
ar
X

iv
:2

21
0.

00
24

9v
1 

 [
m

at
h.

A
C

] 
 1

 O
ct

 2
02

2

SEMI r-IDEALS OF COMMUTATIVE RINGS

HANI A. KHASHAN AND ECE YETKIN CELIKEL

Abstract. For commutative rings with identity, we introduce and study the
concept of semi r-ideals which is a kind of generalization of both r-ideals and
semiprime ideals. A proper ideal I of a commutative ring R is called semi
r-ideal if whenever a2 ∈ I and AnnR(a) = 0, then a ∈ I. Several properties
and characterizations of this class of ideals are determined. In particular, we
investigate semi r-ideal under various contexts of constructions such as direct
products, localizations, homomorphic images, idealizations and amalagama-
tions rings. We extend semi r-ideals of rings to semi r-submodules of modules
and clarify some of their properties. Moreover, we define submodules satisfying
the D-annihilator condition and justify when they are semi r-submodules.

1. Introduction

Throughout, all rings are supposed to be commutative with identity and all
modules are unital. Let R be a ring and M an R-module. We recall that a proper
ideal I of a R is called semiprime if whenever a ∈ R such that a2 ∈ I, then a ∈ I.
It is well-known that I is semiprime in R if and only if I is a radical ideal, that is
I =

√
I where

√
I = {x ∈ R : xm ∈ I for some m ∈ Z}. In 2015, R. Mohamadian

[15] introduced the concept of r-ideals of commutative rings. A proper ideal I of a
ring R is called an r-ideal (resp. pr -ideal) if whenever a, b ∈ R such that ab ∈ I and

AnnR(a) = 0, then b ∈ I (resp. b ∈
√
I) where AnnR(a) = {b ∈ R : ab = 0}. Prime

and r-ideals are not comparable in general; but it is verified that every maximal
r-ideal in a ring is a prime ideal, while every minimal prime ideal is an r -ideal.
In 2017, Tekir, Koc and Oral [18] introduced the concept of n-ideals as a special
kind of r-ideals by considering the set of nilpotent elements instead of zero divisors.
Recently, in [20], Celikel and Khashan generalized n-ideals by defining and studying
the class of semi n-ideals. A proper ideal I of R is called a semi n-ideal if for a ∈ R,
a2 ∈ I and a /∈

√
0 imply a ∈ I. Later, some other generalizations of semiprime,

n-ideals and r-ideals have been introduced, see for example,[4], [10]-[12] and [19].
Motivated by semiprime ideals and semi n-ideals, we define a proper ideal I of a

ring R to be a semi r-ideal if whenever a ∈ R such that a2 ∈ I and AnnR(a) = 0,
then a ∈ I. It is clear that the class of semi r-ideals is a generalization of that of
semiprime and r-ideals. We start section 2 by giving some examples (see Example
1) to show that this generalization is proper. Next, we determine several equivalent
characterizations of semi r-ideals (see Theorem 1). Among many other results
in this paper, we characterize rings in which every ideal is a semi r-ideal (see
Theorem 3). We investigate semi r-ideals under various contexts of constructions
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such as homomorphic images, quotient rings, localizations and polynomial rings
(see Propositions 1 and 3, Corollary 3, Theorem 4). Moreover, we discuss and
characterize semi r-ideals of cartesian product of rings (see Proposition 5, Theorems
5 and 6, Corollaries 4 and 5). Let R and S be two rings, J be an ideal of S and
f : R → S be a ring homomorphism. We study some forms of semi r-ideals of the
amalgamation ring R ⋊⋉f J of R with S along J with respect to f (see Theorems 7
and 8).

LetM be an R-module, N be a submodule ofM and I be an ideal of R. As usual,
we will use the notations (N :R M) and (N :M I) for the sets {r ∈ R : rm ∈ N for
all m ∈ M} and {m ∈ M : Im ⊆ N}, respectively. In particular, the annihilator
of an element m ∈ M (resp. r ∈ R) denoted by AnnR(m) (resp. AnnM (r)), is
(0 :R m) (resp. (0 :M r). We recall that the torsion subgroup T (M) of an R-module
M is defined as T (M) = {m ∈ M : there exists 0 6= r ∈ R such that rm = 0}. It
is easy to see that T (M) is a submodule of M , called the torsion submodule. A
module is torsion (resp. torsion-free) if T (M) = M (resp. T (M) = {0}).

In 2009, the concept of semiprime submodules is presented. A proper submodule
is said to be semiprime if whenever r ∈ R, m ∈ M and r2m ∈ N , then rm ∈ N,
[16]. Afterwards, the notions of r-submodule and sr-submodules are introduced
and studied in [13]. A proper submodule N is called an r-submodule (resp. sr-
submodule) of M if whenever rm ∈ N and AnnM (r) = 0M (resp. AnnR(m) = 0),
then m ∈ N (resp. r ∈ (N :R M)). As a new generalization of above structures,
in Section 3, we define a proper submodule N of M to be a semi r-submodule if
whenever r ∈ R, m ∈ M with r2m ∈ N , AnnM (r) = 0M and AnnR(m) = 0, then
rm ∈ N . We illustrate (see Example 4) that this generalization of r-submodules is
proper. However, it is observed that semi r-submodules coincides with semiprime
submodules in any torsion-free module. Then, we introduce a new condition for
submodules, namely, D-annihilator condition as follows: A proper submodule N of
an R-module M is said to satisfy the D-annihilator condition if whenever K is a
submodule ofM and r ∈ R such that rK ⊆ N and AnnM (r) = 0M , then eitherK ⊆
N or K ∩ T (M) = {0M}. By using this condition, we totally characterize semi r-
submodules of finitely generated faithful multiplication R-modules (see Proposition
8, Theorems 9 and 10, Corollary 6).

We recall that the idealization of an R-module M denoted by R(+)M , is the
commutative ring R×M with coordinate-wise addition and multiplication defined
as (r1,m1)(r2,m2) = (r1r2, r1m2 + r2m1). For an ideal I of R and a submodule N
of M , I(+)N is an ideal of R(+)M if and only if IM ⊆ N . It is well known from
[2] that

zd(R(+)M) = {(r,m)| r ∈ zd(R) ∪ Z(M), m ∈ M}
In Proposition 11, we clarify the relation between semi r-ideals of the idealization
ring R(+)M and those of R which enables us to build some interesting examples
of semi r-ideals.

Let f : R1 → R2 be a ring homomorphism, J be an ideal of R2, M1 be an R1-
module, M2 be an R2-module and ϕ : M1 → M2 be an R1-module homomorphism.
The subring

R1 ⋊⋉f J = {(r, f(r) + j) : r ∈ R1, j ∈ J}
of R1 ×R2 is called the amalgamation of R1 and R2 along J with respect to f . In
[8], the amalgamation of M1 and M2 along J with respect to ϕ is defined as
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M1 ⋊⋉ϕ JM2 = {(m1, ϕ(m1) +m2) : m1 ∈ M1 and m2 ∈ JM2}
which is an (R1 ⋊⋉f J)-module. The last section is devoted to clarify semi r-
submodules of the amalgamation of modules.

2. Properties of semi r-ideals

This section deals with many properties of semi r-ideals. We justify the relations
among the concepts of semiprime ideals, semi n-ideals and our new class of ideals.
Moreover, several characterizations and examples are presented. In particular, we
characterize rings in which every ideal is a semi r-ideal.

Definition 1. Let I be a proper ideal of a ring R. I is called a semi r-ideal of R
if whenever a ∈ R such that a2 ∈ I and AnnR(a) = 0, then a ∈ I.

For any non-zero subset A of a ring R, we note that AnnR(A) is a semi r-ideal
of R. It is clear that the classes of semiprime ideals, r-ideals and semi n-ideals are
contained in the class of semi r-ideals. However, in general these containments are
proper as we illustrate in the following examples.

Example 1. Let p and q be prime integers.

(1) Any non-zero semiprime ideal in an integral domain is a semi r-ideal that
is not an r-ideal.

(2) In the ring Zp2q, the ideal
〈

p2
〉

is a semi r-ideal that is not a semi n-ideal.

(3) The zero ideal of a ring R is always a semi r-ideal but it is not a semiprime
ideal unless R is a semiprime ring.

(4) Every ideal of a Boolean ring (a ring of which every element is idempotent)
is semi r-ideal. Consider the ideal I = 0 × 0 × Z2 of the Boolean ring
Z2 × Z2 × Z2. Then I is a semi r-ideal that is not prime.

(5) In general pr-ideals and semi r-ideals are not comparable. Let T be a reduced
ring with subring Z and P be a nonzero minimal prime ideal in T with
P ∩ Z = (0). From [15, Example 2.17], J = x2P [x] is a pr -ideal of the
ring R = Z + xT [x]. Choose an element 0 6= p ∈ P . Then (xp)2 ∈ J and
AnnR(xa) = 0 but xa /∈ J . Thus, J is not a semi r-ideal. Moreover, any
non-zero prime ideal in an integral domain is clearly a semi r-ideal that is
not a pr-ideal.

If I and J are semi r-ideals of a ring R, then IJ and I + J need not be so as we
can see in the following example.

Example 2. Consider the ideals I = 〈x〉 and J = 〈x− 4〉 of the ring R = Z[x].
Then I and J are (semi) prime ideals and so are semi r-ideals of R. On the other
hand, I+J = 〈x, x− 4〉 = 〈x, 4〉 is not a semi r-ideal of R. Indeed, (2+x)2 ∈ I+J
and AnnR(2 + x) = 0, but 2 + x /∈ I + J . Also, I2 =

〈

x2
〉

is not a semi r-ideal of

R as x2 ∈ I2 and AnnR(x) = 0, but x /∈ I2.

Next, we give the following characterization of semi r-ideals. By zd(R) we denote
the set of all zero divisor elements of a ring R. Moreover, reg(R) denotes the set
R\zd(R).

Theorem 1. Let I be a proper ideal of a ring R and k be a positive integer. The
following statements are equivalent.
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(1) I is a semi r-ideal of R.
(2) Whenever a ∈ R with 0 6= a2 ∈ I and AnnR(a) = 0, then a ∈ I.
(3) Whenever a ∈ R with ak ∈ I and AnnR(a) = 0, then a ∈ I.

(4)
√
I ⊆ zd(R) ∪ I.

Proof. (1)⇔(2). Suppose (2) holds and let a ∈ R such that a2 ∈ I and AnnR(a) =
0. If a2 = 0, then a = 0 and the result follows obviously. If a2 6= 0, then we are
also done by (2). The converse part is obvious.

(1)⇒(3). Suppose ak ∈ I and AnnR(a) = 0 for a ∈ R. We use the mathematical
induction on k. If k ≤ 2, then the claim is clear. We now assume that (3) holds
for all 2 < t < k and show that it is also true for k. Suppose k is even, say, k = 2m
for some positive integer m. Since ak = (am)2 ∈ I and clearly AnnR(a

m) = 0, then
am ∈ I as I is a semi r-ideal. By the induction hypothesis, we conclude that a ∈ I
as needed. Suppose k is odd, so that k + 1 = 2s for some s < k. Then similarly,
we have (as)2 ∈ I and AnnR(a

s) = 0 which imply that as ∈ I and again by the
induction hypothesis, we conclude a ∈ I.

(3)⇒(4). Let a ∈
√
I. Then ak ∈ I for some k ≥ 1 and so by (3) a ∈ zd(R) or

a ∈ I. Thus,
√
I ⊆ zd(R) ∪ I.

(4)⇒(1). Straightforward. �

Corollary 1. Let I be a semi r-ideal of a ring R and k be a positive integer. If J
is an ideal of R with Jk ⊆ I and J ∩ zd(R) = {0}, then J ⊆ I.

Proof. Suppose that Jk ⊆ I and J ∩ zd(R) = {0} for some ideal J of R. Let
0 6= a ∈ J . From the assumption J ∩ zd(R) = {0}, we have AnnR(a) = 0. Thus,
ak ∈ I implies that a ∈ I by Theorem 1 (3). �

Corollary 2. Let I and J be proper ideals of a ring R such that I ∩ zd(R) =
J ∩ zd(R) = {0} .

(1) If I and J are semi r-ideals of a ring R with I2 = J2, then I = J .
(2) If I2 is a semi r-ideal, then I2 = I.

Proof. (1) Since I2 ⊆ J and J ∩ zd(R) = {0}, then we have I ⊆ J by Corollary 1.
On the other hand, since J2 ⊆ I and J ∩ zd(R) = {0} , we have J ⊆ I again by
Corollary 1, so we are done.

(2) A direct consequence of (1). �

We note by example 1 that unlike r-ideals, if I is a semi r-ideal of a ring R, then
I need not be contained in zd(R). Also, clearly, semi r-ideals which contain the
zero divisors of a ring R are semiprime.

Next, we present a condition for a semi r-ideal to be an r-ideal. First, we need
the following lemma.

Lemma 1. Let S be a non-empty subset of R where S ∩ zd(R) = ∅. If I is a semi
r-ideal of R with S * I, then (I : S) is a semi r-ideal of R.

Proof. Let a ∈ R such that a2 ∈ (I : S) and AnnR(a) = 0. Then (as)2 ∈ I for
all s ∈ S. As I is a semi r-ideal of R, we have either as ∈ zd(R) or as ∈ I for all
s ∈ S. If as ∈ zd(R), then S ∩ zd(R) = ∅ implies a ∈ zd(R), a contradiction. Thus,
as ∈ I for all s ∈ S and so a ∈ (I : S) as required. �

Theorem 2. If I is maximal among all semi r-ideals of a ring R contained in
zd(R), then I is an r-ideal.
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Proof. Let I be maximal among all semi r-ideals of a ring R contained in zd(R).
Suppose that ab ∈ I and AnnR(a) = 0. Then a /∈ I ∪ zd(R) and so (I :R a) is a
semi r-ideal of R by Lemma 1. Since clearly, (I :R a) ⊆ zd(R) and I ⊆ (I :R a),
then the maximality of I implies, I = (I :R a). Thus, b ∈ I and I is an r-ideal. �

Following [15], we call a ring R a uz-ring if R = U(R) ∪ zd(R). It is proved in
[15] that R is a uz-ring if and only if every ideal in R is an r-ideal. In particular, a
direct product of fields is an example of a uz-ring. Next, we generalize this result
to semi r-ideals.

Theorem 3. The following statements are equivalent for a ring R.

(1) R is a uz-ring.
(2) Every proper ideal of R is an r-ideal.
(3) Every proper ideal of R is a semi r-ideal.
(4) Every proper principal ideal of R is a semi r-ideal.
(5) Every semi r-ideal is an r-ideal.

Proof. (1)⇒(2). Follows by [15, Proposition 3.4].
(2)⇒(3)⇒(4). Clear.
(4)⇒(1). Let x ∈ R\zd(R). If

〈

x2
〉

= R, then x ∈ U(R). Suppose
〈

x2
〉

is proper

in R. Since x2 ∈
〈

x2
〉

and AnnR(x) = 0 , then by assumption, x ∈
〈

x2
〉

. Thus,

x = rx2 for some r ∈ R and so rx = 1 as AnnR(x) = 0. Thus, again x ∈ U(R) and
R = U(R) ∪ zd(R) as needed.

(1)⇒(5). Clear by (1)⇔(2).
(5)⇒(1). Since a maximal ideal of R is clearly a semi r-ideal, then by (5),

every maximal ideal in R is an r-ideal. Let r ∈ R. If r /∈ U(R), then r ∈ M for
some maximal ideal M of R and so r ∈ zd(R) by [15, Remark 2.3(d)]. Therefore,
R = U(R) ∪ zd(R) and R is a uz-ring. �

Next, we discuss the behavior of semi r-ideals under homomorphisms.

Proposition 1. Let f : R1 → R2 be a ring homomorphism. The following state-
ments hold.

(1) If f is an epimorphism, I1 ⊆ Ker(f) and I1 is a semi r-ideal of R1 such
that I1 ∩ zd(R1) = {0}, then f(I1) is a semi r-ideal of R2.

(2) If f is an isomorphism and I2 is a semi r-ideal of R2, then f−1(I2) is a semi
r-ideal of R1.

Proof. (1) Let a ∈ R2 such that a2 ∈ f(I1) and a /∈ f(I1). Then there exists
x ∈ R1\I1 such that a = f(x). Since f(x2) = a2 ∈ f(I1), then x2 ∈ I1 as
Ker(f) ⊆ I1. Now, I1 is a semi r-ideal of R1 implies x ∈ zd(R1). If x = 0, then
a = f(x) ∈ zd(R2). Suppose x 6= 0 and choose 0 6= y ∈ R such that xy = 0.
Then f(y) 6= 0 since otherwise y ∈ I1 ∩ zd(R1), a contradiction. Thus, again
a = f(x) ∈ zd(R2) and f(I1) is a semi r-ideal of R2.

(2) Suppose I2 is a semi r-ideal of R2. Let x ∈ R1 such that x2 ∈ f−1(I2) and
x /∈ f−1(I2). Then f(x2) = f(x)2 ∈ I2 and f(x) /∈ I2 which imply f(x) ∈ zd(R2).
Since f is an isomorphism, then clearly x ∈ zd(R1) and f−1(I2) is a semi r-ideal of
R1. �

In view of Proposition 1, we have the following result for quotient rings.

Corollary 3. Let I and J be ideals of a ring R with J ⊆ I.
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(1) If I is a semi r-ideal of R and I ∩ zd(R) = {0}, then I/J is a semi r-ideal
of R/J .

(2) If I/J is a semi r-ideal of R/J and J is an r-ideal of R, then I is a semi
r-ideal of R.

Proof. (1). Consider the natural epimorphism π : R → R/J with Ker(π) = J and
apply Proposition 1.

(2). Let a ∈ R such that a2 ∈ I and a /∈ zd(R). Then (a+ J)2 = a2 + J ∈ I/J .
If a+ J ∈ zd(R/I), then there is b /∈ J such that ab ∈ J . Since J is a semi r-ideal
of R, we get a ∈ zd(R), a contradiction. Thus, a + J /∈ zd(R/I) which yields
a+ J ∈ I/J as I/J is a semi n-ideal of R/J and so a ∈ I. �

If I ∩zd(R) 6= {0} in Corollary 3(1), then the result need not be true. For exam-
ple, 4Z(+)Z4 is a semi r-ideal of Z(+)Z4, see Remark 11. But 4Z(+)Z4/0(+)Z4

∼=
4Z is not a semi r-ideal of Z(+)Z4/0(+)Z4

∼= Z. We also note that the condition ”
J is an r-ideal” in Corollary 3(2) is crucial. For example 8Z/16Z is a semi r-ideal
of Z/16Z but 8Z is not a semi r-ideal of Z.

In particular, Corollary 3 holds if J ⊆ zd(R).

Proposition 2. The intersection of any family of semi r-ideals is a semi r-ideal.

Proof. Let {Iα : α ∈ Λ} is a family of semi r-ideals. Suppose a2 ∈ ⋂

α∈Λ

Iα and

a /∈ ⋂

α∈Λ

Iα. Then a /∈ Iγ for some γ ∈ Λ. Since Iγ is a semi r-ideal, we have

a ∈ zd(R) and so
⋂

α∈Λ

Iα is a semi r-ideal. �

Let I be a proper ideal of R. In the following we give the relationship between
semi r-ideals of a ring and those of its localization ring by using the notation ZI(R)
which denotes the set {r ∈ R | rs ∈ I for some s ∈ R\I}.
Proposition 3. Let S be a multiplicatively closed subset of a ring R such that
S ∩ zd(R) = ∅. Then the following hold.

(1) If I is a semi r-ideal of R such that I ∩ S = ∅, then S−1I is a semi r-ideal
of S−1R.

(2) If S−1I is a semi r-ideal of S−1R and S ∩ ZI(R) = ∅, then I is a semi
r-ideal of R.

Proof. (1) Suppose for a
s
∈ S−1R that

(

a
s

)2 ∈ S−1I and
(

a
s

)

/∈ S−1I. Then there

exits u ∈ S such that ua2 ∈ I and so (ua)2 ∈ I. Since clearly ua /∈ I and I is
a semi r-ideal, we have ua ∈ zd(R), say, (ua)b = 0 for some 0 6= b ∈ R. Thus,
a
s
· b
1 = uab

us
= 0S−1R and b

1 6= 0S−1R as S ∩ zd(R) = ∅. Thus, a
s
∈ zd(S−1R) and

S−1I is a semi r-ideal of S−1R.
(2) Suppose a2 ∈ I for a ∈ R. Since S−1I is a semi n-ideal of S−1R and

(

a
1

)2 ∈ S−1I, we have either a
1 ∈ S−1I or a

1 ∈ zd(S−1R). If a
1 ∈ S−1I, then there

exists u ∈ S such that ua ∈ I. Since S ∩ zd(R) = ∅, we conclude that a ∈ I. If
a
1 ∈ zd(S−1R), then there is b

t
6= 0S−1R such that ab

t
= a

1 · b
t
= 0S−1R. Hence,

vab = 0 for some v ∈ S and so ab = 0 as S ∩ zd(R) = ∅. Thus, a ∈ zd(R) as b 6= 0
and I is a semi r-ideal of R. �

We recall that if f =
m
∑

i=1

aix
i ∈ R[x], then the ideal 〈a1, a2, · · · , am〉 of R gener-

ated by the coefficients of f is called the content of f and is denoted by c(f). It is
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well known that if f and g are two polynomials in R[x], then the content formula
c(g)m+1c(f) = c(g)mc(fg) holds where m is the degree of f , [9, Theorem 28.1].
For an ideal I of R, it can be easily seen that I[x] = {f(x) ∈ R[x] : c(f) ⊆ I}.
Definition 2. A ring R is said to satisfy the property (∗) if whenever f ∈ reg(R[x]),
then c(f)\ {0} ⊆ reg(R).

Theorem 4. Let I be an ideal of a ring R.

(1) If I[x] is a semi r-ideal of R[x], then I is a semi r-ideal of R.
(2) If R satisfies the property (∗) and I is a semi r-ideal of R, then I[x] is a

semi r-ideal of R[x]

Proof. (1) Suppose I[x] is a semi r-ideal of R[x]. Let a ∈ R such that a2 ∈ I
and AnnR(a) = 0. Then Clearly, a2 ∈ I[x] and AnnR[x](a) = 0. By assumption,
a ∈ I[x] and so a ∈ I as required.

(2) Suppose R satisfies the property (∗) and I is a semi r-ideal of R. Let f(x) ∈
R[x] such that (f(x))

2 ∈ I[x] and AnnR[x](f(x)) = 0. Then c(f2) ⊆ I and so by the

content formula, (c(f))2 = c(f2) ⊆ I. Moreover, c(f) ∩ zd(R) = {0} as R satisfies
the property (∗) and so c(f) ⊆ I by Corollary 1. It follows that f(x) ∈ I[x] and we
are done. �

In general, if S is an overring of a ring R, then we may find a semi r-ideal J of
S where J ∩R is not a semi r-ideal in R.

Example 3. Let S = Z×Z and consider the ring homomorphism ϕ : Z −→ Z×Z
defined by ϕ(x) = (x, 0). Then ϕ is a monomorphism and so R = ϕ(Z) is a domain.
Now, J = AnnS((0, 1)) is a nonzero (semi) r-ideal in S. However, clearly, R ⊆ J
and so J ∩R = R is not a semi r-ideal in R.

Let S be an overring ring of a ring R . Following [15], R is said to be essential
in S if J ∩R 6= {0} for every nonzero ideal J of S .

Proposition 4. Let R ⊆ S be rings such that R is essential in S. If J is a semi r
-ideal of S, then J ∩R is a semi r-ideal in R.

Proof. Let a ∈ R such that a2 ∈ J ∩ R and AnnR(a) = 0. Then a ∈ S with
a2 ∈ J and AnnS(a) = 0. Indeed, if AnnS(a) 6= 0, then R being essential implies
AnnS(a) ∩ R 6= {0}. Thus, there exists 0 6= r ∈ R such that r ∈ AnnS(a) and so
r ∈ AnnR(a), a contradiction. Since J is a semi r -ideal of S, then a ∈ J ∩R and
the result follows., �

The rest of this section is devoted to discuss semi r-ideals of cartesian products
of rings and their particular subrings: the amalgamation rings.

Proposition 5. Let R = R1 × R2 where R1 and R2 are two rings and I1, I2 be
proper ideals of R1 and R2, respectively. Then I1 × R2 (resp. R1 × I2) is a semi
r-ideal of R if and only if I1 is a semi r-ideal of R1 (resp. I2 is a semi r-ideal of
R2).

Proof. Let I1×R2 be a semi r-ideal ofR and a ∈ R1 with a2 ∈ I1 and AnnR1
(a) = 0.

Then (a, 1)2 ∈ I1 × R2 and AnnR(a, 1) = (0, 0) imply that (a, 1) ∈ I1 × R2 and so
a ∈ I1. Thus I1 is a semi r-ideal of R1. Conversely, suppose that (a, b)2 ∈ I1 × R2

and AnnR(a, b) = (0, 0). Then a2 ∈ I1 and clearly AnnR1
(a) = 0 which implies

a ∈ I1. Hence, (a, b) ∈ I1 × R2, so we are done. The proof of the case R1 × I2 is
similar. �
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The following corollary generalizes Proposition 5.

Corollary 4. Let R1, R2, · · · , Rn be rings, R = R1 × R2 × · · · × Rn and Ii be
a proper ideal of Ri for each i = 1, 2, · · ·n. Then for all j = 1, 2, · · ·n, I =
R1 × · · · ×Rj−1 × Ij ×Rj+1 × · · · ×Rn is a semi r-ideal of R if and only if Ij is a
semi r-ideal of Rj.

Theorem 5. Let R1 and R2 be two rings, R = R1 ×R2 and I1, I2 be proper ideals
in R1 and R2, respectively.

(1) If I1 and I2 are semi r-ideals of R1 and R2, respectively, then I = I1 × I2
is a semi r-ideal of R.

(2) If I = I1 × I2 is a semi r-ideal of R, then either I1 is a semi r-ideal of R1

or I2 is a semi r-ideal of R2.
(3) If I = I1 × I2 is a semi r-ideal of R and I2 * zd(R2), then I1 is a semi

r-ideal of R1.
(4) If I = I1 × I2 is a semi r-ideal of R and I1 * zd(R1), then I2 is a semi

r-ideal of R2.

Proof. (1) Let (a, b) ∈ R such that (a2, b2) = (a, b)2 ∈ I and AnnR(a, b) = (0, 0).
Then a2 ∈ I1, b

2 ∈ I2 and clearly AnnR1
(a) = AnnR2

(b) = 0. Therefore, a ∈ I1,
b ∈ I2 and so (a, b) ∈ I as needed.

(2).Suppose I = I1 × I2 is a semi r-ideal of R but I1 and I2 are not semi r-
ideals of R1 and R2, respectively. Choose a ∈ R1 and b ∈ R2 such that a2 ∈ I1,
b2 ∈ I2, AnnR1(a) = 0 and AnnR2

(b) = 0 but a /∈ I1 and b /∈ I2. Then (a, b)2 ∈ I
and clearly, AnnR(a, b) = (0, 0). By assumption, we have (a, b) ∈ I which is a
contradiction. Therefore, either I1 is a semi r-ideal of R1 or I2 is a semi r-ideal of
R2.

(3) Suppose a2 ∈ I1 for some a ∈ R1 with AnnR1
(a) = 0. Since I2 * Z(R2), we

can choose b ∈ I2 ∩ reg(R2). Then (a, b)2 ∈ I and AnnR(a, b) = (0, 0). It follows
that (a, b) ∈ I; and hence a ∈ I1.

(4) is similar to (3). �

The converse of Theorem 5(1) is not true in general. For example, 4Z × 0 is a
semi r-ideal in Z × Z by Proposition 2. On the other hand, the ideal 4Z is not a
semi r-ideals of Z.

The following corollary generalizes Theorem 5 to any finite direct product of
rings. The proof is similar to that of Theorem 5.

Corollary 5. Let R1, R2, · · · , Rn be rings, R = R1 × R2 × · · · × Rn and Ii be a
proper ideal of Ri for each i = 1, 2, · · ·n.

(1) If Ii is a semi r-ideals of Ri for each i = 1, 2, · · ·n, then I = I1×I2×· · ·×In
is a semi r-ideal of R.

(2) If I = I1 × I2 × · · · × In is a semi r-ideal of R, then Ij is a semi r-ideal of
Rj for at least one j ∈ {1, 2, · · · , n}.

(3) If I = I1 × I2 × · · · × In is a semi r-ideal of R and Ij * Z(Rj) for all j 6= i,
then Ii is a semi r-ideal of Ri.

Lemma 2. Let R = R1 × R2 × · · · × Rn where Ri’s are rings and Rj is reduced
ring for some j = 1, ..., n. If Ii is an ideal of Ri for all i 6= j, then I = I1 × · · · ×
Ij−1 × 0× Ij+1 × · · · × In is a semi r-ideal of R.
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Proof. Let a = (a1, a2, ..., an) ∈ R with a2 ∈ I. Then a2j = 0 which implies aj = 0

as Rj is reduced. Since AnnR(a) = AnnR(a1, ..., aj−1, 0, aj+1, ..., an) 6= 0, I is a
semi r-ideal of R. �

Next, we present a characterization for semi r-ideals of cartesian products of
domains.

Theorem 6. Let R1, R2, · · · , Rn (n ≥ 2) be domains, R = R1×R2×· · ·×Rn and
Ii be an ideal of Ri for each i = 1, 2, · · ·n. Then I = I1 × I2 × · · · × In is a semi
r-ideal of R if and only if one of the following statements holds

(1) Ij = {0} for at least one j ∈ {1, 2, · · · , n}.
(2) There exists j ∈ {1, 2, · · ·n} such that Ii is a semi r-ideal of Ri for all

i = 1, · · · , j and Ii = Ri for all i = j + 1, · · · , n.
(3) Ii is a semi r-ideals of Ri for each i = 1, 2, · · ·n.

Proof. Suppose I = I1 × I2 × · · · × In is a semi r-ideal of R. Suppose that all
Ii’s are nonzero. If for all i ∈ {1, 2, · · ·n}, Ii is proper in Ri, then Ii is a semi
r-ideals of Ri by Corollary 5(3). Without loss of generality assume that I1, ..., Ij
are proper in R1, · · · , Rj , respectively and Ii = Ri for all i ∈ {j+1, ..., n}. For each
i ∈ {2, ..., j}, choose a nonzero element bi ∈ Ii. Let a ∈ R1 such that a2 ∈ I1. Since
(a, b2, b3, ...bj , 1Rj+1

, ..., 1Rn
)2 ∈ I and AnnR(a, b2, b3, ...bj , 1Rj+1

, ..., 1Rn
) = 0, we

have (a, b2, b3, ...bj , 1Rj+1
, ..., 1Rn

) ∈ I and so a ∈ I1. Therefore, I1 is a semi r-ideal
of R1. Similarly, Ii is a semi r-ideals of Ri for all i ∈ {1, ..., j}.

Conversely, if (1) holds, then I is clearly a semi r-ideal of R. Suppose that
I1, ..., Ij are semi r-ideals and Ik = Rk for all k ∈ {j + 1, ..., n}. Let a =
(a1, a2, ..., an) ∈ R with a2 ∈ I and AnnR(a) = 0. Then for each i ∈ {1, ..., j},
a2i ∈ I and AnnRi

(ai) = 0 as Ri’s are domain. Thus, ai ∈ Ii and so a ∈ I. Finally,
if (3) holds, then I = I1 × I2 × · · · × In is a semi r-ideal of R by Corollary 5(1). �

Let R and S be two rings, J be an ideal of S and f : R → S be a ring ho-
momorphism. As a subring of R × S, the amalgamation of R and S along J
with respect to f is defined by R ⋊⋉f J = (a, f(a) + j) : a ∈ R, j ∈ J}. If f is
the identity homomorphism on R, then we get the amalgamated duplication of R
along an ideal J , R ⋊⋉ J = {(a, a+ j) : a ∈ R, j ∈ J}. For more related definitions
and several properties of this kind of rings, one can see [6]. If I is an ideal of R
and K is an ideal of f(R) + J , then I ⋊⋉f J = {(i, f(i) + j) : i ∈ I, j ∈ J} and
K̄f = {(a, f(a) + j) : a ∈ R, j ∈ J , f(a) + j ∈ K} are ideals of R ⋊⋉f J , [7].

Lemma 3. [3] Let R, S, J and f be as above. Let A = {(r, f(r)+j)|r ∈ zd(R)} and
B = {(r, f(r)+j)|j′(f(r)+j) = 0 for some j′ ∈ J\{0}}. Then zd(R ⋊⋉f J) ⊆ A∪B.

Next, we determine conditions under which I ⋊⋉f J and K̄f are semi r-ideals of
R ⋊⋉f J .

Theorem 7. Let R, S, J and f be as above. If I is a semi r-ideal of R, then
I ⋊⋉f J is a semi r-ideal of R ⋊⋉f J . The converse is true if f(reg(R)) ∩ Z(J) = ∅
Proof. Suppose I is a semi r-ideal of R. Let (a, f(a) + j) ∈ R ⋊⋉f J such that
(a, f(a) + j)2 = (a2, f(a2) + 2jf(a) + j2) ∈ I ⋊⋉f J and (a, f(a) + j) /∈ zd(R ⋊⋉f J).
Then a2 ∈ I and a /∈ zd(R) by Lemma 3. Therefore, a ∈ I and so (a, f(a) + j) ∈
I ⋊⋉f J as needed. Now, suppose f(reg(R)) ∩ Z(J) = ∅ and I ⋊⋉f J is a semi
r-ideal of R ⋊⋉f J . Let a2 ∈ I for a ∈ R and a /∈ zd(R). Then (a, f(a)) ∈ R ⋊⋉f J
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with (a, f(a))2 = (a2, f(a2)) ∈ I ⋊⋉f J . If (a, f(a)) ∈ zd(R ⋊⋉f J), then Lemma 3
implies f(a) ∈ Z(J) which is a contradiction. Therefore, (a, f(a)) /∈ zd(R ⋊⋉f J)
and so (a, f(a)) ∈ I ⋊⋉f J as I ⋊⋉f J is a semi r-ideal of R ⋊⋉f J . Thus, a ∈ I as
required. �

Theorem 8. Let f : R → S be a ring homomorphism and J,K be ideals of S. If
K is a semi r-ideal of f(R) + J , then K̄f is a semi r-ideal of R ⋊⋉f J .

(1) If K is a semi r-ideal of f(R) + J and zd(f(R) + J) = Z(J), then K̄f is a
semi r-ideal of R ⋊⋉f J .

(2) If K̄f is a semi r-ideal ofR ⋊⋉f J , f(zd(R)) ⊆ zd(f(R)+J) and f(zd(R))J =
0, then K is a semi r-ideal of f(R) + J .

Proof. (1) Suppose K is a semi r-ideal of f(R)+J . Let (a, f(a)+j) ∈ R ⋊⋉f J such
that (a, f(a) + j)2 = (a2, (f(a) + j)2) ∈ K̄f and (a, f(a) + j) /∈ zd(R ⋊⋉f J). Then
(f(a) + j)2 ∈ K and by Lemma 3, f(a) + j /∈ Z(J) = zd(f(R) + J). Therefore,
f(a) + j ∈ K and (a, f(a) + j) ∈ K̄f as needed.

(2) Suppose K̄f is a semi r-ideal of R ⋊⋉f J and f(zd(R))J = 0. Let f(a) + j ∈
f(R)+J such that (f(a)+j)2 ∈ K and f(a)+j /∈ zd(f(R)+J). Then (a, f(a)+j) ∈
R ⋊⋉f J with (a, f(a) + j)2 ∈ K̄f . Suppose (a, f(a) + j) ∈ zd(R ⋊⋉f J). Then as
Z(J) ⊆ zd(f(R) + J) and by Lemma 3, we conclude that a ∈ zd(R). Since f(a) ∈
zd(f(R)+J), then f(a)f(b) = 0 for some 0 6= f(b) ∈ f(R). Thus, (f(a)+j)f(b) = 0
as f(zd(R))J = 0 which contradicts that f(a) + j /∈ zd(f(R) + J). Therefore,
(a, f(a) + j) /∈ zd(R ⋊⋉f J) and so (a, f(a) + j) ∈ K̄f . It follows that f(a) + j ∈ K
and K is a semi r-ideal of f(R) + J . �

3. Semi r-submodules of modules over commutative rings

The aim of this section is to extend semi r-ideals of commutative rings to semi
r-submodules of modules over commutative rings. Recall that a module M is said
to be faithful if AnnR(M) = (0 :R M) = 0R.

Definition 3. Let M be an R-module and N a proper submodule of M.

(1) N is called a semiprime submodule if whenever r2m ∈ N , then rm ∈ N.
[16]

(2) N is called a r-submodule if whenever rm ∈ N and AnnM (r) = 0M , then
m ∈ N. [13]

(3) N is called a sr-submodule if whenever rm ∈ N and AnnR(m) = 0, then
m ∈ N. [13]

Definition 4. Let M be an R-module and N a proper submodule of M . We call
N a semi r-submodule if whenever r ∈ R, m ∈ M with r2m ∈ N , AnnM (r) = 0M
and AnnR(m) = 0, then rm ∈ N .

The reader clearly observe that any semi r-submodule of an R-module R is a
semi r-ideal of R. The zero submodule is always a semi r-submodule of M. Also,
see the implications:

r-submodule
ց

sr-submodule → semi r-submodule
ր

semiprime submodule
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However, the next examples show that these arrows are irreversible.

Example 4.

(1) Consider the submodule N = 6Z × 〈0〉 of the Z-module M = Z × Z. Let
r ∈ Z andm = (m1,m2) ∈ M such that r2 ·(m1,m2) ∈ N. Then r2m1 ∈ 6Z,
r2m2 = 0 and AnnZ(r) = AnnZ(m1) = AnnZ(m2) = 0 as Z is a domain.
Since 6Z and 〈0〉 are semi r-ideals of Z, then r · (m1,m2) ∈ N and so N is
a semi r-submodule of M . On the other hand, we have 2 · (3, 0) ∈ N with
AnnM (2) = 0M and AnnZ((3, 0)) = 0 but (3, 0) /∈ N and so N is neither
r-submodule nor sr-submodule of M .

(2) Consider the submodule N = 〈4̄〉 × 〈0〉 of the Z-module M = Z8 × Z. Let
r ∈ Z and m = (m1,m2) ∈ M such that r2 · (m1,m2) ∈ N. Then it is clear
to observe that AnnZ(r) = AnnZ(m1) = AnnZ(m2) = 0. Since again N is
a semi r-submodule of M as 〈4̄〉 is a semi r-ideal of Z8 and 〈0〉 is a semi
r-ideals of Z. However, 22 · (1̄, 0) ∈ N but 2 · (1̄, 0) /∈ N and so N is not a
semiprime submodule of M .

Proposition 6. Let M be an R-module, N a proper submodule of M and k any
positive integer. Then N is a semi r-submodule of M if and only if whenever r ∈ R,
m ∈ M with rkm ∈ N , AnnM (r) = 0M and AnnR(m) = 0, then rm ∈ N .

Proof. The proof follows by mathematical induction on k in a similar way to that
of Theorem 1 (3). �

We recall that a module M is torsion (resp. torsion-free) if T (M) = M (resp.
T (M) = {0}) where T (M) = {m ∈ M : there exists 0 6= r ∈ R such that rm = 0}.
It is clear that any torsion-free module is faithful.

Proposition 7. Semi r-submodules and semiprime submodules are coincide in any
torsion-free module.

Proof. Since every semiprime submodule is semi r-submodule, we need to show the
converse. Let N be a semi r-submodule of an R-module M , r ∈ R, m ∈ M with
r2m ∈ N . Keeping in mind that M is torsion-free, we have AnnR(m) = 0. Now,
suppose that m′ ∈ AnnM (r). Then rm′ = 0 and if r = 0, then clearly rm ∈ N . If
r 6= 0, then m′ = 0 again as M is torsion-free. Since N is a semi r-submodule, we
conclude rm ∈ N , as required. �

Definition 5. A proper submodule N of an R-module M is said to satisfy the
D-annihilator condition if whenever K is a submodule of M and r ∈ R such that
rK ⊆ N and AnnM (r) = 0M , then either K ⊆ N or K ∩ T (M) = {0M}.

Obviously, any r-submodule satisfies the D-annihilator condition. The converse
is not true in general. For example the submodule N = 6Z× 〈0〉 of the Z-module
M = Z×Z clearly satisfies theD-annihilator condition. On the other hand, N is not
an r-submodule of M , (see Example 4(1)). It is clear that any proper submodule
of a torsion-free module satisfies the D-annihilator condition. However, we may
find a submodule satisfying the D-annihilator condition in a torsion module. For
example, for any positive integer n, every proper submodule of the Z-module Zn

satisfies the D-annihilator condition. Indeed, suppose that rm ∈
〈

d̄
〉

for some
integer d dividing n. Put n = cd then crm̄ = 0. Since AnnM (r) = 0M , we get
cm̄ = 0 and so m̄ ∈

〈

d̄
〉

.
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Proposition 8. Let N be a proper submodule of an R-module M satisfying the
D-annihilator condition. Then the following are equivalent.

(1) N is a semi r-submodule of M.
(2) For r ∈ R and a submodule K of M with r2K ⊆ N and AnnM (r) = 0M ,

then rK ⊆ N .

Proof. (1)⇒(2). Suppose that r2K ⊆ N and AnnM (r) = 0M = AnnM (r2). If
K ⊆ N , then we are done. If K * N , then AnnR(k) = 0R for each k ∈ K since by
assumption K ∩ T (M) = {0M}. Since N is a semi r-submodule, we conclude that
rk ∈ N . Therefore, rk ∈ N for all k ∈ K and the result follows.

(2)⇒(1). is straightforward. �

Recall that an R-module M is called a multiplication module if every submodule
N of M has the form IM for some ideal I of R. Moreover, we have N = (N :R
M)M . Next, we conclude a useful characterization for semi r-submodules. First,
recall the following lemmas.

Lemma 4. [17] Let N be a submodule of a finitely generated faithful multiplication
R-module M. For an ideal I of R, (IN :R M) = I(N :R M), and in particular,
(IM :R M) = I.

Lemma 5. [1] Let N is a submodule of faithful multiplication R-module M . If I
is a finitely generated faithful multiplication ideal of R, then

(1) N = (IN :M I).
(2) If N ⊆ IM , then (JN :M I) = J(N :M I) for any ideal J of R.

Theorem 9. Let M be a finitely generated faithful multiplication R-module. Then
a submodule N = IM satisfying the D-annihilator condition is a semi r-submodule
of M if and only if I is a semi r-ideal of R.

Proof. Suppose N = IM is a semi r-submodule ofM and let r ∈ R such that r2 ∈ I
with AnnR(r) = 0. We claim that AnnM (r) = 0M . Indeed, if there is 0M 6= m ∈ M
such that rm = 0M , then 〈r〉 (〈m〉 :R M) = (〈rm〉 :R M) = (0M :R M) = 0 by
Lemma 4. Thus, (〈m〉 :R M) = 0 as AnnR(r) = 0 and then 〈m〉 = (〈m〉 :R M)M =
0M , a contradiction. Since N satisfies the D-annihilator condition and r2M ⊆ IM ,
then rM ⊆ IM by Proposition 8. Thus, r ∈ (rM :R M) ⊆ (IM :R M) = I, as
needed.

Conversely, suppose that I is a semi r-ideal of R. Let r ∈ R and K = JM be a
submodule of M such that r2JM = r2K ⊆ IM and AnnM (r) = 0M . Take A = rJ
and note that A2 ⊆ r2JM : M ⊆ (IM :R M) = I by Lemma 4. Now, we claim
that A ∩ zd(R) = {0}. Suppose on contrary that there exists 0 6= a = rj ∈ A
such that AnnR(a) 6= 0. Choose 0 6= b ∈ R with ab = rjb = 0. Then rjbM = 0M
and so jbM = 0M as AnnM (r) = 0M . Since b 6= 0, jM ⊆ K and N satisfies the
D-annihilator condition, then jM = 0 and we conclude j = 0 as M is faithful,
which is a contradiction. Therefore, A ∩ zd(R) = {0} and A ⊆ I by Corollary 1.
Thus, rK = rJM = AM ⊆ IM = N as needed. �

In view of Theorem 9 we give the following characterization.

Corollary 6. Let R be a ring and M be a finitely generated faithful multiplication
R-module. For a submodule N of M satisfying the D-annihilator condition, the
following statements are equivalent.
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(1) N is a semi r-submodule of M .
(2) (N :R M) is semi r-ideal of R.
(3) N = IM for some semi r-ideal I of R.

Let N be a submodule of an R-module M and I be an ideal of R. The residual
of N by I is the set (N :M I) = {m ∈ M : Im ⊆ N}. It is clear that (N :M I) is a
submodule of M containing N . More generally, for any subset S ⊆ R, (N :M S) is
a submodule ofM containing N . We recall that M -rad(N) denotes the intersection
of all prime submodules of M containing N . Moreover, if M is finitely generated
faithful multiplication, then M -rad(N) =

√

(N :R M)M , [17].

Proposition 9. Let M be a finitely generated multiplication R-module and N be
a semi r-submodule of M satisfying the D-annihilator condition.

(1) For any ideal I of R with (N :M I) 6= M , (N :M I) is a semi r-submodule
of M.

(2) If M is faithful, then (M -rad(N) :R M) ⊆ zd(R) ∪
√

(N :R M).

Proof. (1) First, we show that (N :M I) satisfies the D-annihilator condition. Let
K be a submodule of M and r ∈ R such that rK ⊆ (N :M I), K * (N :M I) and
AnnM (r) = 0M . Then rIK ⊆ N and so IK ∩ T (M) = {0M}. It follows clearly
that K ∩ T (M) = {0M} as needed. Suppose N is a semi r-submodule of M . Let
K be a submodule of M such that r2K ⊆ (N :M I) and AnnM (r) = 0M . Then
r2IK ⊆ N which implies that rIK ⊆ N by Proposition 8 and thus, rK ⊆ (N :M I).
Therefore, (N :M I) is a semi r-submodule of M again by Proposition 8.

(2) Since N be a semi r-submodule, (N :R M) is a semi r-ideal of R by Corollary

6. Then the claim follows as M -rad(N) =
√

(N :R M)M and by using Theorem
1(4). �

Next, we discuss when IN is a semi r-submodule of a finitely generated multi-
plication module M where I is an ideal of R and N is a submodule of M . Recall
that a submodule N of an R-module M is said to be pure if JN = JM ∩ N for
every ideal J of R.

Theorem 10. Let I be an ideal of a ring R, M be a finitely generated faithful
multiplication R-module and N be a submodule of M such that IN satisfies the
D-annihilator condition.

(1) If I is a semi r-ideal of R and N is a pure semi r-submodule of M , then
IN is a semi r-submodule of M .

(2) Let I be a finitely generated faithful multiplication ideal of R. If IN is
semi r-submodule of M , then either I is a semi r-ideal of R or N is a semi
r-submodule of M .

Proof. (1) Suppose that r2K ⊆ IN and AnnM (r) = 0M for some r ∈ R and a
submodule K = JM ofM . If we take A = rJ , then A2 ⊆ r2JM : M ⊆ (IN : M) =
I(N : M) ⊆ I ∩ (N : M). By Theorem 9, (N :R M) is a semi r-ideal. We show that
A∩ zd(R) = {0}. Let x ∈ A∩ zd(R), say, x = ry for some y ∈ J . Choose a nonzero
z ∈ R such that xz = ryz = 0. Then ryzM = 0M and since AnnM (r) = 0M ,
we have yzM = 0M . Since M is faithful and z 6= 0, we conclude that yM = 0M
and so y = 0. Thus x = 0, as required. Since (N :R M) is a semi r-ideal, then
A ⊆ (N :R M) by Corollary 1. Therefore, rK = AM ⊆ (N :R M)M = N . On the
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other hand, since I is also a semi r-ideal, we have A ⊆ I and so rK = AM ⊆ IM .
Since N is pure, we conclude that rK ⊆ IM ∩N = IN and we are done.

(2) First, by using Lemma 5, we note clearly that N satisfies the D-annihilator
condition. We have two cases.

Case I. Let N = M . Then I = I(N :R M) = (IN :R M) is a semi r-ideal of R
by Corollary 6.

Case II. Let N be proper. Observe that by Lemma 5, we have the equality
(N :R M) = ((IN :M I) :R M) = (I(N :R M) :M I). Suppose that r2 ∈ (N :R M)
and r /∈ zd(R). Then (rI)2 ⊆ r2I ⊆ I(N :R M) = (IN :R M) by Lemma 4. Here,
similar to the proof of Theorem 9, it can be easily verify that rI ∩ zd(R) = {0}.
Since (IN :R M) is a semi r-ideal, rI ⊆ (IN :R M) = I(N :R M) which means
r ∈ (I(N :R M) :M I) = (N :R M) by Lemma 5. Thus, (N :R M) is a semi r-ideal
of R and Corollary 6 implies that N is a semi r-submodule of M . �

Next, we study the behavior of the semi r-submodule property under module
homomorphisms.

Proposition 10. Let M and M ′ be R-modules and f : M → M ′ be an R-module
homomorphism.

(1) If f is an epimorphism and N is a semi r-submodule of M such that
Ker(f) ⊆ N and N ∩ T (M) = {0M}, then f(N) is a semi r-submodule of
M ′.

(2) If f is an isomorphism and N ′ is a semi r-submodule of M ′, then f−1(N ′)
is a semi r-submodule of M .

Proof. (1). Let N be a semi r-submodule of M and r ∈ R, m′ := f(m) ∈ M ′

(m ∈ M) such that r2m′ ∈ f(N), AnnM
′
′(r) = 0M ′ and AnnR(f(m)) = 0M ′ .

Then r2m ∈ N as Ker(f) ⊆ N . We show that AnnM (r) = 0M . If r = 0, then
the claim is obvious. Suppose r 6= 0 and there is m1 ∈ M such that rm1 =
0M . Then rf(m1) = 0M ′ and so f(m1) = 0M ′ as AnnM

′
′(r) = 0M ′ . Thus,

m1 ∈ Ker(f) ∩ T (M) ⊆ N ∩ T (M) = {0M} as needed. Also, it is clear that
AnnR(m) = 0M . Therefore, rm ∈ N and so rm′ ∈ f(N) as required.

(2). Let N ′ is a semi r-submodule of M ′. Suppose that r2m ∈ f−1(N ′),
AnnM (r) = 0M and AnnR(m) = 0 for some r ∈ R and m ∈ M . Then r2f(m) =
f(r2m) ∈ N ′, AnnM ′(r) = 0M ′ and AnnR(f(m)) = 0. Indeed, if rm′ = 0 for
some 0 6= m′ = f(m1) ∈ M ′, then rm1 ∈ K erf = {0M} and clearly 0 6= m1 ∈ M ,
a contradiction. Similarly, if there exists 0 6= c ∈ R such that cf(m) = 0M ′ ,
then cm = 0M which is also a contradiction. Since N ′ is a semi R-submodule, then
rf(m) ∈ N ′ and so rm ∈ f−1(N ′). Thus, f−1(N ′) is a semi r-submodule of M. �

In the following, we discuss semi r-submodules of localizations of modules. Here,
the notation ZN(R) denotes the set {r ∈ R: rm ∈ N for some m ∈ M\N}.

Theorem 11. Let S be a multiplicatively closed subset of a ring R and M be an
R-module such that S ∩ Z(M) = ∅.

(1) If N is a semi r-submodule of M such that (N :R M) ∩ S = ∅, then S−1N
is a semi r-submodule of S−1M.

(2) If S−1N is a semi r-submodule of S−1R and S ∩ ZN (R) = ∅, then N is a
semi r-submodule of M.
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Proof. (1) Let
(

r
s

)2 (m
t

)

∈ S−1N with AnnS−1M ( r
s
) = 0S−1M and AnnS−1R(

m
t
) =

0S−1R for some r
s
∈ S−1R and m

t
∈ S−1M . Choose u ∈ S such that r2(um) ∈ N .

We show that AnnM (r) = 0M and AnnR(um) = 0. First, assume that rm′ = 0M

for some m′ ∈ M. Then
(

r
s

)

(

m′

1

)

= 0S−1M and so m′

1 = 0S−1M as AnnS−1M ( r
s
) =

0S−1M . Hence, there exists v ∈ S such that vm′ = 0M . Since S ∩ Z(M) = ∅,
then m′ = 0M and so AnnM (r) = 0M . Secondly, assume that r′um = 0 for some

r′ ∈ R. Then r′u
1

m
t
= 0S−1M and AnnS−1R(

m
t
) = 0S−1R imply that r′us = 0 for

some s ∈ S. But, clearly, um 6= 0M and so us ∈ S ∩ Z(M) = ∅, a contradiction.
Hence, AnnR(um) = 0. Therefore, r2(um) ∈ N implies that rum ∈ N and so
r
s
m
t
= rum

sut
∈ S−1N .

(2) Suppose that r2m ∈ N with AnnM (r) = 0M and AnnR(m) = 0 for some

r ∈ R and m ∈ M. Now,
(

r
1

)2 m
1 ∈ S−1N . If AnnS−1M ( r1 ) 6= 0S−1M , then there

exists 0S−1M 6= m′

t
∈ S−1M such that r

1
m′

t
= 0S−1M which implies urm′ = 0M for

some u ∈ S. Since AnnM (r) = 0M , we have um′ = 0M and m′

t
= um′

ut
= 0S−1M , a

contradiction. Now, assume that AnnS−1R(
m
1 ) 6= 0S−1R. Then

r′

s′
m
1 = 0S−1M for

some 0S−1R 6= r′

s′
∈ S−1R. Thus, r′vm = 0 for some v ∈ S and clearly r′m 6= 0M .

Hence, again v ∈ S∩Z(M) = ∅, a contradiction. Thus, AnnS−1M ( r1 ) = 0S−1M and

AnnS−1R(
m
1 ) = 0S−1R imply that r

1
m
1 ∈ S−1N and so wrm ∈ N for some w ∈ S.

Since S ∩ ZN (M) = ∅, we conclude that rm ∈ N , as desired. �

We recall from [2] that for an R-module M , we have

zd(R(+)M) = {(r,m)| r ∈ zd(R) ∪ Z(M), m ∈ M}
where Z(M) = {r ∈ R : rm = 0 for some 0M 6= m ∈ M}. In the following proposi-
tion, we justify the relation between semi r-ideals of R and those of the idealization
ring R(+)M .

Proposition 11. Let M be an R-module and I be a proper ideal of R.

(1) If I is a semi r-ideal of R, then I(+)M is a semi r-ideal of R(+)M. More-
over, the converse is true if Z(M) ⊆ zd(R).

(2) If I is a semi r-ideal of R and N is an r-submodule of M , then I(+)N is a
semi r-ideal of R(+)M . Moreover, the converse is true if Z(M) ⊆ zd(R).

Proof. (1). Suppose that (a,m)2 ∈ I(+)M and (a,m) /∈ zd(R(+)M). Then a2 ∈ I
and a /∈ zd(R). Since I is a semi r-ideal, we conclude that a ∈ I and so (a,m) ∈
I(+)M . Now, assume that Z(M) ⊆ zd(R) and I(+)M is a semi r-ideal of R(+)M .
Let a ∈ R such that a2 ∈ I but a /∈ I. Then (a, 0)2 ∈ I(+)M and (a, 0) /∈ I(+)M
which imply that (a, 0) ∈ zd(R(+)M). Since Z(M) ⊆ zd(R), we conclude that
a ∈ zd(R) and we are done.

(2). Suppose that (a,m)2 ∈ I(+)N and (a,m) /∈ zd(R(+)M). Then a ∈ I as in
(1). Moreover, a.m ∈ N as IM ⊆ N . Since also, a /∈ Z(M), then AnnM (a) = 0.
Therefore, m ∈ N as N is an r-submodule of M and (a,m) ∈ I(+)N as needed. If
Z(M) ⊆ zd(R), then similar to the proof of (1), the converse holds. �

Remark 1. In general, if Z(M) * zd(R), then the converse of Proposition 11
need not be true. For example, consider the idealization ring R = Z(+)Z4 and the
ideal 4Z(+)Z4 of R. Let (a,m)2 ∈ 4Z(+)Z4 for (a,m) ∈ R. Then a2 ∈ 4Z and so
(a,m) ∈ 2Z× Z4 = zd(R). Thus, 4Z(+)Z4 is a (semi) r-ideal of R. On the other
hand, 4Z is not a semi r-ideal of Z.
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4. Semi r-submodules of amalgamated modules

Let R be a ring, J an ideal of R and M an R-module. Recently, in [5], the
duplication of the R-module M along the ideal J (denoted by M ⋊⋉ J) is defined
as

M ⋊⋉ J = {(m,m′) ∈ M ×M : m−m′ ∈ JM}
which is an (R ⋊⋉ J)-module with scaler multiplication defined by (r, r+j)·(m,m′) =
(rm, (r + j)m′) for r ∈ R, j ∈ J and (m,m′) ∈ M ⋊⋉ J . For various properties and
results concerning this kind of modules, one may see [5].

Let J be an ideal of a ring R and N be a submodule of an R-module M . Then

N ⋊⋉ J = {(n,m) ∈ N ×M : n−m ∈ JM}
and

N̄ = {(m,n) ∈ M ×N : m− n ∈ JM}
are clearly submodules of M ⋊⋉ J . Moreover,

AnnR⋊⋉J(M ⋊⋉ J) = (r, r + j) ∈ R ⋊⋉ I|r ∈ AnnR(M) and j ∈ AnnR(M) ∩ J}
and so M ⋊⋉ J is a faithful R ⋊⋉ J -module if and only if M is a faithful R-module,
[5, Lemma 3.6].

In general, let f : R1 → R2 be a ring homomorphism, J be an ideal of R2, M1

be an R1-module, M2 be an R2-module (which is an R1-module induced naturally
by f) and ϕ : M1 → M2 be an R1-module homomorphism. The subring

R1 ⋊⋉f J = {(r, f(r) + j) : r ∈ R1, j ∈ J}
of R1 ×R2 is called the amalgamation of R1 and R2 along J with respect to f . In
[8], the amalgamation of M1 and M2 along J with respect to ϕ is defined as

M1 ⋊⋉ϕ JM2 = {(m1, ϕ(m1) +m2) : m1 ∈ M1 and m2 ∈ JM2}
which is an (R1 ⋊⋉f J)-module with the scaler product defined as

(r, f(r) + j)(m1, ϕ(m1) +m2) = (rm1, ϕ(rm1) + f(r)m2 + jϕ(m1) + jm2)

For submodules N1 and N2 of M1 and M2, respectively, one can easily justify that
the sets

N1 ⋊⋉ϕ JM2 = {(m1, ϕ(m1) +m2) ∈ M1 ⋊⋉ϕ JM2 : m1 ∈ N1}
and

N2
ϕ
= {(m1, ϕ(m1) +m2) ∈ M1 ⋊⋉ϕ JM2 : ϕ(m1) +m2 ∈ N2}

are submodules of M1 ⋊⋉ϕ JM2.
Note that if R = R1 = R2, M = M1 = M2, f = IdR and ϕ = IdM , then the

amalgamation of M1 and M2 along J with respect to ϕ is exactly the duplication of
the R-module M along the ideal J . Moreover, in this case, we have N1 ⋊⋉ϕ JM2 =
N ⋊⋉ J and N2

ϕ
= N̄ .

Theorem 12. Consider the (R1 ⋊⋉f J)-module M1 ⋊⋉ϕ JM2 defined as above.
Assume JM2 = {0M2

} and let N1 be submodule of M1. Then

(1) N1 is an r-submodule of M1 if and only if N1 ⋊⋉ϕ JM2 is an r-submodule
of M1 ⋊⋉ϕ JM2.
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(2) If N1 is a semi r-submodule of M1, then N1 ⋊⋉ϕ JM2 is a semi r-submodule
of M1 ⋊⋉ϕ JM2.

(3) If M2 is faithful and N1 ⋊⋉ϕ JM2 is a semi r-submodule of M1 ⋊⋉ϕ JM2,
then N1 is a semi r-submodule of M1.

Proof. (1) Let N1 be an r-submodule of M1 and let (r1, f(r1) + j) ∈ R1 ⋊⋉f

J , (m1, ϕ(m1)) ∈ M1 ⋊⋉ϕ JM2 such that (r1, f(r1) + j)(m1, ϕ(m1)) ∈ N1 ⋊⋉ϕ

JM2 and AnnM1⋊⋉
ϕJM2

((r1, f(r1) + j)) = 0M1⋊⋉
ϕJM2

. Then r1m1 ∈ N1 and we
prove that AnnM1

(r1) = 0M1
. Suppose r1m

′

1 = 0M1
for some m′

1 ∈ M1. Then
(r1, f(r1) + j)(m′

1, ϕ(m
′

1)) = (0M1
, jϕ(m′

1)) = (0M1
, 0M2

) as JM2 = {0M2
}. Thus,

(m′

1, ϕ(m
′

1)) ∈ AnnM1⋊⋉
ϕJM2

((r1, f(r1) + j)) = 0M1⋊⋉
ϕJM2

. Hence, m′

1 = 0M1
and

AnnM1
(r1) = 0M1

. By assumption, m1 ∈ N1 and then (m1, ϕ(m1)) ∈ N1 ⋊⋉ϕ JM2,
as needed.

Conversely, let r1 ∈ R1 and m1 ∈ M1 such that r1m1 ∈ N1 and AnnM1
(r1) =

0M1
. Then (r1, f(r1)) ∈ R1 ⋊⋉f J , (m1, ϕ(m1)) ∈ M1 ⋊⋉ϕ JM2 and (r1, f(r1))(m1, ϕ(m1)) =

(r1m1, ϕ(r1m1)) ∈ N1 ⋊⋉ϕ JM2. Moreover,AnnM1⋊⋉
ϕJM2

((r1, f(r1))) = 0M1⋊⋉
ϕJM2

.
Indeed, suppose that there (m′

1, ϕ(m
′

1)) ∈ M1 ⋊⋉ϕ JM2 such that (r1, f(r1))(m
′

1, ϕ(m
′

1)) =
0M1⋊⋉

ϕJM2
. Then (m′

1, ϕ(m
′

1)) = (0M1
, 0M2

) as AnnM1
(r1) = 0M1

. Since N1 ⋊⋉ϕ

JM2 is an r-submodule of M1 ⋊⋉ϕ JM2, then (m1, ϕ(m1)) ∈ N1 ⋊⋉ϕ JM2 so that
m1 ∈ N1 and we are done.

(2) Let (r1, f(r1) + j) ∈ R1 ⋊⋉f J and (m1, ϕ(m1)) ∈ M1 ⋊⋉ϕ JM2 such
that (r1, f(r1) + j)2(m1, ϕ(m1)) ∈ N1 ⋊⋉ϕ JM2, AnnM1⋊⋉

ϕJM2
((r1, f(r1) + j)) =

0M1⋊⋉
ϕJM2

and AnnR1⋊⋉
fJ((m1, ϕ(m1))) = 0R1⋊⋉

fJ . Then r21m1 ∈ N1 and similar to
the proof of (1), we have AnnM1

(r1) = 0M1
. We show that AnnR1

(m1) = 0R1
. As-

sume on the contrary that there is nonzero element r1 ∈ R1 such that r1m1 = 0R1
.

Then, (r1, f(r1))(m1, ϕ(m1)) = 0M1⋊⋉
ϕJM2

, but our assumptionAnnR1⋊⋉
fJ((m1, ϕ(m1))) =

0R1⋊⋉
fJ implies that (r1, f(r1)) = 0R1⋊⋉

fJ ; i.e. r1 = 0R1
, a contradiction. Thus

AnnR1
(m1) = 0R1

, and it follows that r1m1 ∈ N1 and so (r1, f(r1)+j)(m1, ϕ(m1)+
m2) ∈ N1 ⋊⋉ϕ JM2.

(3) Since M2 is faithful, then clearly J = {0R2
}. Let r1 ∈ R1 and m1 ∈

M1 such that r21m1 ∈ N1, AnnM1
(r1) = 0M1

and AnnR1
(m1) = 0R1

. Then
(r1, f(r1))

2(m1, ϕ(m1)) ∈ N1 ⋊⋉ϕ JM2 where (r1, f(r1)) ∈ R1 ⋊⋉f J and (m1, ϕ(m1)) ∈
M1 ⋊⋉ϕ JM2. Again, similar to the proof of (1), we haveAnnM1⋊⋉

ϕJM2
((r1, f(r1))) =

0M1⋊⋉
ϕJM2

. Moreover, suppose there is (r′1, f(r
′

1)) ∈ R1 ⋊⋉f J such that (r′1m1, ϕ(r
′

1m1)) =
(r′1, f(r

′

1)+j)(m1, ϕ(m1)) = 0M1⋊⋉
ϕJM2

. Then (r′1, f(r
′

1)) = (0R1
, 0R2

) asAnnR1
(m1) =

0R1
and soAnnR1⋊⋉

fJ ((m1, ϕ(m1))) = 0M1⋊⋉
ϕJM2

. By assumption, (r1, f(r1))(m1, ϕ(m1)) ∈
N1 ⋊⋉ϕ JM2. It follows that r1m1 ∈ N1 and N1 is a semi r-submodule of M1. �

Corollary 7. Let N be a submodule of an R-module M and J be an ideal of R.
Then

(1) If N ⋊⋉ J is an r-submodule of M ⋊⋉ J , then N is an r-submodule of M .
The converse is true if JM = 0M .

(2) If N ⋊⋉ J is a semi r-submodule of M ⋊⋉ J , then N is a semi r-submodule
of M . The converse is true if JM = 0M .

Proof. (1) Let r ∈ R and m ∈ M such that rm ∈ N and AnnM (r) = 0M . Then
(r, r)(m,m) ∈ N ⋊⋉ J and clearly, AnnM⋊⋉J ((r, r)) = 0M⋊⋉J . Thus, (m,m) ∈ N ⋊⋉ J
and so m ∈ N as needed. Conversely, suppose JM = 0M and let (r, r+j) ∈ R ⋊⋉ J ,
(m,m+m′) ∈ M ⋊⋉ J such that (r, r+j)(m,m+m′) ∈ N ⋊⋉ J and AnnM⋊⋉J((r, r+
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j)) = 0M⋊⋉J . If rm
′′ = 0M for some m′′ ∈ M , then (r, r+ j)(m′′,m′′) = (0, jm′′) =

(0M , 0M ) as JM = 0M . Thus, m′′ = 0M and AnnM (r) = 0M . Since rm ∈ N , then
m ∈ N and so (m,m+m′) ∈ N ⋊⋉ J .

(2) Let r ∈ R and m ∈ M such that r2m ∈ N , AnnM (r) = 0M and AnnR(m) =
0R. Then (r, r)2(m,m) ∈ N ⋊⋉ J . If there exists an element (m′,m′′) of M ⋊⋉
J , (r, r)(m′,m′′) = (0M , 0M ), then clearly (m′,m′′) = (0M , 0M ) as AnnM (r) =
0M ; and so AnnM⋊⋉J((r, r)) = 0M⋊⋉J . Also, if for (r′, r′ + j) ∈ R ⋊⋉ J , (r′, r′ +
j)(m,m) = (0M , 0M ), then (r′, r′ + j) = (0R, 0R) and AnnR⋊⋉J ((m,m)) = 0R⋊⋉J .
By assumption, (r, r)(m,m) ∈ N ⋊⋉ J and so rm ∈ N . The proof of the converse
part is similar to that of the converse of (1). �

Theorem 13. Consider the (R1 ⋊⋉f J)-module M1 ⋊⋉ϕ JM2 defined as in Theorem
12 and let N2 be a submodule of M2.

(1) If N2 is an r-submodule of M2, JM2 6= {0M2
} and T (M2) ⊆ JM2, then

N2
ϕ
is an r-submodule of M1 ⋊⋉ϕ JM2. Moreover, if f is an epimorphism

and ϕ is an isomorphism, then the converse holds.
(2) If f and ϕ are isomorphisms andN2

ϕ
is a semi r-submodule ofM1 ⋊⋉ϕ JM2,

then N2 is a semi r-submodule of M2.

Proof. (1). Suppose N2 is an r-submodule ofM2. Let (r1, f(r1)+j) ∈ R1 ⋊⋉f J and

(m1, ϕ(m1)+m2) ∈ M1 ⋊⋉ JM2 such that (r1, f(r1)+j)(m1, ϕ(m1)+m2) ∈ N2
ϕ
and

AnnM1⋊⋉
ϕJM2

((r1, f(r1)+j)) = 0M1⋊⋉
ϕJM2

. Then (f(r1)+j)(ϕ(m1)+m2) ∈ N2 and
AnnM2

((f(r1) + j)) = 0M2
. Indeed, suppose (f(r1) + j)m′

2 = 0M2
for some 0M2

6=
m′

2 ∈ M2. If m′

2 ∈ JM2, then (r1, f(r1) + j)(0M1
, 0M2

+ m′

2) = 0M1⋊⋉JM2
where

(0M1
, 0M2

+m′

2) 6= 0M1⋊⋉JM2
, a contradiction. If m′

2 /∈ JM2, then m′

2 /∈ T (M2) and
so (f(r1) + j) = 0R2

. If we choose 0 6= m′′

2 ∈ JM2, then (r1, f(r1) + j)(0M1
,m′′

2) =
0M1⋊⋉JM2

which is also a contradiction. By assumption, ϕ(m1) +m2) ∈ N2 and so

(m1, ϕ(m1) +m2) ∈ N2
ϕ
.

Conversely, suppose ϕ is an isomorphism and N2
ϕ
is an r-submodule of M1 ⋊⋉ϕ

JM2. Let r2 = f(r1) ∈ R2 and m2 = ϕ(m1) ∈ M2 such that r2m2 ∈ N2 and
AnnM2

(r2) = 0M2
. Then (r1, r2) ∈ R1 ⋊⋉f J , (m1,m2) ∈ M1 ⋊⋉ϕ JM2 and

(r1, r2)(m1,m2) ∈ N2
ϕ
. Suppose on contrary that there is (m′

1, ϕ(m
′

1) + m′

2) 6=
0M1⋊⋉

ϕJM2
such that (r1, r2)(m

′

1, ϕ(m
′

1) +m′

2) = 0M1⋊⋉
ϕJM2

. If ϕ(m′

1) +m′

2 6= 0M2
,

we get a contradiction. If ϕ(m′

1) + m′

2 = 0M2
(and so m′

1 6= 0M1
), then clearly

r2m
′

2 = 0M2
and then m′

2 = 0M2
. It follows that ϕ(m′

1) = 0M2
and so m′

1 = 0M1
, a

contradiction. Since N2
ϕ
is an r-submodule of M1 ⋊⋉ϕ JM2, then (m1,m2) ∈ N2

ϕ

and so m2 ∈ N2 as required.
(3) Let r2 = f(r1) ∈ R2 and m2 = ϕ(m1) ∈ M2 such that r22m2 ∈ N2,

AnnM2
(r2) = 0M2

and AnnR2
(m2) = 0R2

. Then (r1, r2))
2(m1,m2) ∈ N2

ϕ
where

(r1, f(r1)) ∈ R1 ⋊⋉f J and (m1, ϕ(m1)) ∈ M1 ⋊⋉ϕ JM2. Similar to the proof of
the converse part of (1), we have AnnM1⋊⋉

ϕJM2
((r1, r2)) = 0M1⋊⋉

ϕJM2
. We prove

that AnnR1⋊⋉
fJ((m1,m2)) = 0R1⋊⋉

fJ . Let (r′1, f(r
′

1) + j′) ∈ R1 ⋊⋉f J such that
(r′1, f(r

′

1) + j′)(m1,m2) = 0M1⋊⋉
ϕJM2

. Then f(r′1) + j′ = 0R2
and r′1m1 = 0M1

.
Thus, f(r′1)m2 = 0 and so f(r′1) = 0R2

. Since f is one to one, then r′1 = 0R1
and so

(r′1, f(r
′

1) + j′) = 0R1⋊⋉
fJ as needed. By assumption, (r1, r2))(m1,m2) ∈ N2

ϕ
and

so r2m2 ∈ N2. �

Corollary 8. Let N be a submodule of an R-module M and J be an ideal of R.
Then
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(1) If N̄ is an r-submodule of M ⋊⋉ J , then N is an r-submodule of M . The
converse is true if JM = 0M .

(2) If N̄ is a semi r-submodule of M ⋊⋉ J , then N is a semi r-submodule of M .
The converse is true if JM = 0M .

Proof. The proof is similar to that of Corollary 7 and left to the reader. �
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