5.8], θ2 [5.9, 

7.4], α1 [7.5, 9.4], α2 [9.5, 10.7], α3 [10.8, 13.5], β1 [13.6, 25], β2 [25.1, 40] Hz.  

As a consequence, PSDs is visualized as a map on the graphical figure of the head 

used to make the statistical significance examination, showing that differences in signal 

powers were induced by non-identical modes of visual influence rather than being an 

accident. The heads charts also included this info.  

The analysis of differences in power spectrum density revealed that visual stimuli 

activated neurodynamics. When comparing PSD values obtained during the first and 

second neutral sequence presentations, it was discovered that when processing neutral 

images accompanied by negative stimulation, a well-defined arousal focus emerged in 

the left parietal area of the cortex in the θ2 subband. This research suggests that a negative 

emotional context improves verbalization and association-related cognitive functions, 

while a favorable emotional context improves memory-related neurodynamics.  

Both positive and negative emotional backgrounds substantially enhanced 

activation processes within the prefrontal and frontal cortical regions in the β2 subband 

in males, indicating an improvement in internal focus, verbalization, and emotional 

control mechanisms. Simultaneously, in the β1 subband, the male community showed a 

marked generalization of increased activity across the plurality of cortical areas, 

indicating an improvement in perceptual spatial attention-related processes.  

In the presence of positive images, the DMA algorithm showed statistically 

significant differences in the left temporal and frontal regions of the cortex, which were 

characterized by more pronounced activation during the detection of neutral faces. This 

may be the beginning of a new journey toward greater inner concentration and positive 

interpersonal interactions. 

When processing neutral faces in the midst of a positive context, intergroup 

research revealed that the male group had slightly higher activation levels in occipito-
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parietal cortical regions within the β1 EEG-subband, highlighting the enhanced 

involvement of the cognitive beta-network once again. During the study of neutral image 

processing modulated by negative emotional meaning, a related picture was found in the 

β1 subband. However, in the α3 subband, a large network of associations spanning 

temporal, middle, and frontal regions was observed in women, which may be clarified by 

complex working memory processes and a loss of downstream prefrontal regulation and 

suppressive role of concentration on mental imagery and emotions. 

The sex-related manifestations of the emotional valence effect on neutral face 

perception were discovered by analyzing EEG-based brain neurodynamics in the process 

of perception of human faces of various modalities. The stimulation of two large cognitive 

networks in the brain: mental or theta-network and cognitive beta-network, was the key 

distinction. Thus, although the PSD value distribution evidence is useful for assessing 

changes in cortical stimulation and inhibition mechanisms, the DMA approach may 

provide knowledge about the cortical networks' working stability. 
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