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Abstract
The conditions which affect the sustainability of water cause a number of serious environ-
mental and hydrological problems. Effective and correct management of water resources 
constitutes an effective and important issue among scales. In this sense, a precise estima-
tion of streamflow time series in rivers is one of the most important issues in optimal man-
agement of surface water resources. Therefore, a hybrid method combining particle swarm 
algorithm (PSO) and long short-term memory networks (LSTM) are proposed to predict 
flow with data obtained from different flow measurement stations. In this respect, the data 
gathered from three Flow Measurement Stations (FMS) from Zamanti and Eğlence rivers 
located on Seyhan Basin are utilized. Besides, the proposed LSTM-PSO method is com-
pared to an adaptive neuro-fuzzy inference system (ANFIS) and the LSTM benchmark 
model to demonstrate the performance achievement of proposed method. The prediction 
performances of the developed hybrid model and the others are tested on the determined 
stations. The forecasting performances of the models are determined with RMSE, MAE, 
MAPE, SD, and R2 metrics. The comparison results indicated that the LSTM-PSO method 
provides highest results with values of R2 (≈ 0.9433), R2 (≈ 0.6972), and R2 (≈ 0.9273) for 
the Değirmenocağı, Eğribük, and Ergenusagi FMS data, respectively.
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1  Introduction

The continuity of the balance of all living species on earth with each other is sustained 
with the help of water. Civilizations that have lived throughout history have established 
their presence near water resources and utilized these resources in accordance with the 
conditions of the era. As long as water resources persist its existence, people will be able 
to continue their agricultural, industrial, social and industrial activities. In previous years, 
the rapidly increasing population, expansion of agriculture, climate change, energy and 
industrial activities conditions impacted the water resources. In addition, the circumstances 
caused a decrease in the amount of water (Karahan 2021). These conditions, which affect 
the sustainability of water, cause a number of serious environmental and hydrological 
problems. Effective and correct management of water resources constitutes an effective and 
important issue among scales.

Natural disasters such as floods, droughts and storms are among the most influential 
environmental events of recent years. The conditions impacting the environment are of 
great matter to researchers. A precise estimation of streamflow time series in rivers is one 
of the most critical issues in the optimal management of surface water resources; in par-
ticular, making appropriate decisions when coping with hydrological data such as floods 
and droughts (Kilinc and Haznedar 2022). Flow forecasting can be considered in two vari-
ous groups. The first one which is short-term time series contains minutely, hourly, and 
daily time periods commonly used in flood management systems. The second one which is 
long-term forecasting generally includes weekly, monthly and annual flow data which can 
be widely applied in reservoir operation, and hydroelectric generation systems (Wegayehu 
and Muluneh 2022). In general, there are two distinct approaches for predicting stream-
flows; conceptual (physical) and machine learning (data-driven) models (Yaseen et  al. 
2019; Nourani et al. 2014).

Artificial intelligence methodologies such as fuzzy logic and neural network have begun 
to gain popularity recently. In studies, hydrological data were used as input parameters 
(flow, temperature, precipitation, evaporation, etc.) and predictions were made with mul-
tiple models. The solution sought to be achieved with this popularity is called data-driven 
since it is learned or driven directly from the data without assuming a predetermined 
equation as a model (Cao et  al. 2016). Considering the river flow predictions, the data-
driven solution rather than the model-driven solution turned out to be more applicable and 
caught our attention. Given its data-driven appetite and non-reliance on governing physics, 
machine learning becomes a natural choice for solving these problems. Data-driven mod-
eling assumes the existence of a substantial and sufficient amount of data describing the 
underlying system. The data are mainly used to perform classification, pattern recognition, 
relational and predictive analysis tasks (Solomatine and Ostfeld 2008).

The increasing amount of data and, accordingly, the growth of computer systems that 
can process the data quickly and more accurately than humans allow significant advances 
in the field of artificial intelligence. The fact that it exhibits high cognitive functions or 
autonomous behaviors specific to human intelligence. For instance, perception, learning, 
connecting plural concepts, thinking, reasoning, problem-solving, communication, infer-
ence, and decision making have heightened the interest in artificial intelligence models.

Expert systems, fuzzy logic, artificial neural networks, machine learning, and genetic 
algorithms constitute artificial intelligence technologies. Artificial intelligence (AI) is 
directly related to machine learning (ML). Nowadays machine learning is a method that 
researchers frequently operate to explore patterns from datasets by allowing them to learn 
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on their own. Moreover, with the development of large-scale computation techniques, data 
learning gets more straightforward. These data are very essential for the prediction per-
formance of the model and to ensure that it can be generalized to unknown data. Deep 
learning models, on the other hand, represent a new form of learning in AI and ML (Yağın 
2022; Türkşen and Akgün 2018; Chen et al. 2020).

Deep learning is an artificial intelligence method that employs multilayered artificial 
neural networks in the fields of image, sound, or text processing. Moreover, deep learning 
is a subclass of machine learning. It is a learning process of the resulting model obtained 
by passing the sample data taken as input through multilayer neural networks. It consists 
of some input, hidden, and output layers. Likewise, it is quite good at discovering complex 
structures in high-dimensional data and thus can be applied to numerous fields of science 
(Tüzün 2022; Dolezal et al. 2021).

When the studies in the literature are examined, it has been observed that compelling 
results are obtained in the field of hydrology (rainfall-runoff models, temperature mod-
els, humidity and evaporation forecasting). In addition, autoregressive integrated moving 
average (ARIMA), artificial neural network (ANN), convolutional neural network (CNN), 
recurrent neural network (RNN) models, which are classical prediction methods in the 
literature, and long short-term memory (LSTM), gated recurrent unit (GRU), bounded 
Boltzmann machine (RBM), deep belief network (DBN), genetic algorithm (GA) and 
fuzzy logic adaptive network, which are prevalent among deep learning models. There are 
numerous modeling studies involving based those models (Yamashita et al. 2018; Cheng 
et al. 2022; Ye et al. 2022).

RNN, which is a type of artificial neural network, depends on the result of calculating 
the sequential, time-series inputs of the output data of the neural network. In RNN training; 
backpropagation is required as in conventional neural networks. In this case, a prominent 
concern came out by the RNN arises. The gradient is the value that authorizes adjusting 
all the weights. Since the neural network data are utilized in all layers, the gradient in each 
output relies not only on the current layer but also on the previous layer. If the backprop-
agation process is constantly renewed in more than one-time interval, the outcome gets 
more smallish and the disappearing gradient problem arises. In the same situation, if the 
gradients are greater than one, the result becomes more extensive and the exploding gradi-
ent problem arises (Yu et al. 2022; Zhang et al. 2018; Feng et al. 2017).

On the other hand, the LSTM model is a special type of Recurrent Neural Networks 
(RNN) that can learn long-term associations (recurring values, sequence, etc.) between 
data. LSTMs also have chain-like structures as RNNs; however, the structure of the repeat-
ing module is different. LSTMs are remarkably convenient for classifying, predicting, and 
processing time series, regarding temporal delays. The relative insensitivity to its temporal 
length provides LSTM an advantage over alternative RNNs and other learning methods in 
different applications. LSTMs recall data for a long time and pursue the process through 
learning (Nazimi 2021).

The optimization of LSTM parameters greatly determines the ultimate effect of net-
work. Gradient descent-based optimizers are commonly used to optimize parameters of the 
current LSTM network. However, there exists a problem in all above optimizers, that the 
iterative process may fall into a local optimum and cannot achieve the global optimum, 
which will affect the effect of model. So, different approaches are required for optimizing 
LSTM successfully (Jang 1993; İpek 2021; Durgut and Aydın 2021; Haznedar et al. 2021; 
Oyelade et al. 2022). PSO can be given as an example as the most frequently used swarm-
based optimization algorithm in the field of water resources and hydrology. PSO algorithm 
is an intelligence optimization theory and one of the brightest optimization approaches 
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because it has advantages over other optimization methods in terms of ease of implementa-
tion, sphere convergence ability and robustness. The algorithm was developed by observ-
ing the normal behavior of the presented fish groups and birds to reduce the optimiza-
tion problems. In this technique, a particle represents each member in the swarm, and each 
particle has a velocity and position vector. These particles behave in the same way: Each 
particle is relocated to the optimum location in the swarm whose value is closest to the tar-
get. Recently, numerous model studies hybridizing with metaheuristic algorithms take part 
in the literature. The impacts of mentioned models on river flows and other hydrological 
parameters were studied by researchers.

In this paper, based on multivariate correlations among time-series characteristics and 
streamflow information, the parameters of LSTM network are optimized using PSO algo-
rithm so as to improve the prediction performance. The proposed LSTM-PSO model per-
formance was compared with the performance of LSTM and ANFIS models to predict flow 
with data obtained from various flow observation stations. The prediction performances of 
the models were tested on the determined station. In this way, it was sought to obtain a 
long correlation in a short time. In other respects, the LSTM-PSO method was conducted 
limitedly in real-time river flow prediction. In addition, a limited number of studies are 
found for the prediction of river flow in the Seyhan basin in the literature that show the 
originality of this study. In the following section, the datasets are introduced and methods 
are explained. In the third and fourth sections, the results are presented and discussed in 
detail.

2 � Literature review

Xu et al. (2022) generated a method to enhance the flood forecasting model. LSTM net-
works and particle swarm optimization (PSO) were hybridized to the estimation of the 
flood data. The hybrid model was compared with ANN, PSO-ANN, and the benchmark 
model (LSTM). The outcomes displayed that the PSO-LSTM hybrid model significantly 
improved the benchmark model. Kilinc and Yurtsever (2022) designed a hybrid model 
based on the GWO algorithm. The daily streamflow data were tested with GRU (Gated 
Recurrent Unit). The results revealed that GWO algorithms augmented the performance of 
the hybrid model. Siva Kumar et al. (2021) employed a hybrid model linked with a genetic 
algorithm (GA) and an adaptive neuro-fuzzy inference system (ANFIS). The results uncov-
ered that the GA algorithm promisingly increased the performance of the ANFIS model. 
Likewise, Dalkiliç and Hashimi (2020) operated the artificial neural network (ANN), wave-
let neural network (WNN), and adaptive neuro-fuzzy inference system (ANFIS) models to 
forecast the daily streamflow. The outcomes demonstrated that the WNN model indicated 
the most satisfactory performance compared with the ANN and ANFIS model. Zhang et al. 
(2014) built a hybrid model grounded on particle swarm optimization and support vector 
machine model for streamflow forecasting. The test results revealed that the hybrid model 
enhanced the single SVM model.

Kushwaha et  al. (2022) reported a novel prediction model established on the ANFIS 
and GA. According to the analysis, the GA-ANFIS model depicted a greater prediction 
capability than the ANFIS model. Kayhomayoon et al. (2022) conducted adaptive neuro-
fuzzy inference systems (ANFIS) to predict the groundwater level. Furthermore, several 
metaheuristic algorithms were operated to improve the model. The findings uncovered that 
metaheuristic algorithms enhanced the performance of the ANFIS model. When the studies 
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in the literature were reviewed, prosperous results of metaheuristic algorithms hybridizing 
with deep learning models in river flows and other areas have been observed. Asaad et al. 
(2022) evaluated the performance of LSTM, multilayer perceptron (MLP) and ANFIS for 
long-term streamflow forecasting. The results revealed that the LSTM model had a better 
prediction performance, surpassing the MLP and ANFIS models. Adaryani et  al. (2022) 
compared the performances of three machine and deep learning-based rainfall forecasting 
approaches including a hybrid optimized-by-PSO support vector regression (PSO-SVR), 
long short-term memory (LSTM), and convolutional neural network (CNN). The findings 
showed that hybrid PSO-SVR model was improved the accuracy of the forecasting. Du 
et al. (2022) combined LSTM and PSO algorithm in order to predict water demand. The 
results showed that PSO algorithm improved the performance of the LSTM model. Song 
et  al. (2020) generated hybrid LSTM-PSO model to time-series prediction. The hybrid 
model was compared with traditional machine learning models and accuracy predictions of 
the models were observed. The findings revealed that proposed model outperformed other 
approaches.

Kim and Cho (2021) proposed a method of optimizing CNN-LSTM neural networks 
with PSO algorithm. PSO-based hybrid model was outperformed other deep learning and 
machine learning models. Pranolo et al. (2022) aimed to hybridize LSTM with PSO and 
Bifold-Attention mechanism. The created model was compared with classical machine 
learning models. The proposed model comparison was based on the accuracy of each 
model in forecasting multivariate time series. The findings revealed that the proposed 
model outperformed other approaches. This ground-breaking innovation was valuable for 
time-series analysis research, particularly the implementation of deep learning for time-
series forecasting. Sheikh Khozani et  al. (2022) introduced new hybrid model, namely 
ARIMA-LSTM neural network, to forecast the ground water level time series. In order 
to determine the hyperparameters of the LSTM algorithm, PSO algorithm and other three 
algorithm were coupled with the LSTM model. The results indicated that all hybrid models 
were increased the performance of the LSTM model. Wang et  al. (2022) compared five 
popular machine learning methods, including PSO algorithm and LSTM models. Each 
model was hybridized with each other. The results showed that LSTM- and PSO-based 
hybrid models were achieved better single prediction accuracy. Lv et al. (2018) improved 
LSTM-based PSO algorithm, which was applied to predict time-series data. Compared 
with typical algorithms, the findings showed that LSTM has better performance in reliabil-
ity and adaptability, and hybrid PSO-LSTM model had better accuracy.

3 � Materials and methods

3.1 � Location and characterization of the study area

The Seyhan Basin extends from Çukurova to the north, and its upper part is located in the 
Central Anatolian region, while its middle and lower parts are located in the Mediterranean 
Region. It is located in the north of Adana Province, which is located in the Eastern Medi-
terranean Region of Turkey, between 36° 30′ and 39° 15′ north latitudes and 34° 45′ and 
37° 00′ east longitudes and has a surface area of 22.042 km2 (Topaloğlu 1999). The most 
important streams of the Seyhan Basin are the Seyhan River, which names to the basin, 
and its tributaries. The Zamanti River is one of the important tributaries of Seyhan River. 
Zamanti River, which originates from the Kayseri highlands, has a length of 308 km and an 
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average annual flow of 65 m3/s. In this study, a total of three stations, two stations belong-
ing to Zamanti River and one station belonging to the Eğlence River located in Adana 
Province, were studied. Eğlence River is approximately 29 km long and forms the Seyhan 
River with the Körkun Stream, which originates from the north of Karaisalı. As a result of 
climate change in Turkey, the decrease in precipitation and drought is a natural occurrence 
(Komuscu et al. 1998). The Seyhan Basin, which is one of the basins where the effects of 
this change are observed, has a structure whose hydrological form can deteriorate when 
it undergoes climate change with its climate type characteristics. For this reason, changes 
in the amount of precipitation in the basin also affect surface water resources (Daba and 
You 2020). Due to the large number of karst structures of the basin, underground drainage 
rather than surface drainage predominates in the hydrological basin. The predominance of 
underground drainage causes the basin to acquire an arid appearance. This makes it impor-
tant to determine the hydrological status of the basin. Since these features play an impor-
tant role in water resources management and planning, Seyhan Basin has been considered 
as a study area.

3.2 � Datasets and pre‑processing

In order to regulate the prediction potential of the compared models, three flow meas-
urement stations (FMS) bearing various hydrological conditions of the Seyhan Basin 
were employed. In addition, long-term, 24-year stream flow data are obtained daily from 
Eğlence River-Eğribük (E18A025), Zamanti River-Ergenuşağı (E18A026) and Zamanti 
River-Değirmenocağı (E18A027) stations. The positions of the related stations in the Sey-
han Basin on the Türkiye map are presented in Fig. 1. The twenty-four years of flow data at 

Fig. 1   Study sites in the Seyhan river basin



687Natural Hazards (2023) 117:681–701	

1 3

all stations between 1988 and 2011 are 8928 daily measured flow values. The locations of 
all stations are given in Table 1 with their geographical coordinates.

As shown in Fig. 2, the daily flow potentials of all three stations were discussed dur-
ing the flow analysis of the river and the lowest and highest flows were 0.95 m3/s and 
434 m3/s, respectively. When the three stations are analyzed concurrently and the stream 
flow is controlled, the lowest stream flow was observed at the Eğribük station in August 
2008 with 0.95 m3/s. The highest flow rate was noted at Ergenuşağı station in December 
2002 with 434 m3/s, and there is a difference of 106 m3/s from the closest value. The 
highest flow rates were detected at all three stations in the first years of the data set, in the 
1998–2002 period.

All values in the data set contain daily flow rate values. The daily flow measurement 
station data operated in the study were gathered from DSİ (Hydraulic State Works). 7143 
daily flow data, which is 80% percent of the data set of the stations between 01.01.1988 
and 03.11.2007, were employed in the training phase of the models, and 1785 daily flow 
data, while the 20% percent of data set between 03.12.2007 and 12.31.2011, were used in 
the testing phase. The data operated in the training phase were maintained to examine the 
indicators in the models and the test data were applied for performance comparisons of all 
models. In addition, some rivers may have mislaid data from past dates, with concerns such 
as interruptions in flow monitoring stations and the inability to make measurements. In the 
analysis of the data, the length and uninterruptedness of the series are significantly influ-
ential in terms of the sensitivity and reliability of the results to be achieved as a result of 
the study. As indicated in Table 1, the time span of data from all stations was from January 
1988 to December 2011.

Elements such as the Seyhan Basin being considered an important food production area 
for Turkey and Europe, extensive stockbreeding and meadow-pasture in the upper basin, 
covering agricultural functions such as very strategic products such as wheat, and the entire 
basin being within national borders are the water sources that are negatively affected by 
climate change today. Planning, development and management of resources have made the 
studies very important. Dry farming takes place in the upper and middle parts of the basin, 
while irrigated agriculture is practiced in the lower parts (Özfidaner et al. 2018). Promi-
nent agricultural products such as wheat, maize, fruit, and vegetables are cultivated in 
both areas. Two sub-basins have been determined within the scope of reducing the adverse 
impacts of water scarcity on production resources and socioeconomic life as ensuring the 
rational and sustainable use of limited water resources in the basin. These sub-basins are 
listed as the Zamanti River sub-basin and Seyhan Dam confluence sub-basin. The Eğribük 
station, which is located on the important river branches of the basin due to the surface 
water potential of the Seyhan Dam confluence sub-basin, and the Ergenuşağı station, which 
is located close to the discharge point of the Zamanti River sub-basin with the surface 

Table 1   Three flow measurement stations located along the Seyhan Basin

FMS River-FMS Coordinates Catchment 
Area (km2)

Elevation(m) Observation (Year)

East (° ′ ″) North (° ′ ″)

E18A025 Eğribük 35 11 35 37 21 50 544.5 222 1988–2011
E18A026 Ergenuşağı 35 34 47 37 39 55 8698.1 360 1988–2011
E18A027 Değirmenocağı 35 29 10 37 51 18 7718 740 1988–2011
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water potential of the basin, are located in the sub-basins used in this study (Barbaros et al. 
2021). Finally, Değirmenocağı station, which is located similarly in the Zamanti River sub-
basin by utilizing the feature of being in different branches of the same river and selected 
for the estimation of prospective flow data, is the additional studied station.
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3.3 � Adaptive neuro‑fuzzy inference system (ANFIS)

ANFIS has developed as an intelligent system with the combination of fuzzy logic and arti-
ficial neural networks and is applied for solving numerous engineering issues (Karaboga and 
Kaya 2019). Its concept was initially suggested by Jang (1993) and as in other artificial neu-
ral networks, it is utilized to estimate related problems by comprehending using training data 
sets. In this study, five-layered ANFIS structure with two inputs (x1 and x2) and one output (ƒ) 
is applied and it is demonstrated in Fig. 3. The layers of ANFIS structure have described as 
below.

In layer one, the outputs of the nodes in this layer 
(

O1i

)

 are indicated in Eqs. (1) and (2).

Ai and Bi represent any membership function and �Ai and �Bi illustrate the membership 
degree. In this study, it was obtained the Gaussian membership functions (MFs) by using 
input data according to the following Eq. (3).

where x is the input data to i node and ai, ci specifies membership function parameters of 
this set and these parameters represent to premise parameters.

Later on, in layer two, fuzzy sets are gathered with the help of operating the membership 
functions calculated in layer 1. The membership values are multiplied to obtain the member-
ship degree in the second layer which is called the rule layer. The output which was acquired 
in this layer is a product of the input.

(1)O1i = �Ai(x) i = 1, 2

(2)O1i = �Bi−2(x) i = 3, 4

(3)�Ai = exp

[

−

(

x − ci

ai

)2
]

(4)O2i = wi = �Ai(x).�Bi(y) i = 1, 2

Fig. 3   Basic structure of ANFIS



690	 Natural Hazards (2023) 117:681–701

1 3

where wi refers the membership degree and µAi(x) and µBi(y) are represented membership 
degree of x in Ai and y in Bi, respectively.

The third layer is the normalization layer, and the membership degree normalization 
is performed in this layer.

where wi illustrates the normalized membership degree.
The fourth layer is the layer where the outputs of all rules are computed. The calcu-

lated outputs are called as consequence parameters which are pi, qi, ri.

The ultimate outputs of each rules are calculated in the fifth layer.

3.4 � Long short‑term memory network (LSTM)

The recurrent neural network (RNN) is widely conducted for processing sequential 
data. LSTM is a RNN-like system, and unlike RNN, it is operated to create long-term 
memory with short-term dependencies by using nodes (Dong et al. 2020). The LSTM 
network expands the learning capacity by utilizing long-term memory and is highly effi-
cacious to predict at higher accuracy with multivariate data.

As demonstrated in Fig.  4, the LSTM algorithm consists of three gates named the 
input gate (it), the output gate (ot), and the forget gate (ft), which rule the inside-outside 
information flow in the cell state. These gates ensure to forget the unrelated informa-
tion, which can initially be calculated by Eq.  (8), to transfer the necessary informa-
tion from the previous loop to the next state Eq. (9) and to produce an output Eq. (10), 
respectively.

(5)O3i = wi =
wi

w1 + w2

i = 1, 2

(6)O4i = wi.fi = wi.(pix + qiy + ri) i = 1, 2

(7)O5i = f =
�

wi.fi =

∑

wi.fi
∑

wi

i = 1, 2

Fig. 4   Schematic of LSTM structure
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The input modulate gate ( ̃Ct ) is computed using the current input ( Xt ) and the cell output in 
the previous hidden state ( ht−1 ) as in Eq. (11). The current state cell ( Ct ) and the hidden state 
( ht ) are calculated using Eqs. (12) and (13), respectively.

3.5 � Particle swarm optimization algorithm (PSO)

PSO is one of the popular metaheuristic algorithms and was initially presented by Kennedy 
and Eberhart (1995) inspired by social acts such as fish and bird flocking. In PSO, in order to 
solve the optimization issues, each particle named the potential solution in the group perceives 
its position and adjusts its subsequent position and velocity in the process of search accord-
ing to the performances and fitness of the other members of the group. In searching for the 
global optimum solution, the higher-performing particle is determined at each iteration and 
iteratively obtains the best solution which is pbest. Moreover, if the calculated final value is 
more promising than the current optimal fitness value of the swarm (gbest), gbest is set to 
the current value of the particle then the position and velocity of that particle are recalculated 
according to the equations given below. The primary principle of PSO is to adjust the velocity 
of each swarm towards the pbest and gbest positions in each iteration.

where xt
i
 and vt

i
 show the current position and velocity; x(t+1)

i
 and v(t+1)

i
 refer the position 

and velocity at the following time, respectively; r1 and r2 are two random numbers gener-
ated from uniformly distributed in [0,1]; c1 and c2 are acceleration coefficients. The whole 
process described above is repeated according to the flow presented in Fig. 5 until the most 
satisfactory result is obtained.

3.6 � Optimizing LSTM network using the PSO algorithm

The LSTM network is operated by researchers for predicting streamflow owing to its excel-
lent nonlinear prediction capacity and the capability to receive long-term correlations 

(8)ft = �
(

Wf ,x ∗ Xt +Wf ,h ∗ ht−1 + bf
)

(9)it = �
(

Wi,x ∗ Xt +Wi,h ∗ ht−1 + bi
)

(10)ot = �
(

Wo,x ∗ Xt +Wo,h ∗ ht−1 + bo
)

(11)C̃t = tanh
(

Wc,x ∗ Xt +Wc,h ∗ ht−1 + bc
)

(12)Ct = Ct−1 ∗ ft + it ∗ C̃t

(13)ht = ot ∗ tanh
(

Ct

)

(14)x⃗(t + 1) = x⃗(t) + v⃗(t + 1)

(15)v⃗(t + 1) = wv⃗(t) + 𝜙1r and (0, 1)
(

p⃗(t) − x⃗(t)
)

+ 𝜙2r and (0, 1)
(

g⃗(t) − x⃗(t)
)
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using time series. Not long ago, hybrid models have been conducted to enhance the 
LSTM’s internal parameters such as hidden layer nodes and the learning rate. In the pre-
sent study, PSO, which is the intelligent algorithm, was utilized to uncover the optimum 
value of these parameters of the LSTM. In the study, the LSTM network was primarily 
operated to receive the best forecast results as a reference. Then, the dataset was organ-
ized into two sets for testing and training. 80% of the dataset was operated for training the 
network while the remaining data (20%) was used for testing. Hence, the PSO algorithm 
was performed to explore the global optimum solution in the LSTM network utilizing the 
fitness function. The fitness value was computed at each iteration to discover the lowest 
value for the optimum solution. RMSE, MAE, MAPE, and SD criteria were employed to 
determine the model forecasting performance. Furthermore, LSTM-PSO hybrid model was 
also explained meticulously, and the model flowchart is demonstrated in Fig. 6.

4 � Results and discussion

In this section, the performance of the ANFIS, LSTM-PSO, and LSTM benchmark model 
was investigated. Test data of streamflow from long-term annually are plotted in Fig.  2. 
The model’s performance was analyzed with 1785 test data for Değirmenocağı, Eğribük, 
and Ergenusağı FMS. The performance of the hybrid model against ANFIS appears to be 

Fig. 5   Flowchart of PSO
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relatively successful when the statistical metrics. Additionally, the purpose is to support 
the outcomes of the statistical measurements of the hybrid and benchmark models com-
prised in the study. Numerous attempts were made to determine the PSO algorithm’s initial 
parameter values. As a consequence of the attempts, it was uncovered that the number of 
iterations was 1000, the population size was 50, the crossover rate was 0.8, and the muta-
tion rate was 0.01.

In the statistical measurement performances of the study, mean square error (MSE), 
root mean square error (RMSE), mean absolute error (MAE), mean absolute percent-
age error (MAPE), R2, and standard deviation (STD) were utilized. These evaluation 
methods have been widely engaged in various works and are provided as measurement 
tools for estimating daily flow values and determining the effectiveness of the model 
(Kilinc and Haznedar 2022). Table  2 illustrates the statistical measure of the model 
results. Likewise, Table 2 indicates the proposed model perpetrates more pleasing with 
bold when the error measures are concerned. The comparison estimations of these three 
models for Değirmenocağı, Eğribük, and Ergenuşağı FMS, respectively, are presented 
in Table 2. While the estimated MAE values of the benchmark LSTM and ANFIS were 
1.7768, 1.3023, 3.0511 and 1.8082, 1.2954, 3.1524, respectively, the estimated MAE 
values of the proposed LSTM-PSO are 1.7587, 1.3023, and 3.0124, respectively. Con-
cerning RMSE, the proposed LSTM-PSO model is detected to be 3.2762, 4.8109, and 
6.6825 while benchmark LSTM is 3.3215, 4.8109, and 6.7725 and ANFIS is 3.3790, 

Fig. 6   The flowchart of hybrid LSTM-PSO model
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4.9319, and 6.8621. The best MAPE values are discovered as 15.2126, 13.0319, and 
4.9781 for the proposed LSTM-PSO model. Ultimately, according to the coefficient 
of determination (R2), the proposed LSTM-PSO model is found to be 0.9433, 0.6972, 
and 0.9273 while benchmark LSTM is 0.9408, 0.6972, 0.9256 and ANFIS is 0.9390, 
0.6854, and 0.9248, respectively.

A residual which is also referred to as ‘error value’ can be described as the distinc-
tion between the actual data point and the predicted data point. It is a measure of well a 
line fits for the given regression line and important for showing model performance. In 
this context, it is analyzed by its magnitude and whether it form a pattern when deter-
mining the quality of a model. The proposed LSTM-PSO method and the other residual 
performance are displayed in Figs.  7, 8, 9. It is apparent that residual values are too 
undersized and formed a group.

All evaluation criteria confirm that the hybrid LSTM-PSO model is quite success-
ful. The performance of the ANFIS model remains inadequate compared to other 
models. Due to the distinctions in the instantaneous variability of the currents in the 
Eğribük River, the all models showed the lowest performance. Following the trend line 
at Değirmenocağı station, the current values make the prediction capacity higher than 

Table 2   Performance measures (All values are in m3/s)

FMS Model MSE RMSE MAPE MAE R2 StD

Değirmenocağı ANFIS 11.4178 3.3790 16.7569 1.8082 0.9390 0.2020
LSTM 11.0322 3.3215 15.7780 1.7768 0.9408 0.2004
LSTM-PSO 10.7337 3.2762 15.2126 1.7587 0.9433 0.2293

Egribuk ANFIS 24.3237 4.9319 13.0760 1.2954 0.6854 0.7819
LSTM 24.1444 4.8409 13.0419 1.3123 0.6830 0.7859
LSTM-PSO 23.1444 4.8109 13.0319 1.3023 0.6972 0.7849

Ergenuşağı ANFIS 47.0879 6.8621 5.1373 3.1524 0.9248 0.1085
LSTM 45.8666 6.7725 5.1609 3.0511 0.9256 0.1073
LSTM-PSO 44.6553 6.6825 4.9781 3.0124 0.9273 0.1073
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Fig. 7   Comparative plots of the observed and predicted flow of the models for Değirmenocağı FMS
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anticipated. Even though ANFIS is approaching LSTM at this station, the success of the 
hybrid LSTM-PSO model remains at the forefront.

The scatter plots for the LSTM-PSO, LSTM, and ANFIS model for the test data are 
indicated in Figs. 10, 11, 12 to investigate the coefficient of determination between actual 
and predicted streamflow data. The proposed LSTM-PSO method results are closer to 
actual streamflow data even if the Değirmenocağı is commonly further upstream. Thus, 
LSTM-PSO carries a high success of prediction with an R2of 0.9433.

The LSTM network is an essential function in determining the performance of predic-
tion models. Combining models such as PSO and LSTM appear to provide benefits in the 
time-series prediction issues such as river flow prediction. The benefit becomes evident 
when the optimization and generation of other units bring to completion. The proposed 
hybrid model comprehended to discover the optimal level of river flows and was able to 
anticipate the following day’s flow value. This situation is demonstrated by its significant 
performance compared to the benchmark model.
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Fig. 8   Comparative plots of the observed and predicted flow of the models for Eğribük FMS
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The developed hybrid model showed that the method used achieves an optimum result 
in river flow estimations. Research results and statistical methods supported this situa-
tion. In addition, the superiority of the hybrid model over the comparison models, ANFIS 

Fig. 10   Scatter plots of the ANFIS and LSTM-PSO models belonging to Değirmenocağı-FMS

Fig. 11   Scatter plots of the ANFIS and LSTM-PSO models belonging to Eğribük-FMS

Fig. 12   Scatter plots of the ANFIS and LSTM-PSO models belonging to Ergenuşağı-FMS
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and LSTM, was observed at all three stations. Recently, various hybrid models have been 
developed and used to predict stream flows. When the literature is examined in detail, 
the contribution of many models to the accuracy and prediction performance is undeni-
ably good. Zhang (2022) used hybrid PSO-SVM model for a comprehensive evaluation. 
Empirical results research showed that the PSO-SVM algorithm has certain applicability 
in forecasting accuracy. Mohammed et al. (2022) proposed a novel hybrid machine learn-
ing model based on an artificial neural network (ANN) and the Marine Predators algo-
rithm (MPA) for modeling monthly water levels. MPA-ANN algorithm’s performance was 
compared with recent constriction coefficient-based particle swarm optimization and cha-
otic gravitational search algorithm and slime mold algorithm. The results showed that the 
proposed model was offered good results. Abdul Kareem et al. (2022) methodology that 
involved data pre-processing and an artificial neural network (ANN) optimized with the 
coefficient-based particle swarm optimization and chaotic gravitational search algorithm 
(CPSOCGSA-ANN) to forecast the monthly water streamflow. The hybrid model out-
performed other comparison models. Also, the suggested methodology offered accurate 
results. According to the results observed from the literature research, it has been shown 
that the hybrid model has better performance than the comparative models and increases 
the prediction precision.

5 � Conclusions

In this study, a hybrid method building PSO and LSTM is proposed to estimate flow data. 
The performance of the proposed model has been tested on the data of the Ergenuşağı, 
Eğribük, and Değirmenocağı streamflow measurement stations. Basically, although the 
LSTM neural network shows a good learning ability for time-series predictions, its perfor-
mance falls short due to the ineffectiveness of some hyperparameters. For example, LSTM 
models still have problems such as slow convergence rate and low learning capacity, result-
ing in too long training time or even poor fit. For this reason, the effective powers of the 
PSO parameters were used. PSO was used to search for suitable values of LSTM param-
eters. In addition, the performance of the models was compared with ANFIS, which is one 
of the classical estimation methods. The training and application areas of these models are 
related to the size and accuracy of datasets. Therefore, statistical measurement criteria such 
as RMSE, MAE, MAPE, SD, and R2 are used especially for estimation measurements and 
basic criteria for observing the performance of the model. These criteria were used to eval-
uate the performance of the proposed method. The results showed that with the proposed 
LSTM-PSO approach, the estimation error of the flow data was reduced more successfully 
than the benchmark model. As a result, it was determined that the approach had low met-
rics and these results became meaningful with the evaluation criteria. This shows that the 
hybrid model approach can improve the benchmark model.

As mentioned in the previous section, it was determined that the prediction perfor-
mance of LSTM-PSO was higher when compared to the ANFIS and LSTM results at 
all three measurement stations. In all three measurement stations, it was obtained bet-
ter results for LSTM-PSO on average by 2–10% in all evaluation criteria, and it was 
achieved 10.14% improvement for MAPE, especially at the Değirmenocağı measure-
ment station. This improvement value shows that LSTM-PSO provides 10% better qual-
ity and more accurate streamflow forecasting. LSTM-PSO can ensure the long-term cor-
relation of time series with high accuracy and it can have said that it has a stronger 
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nonlinear forecast capability to improve the reliability of streamflow prediction. Addi-
tionally, the results obtained in Değirmenocağı FMS are very close to the observed val-
ues given in Fig. 7, and the R2 value obtained in this FMS is the highest with 0.9433. 
In Ergenuşağı FMS, on the other hand, the R2 value was obtained as 0.9273, and the 
observed and predicted flow values in this FMS are very close to each other (Fig. 9). 
In addition, in the study, generally lower error rates were obtained in the LSTM model 
compared to the ANFIS model. As a result, it was determined that the approach had low 
metrics and these results became meaningful with the evaluation criteria. This shows 
that the hybrid model approach can improve the benchmark model. Thus, the LSTM-
PSO model proposed in this study performs better in three different hydrological sta-
tions compared to other models, which shows that this model has universal applicability 
and that more accurate results can be obtained in flow forecasting for different hydro-
logical stations. Therefore, it can be considered as a promising alternative to improve 
long-term daily streamflow prediction quality.

Nevertheless, the study has some limitations. The most significant aspect impacting the 
success of heuristic optimization algorithms is the optimization of their parameters. Every 
optimization algorithm has parameters. The number of iterations is the most widely accus-
tomed and known parameter. In addition, the speed of convergence is one of the criteria 
that best measures the performance of heuristic optimization techniques. If the number of 
iterations is low, the algorithm cannot converge, and if it is too high, it causes dispropor-
tionate use of solution time and computer resources. The detriments of the Particle Swarm 
Optimization (PSO) algorithm, which is one of the heuristic algorithms operated in the 
study, are that it is straightforward to descend to the local optimum in high-dimensional 
space and has a low convergence rate in the iterative process. Hybridizing the PSO algo-
rithm with LSTM augments its performance. As shown in Table 2, the hybrid model suc-
cessfully improved the optimum values of the benchmark model. On the other hand, it has 
been seen that the LSTM model, which boosts the performance of the PSO algorithm and 
is frequently used in time prediction series, delivers successful results. Yet, LSTM net-
work performance occasionally presents unsatisfactory results owing to the random selec-
tion of initialization parameters. Thus, hybrid modeling studies persist to attract increas-
ing attention from researchers to acquire better performance results. Therefore, the random 
selection of the initial parameters and optimization of the hyper parameters are extremely 
crucial in order to improve the performance measures of the LSTM model. Despite all its 
advantages and its enduring structure, there are also handicaps of the ANFIS model. In 
this method, models suitable for certain dataset structures are created, models suitable for 
every common dataset are not very common. In addition, many attempts should be made in 
the process of revealing the appropriate model for the data set at hand. The selection of the 
sample for the data, the size of the data set, the learning method and the type of member-
ship function to be operated are the factors determining the quality of the output values and 
these values are determined by experimentation. As a result, ANFIS, which is incorporated 
in the study as a classical comparison model, can be hybridized in forthcoming studies 
to observe success performance with other hybrid models. Furthermore, the current data 
are nonlinear time series. Studies with other parameters with these features will play an 
active role in the management of river regimes. The inclusion of data on a minute, hourly 
or monthly basis can also be regarded as a criterion in performance analysis. As an alterna-
tive to the PSO algorithm, which was successful by hybridizing in the study, the contribu-
tion of the hybrid models to be created with the popular metaheuristic algorithms of recent 
times to the prediction accuracy can be examined.
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