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Abstract
Keeping in view the latest trends toward quantum calculus, due to its various
applications in physics and applied mathematics, we introduce a new subclass of
meromorphic multivalent functions in Janowski domain with the help of the
q-differential operator. Furthermore, we investigate some useful geometric and
algebraic properties of these functions. We discuss sufficiency criteria, distortion
bounds, coefficient estimates, radius of starlikeness, radius of convexity, inclusion
property, and convex combinations via some examples and, for some particular cases
of the parameters defined, show the credibility of these results.
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1 Introduction and motivation
In the classical calculus, if the limit is replaced by familiarizing the parameter q with lim-
itation 0 < q < 1, then the study of such notions is called quantum calculus (q-calculus).
This area of study has attracted the researchers due to its applications in various branches
of mathematics and physics; for details, see [10, 11]. Jackson [19, 20] was the first to give
some applications of q-calculus and introduced the q-analogues of the derivative and in-
tegral.

Using the notion of q-beta functions, Aral and Gupta [10–12] established a new q-
Baskakov–Durrmeyer-type operator. Furthermore, Aral and Anastassiu [7–9] discussed
a generalization of complex operators, known as the q-Picard and q-Gauss–Weierstrass
singular integral operators. Lately, a q-analogue version of Ruscheweyh-type differential
operator was defined by Kanas and Răducanu [21] using the convolution notions and ex-
amined some its properties. For more applications of this operator, see [5]. Moreover,
Ahuja et al. [2] investigated a q-analogue of Bieberbach–de Branges and Fekete–Szegö
theorems for certain families of q-convex and q-close-to-convex functions. Also, Khan et
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al. [22] studied some families of multivalent q-starlike functions involving higher-order q-
derivatives. For more recent work related to q-calculus, we refer the reader to [25, 38, 39].

Let Mp denote the class of p-valent meromorphic functions f that are regular (analytic)
in the punctured disc D = {ζ ∈C : 0 < |ζ | < 1} and satisfy the normalization

f (ζ ) =
1
ζ p +

∞∑

k=p+1

akζ
k (ζ ∈D). (1.1)

Also, let MS∗
p(α) and MCp(α) denote the popular classes of meromorphic p-valent star-

like and meromorphic p-valent convex functions of order α (0 ≤ α < p), respectively.

Definition 1 For two analytic functions fj (j = 1, 2) in D, the function f1 is said to be sub-
ordinate to the function f2, written as

f1 ≺ f2 or f1(ζ ) ≺ f2(ζ ) (ζ ∈D),

if there is a Schwartz function w, analytic in D, such that

w(0) = 0,
∣∣w(ζ )

∣∣ < 1,

and

f1(ζ ) = f2
(
w(ζ )

)
.

Further, if the function f2 is univalent inD, then we have the following equivalence relation:

f1(zζ ) ≺ f2(ζ ) (ζ ∈U) ⇐⇒ f1(0) = f2(0) and f1(D) ⊂ f2(D).

For q ∈ (0, 1), the q-difference operator or q-derivative of a function f is defined by

∂qf (ζ ) =
f (ζ ) – f (ζq)

ζ (1 – q)
(ζ 
= 0, q 
= 1). (1.2)

We can observe that for k ∈N (where N is the set of natural numbers) and ζ ∈D,

∂q

{ ∞∑

k=1

akζ
k

}
=

∞∑

k=1

[k, q]akζ
k–1, (1.3)

where

[k, q] =
1 – qk

1 – q
= 1 +

k∑

l=1

ql and [0, q] = 0.

The q-number shift factorial for any nonnegative integer k is defined as

[k, q]! =

⎧
⎨

⎩
1, k = 0,

[1, q][2, q][3, q] · · · [k, q], k ∈ N.
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Furthermore, for x ∈R, the q-generalized Pochhammer symbol is defined as

[x, q]n =

⎧
⎨

⎩
[x, q][x + 1, q] · · · [x + k – 1, q], k ∈N,

1, k = 0.

We now recall the differential operator Dμ,q : Mp →Mp defined by Ahmad et al. [1] by

Dμ,qf (ζ ) =
(
1 + [p, q]μ

)
f (ζ ) + μqpζ∂qf (ζ ), (1.4)

where μ ≥ 0.
Now using (1.1), we get

Dμ,qf (ζ ) =
1
ζ p +

∞∑

k=p+1

(
1 + [p, q]μ + μqp[k, q]

)
akζ

k .

We define this operator in such a way that

D0
μ,qf (ζ ) = f (ζ )

and

D2
μ,qf (ζ ) = Dμ,q

(
Dμ,qf (ζ )

)
=

1
ζ p +

∞∑

k=p+1

(
1 + [p, q]μ + μqp[k, q]

)2akζ
k .

In the identical way, for m ∈ N , we get

Dm
μ,qf (ζ ) =

1
ζ p +

∞∑

k=p+1

(
1 + [p, q]μ + μqp[k, q]

)makζ
k . (1.5)

From (1.4) and (1.5) after some simplification, we get the identity

Dm+1
μ,q f (ζ ) = μqpζ∂qDm

μ,qf (ζ ) +
(
1 + [p, q]μ

)
Dm

μ,qf (ζ ). (1.6)

Now as of q → 1–, the q-differential operator defined in (1.4) reduces to the well-known
differential operator defined in [28]. For details on q-analogues of differential operators,
we refer the reader to [3, 4, 27, 32].

Definition 2 ([18]) A function f ∈A belongs to the functions class S∗
q if

f (0) = f ′(0) – 1 = 0 (1.7)

and
∣∣∣∣

z
f (z)

(Dqf )(z) –
1

1 – q

∣∣∣∣ ≤ 1
1 – q

. (1.8)
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Note that by the last inequality it is obvious that in the limit as q → 1–, we have

∣∣∣∣w –
1

1 – q

∣∣∣∣ ≤ 1
1 – q

.

This closed disk is merely in the right-half planem and the class S∗
q of q-starlike functions

turns into the prominent class S∗.
Inspired by the above-mentioned works and [14–17, 23, 29, 31, 34–37, 42–44], we now

define the subfamily Mμ,q(p, m,O1,O2) of Mp using the idea of the operator Dm
μ,q as fol-

lows.

Definition 3 Under conditions –1 ≤ O2 < O1 ≤ 1 and q ∈ (0, 1), we define f ∈ Mp to be
in the set Mμ,q(p, m,O1,O2) if it satisfies

–qpζ∂qDm
μ,qf (ζ )

[p, q]Dm
μ,qf (ζ )

≺ 1 + O1ζ

1 + O2ζ
, (1.9)

where the notation “≺” stands for the familiar notion of subordination. Equivalently, we
can write condition (1.9) as

∣∣∣∣

qpζ∂qDm
μ,qf (ζ )

[p,q]Dm
μ,qf (ζ ) + 1

O1 + O2
qpζ∂qDm

μ,qf (ζ )
[p,q]Dm

μ,qf (ζ )

∣∣∣∣ < 1. (1.10)

Remark 1 First of all, it is easy to see that

lim
q→1–

Mμ,q(1, 0,O1,O2) = MS∗[O1,O2],

whereMS∗[O1,O2] is the function class introduced and studied by Ali et al. [6]. Secondly,
we have

Mμ,q(p, 0, 1, –1) = MS∗
p,q,

where MS∗
p,q is the class of meromorphic p-valent q-starlike functions. Thirdly, we have

lim
q→1–

Mμ,q(p, 0, 1, –1) = MS∗
p,q,

where MS∗
p is the well-known class of meromorphic p-valent starlike functions. Fourthly,

we have

lim
q→1–

Mμ,q(1, 0, 1, –1) = MS∗,

where MS∗ is the class of meromorphic starlike functions. The class MS∗ and other
similar classes have been studied by Pommerenke [30] and Clunie and Miller in [13, 26],
respectively, and by many others.

In this paper, with the help of a certain q-differential operator, we introduce a new sub-
class of meromorphic multivalent functions involving the Janowski functions. Further-
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more, we investigate some useful geometric and algebraic properties of these functions.
We discuss sufficiency criteria, distortion bounds, coefficient estimates, radius of starlik-
ness, radius of convexity, inclusion property, and convex combinations via some examples,
and for some particular cases of the parameters defined, we show the credibility of these
results.

2 A set of lemmas
In our main results, we use the following important lemmas.

Lemma 1 ([24]) Let –1 ≤O4 ≤O2 < O1 ≤O3 ≤ 1. Then

1 + O1ζ

1 + O2ζ
≺ 1 + O3ζ

1 + O4ζ
.

Lemma 2 ([33]) Let h(ζ ) be a regular function in D of the form

h(ζ ) = 1 +
∞∑

k=1

dkζ
k ,

and let k(ζ ) be a regular convex function in D of the form

k(ζ ) = 1 +
∞∑

k=1

kkζ
k .

So if h(ζ ) ≺ k(ζ ), then |dk| ≤ |k1| for all k ∈N = {1, 2, . . .}.

3 Main results
Theorem 1 A function f ∈ Ap of the form (1.1) is in the class Mμ,q(p, m,O1,O2) if and
only if

∞∑

k=p+1

�k|ak| ≤ [p, q](O1 – O2), (3.1)

where

�k =
(
qp[k, q](1 + O2) + (1 + O1)[p, q]

)(
1 + [p, q]μ + μqp[k, q]

)m.

Proof For f to be in the class Mμ,q(p, m,O1,O2), we need to show inequality (1.10). For
this, consider

∣∣∣∣

qpζ∂qDm
μ,qf (ζ )

[p,q]Dm
μ,qf (ζ ) + 1

O1 + O2
qpζ∂qDm

μ,qf (ζ )
[p,q]Dm

μ,qf (ζ )

∣∣∣∣ =
∣∣∣∣

qpζ∂qDm
μ,qf (ζ ) + [p, q]Dm

μ,qf (ζ )
O1[p, q]Dm

μ,qf (ζ ) + O2qpζ∂qDm
μ,qf (ζ )

∣∣∣∣.
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Using (1.4), after simplification, by (1.2) and (1.5) we get that it is equal to

∣∣∣∣

∑∞
k=p+1(1 + [p, q]μ + μqp[k, q])m(qp[k, q] + [p, q])akζ

k

(O1–O2)[p,q]
ζp +

∑∞
k=p+1 ϑqakζ k

∣∣∣∣

=
∣∣∣∣

∑∞
k=p+1(1 + [p, q]μ + μqp[k, q])m(qp[k, q] + [p, q])akζ

k+p

(O1 – O2)[p, q] +
∑∞

n=p+1 ϑqakζ k+p

∣∣∣∣

≤
∑∞

k=p+1(1 + [p, q]μ + μqp[k, q])m(qp[k, q] + [p, q])|ak|
(O1 – O2)[p, q] – ϑq|ak| < 1,

where

ϑq =
(
1 + [p, q]μ + μqp[k, q]

)m(
O1[p, q] + O2qp[k, q]

)
.

Using inequality (3.1), we can get the direct part of the proof.
For the converse part, let f ∈Mμ,q(p, m,O1,O2) be given by (1.1). Then from (1.10), for

ζ ∈D, we have

∣∣∣∣

qpζ∂qDm
μ,qf (ζ )

[p,q]Dm
μ,qf (ζ ) + 1

O1 + O2
qpζ∂qDm

μ,qf (ζ )
[p,q]Dm

μ,qf (ζ )

∣∣∣∣

=
∣∣∣∣

∑∞
k=p+1(1 + [p, q]μ + μqp[k, q])m(qp[k, q] + [p, q])akζ

k+p

(O1 – O2)[p, q] +
∑∞

k=p+1 ϑqakζ k+p

∣∣∣∣.

Since �(ζ ) ≤ |ζ |, we have

�
{∑∞

k=p+1(1 + [p, q]μ + μqp[k, q])m(qp[k, q] + [p, q])akζ
k+p

(O1 – O2)[p, q] +
∑∞

k=p+1 ϑqakζ k+p

}
< 1. (3.2)

Now choose values of ζ on the real axis such that

qpζ∂qDm
μ,qf (ζ )

[p, q]Dm
μ,qf (ζ )

is real. Clearing the denominator in (3.2) and letting ζ → 1– through real values, we obtain
(3.1). �

Example 2 For the function

f (ζ ) =
1
ζ p +

∞∑

k=p+1

[p, q](O1 – O2)
�k

xkζ
k (ζ ∈D)

such that

∞∑

k=p+1

|xk| = 1,
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we have

∞∑

k=p+1

�k|ak| =
∞∑

k=p+1

[p, q](O1 – O2)|xk|

= [p, q](O1 – O2)
∞∑

k=p+1

|xk| = [p, q](O1 – O2).

Thus f ∈Mμ,q(p, m,O1,O2), and inequality (3.1) is sharp for this function.

Corollary 1 ([6]) If f is in the class MS∗[O1,O2] and has the form (1.1) in univalent form,
then

∞∑

n=2

(
k(1 + O2) + 1 + O1

)|ak| ≤ (O1 – O2).

The result is sharp for function given by

f (ζ ) =
1
ζ

+
(O1 – O2)

(k(1 + O2) + 1 + O1)
tkζ

k , where
∞∑

k=p+1

|tk| = 1. (3.3)

In the following, we discuss the growth and distortion theorems for our new class of
functions.

Theorem 3 Let f ∈Mμ,q(p, m,O1,O2) be of the form (1.1). Then for |ζ | = r, we have

1
rp – τ1rp ≤ ∣∣f (ζ )

∣∣ ≤ 1
rp + τ1rp,

where

τ1 =
[p, q](O1 – O2)

�p+1
.

The result is sharp for the function given in (3.3) with k = p + 1.

Proof We have

∣∣f (ζ )
∣∣ =

∣∣∣∣∣
1
ζ p +

∞∑

k=p+1

akζ
k

∣∣∣∣∣

≤ 1
|ζ p| +

∞∑

k=p+1

|ak||ζ |k =
1
rp +

∞∑

k=p+1

|ak|rk .

Since rk < rp for r < 1 and k ≥ p + 1, for |ζ | = r < 1, we have

∣∣f (ζ )
∣∣ ≤ 1

rp + rp
∞∑

k=p+1

|ak|. (3.4)
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Similarly, we have

∣∣f (ζ )
∣∣ ≥ 1

rp – rp
∞∑

k=p+1

|ak|. (3.5)

Now (3.1) implies that

∞∑

k=p+1

�k|ak| ≤ [p, q](O1 – O2).

Since

�p+1

∞∑

k=p+1

|ak| ≤
∞∑

k=p+1

�k|ak|,

we have

∞∑

k=p+1

�p+1|ak| ≤ [p, q](O1 – O2),

which also can be written as

∞∑

k=p+1

|ak| ≤ [p, q](O1 – O2)
�p+1

.

Now by putting this value into (3.4) and (3.5), we get the required result. �

Theorem 4 Let f ∈Mμ,q(p, m,O1,O2) be of the form (1.1). Then for |ζ | = r,

[p, q]m

qmp+δrm+p – τ2rp ≤ ∣∣∂m
q f (ζ )

∣∣ ≤ [p, q]m

qmp+δrm+p + τ2rp,

where

τ2 =
(O1 – O2)[p, q][p + 1, q]

αp+1
and δ =

m∑

k=1

k.

Proof By (1.2) and (1.3) we can write

∂m
q f (ζ ) =

(–1)m[p, q]m

qmp+δζ p+m +
∞∑

k=p+1

[
k – (m – 1), q

]
m+1akζ

k–m.

Since rk–m ≤ rp for m ≤ k and k ≥ p + 1, for |ζ | = r < 1, we have

∣∣∂m
q f (ζ )

∣∣ ≤ [p, q]m

qmp+δrm+p + rp
∞∑

n=p+1

[
k – (m – 1), q

]
m+1|ak|. (3.6)



Ahmad et al. Advances in Continuous and Discrete Models          (2022) 2022:5 Page 9 of 16

Similarly,

∣∣∂m
q f (ζ )

∣∣ ≥ [p, q]m

qmp+δrm+p – rp
∞∑

k=p+1

[
k – (m – 1), q

]
m+1|ak|. (3.7)

Now by (3.1) we get the inequality

αp+1

[p + 1, q]

∞∑

k=p+1

[k, q]|ak| ≤ (O1 – O2)[p, q],

so that

∞∑

k=p+1

[k, q]|ak| ≤ (O1 – O2)[p, q][p + 1, q]
�p+1

.

We easily observe that

∞∑

k=p+1

[
k – (m – 1), q

]|ak| ≤
∞∑

k=p+1

[k, q]|ak|,

which implies

∞∑

k=p+1

[
k – (m – 1), q

]|ak| ≤ (O1 – O2)[p, q][p + 1, q]
�p+1

.

Now using this inequality in (3.6) and (3.7), we obtain the required result. �

Corollary 2 If f ∈MS∗
p is of the form (1.1), then

1
rp –

2p(p + 1)rp

(k(1 + O2) + (p + 1)(1 + O1))
≤ ∣∣f ′(ζ )

∣∣ ≤ 1
rp +

2p(p + 1)rp

(k(1 + O2) + (p + 1)(1 + O1))
.

In the next two theorems, we discuss the radii problems for the functions of the class
Mμ,q(p, m,O1,O2).

Theorem 5 Let f ∈Mμ,q(p, m,O1,O2). Then f ∈MCp(α) for |ζ | < r1, where

r1 =
(

p(p – α)αp+n

(p + n)(n + p + α)(O1 – O2)[p, q]

) 1
k+2p

.

Proof Let f ∈Mμ,q(p, m,O1,O2). To prove f ∈MCp(α), we only need to show

∣∣∣∣
ζ f ′′(ζ ) + (p + 1)f ′(ζ )

ζ f ′′(ζ ) + (1 + 2α – p)f ′(ζ )

∣∣∣∣ ≤ 1.

Using (1.1), after some simple computation, we get

∞∑

n=1

(p + n)(p + n + α)
p(p – α)

|ak+p||ζ |k+2p ≤ 1. (3.8)
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From (3.1) we can easily obtain that

∞∑

k=p+1

�k|ak+p| ≤ [p, q](O1 – O2)
∞∑

k=p+1

�k

(O1 – O2)[p, q]
|ak| < 1.

Equivalently, we have

∞∑

k=1

�p+k

(O1 – O2)[p, q]
|ak+p| < 1.

Now inequality (3.8) will hold if

∞∑

k=1

(p + k)(k + p + α)
p(p – α)

|ak+p||ζ |k+2p <
∞∑

k=1

�p+k

(O1 – O2)[p, q]
|ak+p|,

which implies that

|ζ |k+2p <
p(p – α)�p+k

(p + k)(k + p + α)(O1 – O2)[p, q]

and thus

|ζ | <
(

p(p – α)αp+k

(p + k)(k + p + α)(A – B)[p, q]

) 1
k+2p

= r1,

from which we get the desired condition. �

Corollary 3 If f ∈MS∗
p is of the form (1.1), then f ∈MCp(α) for |ζ | < r′

1, where

r′
1 =

(
p(p – α)(n(1 + O2) + (p + k)(1 + O1))

(p + k)(k + p + α)(O1 – O2)p

) 1
k+2p

.

Theorem 6 Let f ∈Mμ,q(p, m,O1,O2). Then f ∈MS∗
p(α) for |ζ | < r2, where

r2 =
(

(p – α)�p+k

(k + p + α)(O1 – O2)[p, q]

) 1
k+2p

.

Proof We know that f ∈MS∗
p(α) if and only if

∣∣∣∣
ζ f ′(ζ ) + pf (ζ )

ζ f ′(ζ ) – (p – 2α)f (ζ )

∣∣∣∣ ≤ 1.

Using (1.1), after simplification, we get

∞∑

k=1

(
k + p + α

p – α

)
|ak+p||ζ |k+2p ≤ 1. (3.9)
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Now from (3.1) we easily obtain

∞∑

k=1

�p+k

(O1 – O2)[p, q]
|ak+p| < 1.

For inequality (3.9) to be true, it suffices that

∞∑

k=1

(
k + p + α

p – α

)
|ak+p||ζ |k+2p <

∞∑

k=1

�p+k

(O1 – O2)[p, q]
|ak+p|.

This gives

|ζ |k+2p <
(p – α)�p+k

(k + p + α)(O1 – O2)[p, q]
,

and hence

|ζ | <
(

(p – α)�p+k

(k + p + α)(O1 – O2)[p, q]

) 1
k+2p

= r2.

Thus we obtain the required result. �

Theorem 7 Let f ∈Mμ,q(p, m,O1,O2) be of the form (1.1). Then

|ap+1| ≤ [p, q](O1 – O2)l(0)
(qp[p + 1, q] + [p, q])l(1)

,

|ap+2| ≤ [p, q](O1 – O2)l(0)
(qp[p + 2, q] + [p, q])l(2)

(
1 +

[p, q](O1 – O2)
qp[p + 1, q] + [p, q]

)
,

and

|ap+3| ≤ [p, q](O1 – O2)l(0)
(qp[p + 3, q] + [p, q])l(3)

(
1 +

[p, q](O1 – O2)
qp[p + 1, q] + [p, q]

+
[p, q](O1 – O2)

qp[p + 2, q] + [p, q]
+

([p, q](O1 – O2))2

(qp[p + 2, q] + [p, q])(qp[p + 1, q] + [p, q])

)
,

where

l(k) =
(
1 + [p, q]μ + μqp[p + k, q]

)m. (3.10)

Proof If f ∈A is in the class Mμ,q(p, m,O1,O2), then it satisfies

–qpζ∂qDm
μ,qf (ζ )

[p, q]Dm
μ,qf (ζ )

≺ 1 + O1ζ

1 + O2ζ
.

The right-hand side

h(ζ ) =
–qpζ∂qDm

μ,qf (ζ )
[p, q]Dm

μ,qf (ζ )
(3.11)
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is of the form

h(ζ ) = 1 +
∞∑

k=1

dkζ
k ,

which implies that

h(ζ ) ≺ 1 + O1ζ

1 + O2ζ
.

However,

1 + Aζ

1 + Bζ
= 1 + (O1 – O2)ζ + · · · .

Now using Lemma 2, we obtain

|dk| ≤ (O1 – O2). (3.12)

Putting the series expansions of h(ζ ) and f (ζ ) into (3.11), simplifying, and comparing the
coefficients at ζ k+p on both sides, we get

–qp(1 + [p, q]μ + μqp[k + p, q]
)m[p + k, q]ap+k

= [p, q]
(
1 + [p, q]μ + μqp[k + p, q]

)map+k

+ [p, q]
k–1∑

i=0

(
1 + [p, q]μ + μqp[p + i, q]

)map+idk–i,

and hence

–
(
1 + [p, q]μ + μqp[k + p, q]

)m(
qp[p + k, q] + [p, q]

)
ap+k

= [p, q]
k–1∑

i=1

(
1 + [p, q]μ + μqp[p + i, q]

)map+idk–i.

Now by taking the absolute values of both sides, using the triangle inequality, and then
using (3.12), we obtain

(
1 + [p, q]μ + μqp[p + k, q]

)m(
qp[p + k, q] + [p, q]

)|ap+k|

≤ [p, q](O1 – O2)
k–1∑

i=1

(
1 + [p, q]μ + μqp[p + i, q]

)m|ap+i|.

Notation (3.10) implies that

|ap+k| ≤ [p, q](O1 – O2)
l(k)(qp[p + k, q] + [p, q])

k–1∑

i=0

l(i)|ap+i|.

Now for k = 1, 2, and 3, using the fact that |ap| = 1, we get the required result. �
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Using the notion of subordination, we get the next result on inclusion property of this
class.

Theorem 8 Let –1 ≤O4 ≤O2 < O1 ≤O3 ≤ 1, let Dm
μ,qf (ζ ) 
= 0 in D, and let

1
μ[p, q]

((
1 + [p, q]μ

)
–
Dm

μ,qf (ζ )
Dm

μ,qf (ζ )

)
≺ 1 + O1ζ

1 + O2ζ
. (3.13)

Then f ∈Mμ,q(p, m,O3,O4).

Proof For Dm
μ,qf (ζ ) 
= 0 in D, we define the function p(ζ ) by

–qpζ∂qDm
μ,qf (ζ )

[p, q]Dm
μ,qf (ζ )

= p(ζ ) (ζ ∈D).

Using identity (1.6), we easily obtain

1
μ[p, q]

((
1 + [p, q]μ

)
–
Dm

μ,qf (ζ )
Dm

μ,qf (ζ )

)
= p(ζ ).

Therefore, using (3.13), we have

–qpζ∂qDm
μ,qf (ζ )

[p, q]Dm
μ,qf (ζ )

= p(ζ ) ≺ 1 + O1ζ

1 + O2ζ
,

and by Lemma 1 we get

1 + A1ζ

1 + B1ζ
≺ 1 + O3ζ

1 + O4ζ
,

so that f ∈Mμ,q(p, m,O3,O4). �

Theorem 9 The class Mμ,q(p, m,O1,O2) is closed under convex combination.

Proof Let fk(ζ ) ∈Mμ,q(p, m,O1,O2) be such that

fk(ζ ) =
1
ζ p +

∞∑

k=p+1

ak,iζ
k for i = 1, 2 and ζ ∈D. (3.14)

We have to show that F(ζ ) = tf1(ζ ) + (1 – t)f2(ζ ) ∈Mμ,q(p, m,O1,O2). We have

F(ζ ) = tf1(ζ ) + (1 – t)f2(ζ )

=
1
ζ p +

∞∑

k=p+1

(
ta1,i + (1 – t)a2,i

)
ζ k .
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Consider

∞∑

k=p+1

αk
(
ta1,i + (1 – t)a2,i

)
= t

∞∑

k=p+1

a1,i + (1 – t)
∞∑

k=p+1

a2,i

≤ t[p, q](O1 – O2) + (1 – t)[p, q](O1 – O2)

= [p, q](O1 – O2).

Hence F(ζ ) ∈Mμ,q(p, m,O1,O2), which is the desired result. �

4 Conclusions
In this paper, we introduced a subclass of meromorphic multivalent functions in Janowski
domain using the idea of q-calculus. Then we characterized these functions with the help
of some useful their properties like sufficiency criteria, distortion bounds, coefficient esti-
mates, radius of starlikness, radius of convexity, inclusion property, and convex combina-
tions. These results were supported by some sharp examples and corollaries in particular
cases.

We recall the attention of curious readers to the prospect influenced by Srivastava’s [40]
newly published survey-cum-expository review paper that the (p, q)-extension would be a
relatively minor and unimportant change, as the new parameter p is redundant (for details,
see Srivastava [40, p. 340]). Furthermore, in light of Srivastava’s recent result [41], the
interested reader’s attention is brought to further investigation of the (k, s)-extension of
the Riemann–Liouville fractional integral.
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