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ABSTRACT

In the present research, three different data-driven models (DDMs) are developed to predict the discharge coefficient of streamlined weirs

(Cdstw). Some machine-learning methods (MLMs) and intelligent optimization models (IOMs) such as Random Forest (RF), Adaptive Neuro-

Fuzzy Inference System (ANFIS), and gene expression program (GEP) methods are employed for the prediction of Cdstw. To identify input vari-

ables for the prediction of Cdstw by these DMMs, among potential parameters on Cdstw, the most effective ones including geometric features

of streamlined weirs, relative eccentricity (λ), downstream slope angle (β), and water head over the crest of the weir (h1) are determined by

applying Buckingham π-theorem and cosine amplitude analyses. In this modeling, by changing architectures and fundamental parameters of

the aforesaid approaches, many scenarios are defined to obtain ideal estimation results. According to statistical metrics and scatter plot, the

GEP model is determined as a superior method to estimate Cdstw with high performance and accuracy. It yields an R2 of 0.97, a Total Grade

(TG) of 20, RMSE of 0.032, and MAE of 0.024. Besides, the generated mathematical equation for Cdstw in the best scenario by GEP is likened to

the corresponding measured ones and the differences are within 0–10%.

Key words: discharge coefficient, intelligent optimization models, Joukowsky transform, machine-learning models, open-channel flow,

streamlined weirs

HIGHLIGHTS

• The discharge coefficient of streamlined weirs (Cdstw) was analyzed using intelligent models.

• Random forest (RF), adaptive neuro-fuzzy inference system (ANFIS), and gene expression programming (GEP) methods are used and com-

pared for predicting Cdstw.

• The GEP model has been identified as a superior method for estimating Cdstw with high performance and accuracy.

NOMENCLATURE

Cdstw discharge coefficient of streamlined weirs (–)
RF Random forest
ANFIS Adaptive neuro-fuzzy inference system
Lw length of the weir (cm)
Ww height of the weir (cm)
H1 total head over the crest of the weir (cm)
Q discharges (L/s)
K number of discrete trees in random forest
GEP gene expression program
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RMSE root mean square error (m)
λ relative eccentricity (–)
yi predicted values of Cdstw

xi observed values of Cdstw

μx average of observed values of Cdstw

μy average of estimated values of Cdstw

β downstream slope angle
N Number of datasets
R2 Determination coefficient (–)
Y1 Upstream flow depths (cm)
Y2 Flow depths over weirs crest (cm)
Y3 Downstream flow depths (cm)
h1 Water head over the crest of the weir (cm)
TG Total grade
MBE Mean bias error (–)
CC Lin’s concordance correlation coefficient
MAE Mean absolute error (–)
bw crest width
σx Standard deviation of observed values of Cdstw

σy Standard deviation of estimated values of Cdstw

ANNs artificial neural networks

1. INTRODUCTION

Weirs diffuse rainwater, and thus reduce erosion. Besides, water flows more slowly and infiltrates into the soil, and it helps to
create groundwater reserves available for agricultural use. Precise control of water emissions of weirs is an effective method of
precision irrigation (Kröger et al. 2011). Weirs are considered to be the most common hydraulic structure worldwide and are

also commonly used to improve and develop artificial irrigation methods in barren valley areas. They are normally divided
into three main sets, namely short-crested weirs, sharp-crested weirs, and broad-crested weirs. Short-crested weirs are further
classified into three diverse types, namely streamlined weirs, circular-crested weirs, and overflow (Ogee) weirs (Bos 1976).

Streamlined weirs are a specific sort of short-crested weirs inspired by the airfoil concept. They have some advantages con-
trasted to the other kinds of weirs such as consistency and fewer vacillations of the free surface of water and especially high
discharge coefficient (Cd).

The discharge coefficient (Cd) has been assumed to depict the remaining energy losses that have not been pondered in the

derivation like turbulence circumstances on account of surface tension, viscous effects, and three-dimensional flow structures
ahead of the weir plate (Aydin et al. 2011). Precise indication of Cd has a very significant impact in assessing the discharge of
flow over the weirs. Therefore, it is substantial to compute Cd correctly.

Frequent investigations were performed on different forms of weirs that normally were emphasized on Cd. In this respect,
lots of experimentally based formulations have been recommended to determine Cd in open channels at early times.
Rajaratnam & Muralidhar (1971) performed a variety of exact measurements on velocity and pressure fields in a curved sec-

tion of flow in the vicinity of the crest of a rectangular sharp-crested weir. They remarked that the presented measurements
would be constructive in the improvement of presumptions for curved open-channel flow. Saadatnejadgharahassanlou et al.
(2017, 2020) investigated experimentally and numerically hydraulic attributes of a special form of sharp-crested V-notch weir

(SCVW). They reported that along with the results, SCVW outdid normal weirs. Salmasi (2018) evaluated the impacts of
downstream submergence and apron elevation on Cd of Ogee weirs. The results demonstrated that the relationship of
head–discharge was fairly self-determining the downstream submergence when submergence levels were smaller than 0.8.
Furthermore, Cd depended on the spillway crest and vertical distance among weir height and downstream apron. Haghiabi

et al. (2018) inspected the hydraulic attributes of a circular-crested stepped weir. They affirmed that the mentioned kind of
weir might squander the flow energy up to 90%. Abdollahi et al. (2017) simulated the flow field around labyrinth side
weirs with guide vanes through OpenFOAM software. They reported that based on the outcomes, the pick Cd was attained

when the vane plates were situated vertically to the flow direction in the downstream end of the weirs across the main
channel. Sutopo et al. (2022) examined the impact of spillway width on flow elevation at the weir crest on the basis of
flood discharge design for the Probable Maximum Flood (PMF) return period by flood routing hydrologically at the Cacaban
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Dam (Indonesia). The outcomes of the investigation approved that snowballing spillway crest widths resulted in lessening

flow evaluation at the spillway crest, and consequently amplifying outflow discharge. Yamini et al. (2020) evaluated the
effect of hydrodynamics flow on flip buckets spillway for flood control in large dam reservoirs. They presented an equation
to determine pressure distribution, particularly the position of maximum dynamic pressure on the bed of flip buckets with a

high radius, as a function of bucket geometry and flow depth.
Rao & Rao (1973) examined the streamlined weir performance (termed hydrofoil weirs), in both submerged and free

overflow conditions. The results of experiments confirmed a higher Cd in comparison with other kinds of weirs. Bagheri
& Kabiri-Samani (2020a, 2020b) performed widespread experimental and numerical works to evaluate the characteristics

of streamlined weirs. Experimental outcomes of steady flow discharge confirmed that upstream flow heads on streamlined
weirs corresponding to diverse relative eccentricities were particularly constant, which indicated almost fixed Cd by changes
of comparative eccentricities.

Along with the literature review, it can be discerned that most researchers proposed nonlinear mathematical equations to
compute the amount of Cd approximately. In these equations, Cd was represented with self-determining variables. Since non-
linearity integration is concerned, the recommended equations for Cd have typically some definite restraints. Because of the

high inconsistency of Cd on the weak ability of empirical formulas and the extreme significance of Cd, researchers presented
nonlinear schemes, such as machine-learning models (MLMs) and intelligent optimization models (IOMs). MLMs and IOMs
are known as dominant stand-in techniques to explain indefinite engineering problems, particularly appropriate in addressing

the elaborate and nonlinear performance of Cd.
Of artificial intelligence (AI) algorithms, random forest (RF) algorithm, adaptive neuro-fuzzy inference system (ANFIS),

and gene expression program (GEP) have a particular status. RF algorithm was initially suggested by Breiman (1996) and
is considered an admirable method with an extremely simple and flexible structure, yet more cost-effective for calibration

and higher exactness in forecasting. It is a developed kind of decision tree (DT) algorithm with ensemble concepts, which
utilizes numerous circles of DT to map relationships among highly nonlinear variables in big datasets to solve various com-
plicated engineering problems (Breiman 2001). GEP is a biologically developed IOM that has the satisfactory capability to

compute parameters with a nonlinear relationship. It has been widely employed for forecasting Cd in diverse weirs. Fuzzy
logic (FL) method has particular significance in modeling and controlling the most intricate nonlinear systems (Zadeh
1993). A combination of fuzzy systems and artificial neural networks is called ANFIS presented by Jang (1993). It is a multi-

layer feed–forward network in which each neuron implements a specific purpose on received signals. Both square and circle
node symbols are employed to characterize diverse features of adaptive learning. To execute preferred input–output attri-
butes, the adaptive learning factors are reorganized on the basis of the hybrid learning rule which is an incorporation of
the back-propagation gradient descent and the least square error techniques (Jang 1993; Hanbay et al. 2009).

Recently, different AI methods have been developed to predict discharge coefficient of diverse weirs such as labyrinth weirs
(Norouzi et al. 2019; Zounemat-Kermani et al. 2019), gated piano key weirs (Akbari et al. 2019), side weirs on converging
channels (Zarei et al. 2020), oblique weir (Norouzi et al. 2020), broad-crested weirs with cross-section rectangular and sup-

pressed (Nourani et al. 2021), SCVW (Gharehbaghi & Ghasemlounia 2022). Salmasi et al. (2013) examined Cd in the
compound rectangular BCW by employing AI approaches. The results confirmed that GEP was more precise than those
of AI methods. Roushangar et al. (2018) computed Cd of stepped spillways under skimming flow and nappe regime. The

results affirmed that the GEP had strong potential in modeling Cd via data acquired from physical models. Salazar &
Crookston (2018, 2019) estimated Cd of arced labyrinth weirs by using various MLMs through some input variables including
the head over crest, angle of cycle arc, and angle of cycle sidewall. They fed linearity to their models and reported the super-

iority of RF in comparison with other applied methods for forecasting Cd in the application of area. Kumar et al. (2020) and
Aein et al. (2020) appraised Cd in the combined weir-gate and piano key weir by using several MLMs in different flow circum-
stances, respectively. They declared that the best agreement was gained between measured and forecasted values of Cd by the
RF method. Chen et al. (2022) developed different traditional and hybrid machine-learning–deep learning (ML-DL) algor-

ithms to forecast discharge coefficient of streamlined weirs (Cdstw). The results confirmed that the proposed three-layer
classified DL algorithm comprising of a convolutional layer united with two subsequent gated recurrent unit (GRU) levels,
which is also hybridized by linear regression (LR) method (i.e., LR-CGRU), outperformed markedly in comparison with

the algebraic equations presented by Bagheri & Kabiri-Samani (2020a) and Carollo & Ferro (2021).
Although computational fluid dynamics (CFD) has gotten incredible considerations from both industry and academic worlds

to estimate variables in fluid domains, it agonizes on behalf of computationally difficult processes and an obligation of reflective
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theoretical understanding in the fluid mechanics sphere (Gharehbaghi 2016; Saadatnejadgharahassanlou et al. 2017; Dasineh

et al. 2021; Gharehbaghi & Ghasemlounia 2022). Against the overflow and circular-crested weirs, a wide-ranging scarcity of
investigations regarding flow features over the streamlined weirs and most characteristics of the streamlined weirs are still
unknown. To get rid of restrictions of empirical relationships and CFDmodels concerning geometric and hydraulic parameters

for discharge coefficient based on experimental or hydraulic models, in the present research, the Cdstw in steady, aerated, and
free overflow situations in an open channel are predicted by using RF, ANFIS, and GEP approaches. In this direction, by com-
bination of several geometric and hydraulic parameters affecting hydraulic operations of streamlined weirs and by tuning the
structures and key hyperparameters of thesemethods, several scenarios are defined. It is vital tomention that all key hyperpara-

meters are chosen via a trial-and-error procedure to accomplish the ideal construction of the methods used. In this regard, 120
observation data are employed in the mentioned approaches to evaluate Cdstw with regard to the dimensionless parameters
which affect the process of estimating Cdstw. The main contributions of this work are as follow:

• Identify the most effective variables on Cdstw among a list of potential geometric and hydraulic parameters using preproces-
sing methods.

• To develop suitable AI methods to compute Cdstw in steady, aerated, and free overflow situations in an open channel using
most effective variables specified.

• To determine an optimal value of hyperparameters and architecture of models developed via the algorithm-tuning process

for better configuration and decrease the effect of underfitting or overfitting problems.

• To match the experimental results of models developed to distinguish the attributes of the optimum method through stat-
istical evaluation metrics.

The remaining contents are prearranged as follows. Section 2 presents the experimental framework and measuring process.
Section 3 presents the theoretical approach for the head–discharge equation for the short-crested weirs and Joukowsky trans-
form function in streamlined weirs. Section 4 presents the application of dimensional analysis in finding potential parameters

on Cdstw. Section 5 presents a sensitivity analysis to pick the most significant predictor variables on Cdstw by data-driven
models (DDMs) proposed. Section 6 presents an overview of DDMs developed to estimate Cdstw. Section 7 presents perform-
ance evaluation metrics used to compare the models’ performance in estimation of Cdstw. Section 8 presents validation of

DDMs developed statistically and graphically. Section 9 presents performance comparison of the methods developed
using a model scoring procedure. The last section concludes the current research.

2. EXPERIMENTAL FRAMEWORK

The experimental work for the present research was carried out for different dimensions of streamlined weirs prototypes via
Joukowsky transform function, in the hydraulic laboratory of Water Engineering Department of Isfahan University of Tech-

nology (Bagheri & Kabiri-Samani 2020a). An 11 m long, 0.4 m wide, and 0.7 m high rectangular horizontal flume was
employed. All prototypes were made of galvanized iron with a plate thickness of 0.05 m, crest width (bw) of 0.4 m, and
were placed at 4.5 m downstream from the channel inlet. Free steady flow conditions were applied so that the downstream
flow was supercritical in all tests. Features of experimental models are specified in Figure 1. The geometric features and the

downstream slope angle of the weirs, β, are computed using Joukowsky transform function (Bagheri & Kabiri-Samani 2020a).

Figure 1 | Graphical description of the experimental model used in the current study.
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In Figure 1, Y1, Y2, and Y3 are upstream flow depths, flow depths over weirs crest, and downstream flow depths (cm),

respectively. Y1 and Y3 are gauged at the nearest segments close to the structure where streamlines’ curving is trivial. Lw

and Ww are the length and height of the weir (cm), respectively. Moreover, h1 and H1 are water head and total head over
the crest of the weir (cm), respectively. All discharges (Q) were gauged by using an electromagnetic flowmeter in the measur-

ing basin with a precision of +0.5%. The dimensions of the streamlined weirs and the range of applied observation data are
provided in Table 1.

Interested readers can refer to Bagheri & Kabiri-Samani (2020a) for more details about the experimental setup.

3. THEORETICAL APPROACHES

By applying the continuity and energy equations, the representative head–discharge equation for the short-crested weir is writ-
ten as follows:

Q ¼ Cd
2
3

ffiffiffiffiffiffi
2
3
g

r !
bwH1:5

1 (1)

where bw and H1 are the weir width and the total head over the weir crest (H1¼ h1þ v2/(2 g)), respectively. Moreover, v indi-
cates the approach velocity, and g is the gravity acceleration (m/s2). From an empirical standpoint, to gauge H1 directly is not
feasible. Because (v2/(2 g)≪ h1), it is assumed that H1≈ h1. In other words, the differences among the upstream heads (h1¼
Y1–Ww) are very slight, which is in order of a few millimeters.

As aforesaid, streamlined weirs are inspired by the airfoil concept. In the current paper, 12 streamlined weir prototypes
using Joukowsky transform function are constructed to conduct experimental works. Practically, to evaluate the main factors
in the design of an airfoil, Joukowsky transform function has been employed. In the Joukowsky transform function, the rela-

tive eccentricity λ is a significant parameter, which can depict the weir geometry. Interested readers can refer to Bagheri &
Kabiri-Samani (2020a) for more information about the concept of Joukowsky transform function.

4. DIMENSIONAL ANALYSIS

In the current research, the gathered data are scrutinized to obtain the operative parameters on Cdstw. Based on Figure 1,
potential parameters that affect Cdstw can be depicted as:

Cdstw ¼ f(bw, Lw, Ww, b, l, Q, h1, g, S0, rw, sw, mw, nr, 1r) (2)

where bw refers to the channel width (m), β describes the slope angle of the downstream weir (degree), λ is the relative eccen-
tricity, So is the slope of main channel bed, ρw is the water density (kg/m3), σw is the surface tension of water (kg/s2), μw is the
dynamic viscosity (kg/(s.m)), nr is the coarseness of the main channel (s/m1/3), and ɛr is the surface roughness. Borghei et al.
(1999) reported that impacts of So, nr, μw, ɛr, and σw on basic flow particles were very slight. Furthermore, surface tension is
significant in small nappe heights, so they are neglected here since, in the current paper, the lowest nappe height over the weir
is considered 20 mm. Thus, the set of dimensionless equations attained is as follows:

p1 ¼ f(p2, p3, p4, p5, p6, p7) (3)

Equation (3) points out a physical phenomenon, in which π1, π2, π3, π4, π5, π6, and π7 are dimensionless sets and f is a func-

tional sign. By operating the Buckingham π-theorem and using the features of dimensional analysis, non-dimensional

Table 1 | Dimensions of the streamlined weirs and range of observed datasets

Cdstw h1 (cm) β° (–) Q(l/s) λ (–) Lw (cm)

0.87–1.31 4–21.6 0, 30, 60 5.2–77.7 0.25, 0.5, 1, 1.25 40.2, 53.3, 64.1, 71.2
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relationships in functional systems can be depicted as follows:

p1 ¼ h1

Ww
; p2 ¼ bw

Lw
; p3 ¼ b; p4 ¼ l; p5 ¼ Q

g1=2h1:5
1

; p6 ¼ r
1=2
w g1=2h1

s
1=2
w

; p7 ¼ rwg
1=2h3=2

1

mw
(4)

On the condition that some groups of dimensionless parameters ought to be mixed, which have been persistently employed
in the hydraulic field, Equation (4) can be represented in the mentioned forms as follows:

Q
g1=2h1:5

1

¼ f
h1

Ww
,
bw
Lw

, b, l,
r
1=2
w g1=2h1

s
1=2
w

,
rwg

1=2h3=2
1

mw

 !
(5)

The left-hand side expression of Equation (5) describes Cdstw. The fifth and the sixth expressions on the right-hand side indi-
cate the Weber number (Wb) and the Reynolds number (Re), respectively. The impacts of the Weber number and the Reynolds
number can be ignored excluding slight values of h1 (Rao & Shukla 1971). Consequently, Cdstw over the studied weir would be

expressed as follows:

Cd stw ¼ f
h1

Ww
;
bw
Lw

; b; l

� �
(6)

with the purpose of the assessment of variations processes of Cdstw and hydraulic features of streamlined weirs, different
experimental values for h1/Ww, bw/Lw, β, and λ are tested. Equation (6) is capable to predict Cdstw of streamlined weirs by
the afore-mentioned DDM approaches.

5. DATA AND SENSITIVITY ANALYSIS

Because the performance of any simulation method in the precise predicting of target parameter chiefly count on a suitable
choice of predictor variables, unsuitable picking could adversely influence the ability of the method. Thus, in the current

research, the most significance predictor variables for estimation of Cdstw by DDMs are selected using cosine amplitude sen-
sitivity analysis.

This analysis is performed for parameters employed in Equation (6) to depict the impact of each predictor on the target, by

altering each predictor in a fixed proportion and retaining the other predictors constant. The cosine amplitude process is
operated for the analysis following (Momeni et al. 2014):

Rij ¼
PN

k¼1 IikO jkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
k¼1 I

2
ik:
PN

k¼1 I
2
jk

q (7)

where Ii and Oj are input and target parameters, respectively, and N is the number of data. Rij value is in the range of 0 and 1,
and defines the relationship strength among every predictor and the target in Equation (6) (Figure 2). According to Figure 2, it
can be concluded that due to high Rij values of h1/Ww, bw/Lw, β, and λ (over 0.5), they have a noticeable effect on Cdstw and
cannot be ignored, so are contemplated as input variables in estimating Cdstw by DDMs. Statistical attributes of parameters

used in Equation (6) are presented in Table 2. As seen in Table 2, it is understandable that Cdstw has the most unstable
behavior, so robust precise methods are need to analyze and estimate Cdstw.

6. MODELING

Due to the complicated nonlinear nature in function approximation of relationship amid Cdstw with the parameters used in
Equation (6), precise modeling and analysis are necessitated to cope with data series. As such, ANFIS, RF, and GEP methods

are developed to evaluate Cdstw. Both sides of Equation (6) are firstly normalized to zero mean and unit variance as the rec-
ommendation by Lawrence et al. (1997). Then, 70% (84) of recorded data are randomly used in the training phase and the
other 30% (36) are employed in the testing phase.
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6.1. Overview of the RF model

RF is a developed and widespread ensemble technique that contemplates as a forest containing numerous simple decision
trees (DT) grown in parallel. RF is suitable for forecasting and classification issues (Cutler et al. 2007).

The RF algorithm, by transforming and constantly altering the factors affecting the target parameter, causes the generation
of many decision trees, and after that, all trees are united for the prediction mission. By growing the number of trees, the
impact of the overfitting problem and error rate are decreased consequently. It operates a bagging process to pick random

samples of parameters meant for the training dataset (Trigila et al. 2015). To make a relationship among different parameters,
it categorizes the dataset in the initial phase, and afterward initiates to produce leaf nodes and roots in a downward path,
respectively (Diaz-Uriarte & De Andres 2006). Specifying features is the chief mission of each node and leaf that describes

inquiries about input and target parameters. To stipulate a set of responses, the leaves of trees are employed (Al-Juboori 2019).
RF needs merely two user-defined parameters, namely the number of input parameters (m) and the number of trees grown

(K) which represents for every discrete tree, yet affects strongly the exactness of results (Breiman 2001). The RF estimation

process can be explained by the following equation as (Breiman 2001):

Random forest estimation ¼ 1
k

Xk
k¼1

kth (8)

where K is the number of discrete trees in the forest. Figure 3 demonstrates the operated flow network plot of the RF model to
predict Cdstw.

Figure 2 | Effect of each input variable on the target (Cdstw) of the utilized process.

Table 2 | Statistical indices of parameters employed in Equation (6)

Statistical indices h1/Ww λ β bw/Lw Cdstw

Mean 0.71 0.56 15 0.01 1.1

Minimum 0.13 0.13 0 0.01 0.87

Maximum 3.41 1 60 0.01 1.31

Std. deviation 0.59 0.34 23.01 0 0.11

Coefficient of variation 0.82 0.6 1.53 0.21 0.1

Skewness 2.39 0.23 1.14 0.22 �0.02
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6.1.1. Model development

Because there are no standards to predetermine a suitable value for K in a given dataset, its optimal value should be found
through a trial-and-error way to get the ideal structure for an RF model. Several scenarios with diverse steps are regarded for

K value. R2 and RMSE grades of each scenario are employed as evaluation metrics and consequently, a scenario that has the
maximum R2 and minimum RMSE amount is taken into account as the optimal one. In the current study, inputs cover the
experimental data (i.e., h1/Ww, bw/Lw, β, λ) and the target is Cdstw, thus the value of m is set to 4.

6.2. Overview of the ANFIS

Fuzzy Inference System (FIS) is developed based on three core principles, including (i) a rule-base, consisting of fuzzy if-then

rules, (ii) a database, identifying membership functions (MFs), and (iii) an inference system that integrates the fuzzy instruc-
tions and generates the system effects (Yurdusev & Firat 2009). The major predicament with FL is that there are no efficient
norms to recognize the best MF. ANFIS reduces the fundamental complications in the fuzzy system design by defining MF

factors and configuration of fuzzy if-then rules through successfully employing the learning ability of ANNs for instinctive
fuzzy instruction generation and factor optimization (Nayak et al. 2004; Firat & Güngör 2007; Yurdusev & Firat 2009).
The ANFIS model is formed from five layers. There are two sorts of FISs, Sugeno-Takagi FIS and Mamdani FIS. The

most significant difference among these FISs is a characterization of consequence factor. The consequence factor in
Sugeno-Takagi FIS is either a linear equation termed ‘first-order Sugeno FIS’, or a constant coefficient, ‘zero-order Sugeno
FIS’ (Jang 1993). Figure 4 demonstrates the structure of ANFIS (Yurdusev & Firat 2009). For the first-order Takagi-
Sugeno FIS, common rule sets for two inputs including x and y, two if-then rules, and one output f, can be depicted as the

following(Jang 1993),
Rule 1: If x is A1 and y is B1 Then f1¼ p1xþ q1yþ r1
Rule 2: If x is A2 and y is B2 Then f2¼ p2xþ q2yþ r2
In ANFIS, the rules are regular, but the form and numbers of MFs are optimized. To implement ANFIS, the number of

input datasets must be less than six (Kisi & Sanikhani 2015).

6.2.1. Model development

In this study, ANFIS toolbox in MATLAB 2019b with Sugeno-Takagi FIS model is applied to predict Cdstw. In this regard, the
dimensionless independent experimental parameters β, and λ are used as the input variables.

Figure 3 | Structure of the Random Forest (RF) model to estimate Cdstw (Fathian et al. 2019).
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To organize the input datasets and for creating fuzzy rules in the ANFIS model, there are two general schemes including

subtractive clustering (SC) and grid partition (GP). In this research, the GP method is utilized to generate FIS. To obtain an
appropriate ANFIS structure, suitable MFs and an optimal number of MFs for both input/output datasets should be
employed. However, an appropriate MFs and their optimal numbers ought to be determined by the trial-and-error procedure.

In this direction, several different scenarios are characterized by the user via a trial-and-error process to accomplish the ideal
structure.

In total, eight different MFs including, Trimf (Triangular), Trapmf (trapezoid), Gbellmf (Generalized bell), Gaussmf (Gaus-

sian), Gauss2mf (two Gaussian), Pimf (Pi-shaped), Desigmf, and Psigmf for input parameters are employed to develop various
scenarios. In all scenarios, the number of MFs for the input variables is set as 3 and linear MF for the output variable is
selected. Additionally, to indicate the nonlinear input and linear output parameters for training FIS, the hybrid algorithm

is used as the optimized model with epoch 100 and zero tolerance. The performance of scenarios in the testing stage is eval-
uated by statistical metrics.

6.3. Overview of GEP

GEP ponders as a circulating and evolutionary intelligence algorithm introduced by Ferreira (2001) and derived from the

Darwinian evolution concept with sufficient ability to predict elaborate relationships. Technically, in the present technique,
the supreme population is carefully chosen; else, a fresh population is revived to reach the ideal population.

The creation of secluded items (expression tree and genome) with diverse applications yields the algorithm to adopt with

great ability that meaningfully outdoes the present evolutionary methods.
The profits of GEP are, firstly, the chromosomes are linear, soft units, relatively small, condensed, and simple to operate

natively (recombine, replicate, transpose, mutate, etc.). Secondly, the expression trees are completely the expression of

their separate chromosomes (Ferreira 2001). The flowchart of GEP algorithm is depicted in Figure 5.
The creation of the primary populace is the initial stage in GEP algorithm. This executes haphazardly or with some knowl-

edge of the matter. Subsequently, the chromosomes are indicated in the structure of an expression tree. The consequences are
assessed through a fitness function to specify the appropriateness of a resolution. By reaching a reasonable value, the pro-

gression procedure is discontinued and the excellent conclusion is reported. If stop situations are not fulfilled, the ideal
one for the extant group is kept back. The procedure is repeated for a given number of generations so that an optimum out-
come is acquired (Ferreira 2001).

6.3.1. GEP model development

In this investigation, GeneXpro Tools 4.0 program is employed in adopting the GEP model. The values of Cdstw are estimated
by using GEP with the following steps (Mehdizadeh et al. 2017):

Figure 4 | The structure of the ANFIS (Zadeh 1993).
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Figure 5 | Flowchart of the GEP algorithm.
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1. In the first step, RMSE is selected as the fitness function.

2. The second step is to determine variables and function sets to produce the chromosomes. Concerning, forecasters vari-
ables in Equation (6) (i.e., h1/Ww, bw/Lw, β, and λ) are selected as inputs variables, yet the target variable is Cdstw in
Equation (6). The functions set comprises four primary mathematics operators {þ , –, /, �} and several mathematical func-

tions, including x2, x3, ex, etc.
3. In the third step, the core construction for chromosomes, such as head size, number of genes, and chromosomes, is outlined.
4. In the fourth step, a linking function is employed to link expression trees and relate subcategories. In this direction,

addition, subtraction, multiply, and division are tested.

5. Finally, Maximum Fitness criteria, equal to 5,000, are specified as stop criteria.

In this study, by tuning the number of chromosomes (NC), kind of linking function (LF), and head size (HS) as hyperpara-

meters, numerous scenarios are distinctly listed. It is necessary to mention that the ideal value of these hyperparameters is
obtained through a trial-and-error method to accomplish an ideal GEP configuration.

7. PERFORMANCE EVALUATION METRICS

In this work, different statistical metrics such as determination coefficient (R2), root mean square error (RMSE), mean absol-
ute error (MAE), mean bias error (MBE), and Lin’s concordance correlation coefficient (CC) are employed to equate the

models’ performance as follows:

Determination coefficient (R2); R2 ¼
PN

i¼1 (xi � mx)(yi � my)

Nsxsy

 !2

(9)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1 (xi � yi)
2

N

s
(10)

MAE ¼
PN

i¼1 jxi � yij
N

(11)

MBE ¼
PN

i¼1 (yi � xi)
N

(12)

CC ¼ 2rxysxsy

s2
x þ s2

y þ (mx � my)
2 (13)

where N is the number of data, xi and yi are observed and forecasted values of Cdstw, respectively. Lesser values for RMSE,

MAE, and MBE accompanied by larger values for R2 denote a better forecasting presentation (Kisi 2007).

8. RESULTS AND DISCUSSION

8.1. Experimental results

Based on experimental results in β¼ 0, lowering of λ caused a decrease in the weir height and decreases Y1 accordingly.

Nevertheless, the differences among h1 are very slight. Thus, for a given Q, h1 was almost constant by shifting λ. Apart
from h1, by lowering λ, Y3 and Y2 increased. Furthermore, the ratio of Y2=h1 increased to some extent by lowering λ. Its aver-
age for the streamlined weirs was approximately 0.75, while for circular-crested weirs, it was around 0.7 (Jaeger 1956). The
reason was that, by lowering λ, the structure and streamline’s curvature on the weir crest decreased (Bagheri & Kabiri-Samani

2020a). By lowering the streamline’s curvature, the streamline’s compression declined, and Y2 increased accordingly (Bagheri
& Kabiri-Samani 2020a).

On the basis of experimental results at β¼ 30° and 60° (base-block), increasing the weir height corresponding to λ¼ 1

resulted in intensifying substantially the turbulence of the downstream weir flow. However, increasing the height of other
ones with λ , 1 did not strikingly change the hydraulic manner of downstream weir flow (Bagheri & Kabiri-Samani
2020a). Besides, for streamlined weirs with small Q and λ , 1, the flow goes through a virtual surface into the downstream
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and an air pocket was involved below the lower nappe of flow profile (Bagheri & Kabiri-Samani 2020a). As Q rises, the air

packet was annihilated and the weir base was successively submerged. A rotational flow region was developed near the weir
base-block and consequently, a non-turbulent surface was generated. Interested readers can also refer to the previous study by
Bagheri & Kabiri-Samani (2020a) for more details about the experimental results.

8.2. Validation of the RF model

Here, after several examinations, testing further numbers for variables and trees on each node showed that K ¼ 500 leads to
comparatively better results. The value of statistical indices for Cdstw in the calibration and validation stages under the optimal
scenario of the RF model is given in Table 3.

The positive value of MBE signifies that the model overestimates the corresponding observed values. Also, it can be inferred
that the RF model estimates Cdstw with high precision in the both calibration and validation stages, yet in the calibration stage,
it is slightly more accurate than the validation stage.

Precise prediction of Cdstw signifies the high performance of model. Figure 6 illustrates comparisons between measured and
predicted Cdstw in the validation stage under the optimal scenario by the RF model. Results of statistical indices and visual
analysis of Figure 6 confirm a high capability of the structural design of the RF model under the optimum scenario for com-
puting the target with high precision and agreement.

8.3. Validation of the ANFIS model

In the research, after many experiments, the suitable MFs in the structure of an optimal ANFIS model are determined as the
TRI. The value of statistical metrics in the calibration and validation stages by the ANFIS method under the optimal scenario

is given in Table 4. Figure 7 shows the comparison between the measured and predicted Cdstw by the ANFIS method under
the optimal scenario in the testing stage.

Table 3 | Statistical indices for Cdstw in the calibration and validation stages under the optimal scenario of the RF model

Stages

Statistical metrics (dimensionless)

R2 RMSE MAE MBE CC

Calibration 0.98 0.0175 0.0147 381� 10�6 0.95

Validation 0.96 0.0234 0.0192 0.0016 0.93

Figure 6 | Comparison between measured and predicted Cdstw by the RF model in the validation stage.
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Based on Table 4 and Figure 7, it can be deduced that the ANFIS model estimates Cdstw with high accuracy in the training
stage, nevertheless, it has a weak performance in the testing stage.

8.4. Validation of the GEP model

Rates of parameters and genetic operators of GEP to estimate Cdstw under the optimal scenario are presented in Table 5. In
effect, these parameters are the custom of GEP and have a perceptible influence on the ability of GEP.

Value of statistical metrics by GEP under the optimal scenario in the validation stage are given in Table 6, wherein, NC
specifies the number of chromosomes, LF shows the kind of linking function, HS indicates head size, and the bold ones

signify the optimal scenario’s attributes.
Based on Table 6, it can be reasoned that the features of ideal GEP scenario can be used to estimate Cdstw with sufficient

precision. Figure 8 shows the comparison of measured and modeled Cdstw by GEP under the ideal scenario in the testing

stage. Consistent with Figure 8, due to the high capability of the GEP model, it can suitably capture the fluctuations trend
of observed Cdstw.

Table 4 | Statistical metrics for Cdstw under the optimal scenario of the ANFIS method

Stages

Statistical metrics (dimensionless)

R2 RMSE MAE MBE CC

Calibration 0.91 0.0306 0.0259 1.19� 10�5 0.95

Validation 0.79 0.0688 0.0544 0.0286 0.94

Figure 7 | Comparison between the measured and predicted Cdstw by the ANFIS under the optimal scenario in the testing stage.

Table 5 | Rates of genetic operators and parameters of GEP under the optimal scenario

Inversion 0.1 Two-point recombination 0.3

Gene transposition 0.1

Mutation 0.044 Insertion sequence (IS) transposition 0.1

Gene recombination 0.1

Number of genes 3

One-point recombination 0.3 Root insertion sequence (RIS) transposition 0.1
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Figure 9 shows the scatter plot comparing observed and predicted Cdstw by GEP under the optimal scenario in the vali-
dation stage. According to the fit line equation in the scatter plot and by assuming that the equation is y¼ aoxþ a1, the
coefficients a1 and a0 are, respectively, near to 1 and 0 with a satisfactory rate of R2.

As aforesaid, the generation of an algebraic equation is the chief significant attribute of GEP. The arithmetic Cdstw relation-
ship generated by GEP under the ideal scenario is presented in Equation (14):

Cdstw ¼ 0:357
bw
Lw

� �
h1

Ww

� ��1

þ l
h1

Ww

 !0:2

þ0:375
h1

Ww

� �0:2

(14)

Table 6 | Statistical metrics for Cdstw by GEP under different scenarios in the validation stage

Statistical metrics (dimensionless)

LF NC HS RMSE R2 CC MAE

Addition 30 8 0.18 0.55 0.74 0.17

Addition 33 7 0.069 0.96 0.98 0.056

Addition 35 6 0.036 0.92 0.96 0.029

Subtraction 30 8 0.052 0.91 0.95 0.044

Subtraction 33 7 0.13 0.46 0.68 0.107

Subtraction 35 6 0.032 0.93 0.96 0.025

Multiplication 30 8 0.033 0.91 0.95 0.024

Multiplication 33 7 0.04 0.91 0.95 0.031

Multiplication 35 6 0.032 0.97 0.96 0.024

Division 30 8 0.051 0.88 0.93 0.04

Division 33 7 0.04 0.91 0.95 0.033

Division 35 6 0.039 0.97 0.98 0.032

Figure 8 | Comparison between the measured and predicted Cdstw by the GEP method under the optimal scenario in the testing stage.

Journal of Hydroinformatics Vol 25 No 4, 1526

Downloaded from http://iwaponline.com/jh/article-pdf/25/4/1513/1264435/jh0251513.pdf
by guest
on 16 August 2023



As can be seen, Equation (14) is very complex due to the intrinsic non-linearity of relationships amid the geometry of stream-
line weirs, channel, flow conditions, and Cdstw. The results emphasize the significance of an opposite input choice process to

appraise the complexity and precision of model. The computed Cdstw is compared with the corresponding measured ones,
with results within 0–10% andR2¼ 0.97. Hence, it can be deduced that the suggested equation can be utilized as a multivariate
mathematical relationship for the initial estimation of Cdstw with enough accuracy in the hydraulic engineering field.

9. PERFORMANCE COMPARISON OF THE METHODS DEVELOPED

Along with Tables 3, 4 and 6 and Figures 6–9, it seems that all employed models are suitable with almost equal accuracy per-
formance. In this section, the most superior employed methods to estimate Cdstw is carefully chosen by using the model
scoring procedure recommended by Vaheddoost et al. 2016. In this procedure, the SG (success grade) and the FG (failure
grade) of performance as the pivotal criteria are expressed as follows:

Performance index (PI); PI ¼ 1
N

XN

i¼1

yi
xi

(15)

SG(R2)i ¼
R2

i

R2
max

� 10 (16)

SG(CC)i ¼
CCi

CCmax

����
����� 10 (17)

FG(PI)i ¼
j1� PIjmin

j1� PIji
� 10

� �
� 10 (18)

FG(RMSE)i ¼
RMSEmin

RMSEi
� 10

� �
� 10 (19)

Total grade (TG) of each technique is attained by adding SG and FG of each technique discretely, which can alter among
‒20 and þ20, and is defined as:

Total grade ¼ SG(CC)þ SG(R2)� FG(RMSE)� FG(PI) (20)

TG obtained by Equations (19)–(20) is presented in Table 7.

Figure 9 | Scatter plot between measured and predicted Cdstw by the GEP method under the optimal scenario in the testing stage.
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In relation to the values of TG in Table 7, the GEP model is selected as the superior approach for the prediction of Cdstw.
The results obtained by RF are the second best, which indicates that the GEP model outperforms the other two models and is
considered the most accurate method.

10. CONCLUSION

In the present research, experimental data of streamlined weirs with different β values of 0°, 30°, and 60° from the study of

Bagheri & Kabiri-Samani (2020a) were employed for investigation. The experimental setup was performed for large physical
models under steady, aerated, and free overflow conditions in an open channel. As a substitute to the CFD technique to fore-
cast Cdstw, the potential advantage of three different DDMs including RF, ANFIS, and GEP methods are developed in diverse
geometric and hydraulic conditions. Main findings of the present study are as follows:

• Based on the experimental results at β¼ 0, lowering of λ led to a decrease in the weir height and Y1, but an increase in Y3,
Y2, and in the ratio of Y2/h1. Moreover, at β¼ 30° and 60° (base-block), increasing the weir elevation in λ¼ 1, the disturb-

ance augmented considerably for the flow downstream of the streamlined weir, but, for λ , 1, did not demonstrably vary
the hydraulic condition of flow in the downstream of the weir.

• Using Buckingham π-theorem and cosine amplitude (Rij) analyses as a preprocessing method confirmed that the h1/Ww,

bw/Lw, β, and λ, have significant impact on Cdstw and consequently were considered as input variables in estimating
Cdstw by developed DDMs, in which bw/Lw was the most significant one.

• Performances of the three employed models were evaluated using statistical metrics and model scoring procedure. In line

with the values of model grading, the GEP model was confirmed as the most superior and precise technique to compute
Cdstw with RMSE ¼ 0.032, MAE¼ 0.024, R2¼ 0.97, and CC ¼ 0.96.

Even though the current investigation assessed the ability of a single AI method for predicting Cdstw, the forthcoming study
can be developed by other kinds of MLMs and IOMs via hybridizing approaches. One may note that the application of suc-
cessful surrogate modeling methods like polynomial chaos expansion/Kriging in other fields of engineering (Amini et al.
2021; Hariri-Ardebili et al. 2021) can be investigated in future work. The results can be compared with those of the current

study so that the best method can be identified. Likewise, even if in the current research all effective variables on the Cdstw

were scrutinized, its outcomes cannot be expanded to other structures.
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