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Abstract
Recently, deep learning has become a hot topic in wide fields, especially in the computer vision that proved its efficiency in
processing images. However, it tends to overfit or consumes a long learning time in many platforms. The causes behind these
issues return to the huge number of learning parameters and lack or incorrect training samples. In this work, two levels of
deep convolutional neural network (DCNN) are proposed for classifying the images. The first one is enhancing the training
images with removing unnecessary details, and the second one is detecting the edges of the processed images for further
reduction of learning time in the DCNN. The proposed work is inspired by the human eye’s way in recognizing an object,
where a piece of object can be helpful in the recognition and not necessarily the whole object or full colors. The goal is to
speed up the learning process of CNN based on the preprocessed training samples that are precise and lighter to work well in
real-time applications. The obtained results proved to be more significant for real-time classification as it reduced the learning
process by (94%) in Animals10 dataset with a validation accuracy of (99.2%) in accordance with the classical DCNNs.

Keywords CNN · Classification · Training time · Edge

1 Introduction

The recent years has witnessed a rapid increase in the num-
ber of images; due to the development of Internet, social
networks and the popularity of mobile devices capturing
images with so ease [1]. Therefore, to manage these images,
they should be first annotated and described with meaningful
words. This step is known as image classification [2]. How-
ever, the large number of images/classes is a real challenge
for classification, as it will deal with the precise computation
of similarity between large-scale images and how to train the
supervised classification models for newly emerging classes
[3].
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Recently, the researchers achieved outstanding results
about the performance of image classification using DCNN
based on the extracting step of convolutional features for
obtaining the invariance of translations, rotations, and scale
[4]. The development of artificial intelligence has been
increased using the deep learning (DL) network in many
fields of our daily lives such as processing the natural lan-
guage [5], or medical fields like multimodal medical image
fusion that combines two or more input images to produce an
informative combination for facilitating the clinical diagnosis
and surgical navigation [6], where these sources that formed
the combination image may include visible and infrared
inputs to define texture details in the visible image and salient
target in the infrared image [7]. Also, the DL network has a
great influence in the computer-vision field such as image
dehazing, which removes haze from a picture to generate a
new clear one [8], or supervised applications such as per-
son re-identification that looks for the right walkers’ images
based on a given querywalker’s image across non-intersected
area cameras administrated by human-annotated labels or
unsupervised re-identification system that learns distinctive
characteristics without human-annotated labels [9].

Deep learning, as a bottom of line, has verified its highest
efficiency in image processing [10]. However, learning the
images’ features in CNNs with enormous factors could lead
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to an overfitting case with so ease, which in turn minimizes
the ability of generalization and thus poor performance.Also,
the training step often relies onmany resources such asmem-
ory and computational power that may consume a lot of time
[11]. Therefore, seeking a rapid trainingmethod and improv-
ing the generalization performance became urgent demands.
The late researches focus on reducing the complexity of
thesemodels like dropout andbatch normalization or improv-
ing their generalization performance using adequate training
samples; which are usually difficult to satisfy [12, 13]. There-
fore, different enhancement methods have been taken into
consideration for generating more training samples than the
original ones, such as rotation, translation, cropping, and flip-
ping. The last two methods (cropping and flipping) were
proved in some researches to be good choices for enhanc-
ing the performance in deep CNNs like mixup [14], cutMix
[15], and RandomErasing [16].

ForDNNs, increasing the input images leads to an increase
in the model; which in turn requires larger datasets and
enormous parameters. Therefore, we have introduced the
two-levels DCNN for classifying images that "firstly pre-
pares and defines the sub-sections by extracting the classified
object and enhancing it with reducing the unnecessary details
such as background or other unrelated objects" and "secondly
processes the images to produce Edgy samples by detecting
the edges of the extracted object for the training step in the
proposed DCNN".

The resulted model becomes a pretrained-model of spec-
ified parameters useful for real-time applications based on
the preprocessed dataset. This method works well for high-
resolution and large-scale image classification that struggles
mostly fromhardware barriers and computation time.At first,
our system works on preprocessing the input images using a
new splitting technique that separates the center object from
the barrier of a single image to for automatic fine touch-ups
and be prepared to the next step (GrapCut) process without
any user interference. Moreover, a new suggested rescaling
and centering method has been used after cropping; which is
helpful in keeping the objects not distorted inside the images.

Training the system model depends primarily on new
sketch/edgy images and not raw images like the usual; such
a thing helps in further reduction in training time with a
high precision for the given classes. The proposed network is
based on amodified SqueezeNet, where the original parts are
used for feature extraction and the new proposed section is
used for a large-scale recognition that increases the recogni-
tion’s precision. A new method that computes the batch-size
was suggested for each give dataset based on structural simi-
larity index (SSIM) and complexwavelet structural similarity
(CW-SSIM); in order to reduce the number of trials in spec-
ifying the optimum batch-size. Also, defining the quantity
ratio of used images (preprocessed color and sketch/edgy

augmented images) helps in minimizing the training time
and increasing the validation accuracy.

2 Related works

The object behind the usage of data enhancement is obtaining
more distinct features or enlarging the training set in DCNNs
[10]. Therefore, it can be regarded as a form of regulariza-
tion, that is not only achieved by reforming the model of
DCNN but by generating more efficient input set [11]. The
rotation, translation, flipping, and randomcropping are forms
of data enhancements [12, 13]. Blending two randomly cho-
sen images with their labels is what the Mixup method did
for regularizing the DCNNs [14]. The Cutout method [15]
masks out the square sections of input set during training,
while randomly choosing a rectangular region is what the
RandomErasing method did for replacing the corresponding
pixels with their mean or random values [16].

In [9], a novel hybrid contrastive model (HCM) was intro-
duced to perform an image-level contrastive learning for
unsupervised person Re-ID that sufficiently explores fea-
tures’ similaritieswithin hard sample pairs. The authors in [6]
introduced an unsupervised multiscale adaptive transformer
to fuse multimodal medical images for best utilization of
global information in both superficial and thorough layers.
The YDTRmodel [7] is designed to acquire the distinct con-
text information as well as the local features by combining
the thermal targets from infrared pictures and visible pictures
for enhancing the target saliency with keeping the significant
details to produce a clear visible picture. A fully end-to-
end dehazing method was presented in [8], which restores a
coarse clean image using a dilated CNN (not a standard one)
of high-level feature maps to acquire more context informa-
tion using a dilation convolutional layer that increases the
receptive size for reconstructing a final dehazed picture.

However, the mentioned methods deal or clarify/enhance
all the abundant texture scene details, while our proposed
model is based on a supervised standard CNN that focuses
on local features to acquire only the significant target details
of a sketch/edgy image that part of it (region of interest)
is enhanced and the other part is blurred to get-rid of any
unwanted information for time and overhead reduction.

Usually, the semantics conveyed of various labels is cor-
related in a multilabel case; which is totally different from
a single-label case. For example, modeling the topics and
backgrounds of an animal image is correlated specifically,
when this animal only lives in a specific environment. There-
fore, the mutual structures of various labels tend repeatedly
to involve the correspondence characteristics and coherence
of object class [17]; which helps in separating the different
objects ofmulticlass images,where the shared structuresmay
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includemultiple objects of different scale, poses and that rep-
resents a challenging case but common in visual computers
[18].

Predicting the scene location represents an eye-fixation
prediction in a saliency detection, where a human
observer may fixate and detect visually the remarkable
objects/regions. The initial research of this topic has focused
on detecting a salient object within an image [19], and then
it dealt with the detection of RGB-D saliency that takes into
consideration the information-depth.Over the fewpast years,
many researchers have dealt with this topic; but majority of
them are based on hand-crafted characteristics [20].

The mentioned methods did not get rid of the unwanted
details but enhanced the training images; which in turn pro-
duces massive data compared to the original for training
parameters in deep-neural nets. Rother et al. have intro-
duced a segmentation method based on a selected bound-
ing box that is computed using an iteration between the
defined foreground/background color models [21], while an
instance-level of segmentation method has been introduced
by Liang et al. that takes a proposal initial object and several
CNN features maps to apply them iteratively for refining the
segmentation [22]. These methods each compute their seg-
mentation using a manual definition of bounding box and not
an auto-definition.

Also, an Inception v3 model has been proposed by
Macoadha to fix the issues of the previous method iNatu-
ralist that reached a 0.4 validation error when trained over
75 epochs. Such a low error was achieved by utilizing a
pretrained InceptionNet and finetunes the hyper-parameters
carefully [23]. The authors in [24] have proved that pre-
processing the dataset before classification was helpful in
improving the accuracy using zero component analysis
(ZCA). However, their technique has improved the accuracy
from (43–50)% to (67–69)%. Also, in [25], the authors have
worked on improving image quality for identifying its class,
but for a small image of 32 × 32 size. Therefore, the above-
mentioned researches have focused on improving the training
accuracy and did not focus on how to lower the training
time of large-scale images, the number of epochs and rec-
ommended batch-size to be well-suited for real-time tasks.

3 Proposedmethod

This section presents the proposed E-CNN in detail:

3.1 Preprocessing the dataset

3.1.1 Sub-sections construction

In this section,wewill demonstrate the key-steps of preparing
a dataset as an input to our system model. The preprocess-
ing stage includes three primary steps (splitting, GrabCut,

and cropping). The reason behind these steps is to get rid
of the unwanted/unnecessary spaces without distorting the
image, while focusing on the goal object. Before enhancing
the section containing the classified object, the image will
be first segmented into 2 parts. The first one defines the bar-
rier or the sure background section (outer window), and the
other one contains the classified object (inner window). The
reason behind this segmentation is to enhance the details of
the inner window with blurring the other one (outer win-
dow). The resulted output is helpful for the second step that
removes the background using theGrabCutmethod automat-
ically without the interference of the human. Where it finds
the first contour after applying the auto-specified window
mask, in order to remove the other unwanted spaces closer to
the required object where the removed data from the images
are the unwanted objects distracting the model from its goal
object that needs to be classified specifically.

The barrier section (outer window) is defined based on the
dimension of each input image. Everything inside this section
will be regarded as a background. The center of each input
image is calculated for defining the center coordinates of the
ellipse window that represents the mask, where its major and
minor axes are computed as shown in Eqs. (1 and 2):

∣
∣Mj

∣
∣ �

{

(3 × h)/4, h > w

(3 × w)/4, w > h
(1)

|Mn| �
{

(3 × h)/5, h > w

(3 × w)/5, w > h
(2)

where Mj represents the major axis and Mn represents the
minor axis. The height and width are represented by h andw.
Anything outside this ellipse is blurred, and any object inside
it will be applied to edge and details enhancement filters. We
call this step as an auto-specified bounding window for the
image split using the GrabCut technique.

TheGrabCut estimates the color distribution of both back-
ground and target object by a Gaussian-mixture model (GM)
for extracting that object with minimum user interaction
using a constructed graph that distinguish the foreground
and background pixels based on the cuts of minimal costs as
shown in Fig. 1. This process is done through iterated grab
cuts on the graph of the image to fully define all pixels with
a label since some of them will initially receive an unknown
label. The previous steps are repeated for further reduction of
the background/unwanted objects and refining the segmen-
tation until the classification converges, as shown in Fig. 2:

The last step (cropping) applies a binary threshold to the
pixels of resulted image. The pixel’s value will be 255, if its
original value is greater than the threshold; otherwise, it will
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Fig. 1 Graph model of image pixels [26]

Fig. 2 The refined image segmentation

be 0, as shown in Eq. (3):

Binary dst(a, b) �
{

max - value if src(a, b) > T
0 otherwise

(3)

where T represents a threshold calculated individually for
each pixel. Thresholding is a widely known segmentation
method for separating an object with regards to its back-
ground. The next step is finding the contours in the image
after a grayscale conversion and binarization. Contours are
typically used to find a white object from a black background
for detecting the boundary edges of the wanted blocks using
the binary threshold. If the object of interest is considered
white, then the binarization formula is determined by Eq. (4),
and if it is considered black, then the binarization formula is
determined by Eq. (5):

Ibin(a, b) �
{

0 ifIsrc(a, b) < T
1 otherwise

(4)

Ibin(a, b) �
{

1 i f Isrc(a, b) < T
0 otherwise

(5)

The dimension of the first contours is extracted to define
the cropped image precisely. This process helps in removing

the unwanted objects/spaces for the reduction of unneces-
sary details, assuming that the classified object is centered
or near the center point (away from the edges). Then, the
resulted image is augmented randomly (flipping or rotation)
with keeping its color-space. Random flipping generates a
reflection of image corresponding to the one chosen axis (or
more), while the rotation rotates a picture around the center
by an angle θ that followed by a suitable interpolation to fit
with the size of original image. It is denoted by R and often
paired with zero-padding putted on the missing pixels, as
shown in the following equation:

R �
(

cosθ −sinθ
sinθ −cosθ

)

(6)

3.1.2 Sketch/edge conversion

In this section, the image is converted into a sketch type
for defining its edges. The reason behind choosing a sketch
process rather than other edge detectionmethods (likeCanny,
Sobel…etc.) is that it gives clearer view and higher precision.
The images’ dataset is divided into 2 divisions.

One-third of the dataset are applied only to the steps illus-
trated in the former section, while the remaining images
continue with the processing steps described in this section.
The reason behind this division is that the colored part helped
in increasing the validation accuracy, while the remaining
sketchy/edgy images helped in reducing the training time.
The color space of the two-thirds dataset is converted to the
Gray scale and become a negative one using the not bitwise
operation for extracting the distinct parts of image. The neg-
ative operation is done by inverting the grayscale image’s
pixels (0–255) as follows:

N (i , j) � 255 − P(i , j) (7)

The inverted image is then applied to aGaussian-blur filter
for smoothing the image and reducing its noise which uses a
Gaussian distribution (GD) function for computing the trans-
formation to be applied for each pixel. In 2D systems, it is
the product of two GD functions, one for each dimension as
shown in Eq. (8).

G(i , j) � 1

2πσ 2 e
− i2+ j2

2σ2 (8)

where x and y define the length from the origin in the horizon-
tal and vertical axis, respectively. σ represents the standard
deviation of GD. This formula, in 2D systems, generates a
surface that consists of contours that are concentric circles
with a GD from the origin point. The blurred image is then
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normalized using a color dodging that uses a bitwise divi-
sion in regard to the original gray scale image, as shown in
Eq. (9). Dealing with the image’s pixels as they are (0–255)
leads to a high computation and more complexity in DCNN.
Thus, normalizing them ranging from 0 to 1 simplifies the
complexity and speeding-up the computation.

divide(X , Y ) �
[

x00/y00 x01/y01
x10/y10 x11/y11

]

(9)

where X and Y are matrices computed as below:

X �
[

x00 x01
x10 x11

]

, Y �
[

y00 y01
y10 y11

]

(10)

The color dodge combines the foreground and background
by normalizing around 255 and subtracting the background
pixels, where the bottom layer is divided by the inverted
top layer. The value of top layer controls the lightening of
bottom layer, which results in a blurred image highlighting
the boldest edges. Implementing the Dodging of a colorful
image ‘A’ with a mask ‘B’ is as shown in Eq. (11):

C[i] �
{

255, B[i] > 255

min
(

255, A[i]<<8
255−B[i] ,

)

B[i] ≤ 255
(11)

where C[i] is the dodging result, A[i] is the pixel after decol-
orization, and B[i] is the pixel after Gaussian blur filter.

It divides the grayscale value of an image pixel A[i] by the
inverse of the mask-pixel B[i] with assuring that the resultant
pixel is in the range [0,255] and not divided by zero. A dark-
ening step is then applied by creating new pixels retaining
the smallest values of the foreground and background pixels
as shown in Eq. (12):

D � min(p1, p2) (12)

whereD defines resultant pixel after darkening, p1 represents
the foreground pixel, and p2 represents the background pixel.
Each output image is then resized to the desired size with
keeping the scale by centering the image for preserving the
objects’ shape without deformation as shown in Eq. (13):

|S| �
{

x
h , h > w
x
w
, w ≥ h

(13)

where S defines the scale of resizing, x is the size of orig-
inal image, and h and w are the image’s height and width,

respectively.

|C | �

⎧

⎪⎨

⎪⎩

B[0 : h2 × s, T : T + w2] + A2, w > h
B[T : T + h2, 0 : w2] + A2, w < h
B[0 : h2, 0 : w2] + A2, w � h

(14)

whereC defines the centered image,A2 represents the resized
image, B represents the black image, h2 � h × s, which
defines the new height after scaling by the factor s, w2 �
w × s, which defines the new width after scaling, and T
represents the starting corner that is calculated as follows:

|T | �
{

(x − w2)/2, h > w

(x − h2)/2, w > h
(15)

The resulted output is a cropped edgy image, as shown in
Fig. 3.

3.2 Edge CNN (E-CNN)

Figure 4 illustrates the E-CNN architecture. An E-CNN is
built by a linear stacking of the hidden and output layers
for classifying the image. The network takes as input the
processed datasets that has two-third of sketchy/edgy images
and one-third of colored-augmented images.

The suggested model includes two sections (feature
extraction based on a SqueezeNet and precise large-scale
recognition), as shown in Fig. 4. The DCNN consists of a
SqueezeNet that reduces the number of parameters using fire
modules of 1 × 1 convolutions. Choosing the initial fea-
ture extraction layers is crucial for compromising between
speed and precision. Therefore, our system model is based
on a SqueezeNet model due to its impressive accuracy and
lightweight as the number of parameters is reduced using the
fire modules.

3.2.1 SqueezeNet feature extraction section

As the SqueezeNet network compresses the parameters to
about 1/50 of AlexNet [26] with ensuring a precise recog-
nition. It has been chosen for shortening the extraction and
speeding up the detection, as it replaces the standard 3 ×
3 convolution layers by fire modules that each consist of a
squeeze (1 × 1) and expand (1 × 1 and 3 × 3) layers, fol-
lowed by an activation layer (rectified linear unit/ReLU) for
enhancing the depth of network.

The precision is improved using a 3 × 3 convolution ker-
nel, while the 1 × 1 convolution kernel reduces the weight
parameters. The original structure of SqueezeNet has 1 con-
volutional layer, 3 MaxPooling with a stride of 2, 9 fire
modules, ends with a conv layer (1 × 1), activation (ReLU)
and a global average pooling. The input-image size is 227
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Fig. 3 Sketch/edge conversion process

× 227 × 3, where the usage of 3 × 3 MaxPooling and 1 ×
1 convolution has reduced the feature-maps’ size to the half
with less loss in information. As a result, this section can
retain the information while improving the speed of feature
extraction.

3.2.2 Large-scale recognition section

The overfit issue is what many neural nets suffer when train-
ing on small datasets and thus produces inaccurate precision
for the new data. Therefore, the precise large-scale recogni-
tion network was designed for minimizing the training time
with pertaining a high precision and avoiding the overfitting.
The proposed section has replaced the last conv layer (1 ×
1) and activation from the original SqueezeNet, by a Max-
Pool2D, batch normalization, dropout (0.5), followed by a 3
× 3 convolutional layer and then dropout (0.2), global aver-
age pooling and softmax activation layer.

The MaxPool2D is used for reducing the dimensions of
output feature map from the previous 5 layers, which in turn
helps in preserving the important data of input image and
in turn reducing the computation time. Batch normalization
normalizes the output of the previous layers and allows each
layer to work more independently, which in turn becomes
more efficient against the overfitting. Although trying the
average of many various parameters for generalization could
be theoretically a best solution for training a model, it con-
sumes a lot of resources and time.

Therefore, the dropout was introduced to get around this,
where some nodes either from hidden or input layers are
dropped. A value of 0.5 was chosen as it gave the best results
for our experimental datasets. Then, a 3 × 3 conv kernel was
used for ensuring the network precision and another dropout
layer was used of value (0.2). The global average pooling
layer is used for down sampling and keeping only the remark-
able details with minimizing the amount of computations as
it reduces each channel in the feature map to a single value.
Thus, na × nb × nc feature map is reduced to 1 × 1 × nd
feature map.

The softmax layer is utilized right before the output
layer for multiclass classification. It gives the probability
of an input image belongs to a specific category. An Adam
optimizer was used due to its efficiency and less-memory
requirement. For a multiclass classification system, we have
used a categorical cross-entropy for loss function.

3.2.3 Network parameters

Batch size: Choosing the best batch size is sometimes a time
wasting. Therefore, to find out the optimum batch size for
our network, a new method has been proposed based on the
SSIM and CW-SSIM in accordance with the first image. The
first image is chosen based on its shape and characteristics
to be the ideal one representing its class. The reason behind
this is to find the relation between the batch-size and similar-
ity indexes as represented by the flowchart shown in Fig. 5,
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Fig. 4 The network system model

where the SSIM index involves the image regression as a per-
ceived alteration in structural information, regarding the key
perceptual phenomena as contrast and luminance masking,
while the CW-SSIM deals with image scaling, translation,
and rotation. Thus, this process reduces the number of trials
for finding the optimum batch size.

SSIM(a, b) � (2μaμb + con1)(2σab + con2)
(

μ2
a + μ2

b + con1
)(

σ 2
a + σ 2

b + con2
) (16)

Fig. 5 Computation flowchart of batch-size

where σab, σ 2
a , σ 2

b , μa , μb, con1, con2, define the covari-
ance of a and b, the variance of a and variance of b, the
average of a and average of b, respectively. The constants
con1 and con2 are calculated using the following equations:

con1 � (m1R)2, con2 � (m2R)2 (17)

where m1 � 0.01, m2 � 0.03, and R defines the dynamic
range of pixels (2#bits/pixel – 1).

CW - SSIM
(

ai , a j
) �

(

2
∑K

x�1

∣
∣ai , x

∣
∣
∣
∣a j , x

∣
∣ + N

∑K
x�1

∣
∣ai , x

∣
∣
2 +

∑K
x�1

∣
∣a j , x

∣
∣
2 + N

)

⎛

⎝

2
∣
∣
∣

∑K
x�1 ai , xa

∗
j , x

∣
∣
∣ + N

2
∑K

x�1

∣
∣
∣ai , xa∗

j , x

∣
∣
∣ + N

⎞

⎠ (18)

where ai is the complex-wavelet transformation of signal i
and aj is the complex-wavelet transformation of signal j. In
addition, N is a small positive number that ideally equal to
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Table 1 Training datasets

Dataset Training
images

Test images Class
labels

Flowers 3,178 1,362 5

Natural image 4,828 2,071 8

Imagenette2 8,820 3,783 10

Imagenette160 9,374 4,020 10

Cats-v-Dogs 19,080 8,177 2

Animals10 20,730 8,884 10

Pascal-2007 6,974 2,989 20

MIRFlickr25K 17,500 7,500 10

zero, given for stabilizing the function. The proposed simi-
larity index is calculated as follows:

SIMindex = SSIM × 0.3 + CW − SSIM × 0.7 (19)

where the SIMindex is used for determining the recommended
batch-size, when compared with the following thresholds (2,
4, 8, 16, 32, 64). For example, if 16 < SIMindex < 32, then
the recommended batch size is 16. These thresholds were
chosen according to the used experimental datasets.

Number of epochs: According to our training edge images
and batch size, we found that it is enough to train our network
for no more than 5–6 epochs. It converges fast in accordance
with the normal subset of training images, which in turn helps
in reducing the computation time. Also, we have defined the
early stop and learning rate of reduction to stop the learning
process at the best epoch.

4 Experimental results

This section presents the experimental results of the proposed
model for showing its robustness in multilabel classifica-
tion with reduced training time. We have tested the proposed
model on two widely known large-scale datasets: PASCAL-
VOC2007 [28] and MIRFlickr25k [29], with other datasets
downloaded from the Kaggle website, as shown in Table 1.

Pascal-voc2007 has a total of 9963 images of 20 labels
(Aeroplan, bird, bicycle, bottle, boat, bus, cat, car, chair,
cow, dog, dining-table, horse, motorbike, potted-plant, per-
son, sheep sofa, train, tv-monitor).

The MIRFlickr25k dataset includes 25,000 pictures in
the official-site FLickr for recognizing objects, interiors,
and scene categories. However, these tags frequently lack
reliability for multilabel classification, since users make
annotation to those images several times. Therefore, we have
made 10 unique labels based on the center for classifying

this dataset (Animals, Food, Indoor, People, Plant-life, Por-
trait, Sky, Structures, Transport, Water). Animals10 [30] has
10 classes (butterfly, cat, cow, dog, elephant, hen, horse,
sheep, spider, squirrel). Flowers [31] has 5 classes (daisy,
dandelion, roses, sunflowers, tulips). Natural Images [32]
has 8 classes (airplane, dog, car, at, flower, motorbike, fruit,
person). Imagenette2 [33] and Imagenette160 [34] have
10 classes (church, dog, fish, fuel_meter, garbage_truck,
golf_ball, parachute, radio, saw, trumpet). Cats-v-Dogs [35]
has 2 classes (Cats and Dogs).

The large-scale images of decent resolution (227 × 227
× 3) represent a challenge for us as its processing requires a
massive computational power. Such a thing is too much for
a normal laptop, which is a downside. However, converting
these images using the proposed technique helped in pass-
ing these struggles and made it functional even for a normal
laptop; as it achieved the best performance compared with
different state-of-art models.

4.1 Implementation details

Our approach was implemented using a Jupyter Notebook
with Keras, TensorFlow and OpenCV libraries. The platform
has been implemented inside a Windows 10–64 bit of Pro-
cessor Intel(R) Core (TM) i7-8565U CPU@ 1.80 GHz with
Installed RAM16.0 GB.

4.2 Evaluationmetrics

The label predictions are generated and compared with their
ground-truth labels for each image within a dataset using
our proposed system model. For each category, the value
of average precision (AP), mean-average precision (mAP),
precision, and recall are determined with showing the perfor-
mance of the classificationmodel using the receiver operating
characteristic (ROC) curve at all thresholds. The division
of #correctly annotated categories by #predicted categories
defines the precision score, while the recall is determined
by the division of #correctly annotated categories by the
#ground-truth categories.

Also, the reduction in time has also been considered in
our evaluations to prove the robustness of our model for
real-time platforms. The training accuracy and loss has been
computed for widely known datasets PASCAL-VOC207 and
MirFlicker. The other implemented datasets as well as the
PASCAL and MirFlicker are used to check the reduction in
time per epoch and computational complexity. The prepro-
cessed input images correspondingwith the originalGrabCut
algorithm are shown in Table 2.

Figure 6 shows the real-time captured images (toys), their
predicted categories and confidence score using our proposed
model (under different light and pose conditions).
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Fig. 6 Predicted image’s type and confidence score (under different poses and light conditions)

Table 2 Preprocessing the input dataset

Input
Original 

GrabCut

(Proposed)

construct

Final 

(Proposed)

The system model has also been tested under different
conditions of (noise, pixelized, blurred and sketch) images,
as shown in Fig. 7.

4.3 Image classification results

4.3.1 Mean average precision (mAP) and receiver operating
characteristic (ROC)

The performance of localization and object detectionmethod
is evaluated by AP and mAP metrics that score the compari-
son between the ground-truth bounding boxwith the detected
box. The model is more precise in detecting objects when its
score is higher. We have compared our proposed model with
the following high-performance models: CNN–SVM [36],
RLSD [37], CNN–RNN [38], DenseNet [39], ReseNet101
[40] in which they achieve a mAP of (73.9, 84.0, 88.5,
89.9, 89.6)% consequentially, while our proposed model has
97.2% as shown in Fig. 8.

Figure 9 shows average precision-recall/receiver operat-
ing characteristic (ROC) curves of PASCAL-VOC2007using
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Fig. 7 Predicted image and confidence score (under noise, pixelized,
blur and sketch conditions)

Fig. 8 AP and mAP scores on the PASCAL VOC-2007

Fig. 9 Precision vs. recall, and ROC curve in PASCAL-VOC2007

Fig. 10 AP and mAP scores on the MIRFlickr25k

Fig. 11 Precision vs. recall, and ROC curve in MirFlicker

the proposed model; where it a big under-curve area. Gen-
erally, the higher the area under the precision–recall curve
(AUC-PR) curve, the better the classifier performs for the
given task, where it reaches to (98%) in our model. More-
over, the precision is correspondingly high at thresholds of
low recall, while at very high recall, the precision begins to
drop. As a result, the proposed model has achieved higher
predictions than the “baseline”.

The obtained results shown in Fig. 10 are for the
MirFlicker dataset, where the state-of-art methods (LDA,
CNN_SVM, DBN [37], AIACNN [38], DenseNet [35] have
achieved a mAP of (60.61, 58.55, 66.23, 69.86, 87.58) %
in consequence; while our proposed model has reached to
92.12% higher than them. Figure 11 shows the average pre-
cision–recall/receiver operating characteristic (ROC) curves
of MirFlicker dataset, where its AUC-PR score has reached
95%.

4.3.2 Time reduction and computational complexity

The computational reduction in training time has been cal-
culated using the following formula

Timereduction�Timeoriginal - Timeproposed
Timeoriginal

× 100% (20)
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Fig. 12 Time reduction (%) per epoch

Referring to the chart shown in Fig. 12, it can be noticed
that themaximum reduction in training time has reached 94%
as shown in Animals10 dataset, while the minimum reduc-
tion in time has reached to 19% as shown in natural images
dataset, in accordance with the original dataset. Therefore,
the larger the dataset gives better reduction in time to work
very well in real-time tasks.

Figure 13 shows the average training time per epoch for
each dataset. It is obvious that the average training time has

40% 22%
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96% 70%
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Fig. 14 Computational complexity of PASCAL and MirFlicker

been reduced per epoch using the proposed model versus the
original model. For example, the average time in Cats-vs-
Dogs in original dataset and model is equal to 4354 s, while
it is equal to 261 s.

Figure 14 shows the average computational complexity in
terms of memory and power using the original SqueezeNet
model for original PASCAL andMirFlicker datasets (named
as PASCandMIR for short), comparedwith the preprocessed
dataset using the proposed model. As shown in the figure,
the preprocessed dataset using our proposed algorithm has
a less computational complexity than the original datasets.
Referring to Fig. 15, the proposed model has a high train
accuracy/validation accuracy and low loss/validation loss,
where the train accuracy of the model has reached 98.9%
in natural-images dataset (for example) and the validation

Natural Animals10 Cats-vs-Dogs Pascal MirFlicker Imagene�e1
60 Flowers Imagene�e2

Proposed 160 186 261 602 548 58 97 238
Original 172 3104 4354 1794 3589 306 143 952

0
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1000

1500

2000

2500

3000

3500

4000

4500

Original Proposed

Fig. 13 Average training time (sec) per epoch
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Fig. 15 Train and validation accuracies with their losses

accuracy 99.2% with (0.033) and (0.03) for the loss and
validation-loss consequentially.

5 Conclusions

The image classification in deep learning is widely used for
recognizing the input datasets to their mutually exclusive
classes using neural nets. DCNN model consists of multiple
hidden layers for extracting the features and output layers
for classifying the inputs. Although the DCNN proved its
capability in such a field, it suffers from overfitting, low
performance, and long training time, especially for high-
quality/large datasets.

Therefore, in this paper, we have reduced the training time
with improving the image classification using edge DCNN
(E-CNN). This is extremely important for workingwith large
image dataset and large-scale neural networks. The goal was
to construct a pretrained DCNN of specified parameters that
trained on the preprocessed image dataset towork fast in real-
time applications. Training the model using a preprocessed
image dataset has improved the overall system, where the
raw images have many unnecessary details that distracted

the system attention from the goal object within an image.
The proposed model has reached a maximum training accu-
racy of 98.9% and 99.2% validation accuracy with a loss and
validation loss of 0.033 and 0.03, respectively. Also, themax-
imum reduction of training time per epoch in our datasets has
reached 94% in accordance with the normal training set of
images. This approach has approved its capability in mini-
mizing the training time, especially in the large datasets.

The quality of the used dataset images, their quantity and
light conditions affect the accuracy of the system model,
which represents a system limitation. Also, for the pre-
processing step, the goal object should be near the center
to get precise results. However, the system has proved its
robustness and reduction of training time with a high pre-
cision, especially for large-scale/large dataset. As a future
plan, this system can be useful for computer vision such as
real-time video conferencing for sign-language, text/object
recognition, multilabel classification and unsupervised per-
son re-identification.
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