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Abstract: This paper presents an extensive series of laboratory works and a prediction model on
the design of a road pavement subgrade with Xanthan Gum (XG) biopolymer. The experimental
works were carried out using mixtures of conventional aggregate for road pavement construction
and XG at the ratios of 0%, 1%, 2%, and 5%, by dry weight. Unconfined compressive strength
(UCS) and California bearing ratio (CBR) tests were conducted during the experimental works at
the end of the various curing periods (4, 8, 16, and 32 days). An example of an improvement in
the UCS values for a specimen with 5% XG addition tested at the end of 4-daycuring yields about
a 200% increment by the end of a 32-daycuring. The CBR values of clean aggregates were found
to be increased by about 300% by 5% XG addition for all curing periods applied. Furthermore, the
energy absorption capacity of the aggregates was observed to be increased significantly by both XG
inclusion and curing period. Moreover, scaled conjugate gradient (SCG) training algorithm-based
models developed for the prediction of CBR and UCS test results displayed a very high estimation
performance with the regression coefficients of R2 = 0.967 and R2 = 0.987, respectively. Evidently, XG
biopolymer is provably of use as an alternative inclusion in road pavement subgrades constructed
with conventional aggregates.

Keywords: biopolymer; aggregate; unconfined compressive strength; California bearing ratio;
prediction model

1. Introduction

The need for soil improvement in construction and in infrastructure activities that
arise due to rapid population growth is of increasing importance across the world. The fact
is that soil improvement techniques still remain challenging for researchers and engineers
in practice, although it is among the most studied subjects in geotechnics. Specifically, due
to the significant environmental concerns regarding the harmful effects of cementitious
binders, such as toxicity, on the natural ecosystem, the number of the studies on alternative
chemical approaches have increased substantially in order to provide a healthier and safer
environment [1–3].

In an effort to address the environmental concerns associated with traditional ce-
mentitious binders, a range of biopolymers have been introduced as potential alternative
materials for soil stabilization as well as to enhance the mechanical properties of various
earth materials containing sand, clay, mine tailing, waste materials, silt, and sand–clay
mixtures [4–11]. For example, direct shear testing data reported by Cabalar [12] showed
a significant increment (up to about 300% by 5% XG addition) in shear strength as the
XG content increased regardless of curing period. Bouazza et al. [4] revealed a significant
decrease in the hydraulic conductivity of silty sand mixed with biopolymer due to the pore-
clogging effect. Ayeldeen et al. [13] pointed out a substantial increment in the optimum
moisture content (wopt), unconfined compressive strength (qu), modulus of elasticity (E),
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and cohesion (c) values of the soils by biopolymer additions. Chen et al. [6] studied the
uniaxial and triaxial response of mine tailings with various contents of XG biopolymer
and realized an increment of about 145% and 175% in the qu and deviatoric stress values,
respectively. Dehghan et al. [14] carried out a comparative study of various polymer ap-
plications by using different testing machines, which resulted in the highest deviatoric
stress and lowest hydraulic conductivity values when XG was used in the soils. Chang
and Cho [15] showed a significant increment in the undrained shear strength (su), internal
angle of friction (φ), and cohesion (c) values of a soil mixed with the biopolymer addition.
Smitha and Rangaswamy [16] carried out cyclic triaxial tests on silty sands treated with
biopolymer at various curing times (3 days, 7 days, and 28 days), and proposed the use
of biopolymers in the remediating of the liquefaction potential. Recently, Cabalar and
Demir [10] employed XG biopolymer to enhance the su values of samples with different
water content and sand grain size/shape.

The fact is that there are a limited number of studies which have been carried out on
the use of biopolymers in road pavement designs, although much research is available on
their response in soil element tests [5,17]. Therefore, this paper aims to describe the results
of extensive laboratory works into the use of biopolymer in road pavement subgrade design.
The paper identifies the experimental results on the conventional aggregate used for road
construction prepared with water and the XG biopolymer at varying proportions ranging
from 0% to 3% based on the dry weight. The equipment employed in these mixtures
were unconfined compressive strength (UCS) and California bearing ratio (CBR) testing
machines. The laboratory tests were performed at the end of 4-, 8-, 16-, and 32-day curing
time periods in order to perform a systematic analysis of the development of curing time
on the response of such mixtures. Furthermore, data sets were created based on the results
of the experimental studies, and prediction models were developed to predict both the
CBR and UCS results.

2. Experimental Study
Materials and Methods

Crushed rock grains (CG), described as conventional aggregate for road construction,
and Xanthan Gum (XG) biopolymer were used during the experimental studies. The
commercially purchasable CG samples were obtained by mechanically crushing the rocks
naturally available in and around the Gaziantep region in southern central Turkey into
angular grains that ranged from 0.06 mm to 19.0 mm in size. The properties of the CG
samples, classified as well-graded gravel (GW) using the unified soil classification system
(USCS), were selected to mimic the Type I Gradation B in accordance with ASTM D1241-
15 [18]. Specific gravity (Gs) value of the CG grains was examined to be 2.65. It was in the
form of calcium carbonate. Roundness (R) and sphericity (S) for these grains were estimated
at about 0.16 and 0.55 by employing the research by Muszynski and Vitton [19]. Apparently,
the CG grains have been investigated and are widely regarded as highly angular [19–22].
The XG is a polysaccharide-based biopolymer obtained by the bacteria named Xanthomonas
campestris. The XG polymer, regularly utilized in various applications including food,
cosmetics, and agriculture industries, has a combination of mannoses (C6H12O6), glucoses
(C6H12O6), and glucuronic acid (C6H10O7). There have been numerous studies published
over last decades proving the potential of XG for soil improving in geotechnical engineering
applications [12,17], as it generates a viscous solution with high shear stability when it is
mixed with water [5,23,24].

Required amounts of CG and XG samples were mixed together with water until
homogenous specimens were obtained for testing in both UCS and CBR machines by
considering the ratios between the size of the testing molds and soil grains. The compacted
specimens were tested in accordance with the ASTM D2166 [25] in order to understand
their responses at the end of various curing times. The samples were prepared using an
identical method, compacted into molds measuring 150 mm in diameter and 175 mm in
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height, and evaluated under un-soaked conditions (in accordance with ASTM D1883 [26])
to analyze their CBR performance (Table 1).

Table 1. Test scheme employed during the experimental study.

Name of the
Specimens Host Material Admixture

Material
Admixture

Content (%) Curing Days Total Number of
Specimens Tested Test Setup

Clean GW

GW XG biopolymer

0 3, 7, 14, 28

16 UCS, and
CBR

GW with 1% XG 1 3, 7, 14, 28
GW with 3% XG 3 3, 7, 14, 28
GW with 5% XG 5 3, 7, 14, 28

GW = well-graded gravel; XG=xanthan gum; UCS: unconfined compressive strength; CBR: California bearing
ratio.

3. Experimental Results and Discussion

Figures 1 and 2 present the grains’ size distribution, scanning electron microscopy
(SEM) picture and shape characteristics, respectively. As can be seen, 90% of the crushed
rock grains had a size of less than 19 mm with an angular shape, whilst the XG grains had
an irregular shape.
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Figure 1. Grain size distribution of GW samples used during the tests. Figure 1. Grain size distribution of GW samples used during the tests.

Figure 3 presents the effect of XG biopolymer on the UCS testing results of specimens
tested at the end of 4- and 32-daycuring times. The unconfined compressive strength (qu)
value for the well-graded crushed rock grains (GW), tested after 4-daycuring time, was
observed to be about 110 kPa, while it was found to be about 460 kPa at the end of a
32-daycuring time. This is a more than fourfold increase. Such a finding is attributed to
the calcium carbonate (CaCO3) form of the grains as this type of geomaterials could have
different engineering properties from other earth materials. The fact is that the unexpectedly
observed low driving resistance in the 1982 North Rankin platform construction prompted
research on the engineering behavior of geomaterials with a CaCO3 composition [27]. Since
then, numerous studies on the engineering behavior of soils with a calcium carbonate form
have been carried out [28–32]. In the present laboratory investigation, the grains mixed
with the optimum amount of water were thought to increase the cementation, and thus
the qu value of the surface area available to react chemically increases. It can be seen that
the cementation through the grains increased in proportion to the amount of XG in the
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samples. This indicates that the chemical reactions that took place through the compounds
C6H12O6, C6H10O7, and CaCO3contributed positively to the overall behavior. A closer
look at Figure 1 shows that the maximum qu value of the clean sample was increased to
360 kPa and 1020 kPa with 5% XG addition tested at the end of a 4- and 32 day-curing
period, respectively. In addition to the cementation that took place between the soil grains
themselves, such an increase in the qu values was likely due to the XG biopolymer, which
provided an interparticle bonding among the soil grains by hydrogels. The XG biopolymer
in voids acted as a bridge between the soil grains, and thus increased the qu values of the
samples. Many studies in the literature have recently made similar observations on such
influences of various biopolymers [5–7,9,10,13,33–35].
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Figure 3. UCS testing results for the samples tested at the end of a (a) 4-day and(b) 32-day curing
period.

Figure 4 shows the effect of curing period on the qu values of crushed rock grains only
and those with 5% XG biopolymer. The qu value for clean grains tested was observed to
increase to 110 kPa after a 4-daycuringtime, 160 kPa after an 8-daycuringtime, 270 kPa
after a 16-daycuringtime, and to 460 kPa after a 32-daycuringtime. Furthermore, the grains
with 5% XG tested after a 4-daycuringtime had a qu value of 360 kPa whilst this value
increased to 660 kPa after an 8-daycuringtime, 890 kPa after a 16-daycuringtime, and to
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1020 kPa after a 32-daycuringtime. Similar findings on the effect of curing time on different
soil types mixed with XG biopolymer at various contents have been reported by many
researchers including [7,9,33,34,36,37]. The significant increase is due to the dehydration of
biopolymers that leads to the strengthening of the XG biopolymer cement bridges formed
between the grains of soil.
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samples.

Figure 5 presents all the testing results of the UCS experiments illustrated in a bar
chart. As can be seen clearly, the results were found to be strongly affected by both the (i)
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XG biopolymer content and (ii) curing time period. Such effects of the biopolymer on some
other soil types have also been observed [35,38].
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Figure 5. The qu values of the samples tested.

Figure 6 presents the energy absorption capacity of samples tested in a UCS machine.
The energy absorption capacity, which plays a significant role in the deformation and failure
of geomaterials, is important for estimating the engineering response of the samples treated
with XG biopolymer. The most striking point in the plot area is that the energy absorption
capacity of the clean gravel samples had the lowest value in all the curing periods employed
during the experimental studies. It can be clearly seen that the XG biopolymer addition in
the gravel samples substantially increased the energy absorption capacity of the mixtures,
although at varying rates depending on the curing period employed and amount of XG
added. A similar increase in the energy absorption capacity resulting in a much higher
ductility for the samples has been reported by some researchers [5,9,13,39].
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Figure 7 presents the CBR performance of samples with various XG contents tested at
the end of different curing periods. The CBR values, typically reported as soil resistance
at either 2.54 mm or 5.08 mm penetration depth, are used as a measure of strength and
bearing capacity of soils to be used in subgrade and subbase pavements. It can be seen
from the Figure 7 that XG addition in gravel samples exhibits a significant enhancement in
CBR performance. It has been found that both the curing period and the XG ratio had a
considerable effect on the CBR testing results. For example, the CBR value for the gravel
sample tested at the end of a 4-daycuringtime was seen to increase from about 10% to 38%
by 5% XG biopolymer addition. Similar to the analysis of the UCS testing results, such
significant increases in the CBR values of the samples examined are thought to be due to
the biopolymer bridges between the soil grains. Significant increases in the results of the
experiments reported by Fatehi et al. [8] support the findings in the present study.
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Road subgrade pavements may be designed in a coordinated way by using both the
CBR testing results and the HD 26/06 [40] presented in Figure 8. Based on the results
obtained, Table 2 suggests two different pavement design alternatives. It was observed that
the XG content in the samples tested after the 4- and 8-daycuringtimes had a partial effect
on the design thickness, while for those tested after the 16- and 32-day curing times, it did
not affect the design thickness.

Despite the fact that the CBR test provides excellent information for designing road
pavement subgrades, the test has some disadvantages including the large amount of soil
required to test in the laboratory, and the fact that it istime-consuming to carry out. On
the other hand, UCS testing is relatively easy to carry out, and requires a small amount of
soil [41]. Thus, a series of correlations specifically valid for the tests performed here in this
investigation have been developed to predict the CBR of the stabilized specimens by using
the more easily and quickly reached qu values (Figure 9). The CBR values increase with the
qu values and curingperiod employed. The influence of XG on the samples becomes more
obvious the highertheamount of XG in the mixtures.
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Table 2. Summary of testing results.

Curing
Period Sample

CBR
(%)

qu
(kPa)

Energy Absorption
Capacity (kJ/m3)

Pavement Design Alternatives

Alternative 1 Alternative 2

Subbase (mm) Capping (mm) Subbase (mm)

4-Day

Clean GW 10.5 110 80 150 195 173

GW with 1% XG 12.7 170 92 150 173 162

GW with 3% XG 32.6 280 173 150 n.a. 150

GW with 5% XG 38.2 360 201 150 n.a. 150

8-Day

Clean GW 12.1 160 100 150 230 165

GW with 1% XG 18.0 360 198 150 n.a. 150

GW with 3% XG 35.4 620 430 150 n.a. 150

GW with 5% XG 46.5 660 284 150 n.a. 150

16-Day

Clean GW 15.7 270 213 150 n.a. 150

GW with 1% XG 21.2 510 425 150 n.a. 150

GW with 3% XG 42.8 780 385 150 n.a. 150

GW with 5% XG 60.0 890 338 150 n.a. 150

32-Day

Clean GW 24.6 460 236 150 n.a. 150

GW with 1% XG 35.9 670 391 150 n.a. 150

GW with 3% XG 54.2 880 342 150 n.a. 150

GW with 5% XG 73.3 1020 316 150 n.a. 150

GW: well-graded gravel; XG: xanthan gum; CBR: California bearing ratio; qu: unconfined compressive strength
value.
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Figure 9. The qu versus CBR testing results for the samples.

This investigation further presents a comparative study of an economic analysis for
the use of XG polymer in the construction industry. Since the experimental results show
the 3% XG addition in CG samples to be the most optimum, it has been determined that
about 30 kg of XG is required to effectively improve 1 ton of CG sample to be used in a
road course. Considering that a kilogram of XG is USD 1.75 in the world market, it is
estimated that there will be a cost of USD 52.5 to improve 1 ton of CG sample to be used
on a construction site. On the other hand, in the view of the research by Consoli et al. [42],
Park [43], and Consoli et al. [44], the cost of the amount of Portland cement required for the
same work in the field may be determined as about USD 1.2 [45]. Although this difference
seems high at first glance, considering the negative effects of Portland cement on the natural
surroundings and human health during the production and application processes, the XG
is thought to provide significant advantages in the long term [46–48].

4. Prediction Model

The results obtained from the experimental studies have been compiled for the pur-
pose of processing with information processing techniques. A prediction model based on
the scaled conjugate algorithm (SCG) training algorithm has been improved. Moller [49]
improved a model that employs conjugate directions, but differs from other conjugate
gradient algorithms that perform a line search in every iteration, as it does not execute a
line search in each iteration. The most important factor in choosing this training algorithm
was that it exhibits the highest prediction success with the data set and the developed
architecture. Vinodhkumar et al. [50] used fly ash to subgrade the stabilization of SCG used
in many geotechnical estimation problems. For the purpose of liquefaction evaluation [51],
in the analysis of soft soil settlement [52], and for the prediction of lateral stress of cohesion-
less soils [53] SCG-based prediction models were developed. Again, in different problem
types and application examples of geotechnology, estimation models with different training
algorithms displayed successful results [54–57].

It is preferable that the generated data set is large in order to train the prediction
models in the most appropriate way using this training algorithm. In this direction, the
Monte Carlo stochastic simulation type was implemented to expand the data set. The Monte
Carlo simulation is a class of numerical computation algorithms that are widely used in
many fields and are used to obtain a number of numerical results with a large number of
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repeated random samplings. It is very useful in estimating the results of physical processes
involving stochastic events. It has become a frequently used data generation instrument
in geotechnical engineering and in the elimination of uncertainty in soil features [58], in
seismic field response analysis [59,60], in overcoming spatial variability in soil deposits, in
the analysis of slope stability, in reliability analysis of geotechnical structures [61], and in
bearing capacity analysis of shallow foundations [62].

The amount of data in the data set was increased to 100 with the Monte Carlo sim-
ulation. At this stage, statistical details such as the standard deviation, min., max., and
mean values of the original experimental data were taken into account inherently by the
simulation. The frequency distribution of the parameters in the expanding data set is
given in Figure 10. The developed prediction model is randomly divided into sections
for training, validation, and testing stages as 60%, 20%, and 20%. In the input layer, the
XG content, curing period, strain measured in UCS tests, penetration in CBR tests, and
energy absorption were determined as input parameters. The hidden layer was designed
as five neurons and the output layer was designed as CBR and qu. The developed model
was a feed-forward model organized in layers that allows one-way information flow. The
error was distributed backwards in this model. With back propagation, it was possible
to update each of the weights in the network so that the actual output was closer to the
target output. Two different models with the same architectural features were developed
for each of the output parameters. The flowchart summarizing the generation of the data
set and the development of the estimation model is given in Figure 11. A predictive model
comprising three layers, namely, an input layer, a hidden layer, and an output layer, was
developed. The architecture of the developed predictive model is shown in Figure 12. In
the training of the developed model, the SCG training algorithm, which shows fast and
high prediction success, was used. The degree of effectiveness and achievement of the
developed prediction models was assessed in terms of the mean squared error (MSE) and
R2. In terms of the MSE value, which represents the contrast between the anticipated
and factual values, the best validation performance was achieved for both parameters at
the 9th and 34th epoch cycles, respectively (Figure 13). The error distribution frequencies
demonstrated that the models developed for both parameters clustered at a very low level
of error values of a significant number of predictions (Figure 14). The regression curves of
the prediction model for the CBR showed a significant level of success. The high success
of the prediction model for CBR was achieved with the regression coefficient R2 = 0.9665.
A similar level of high performance was obtained with the model developed for qu with
the regression coefficient R2 = 0.9865 (Figure 15). Undoubtedly, the experimental results
that make up the data set used, and the quality of the stochastically produced data based
on these results, have a great share in the success of the developed models with such a
high correlation coefficient. However, both the chosen training algorithm and the specified
architecture of the network justify the adoption of soft computing techniques as part of a
common methodology for estimating geotechnical parameters.
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5. Conclusions

The mixtures of conventionally used aggregates (crushed rock grains) and xanthan
gum (XG) biopolymer at different contents were tested by employing an extensive series of
unconfined compressive strength (UCS) and California bearing ratio (CBR) tests. The gravel
samples with 0%, 1%, 2%, and 5% XG biopolymer additions by dry weight were tested
at the end of 4-, 8-, 16-, and 32-daycuringtimeperiods. Moreover, prediction models were
also developed from an estimation of the CBR and UCS testing results. The conclusions
reported here point out five new facets as follows:

1. The unconfined compressive strength (qu) value of clean gravel samples was found to
be increased significantly with both XG biopolymer addition and curing time period
employed.

2. The XG biopolymer addition in the CG samples substantially increased the energy
absorption capacity of the mixtures at varying rates (from 15% to 400%) depending
on the curing period employed and amount of XG biopolymer added.

3. The XG biopolymer addition in gravel samples pointed to a substantial increase in the
CBR performance. Both the curing period and amount of the XG biopolymer were
found to be significantly effective on the CBR testing results.

4. The XG content in the gravel samples tested after the 4- and 8-daycuringtimes had
a partial effect on the design thickness while, for those tested after the 16- and 32-
daycuringtimes, it did not affect the design thickness.

5. The SCG algorithm-based models, developed to predict the change in the UCS and
CBR test results of gravel with the addition of XG, exhibited a high accuracy prediction
success with the regression coefficients of R2 = 0.967 and R2 = 0.987, respectively.
These results demonstrate that models based on sets with high data quality can show
significant success in estimating the geotechnical properties of soils.

This points to the fact that the XG biopolymer could be used as an alternative binding
material in road subgrade pavement construction and provide significant advantages.
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