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Development of Root Caries Prevention by
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* Correspondence: satouryouichi@tdc.ac.jp; Tel.: +81-03-6380-9272

Abstract: There is no established method for optimizing the use of dentin to prevent root caries,
which are increasing in the elderly population. This study aimed to develop a new approach for root
caries prevention by focusing on bioapatite (BioHap), a new biomaterial, combined with fluoride.
Bovine dentin was used as a sample, and an acid challenge was performed in three groups: no
fluoride (control group), acidulated phosphate fluoride treatment (APF group), and BioHap + APF
treatment (BioHap group). After applying the new compound, the acid resistance of dentin was
compared with that of APF alone. The BioHap group had fewer defects and an increased surface
hardness than the APF group. The BioHap group had the smallest lesion depth and least mineral loss
among all groups. Using a scanning electron microscope in the BioHap group showed the closure
of dentinal tubules and a coating on the surface. The BioHap group maintained a coating and had
higher acid resistance than the APF group. The coating prevents acid penetration, and the small
particle size of BioHap and its excellent reactivity with fluoride are thought to have contributed to
the improvement of acid resistance in dentin. Topical fluoride application using BioHap protects
against root caries.

Keywords: nano-hydroxyapatite; fluoride; dentin; root caries; demineralization; microradiography

1. Introduction

Gingival recession is caused by periodontal disease, decreased salivary secretion, and
inappropriate brushing, all of which contribute to increased root caries in the elderly [1–3].
Root dentin exposed to the gingival recession has low acid resistance and a high critical pH
of 6.0–6.2, which has been reported to accelerate the progression of root caries [4]. Often,
root caries have no subjective symptoms, such as spontaneous pain or cold-water pain,
which allow caries to spread laterally and surround the entire tooth root [5–8]. This disease
progression pattern makes treatment difficult and increases the risk of tooth loss. Loss of
occlusion may lead to malnutrition, oral frailty, or reduced quality of life [9,10]. Dentin
is difficult to remineralize because of its low mineral content compared with enamel [11].
Therefore, the prevention of root caries is important.

Fluoride applications, such as topical fluoride application with acidulated phosphate
fluoride (APF), stannous fluoride, and fluoride mouth-rinsing with sodium fluoride have
been reported to be effective in preventing root caries [1,12,13]. The preventive effect of
fluoride application is lower for enamel caries because of the lower mineral content of the
root surface dentin and the smaller amounts of calcium fluoride produced in the superficial
layers of dentin. For this reason, fluoride application has a limited caries preventive
effect [14].

In recent years, calcium phosphates, which are stores of calcium and phosphorus,
have been studied to prevent root caries and a new prophylaxis strategy using this material
in combination with fluoride has been developed [11,14–16]. When calcium phosphates
are applied to the tooth surface, the calcium and phosphate ion concentrations in saliva
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maintain a supersaturated state, generating octacalcium phosphate, a precursor of hy-
droxyapatite (HAp) [17,18]. The HAp precursors are converted to HAp through repeated
dissolution and reprecipitation, allowing mineral recovery [11,14,19]. A protective film of
apatite coating on the tooth surface is reported to protect the tooth surface from acid and
suppress demineralization [20,21]. The particle size of calcium phosphate produced by the
reaction of fluoride and HAp is closely related to its caries preventive effect [22–24]. Cal-
cium phosphate with a particle size of about 50 nm was reported to have a high reactivity
with tooth structures and improve the demineralization suppression effect [23]. It has been
shown that the smaller the particle size of calcium phosphate, the better the adsorption
of minerals and fluoride, and the higher the caries prevention effect [22–24]. It has also
been reported that nanoparticles smaller than 3–6 µm, which were the diameter of the
dentinal tubules, could close dentinal tubules and were therefore beneficial in preventing
dentin hypersensitivity [25].

This study focused on a new calcium phosphate formulation, bioapatite (BioHap;
BIOAPATITE Inc., Shiga, Japan). A type BioHap is an eggshell-derived bioceramic with a
particle size of less than 50 nm and a structural formula of (Ca:Mg)10(PO4)6(OH)2 (Japanese
Laid-Open Patent Publication No.2020-105060 and 2020-117423). This compound has a
similar chemical composition to HAp and is bioactive, has osteoinductivity, and is resistant
to ultraviolet and X-rays [26–29]. It is characterized by the presence of magnesium (Mg),
which is not present in the calcium phosphates currently used clinically. Mg is abundant in
hard tissues, such as bones, teeth, and living bones. Mg activates osteoblasts and osteoclasts
and promotes bone cell metabolism, thereby enhancing biocompatibility [30]. In addition,
Kodaka et al. and Schroeder et al. reported that Mg is involved in forming whitlockite,
which is required to convert HAp [31,32].

In this study, we focused on the effects of applying calcium phosphate to root surface
dentin, protection of the tooth surface, the conversion of HAp to fluorapatite, and the for-
mation of whitlockite from Mg. This study aimed to develop a new root caries prevention
method by focusing on bioapatite (BioHap), a new biomaterial, and combining BioHap
with a fluoride coating. In addition, using techniques such as surface texture measurement,
scanning electron microscope (SEM), and contact microradiography (CMR), the acid re-
sistance of dentin after the application of the new preventive method was evaluated in
comparison with the conventional topical fluoride application.

2. Materials and Methods
2.1. Preparation of Bovine Tooth Dentin Block Samples

Our sample consisted of the cervical third of the root dentin of 18 bovine mandibular
anterior teeth. The dentin blocks were prepared using water-resistant abrasive paper (#600)
to form a smooth outline of labial dentin, which was then mirror-polished using water-
resistant abrasive paper (#1000, #2000, and #4000). A window of 5 mm width × 5 mm
depth × 10 mm height was formed using inlay wax on the labial side of the dentin block.

2.2. Acid Challenge Experiment

The samples were divided into three groups: no fluoride (control group), APF treat-
ment only (APF group), and BioHap + APF treatment (BioHap group). Nine samples from
each group were used for the experiment (n = 9). In the BioHap group, after applying
BioHap, 10% phosphoric acid gel (pH 1.0) was added for 1 min, and the blocks were
immersed in a phosphate acid-sodium fluoride solution (APF, 9000 ppmF, pH 3.6) for
4 min. For the APF group, a conventional 4-min topical fluoride application was used.
There was no fluoride application in the control group. After preventive treatment, the
measurement samples were immersed in a remineralization solution (0.02 M HEPES-based
buffer solution, Ca: 3 mM, P: 1.8 mM, pH 7.3, DS: 10) for 1 h at 37 ◦C and a demineralization
solution (0.1 M Lactic acid-based buffer gel, Ca: 3 mM, P: 1.8 mM, pH 5.0, DS: 10) for 1 h at
37 ◦C.
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2.3. 3D Measurement Laser Microscopic Observation

After the acid challenge, each sample was immersed in xylene and dehydrated using
ethanol. The samples were analyzed using a 3D laser microscope (LEXT OLS4000, Olym-
pus Co., Ltd., Tokyo, Japan). We measured the difference in the number of substantial
defects between the control surface that had not been demineralized by wax-up and the
experimental surface that had been demineralized. The samples were also measured to
calculate the experimental and control surfaces’ average roughness (Sa). The measurement
area was 645 × 645 µm, and the cutoff value was 80 µm. The number of substantial defects
and Sa were measured at five points per sample on the boundary between the control and
experimental surfaces, and the mean ± standard deviation (SD) was calculated.

2.4. Micro Vickers Hardness Test

Micro Vickers hardness measurements were performed using a Micro Vickers hardness
tester (HMV-1, Shimadzu Co., Ltd., Tokyo, Japan). The tester was set to a pressing load of
0.49 N for 20 s on the control and experimental samples. The Micro Vickers hardness was
measured at three points per sample, and the average value ± standard deviation (SD) was
calculated.

2.5. Scanning Electron Microscope Observation

The samples were subjected to carbon deposition during pre-measurement preparation
using a vacuum deposition device (VC-100S; Vacuum Device Co., Ltd., Ibaraki, Japan).
The samples were embedded in polyester resin (Rigolac; Nisshin EM Co., Ltd., Tokyo,
Japan), mirror-polished, and observed in cross sections. The surfaces of their samples
were observed using an SEM (SU6600; Hitachi Co., Ltd., Tokyo, Japan) at a voltage of
15 kV. The photographing magnification was 10,000× for surface observation and 5000×
for cross-sectional observation.

2.6. Contact Microradiography

The samples were cut into polished sections with a thickness of 100 µm. Using a soft
X-ray generator (CMR-3; Softex Co., Ltd., Tokyo, Japan) equipped with a 20 µm thick Ni
filter, a 20 µm step aluminum step wedge was set to distinguish from step 1 to step 20.
The settings were a tube voltage of 15 kV, tube current of 3 mA, and irradiation time of
6–9 min. Observations were performed using an optical microscope at 200× magnification.
A high-precision glass plate (HRP-SN-2; Konica Minolta Inc., Tokyo, Japan) was used for
photography.

The glass plate was developed in a developer (D-19; Kodak, Rochester, NY, USA) at
20 ◦C for 5 min and fixed (Super Fujifix-L; Fujifilm Co., Ltd., Tokyo, Japan) at 20 ◦C for
5 min. The glass plate was washed with water for 10 min and dried. The completed glass
plate was converted to grayscale (8 bit, 256 gradations) using an image analysis software
(Image Pro Plus, version 6.2; Media Cybernetics Inc., Silver Spring, MD, USA) and an image
analysis system (HC-2500/OL; Olympus Co., Ltd., Tokyo, Japan) to acquire the density
profile.

The lesion depth (Ld) and mineral loss value (∆Z) were measured at five sites in
a range of 50 × 200 µm from the tooth’s surface to the deep part of the healthy dentin.
The distance from the dentin surface to the part where the mineral content in the lesion
area accounts for 95% of the mineral content in healthy dentin [33]. ∆Z was based on the
aluminum step wedge taken simultaneously with the density of the sample, and the mineral
loss was calculated using the formula of Angmar et al. [33,34]. The values were converted
into a histogram with mineral values of 0% and healthy dentin as 100% [33].

2.7. Statistical Analysis

The number of substantial defects, Sa, and Micro Vickers hardness for the three groups
of preventive treatment were measured as the mean ± SD of nine samples. Ld and ∆Z
were measured as the mean ± SD of five samples, excluding damaged samples during the
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operation. Comparison of preventive treatment among the three groups was calculated by
one-way analysis of variance (ANOVA), with p values determined as significant at p < 0.05.
The Bonferroni test was used for post hoc comparisons when an ANOVA was significant
(p < 0.05, 0.001, respectively). Graph creation and data analysis were performed using
software (ORIGIN 2022b, Lightstone Co., Ltd., Tokyo, Japan).

3. Results
3.1. Amount of Substantial Defect after an Acid Challenge by the 3D Measurement
Laser Microscope

Figure 1 shows 3D laser microscope images of substantial defects in dentin after
an acid challenge. Figure 1a–c shows the dentin surface’s non-demineralized control
plane on the image’s left side and the demineralized experimental plane on the right side.
Figure 1d shows the mean and SD for each group. The control group had a more significant
deficit due to demineralization, 1.821 ± 0.025 µm when compared with the control group
(p < 0.001) (Figure 1a,d). The APF group showed a parenchymal defect of 0.921 ± 0.024 µm,
but the amount of substantial defect was reduced compared to that in the control group
(p < 0.001) (Figure 1b,d). The BioHap group had the smallest substantial defect reduction
(0.452 ± 0.042 µm) among all groups (p < 0.001) (Figure 1c,d).
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Figure 1. Comparison of non-decalcified and decalcified interface images and measurements of
substantial defects after the acid challenge. (a) Control, (b) APF, and (c) BioHap groups. (a–c) show
the non-decalcified control surface on the left and decalcified experimental surface on the right. The
contrast plane was used as the reference plane. (d) Average ± SD of substantial defect (n = 9). The
horizontal axis indicates the various preventive treatments, and the vertical axis indicates the step
(µm) between the control and experimental surfaces. Color scale bars represent 0–10 µm.
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3.2. Calculated Average Roughness after an Acid Challenge by the 3D Measurement Laser
Microscope and Micro Vickers Hardness Measurements by Micro Vickers Hardness Tester

Figure 2 shows the results of the mean ± SD of Sa and Micro Vickers hardness on
the experimental surface of dentin after the acid challenge. Sa was the smallest in the
control group, with a value of 0.128 ± 0.012 µm. The diameter in the APF group was
0.203 ± 0.016 µm. The Sa of the BioHap group was 0.933 ± 0.286 µm, and an increase in
Sa was observed. No significant difference was observed between the control and APF
groups (p > 0.05) (Figure 2a). A significant difference was observed between the control and
BioHap groups and between the APF and BioHap groups (p < 0.05 for both) (Figure 2a).
The Micro Vickers hardness was the smallest in the control group at 35.487 ± 2.956 HV. The
APF group had 42.349 ± 3.845 HV, which was significantly greater than that of the control
group (p < 0.001) (Figure 2b). The BioHap group had 51.697 ± 2.855 HV, which was the
largest value among all the groups, and a significant difference was observed between the
groups (p < 0.001) (Figure 2b).
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3.3. Dentin Surface and Cross-Section Scanning Electron Microscope Observations after
Acid Challenge

Figure 3 shows the secondary electron images of the dentin surface (×10,000) and
sagittal section (×5000) after the acid challenge. A surface SEM image of the control
group showed enlargement of the dentinal tubule openings (Figure 3a). In the APF group,
a narrowing and partial closure of the dentinal tubule opening, and the deposition of
spherical products on the surface were observed (Figure 3b). The BioHap group showed
closure of the dentinal tubule openings due to the deposition of more abundant and larger
spherical and amorphous products on the dentin surface than in the APF group (Figure 3c).



Materials 2022, 15, 8263 6 of 12

Materials 2022, 15, x FOR PEER REVIEW 6 of 12 
 

 

the inner tubule wall of the dentinal tubules was observed. However, the tubules were 
slightly expanded (Figure 3e). The BioHap group developed a 3–5 μm thick coating layer 
on the dentin surface. Spherical particles were observed on the surface of the coatings 
(Figure 3f). The inside of the coating was not uniform, and a thin demineralized layer and 
an acid-resistant layer were observed between the coating and dentin surface layer. The 
dentinal tubules showed less tubule expansion than those in the APF group. Calcified 
deposits were observed inside tubules (Figure 3f). 

 
Figure 3. Images of surface and cross-section scanning electron microscope (SEM) observations after 
acid challenge. The top images show surface SEM observations taken at 10,000 magnifications. From 
the left, (a) control group, (b) APF group, and (c) BioHap group. The black scale bar represents 2.5 
μm. The lower images show cross-section SEM observations taken at 5000 magnifications. From the 
left, (d) control group, (e) APF group, and (f) BioHap group. The white scale bar represents 5.0 μm. 

3.4. Measurement of Lesion Depth and Mineral Loss Value by Contact Microradiography 
Analysis 

Figure 4 shows a CMR image of the experimental dentin surface after the acid chal-
lenge. In the control group, substantial defects due to demineralization were observed 
horizontally from the dentin surface layer, and gray to black demineralization images 
were observed 5–15 μm from the surface layer (Figure 4a). The dentin surface layer was 
maintained in the APF group. Some expansion of dentinal tubules was observed in the 
range of 5–10 μm from the surface, but demineralization was mild (Figure 4b). In the Bio-
Hap group, a thick coating-like layer with the same strength as that of healthy dentin was 
present on the dentin surface layer, and the thickness of the layer was locally different and 
uneven inside (Figure 4c). No demineralized image was observed in the dentin directly 
under the coating. The signal intensity was comparable to healthy dentin at a depth of ≥ 
200 μm from the surface layer (Figure 4c). 

 
Figure 4. Optical microscopy image of contact microradiography taken at 200 magnifications after 
acid challenge. From the left, control group (a), APF group (b), and BioHap group (c). Black scale 
bar represented 100 μm. 

Figure 3. Images of surface and cross-section scanning electron microscope (SEM) observations after
acid challenge. The top images show surface SEM observations taken at 10,000 magnifications. From
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The lower images show cross-section SEM observations taken at 5000 magnifications. From the left,
(d) control group, (e) APF group, and (f) BioHap group. The white scale bar represents 5.0 µm.

Cross-section SEM images of the control group showed demineralization of the dentin
surface layer and expansion of dentinal tubules (Figure 3d). In the APF group, a thin
acid-resistant layer with a thickness of approximately 1–3 µm was formed on the dentin’s
outermost layer. In this group, a demineralized image with a surface layer maintained on
the inner tubule wall of the dentinal tubules was observed. However, the tubules were
slightly expanded (Figure 3e). The BioHap group developed a 3–5 µm thick coating layer
on the dentin surface. Spherical particles were observed on the surface of the coatings
(Figure 3f). The inside of the coating was not uniform, and a thin demineralized layer and
an acid-resistant layer were observed between the coating and dentin surface layer. The
dentinal tubules showed less tubule expansion than those in the APF group. Calcified
deposits were observed inside tubules (Figure 3f).

3.4. Measurement of Lesion Depth and Mineral Loss Value by Contact Microradiography Analysis

Figure 4 shows a CMR image of the experimental dentin surface after the acid chal-
lenge. In the control group, substantial defects due to demineralization were observed
horizontally from the dentin surface layer, and gray to black demineralization images
were observed 5–15 µm from the surface layer (Figure 4a). The dentin surface layer was
maintained in the APF group. Some expansion of dentinal tubules was observed in the
range of 5–10 µm from the surface, but demineralization was mild (Figure 4b). In the
BioHap group, a thick coating-like layer with the same strength as that of healthy dentin
was present on the dentin surface layer, and the thickness of the layer was locally different
and uneven inside (Figure 4c). No demineralized image was observed in the dentin directly
under the coating. The signal intensity was comparable to healthy dentin at a depth of
≥200 µm from the surface layer (Figure 4c).
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Figure 5 shows a graph of the mineral profile at a depth of 20–25 µm for each group
after the acid challenge. A depth of 150–200 µm shows the relative mineral value at each
depth when the average value is 100%. In the control group, the increase from 25 µm was
gradual, indicating that the minerals were lost over a wide range (Figure 5). In the APF
group, the rising angle sharply improved, and the mineral value of the APF group was
high at any depth in the control group. In the BioHap group, the increasing rise and apeak
of over 100% were observed near 30–35 µm, maintaining a high mineral value of 95% or
more (Figure 5).
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Figure 6 shows graphs of each group’s average values and standard deviations of
lesion depth (Ld) and mineral loss value (∆Z) calculated by CMR analysis. The Ld of
the control group was the largest at 65.395 ± 7.972 µm, and the APF group showed a
decreasing trend to 57.023 ± 7.247 µm, but the differences were not significant (p > 0.05)
(Figure 6a). The BioHap group was the smallest of all groups at 40.465 ± 2.867 µm, and
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this was significantly different than both the significant difference between the control and
APF group (p < 0.05) (Figure 6a).
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Figure 6. Comparison of measured lesion depth (Ld) and mineral loss value (∆Z) by contact microra-
diography after acid challenge. (a) Shows the different test groups for Ld (n = 5). The horizontal axis
indicates various preventive treatments, and the vertical axis indicates the Ld (µm) of the experimen-
tal surface. (b) Shows the different test groups for ∆Z (n = 5). The horizontal axis indicates various
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The ∆Z of the control group was 5635.143 ± 387.001 vol% × µm. The APF group
showed a significant decrease to 5075.751 ± 298.689 vol% × µm (p < 0.05) (Figure 6b). In
contrast, the BioHap group measured 4723.856 ± 238.578 vol% × µm, the smallest among
the groups. There was no significant difference between the APF and BioHap groups,
but there was a significant difference between the control group and the BioHap group
(p < 0.05) (Figure 6b).

4. Discussion

In the SEM image of the dentin surface, the APF group showed deposition of spherical
products (Figure 3b), and the BioHap group showed deposition of more large-diameter
spherical and amorphous products than the APF group (Figure 3c). Ogaard et al. and
Petzold et al. reported that when a high concentration of fluoride (1000 ppmF) or higher
reacts with the tooth structure, calcium fluoride (CaF2)-like particles with a spherical
structure are formed on the tooth surface [35,36]. Huang et al. reported that a transmission
electron microscope observation image after applying nano-hydroxyapatite to the tooth
surface showed a cylindrical shape with a diameter of 10–20 nm and a length of 60–80 nm,
extending along the c-axis [24]. The spherical products observed in the surface SEM images
of the APF and BioHap groups in this study were presumed to be CaF2-like particles.
The cylindrical and polygonal amorphous particles observed in the BioHap group were
presumed to be calcium phosphate. In this study, the surface SEM image of the BioHap
group revealed many irregularly shaped particles of different sizes instead of uniform
spherical particles, such as APF (Figure 3b,c). Ga et al. showed that the difference in
the density of the calcium-phosphorus complex causes a change in the particle size of
the CaF2 produced [37]. When the phosphate gel and BioHap were mixed in the BioHap
group, sites with different densities of calcium and phosphate ions were scattered. One
explanation is that the diameter of the CaF2-like particles produced changed when reacting
with high-concentration fluoride ions in the next step.

In the BioHap group, a 3–5 µm thick coating layer was observed on the dentin surface
(Figure 3f). Saxegaard et al. reported that the solubility of apatite increases as the particle
size decreases and that the amount of CaF2 in the oral cavity affects acid resistance [24,38,39].
A coating of about 1 µm has been observed in a preventive method that uses calcium
phosphate with a particle size of several tens of µm and fluoride in combination [40]. It
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is believed that the thickness of the coating depends on the particle size. BioHap has
an extremely small particle size of ≤50 nm and is highly reactive. Therefore, it is likely
that a large number of calcium phosphate-like particles and CaF2-like particles were
generated, and thick coating-like observations appeared (Figure 3e). The thickness of the
coating produced in the BioHap group was 2–3 µm thicker than that in the APF group,
suggesting that the BioHap group had a higher acid resistance than the APF group. CaF2
and calcium phosphate produced after fluoride application to the human oral cavity have
been reported to act as reservoirs for calcium, phosphorus, and fluoride [11,41,42]. The
BioHap coating was produced in the presence of abundant calcium ions, phosphate, and
fluoride ions from the composition of the demineralization/remineralization solution in
this experimental system. It can be predicted that the above-mentioned ions are abundant
in the coating and maintain a supersaturated state in the oral cavity by self-disintegration
against acid stimulation. Consequently, it is thought that this contributes to the suppression
of demineralization.

The Micro Vickers hardness after the acid challenge was the highest in the BioHap
group, and ∆Z was the lowest in all groups (Figures 2a and 6b). Huang et al. reported that
calcium phosphate-like and CaF2-like crystals in the surface layer of dentin promote the
formation of HAp, hydrofluoric apatite, fluorapatite, etc., and recover the surface hardness
and mineral value of dentin [11,15,17,24]. In addition, Leal et al. clarified that casein
phosphuretted-amorphous calcium phosphate and nano-hydroxyapatite applied to the
tooth surface form a semipermeable membrane on the tooth surface and exert an inhibitory
effect on demineralization [16,20].

In this study, when the dentin and BioHap group products were dissolved, a large
amount of calcium, phosphate, and fluoride ions were diffused into the surroundings. In
the dentin just below the coating, the saturation of various ions in the surface layer of
the dentin increased, the conversion of HAp, hydrofluoric apatite, and fluorapatite was
promoted due to chemical equilibrium, and the dentin hardness and mineral value were
recovered. In addition, until the coating of the BioHap group was completely dissolved and
the tooth was exposed to acid, protected the acid from penetrating the dentin surface layer
and crystals and suppressed demineralization. The CMR results showed no significant
difference in ∆Z between the APF and BioHap groups (Figure 6b), which may result from
the composition of BioHap, which contains a large amount of Mg. Tung et al. and Saito et al.
reported that dentin contains a large amount of Mg and carbonic acid, so easily soluble
whitlockite is likely to form [43,44]. The abundant Mg content in dentin and the BioHap
group promoted the formation of whitlockite and made it intolerable to demineralization.
Therefore, it was presumed that no significant difference was observed between the APF
and BioHap groups.

The increase in Sa in the BioHap group may be due to the generated calcium phosphate-
like particles and CaF2-like particles (Figure 2a). Cury et al. and Boollen et al. showed
that when Sa exceeds 0.2 µm, the risk of caries and periodontal disease increases [45,46].
The Sa in the BioHap group was 0.933 ± 0.286 µm, exceeding 0.2 µm. Therefore, plaque
accumulation may increase after applying this new preventive method. Consequently, it is
necessary to develop clinical treatments to reduce the roughness.

This study is the first in vitro experiment in which BioHap was used with fluoride to
develop preventive methods. In this experiment, the composition of the artificial saliva was
as simple as possible, and salivary proteins and bacteria were excluded. For future clinical
applications, collecting in situ experimental data that consider the effects of saliva and
biofilms is desirable. Calcium phosphate can deteriorate due to various factors [28,29,47].
The effects of aging on coatings containing calcium phosphate must also be considered.
In addition, observation of the crystal structure by the transmission electron microscope
and analysis by X-ray diffraction is necessary to identify the substance that constitutes the
coating. To predict the prognosis after treatment, we evaluated the physical strength of the
coating and its resistance to brushing stimuli.
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5. Conclusions

Thick acid-resistant coatings consisting of calcium phosphate-like and CaF2-like par-
ticles were observed in dentin after the new prophylaxis developed in this study. The
BioHap group suggested a significant improvement in acid resistance compared to con-
ventional methods of prophylaxis, such as a decrease in the amount of substantial defect,
an increase in Micro Vickers hardness, and a decrease in Ld and ∆Z due to CMR. We have
demonstrated that our developed prophylaxis is a strong candidate for the prevention of
root caries. This novel method, which combines BioHap, a new biomaterial, with fluoride
tooth surface application, is expected to be clinically applied as a new preventive method
for root caries.
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