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Abstract—Machine learning is a type of artificial intelligence 

where computers solve issues by considering examples of real-

world data.  Within machine learning, there are various types of 

techniques or tasks such as supervised, unsupervised, 

reinforcement, and many hyperparameters have to be tuned to 

have high accuracy especially in image classification. The batch 

size refers to the total number of images required to train a single 

reverse and forward pass. It is one of the most essential 

hyperparameters. In our paper, we have studied the supervised 

task with image classification by changing batch size with epoch. 

The characterization effect of increasing the batch size on 

training time and how this relationship varies with the training 

model have been studied, which leads to extremely large 

variation between them. According to our results, a larger batch 

size does not always result in high accuracy. 

Keywords—machine learning, supervised task, image 

classification, batch size 

I. INTRODUCTION  

Machine learning is creating rapid and fascinating 
developments across all levels of society. It is the engine 
behind the recent technological breakthroughs in industries 
such as self-driving cars. It enables more accurate and rapid 
text translation into hundreds of languages. It powers the 
artificial intelligence assistants we might find in our home. 
Also, it has the potential to improve worker safety and 
accelerate the discovery of new medications.  

Although machine learning can help in many aspects, we 
may face a challenging task in machine learning, which is the 
detection of an object. Solving this in the usual manner would 
include paying close attention to features such as lighting 
conditions, different types of objects, and numerous poses the 
object may be in. The problem solver in machine learning 
abstracts away a part of their solution as a component known 
as a model, and then applies a model training technique in 
order to modify model to real-world data. The end result is a 
trained model that can predict outcomes that are not included 
in the data set used to train it. The main objective is to utilize a 
model generated by a training algorithm to make predictions or 
find patterns in data that can be utilized to address a problem 
[1]. 

Many hyperparameters need to be adjusted to appropriately 
train our model to classify images; the model’s performance 
will be affected by these hyperparameters. The batch size is 
one of the most important hyperparameters to be tuned, in each 
epoch, this is the total number of images utilized in the 
network’s training. The model may take too long to achieve 
convergence if the hyperparameter is set too high. However, if 
it’s set too low, the model will bounce without achieving the 
desired performance. The effect of batch size on image 
classification performance has been studied. We showed that 
how batch size affects model quality when we have used 
different batch sizes [2]. 

 

II. MACHINE LEARNING TASKS 
 

 
Fig. 1. Machine learning tasks. 

All model training techniques, as well as the model itself, 
take data as input. Their outputs might differ considerably and 
depending on the task they must achieve, they are divided into 
several groups. Often, when designing a machine learning task 
we consider the type of data required to train a model. A 
machine learning task is frequently determined by the presence 
or absence of labeling in our data. The main three tasks in 
machine learning are supervised, unsupervised, and 
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reinforcement. In our study, we have used a supervised task 
since we use labeled data for classification images. The 
supervised task completes its task using labeled data that it has 
obtained in advance in order to create a prediction model. Fig. 
1 shows the tasks of machine learning [3]. 

A. Supervised Learning 

A label or output value is assigned to each training sample 
in the dataset. The algorithm learns to anticipate output values 
or labels [4]. 

B. Unsupervised Learning 

The training data doesn’t have any labels. A machine 
learning algorithm tries to figure out what the data’s underlying 
patterns or distributions are. This implies that we don’t have to 
provide any labels or solutions to the model while it’s being 
trained [1]. 

C. Reinfrocement Learning 

The algorithm determines the best actions to do in a given 
situation in order to maximize a reward while achieving a 
specified goal [5]. 

III. DIFFERENCE BETWEEN BATCH AND EPOCH 

A. Batch Size 

The batch size is a gradient descent hyperparameter that 
determines how many data points must be analyzed before the 
internal model parameters are updated. It is an important 
hyperparameter that determines the learning algorithm’s 
dynamics. It controls the accuracy with which the error 
gradient is estimated when we train our model. The predictions 
are compared to the predicted output variables at the end of the 
batch, and an error is computed. Based on this error, the 
algorithm is used to enhance the model. The training dataset 
can be divided into many batches. The batch size has an 
influence on how fast a model learns and how stable the 
learning process is [2, 6]. 

B. Epoch 

In gradient descent, the number of epochs is a 
hyperparameter that specifies how many complete passes of 
the training dataset are performed. Since one epoch is too large 
to provide to the computer all at once, we divide it into several 
smaller batches. We have used several epochs because of the 
restricted dataset, and we optimized the learning using gradient 
descent, which is an iterative process. As a result, a single pass 
or epoch is insufficient to update the weights. 

The internal model parameters can be improved for each 

sample in the training dataset once every epoch. An epoch has 

one or more batches [7]. 

C. The Relation between Batch Size and Epoch  

We have trained a dataset with 3000 images and we have 
chosen different batch size and epochs. Equation 1 shows the 
relationship between batch size and epoch [2, 7]. 
 

      
                 

           
                        (1) 

 

IV. IMAGE CLASSIFICATION MODEL 

Image classification tasks in machine learning have three 
major components: the machine learning model, the model 
training algorithm, and the model inference algorithm. 

A model is a highly general program that has been made 
particular by data in order to be trained. It utilized to solve 
different problems. Model training algorithms analyze the 
current iteration to determine what improvements might be 
done to bring the model closer to the desired goal. Those 
modifications in our model are performed by changing the 
hyperparameters, and the iteration process is continued until 
the model meets our criteria. Then, the trained model is utilized 
to make predictions. Our goal was to predict the image and 
feed it into the model. We accomplished this by providing the 
model with labeled data and running a supervised machine 
learning task with different batch sizes and epochs [8, 9,  10]. 

In our study, we have fed 3000 training data into the model, 
and updated the model parameters to reduce loss and improve 
image classification accuracy. We continued to cycle through 
these steps until we reached our destination, which is 
determined by the batch size and the number of training cycles. 
Then, using different batch sizes, we estimated the loss and 
accuracy function, which controls the accuracy of the error 
gradient estimate while training neural networks [11, 12].  

A. Model Training 

The dataset is randomly divided in the first step of model 
training. This enables us to hide specific data during training in 
order to test our model before we put it into production.  We 
get two sets of data: test dataset and training dataset when we 
divide our dataset. The model has been trained using the 
training dataset, while the test dataset contain data that was 
kept hidden from the model during training, and we utilized 
this to see how effectively our model generalizes to new data. 
The percentage of labeled dataset is shown in Fig.2. 

    Training Dataset       Testing Dataset

75% 25%

 
 

Fig. 2. Percentage of labeled dataset. 

 

Also, we are splitting our data into training and test data 
prior to beginning model training because if we utilize all of 
the data acquired during training, we would not have any data 
with which to test the model during the model evaluation phase 
[13]. 

B. Loss Crossentropy 

The crossentropy loss function is utilized in image 
classification tasks. Loss functions measure how far an 
estimated value is from its true value, Fig. 3. shows the loss 
crossentropy function [14, 1]. 

The loss of an image classification is calculated using the 
crossentropy loss function, which computes the following sum, 
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if the divergence of the predicted probability from the actual 
label increases then the cross-entropy increases. The equation 
of loss function is: 

   ∑      (  (  ))  (    )    (    (  ))
 
       (2) 

 
 

 

Input Data

Loss Crossentropy

Supervised Image Classification 

Model

Activation SoftMax

 
Fig. 3.  Loss crossentropy function. 

Where    is the value of true label and   (  )  is the 
predicted value. Using crossentropy, the model learns to give 
the right classification a high probability and the other 
classification a low probability. 

The SoftMax in Fig3 represents the activation function that 
is utilized with the crossentropy loss function. The model’s 
output just has to be positive in order for the logarithm of every 
output value to exist. However, the fundamental advantage of 
this loss function is that it can be used to compare the 
probabilities. The SoftMax activation rescales the model output 
to get the desired properties [15]. 

V. RESULTS AND CONCLUSIONS 

The model parameters that set or configure the training 
algorithm have been modified to analyze how the model 
performs. We have changed the batch size and epoch, which 
are important hyperparameters that determine the learning 
algorithm’s dynamics. The model’s distance from the goal has 
been represented using the loss function. Also, we have utilized 
model accuracy as an evaluation metric, which is frequently 
used, where the percentage of correct predictions made by a 
model is referred to as its accuracy. For both the train and test 
sets, all plots are created that indicate the accuracy and loss 
over the training epochs [16, 17]. 

When the batch size is 100, the execution time and model 
loss are 30 minutes and 1.1336, respectively, and model 
accuracy is 0.6932 in Fig. 4. As seen in Fig.4, the training loss 
decreases after each training, whereas the test loss decreases to 
a point and then begins to increase. This result is in overfitting. 
Overfiting causes the model to become more specialized to 
training data, reducing its ability to generalize to new data, 

leading to an increase in generalization error.  Our model error 
is measured by the model loss over time; the lower our loss, the 
better our model performance will be. In Fig. 5 we can observe 
the learning process’s behavior, despite its ups and downs, the 
model’s loss decreases over time after the second training, 
showing that it is learning. When the batch size is 200, the 
execution time is 14 minutes, the model loss is 0.9541, and the 
model accuracy is 0.6855 in Fig.5. We see also that the 
model’s accuracy is increasing over time, indicating that the 
model is improving as it learns. The more accurate our model, 
the better it is.   

In Fig. 6 the execution time is 10 minutes,  the model loss 
is 0.9440, and the model accuracy is 0.6702 when the batch 
size is 300.   While in Fig. 7 the execution  time is 6 minutes, 
the model loss is 0.9817, and the model accuracy is 0.6512 
when the batch size is 428. We can say that the curves have a 
good match in loss, because the training loss declines to a point 
of stability and the test loss decreases to a point of stability 
with a small gap. We can observe that the model properly 
converged in the loss. 

      
 

Fig. 4. Model accuracy and loss with 100 batch-sizes. 
 

     
 

Fig. 5.  Model accuracy and loss with 200 batch-sizes. 

 
Fig. 6.  Model accuracy and loss with 300 batch-sizes. 
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The Figures show that the small batch size resulted in 
improved  image  classification accuracy,  but  it  takes more 
time to run and the loss function is higher but not in all cases. 
As seen in Fig 6, the loss function decreased and then 
increased again in Fig 7 and Fig 8. Where in Fig.8 the 
execution time is 5 minutes, the model loss after the second 
training  is 1.05, and the model accuracy is 0.6269 when the 
batch size is 500. 

We consider accuracy, recall, and F1 score as an indicator 
of classifier performance in Table 1. 

TABLE I. PRECISION, RECALL, F1 SCORE PARAMETERS WITH DIFFERENT 

SIZES OF BATCH 

Batch 
Sizes 

Precision Recall F1 score 

100 0.6973 0.6732 0.6850 

200 0.6782 0.6893 0.6837 

300 0.6428 0.6613 0.6519 

428 0.6265 0.6092 0.6177 

500 0.5974 0.5730 0.5849 

 

     
 

Fig. 7.  Model accuracy and loss with 428 batch-sizes 

 

      
 

Fig. 8.  Model accuracy and loss with 500 batch-sizes. 

 
The Figures show that a large batch  size  results in  lower  

accuracy  in  image classification, but it takes less time to 
execute. Whereas the loss function is low, but it sometimes 
becomes high and then returns to a low value after a few 
trainings, this indicating that our model is learning. 

Furthermore, the Figures reveal that small batches result in 
slower learning and increased variance in classification 
accuracy. Larger batch sizes speed up the learning process, but 
the latter stages provide a more stable model, as seen by 
decreased variance in classification accuracy. Our goal was to 

find model parameters that would minimize the model’s error 
on the training dataset while increasing accuracy. We 
concluded that when the number of epochs increases, the 
weight in the neural network is modified more, resulting in 
improved learning especially after a few trainings.  

We can modify more hyperparameters for different models 
in the future and analyze their effects on these models, not just 
for image classification. 
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