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Abstract 

Background:  Family history, and genetic and non-genetic risk factors can stratify women according to their indi‑
vidual risk of developing breast cancer. The extent of overlap between these risk predictors is not clear.

Methods:  In this case-only analysis involving 7600 Asian breast cancer patients diagnosed between age 30 and 75 
years, we examined identification of high-risk patients based on positive family history, the Gail model 5-year absolute 
risk [5yAR] above 1.3%, breast cancer predisposition genes (protein-truncating variants [PTV] in ATM, BRCA1, BRCA2, 
CHEK2, PALB2, BARD1, RAD51C, RAD51D, or TP53), and polygenic risk score (PRS) 5yAR above 1.3%.

Results:  Correlation between 5yAR (at age of diagnosis) predicted by PRS and the Gail model was low (r=0.27). 
Fifty-three percent of breast cancer patients (n=4041) were considered high risk by one or more classification criteria. 
Positive family history, PTV carriership, PRS, or the Gail model identified 1247 (16%), 385 (5%), 2774 (36%), and 1592 
(21%) patients who were considered at high risk, respectively. In a subset of 3227 women aged below 50 years, the 
four models studied identified 470 (15%), 213 (7%), 769 (24%), and 325 (10%) unique patients who were considered at 
high risk, respectively. For younger women, PRS and PTVs together identified 745 (59% of 1276) high-risk individuals 
who were not identified by the Gail model or family history.

Conclusions:  Family history and genetic and non-genetic risk stratification tools have the potential to complement 
one another to identify women at high risk.
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Background
Multiple randomized controlled trials have shown 
that screening mammography reduces mortality from 
breast cancer for women who are over 50 years old [1]. 
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Screening programs have been set up in different coun-
tries since the 1970s with recommendations on the 
screening interval and the age to start screening [2]. 
There is a strong consensus that women above 50 should 
attend routine screening. Recommendations for this 
group of women have remained largely unchanged for 
over 40 years [1, 2].

The benefit of screening mammography for younger 
women aged 40 to 49 years is less clear [1]. Recommen-
dations for screening mammography across different 
countries and time periods are inconsistent and subject 
to change [2, 3]. In many cases, a woman is to make a 
personal choice based on risk factors such as personal 
and family history of the disease, often with the help of 
professional advice from a doctor [1].

With advances made in disease prediction, the 
approach to breast screening is now leaning towards a 
tailored, individual risk-based approach. For example, 
mammographic breast density, which refers to the pro-
portion of fibroglandular breast tissue compared to fat 
seen on mammography, is a risk factor for breast cancer 
and is increasingly communicated to screening partici-
pants [4, 5]. Women with dense breasts are informed of 
their increased risk of breast cancer development and 
reduced sensitivity of mammography to detect breast 
cancer so that they can make a better-informed decision 
as to whether they should undergo supplemental imaging 
screening adjunct to mammography [5].

The risk of breast cancer is multifactorial. Apart from 
mammographic density, other known conventional risk 
factors include family history, menarche age, menopause 
age, height, body mass index, age at first childbirth, men-
opausal hormone therapy, and benign breast disease [6]. 
Many of these factors have been incorporated into pre-
diction models to estimate the personal risk of develop-
ing breast cancer [7].

Breast cancer has a significant genetic component. 
It has been estimated that 27–31% of breast cancer risk 
may be explained by heritable factors [8, 9]. Frequently 
described breast cancer predisposition genes that are 
highly penetrant include ATM, BRCA1, BRCA2, CHEK2, 
PALB2, BARD1, RAD51C, RAD51D, and TP53 [10]. 
However, pathogenic mutations in these genes are rare 
in the population. Polygenic risk scores (PRS) computed 
from another class of genetic variants that are of smaller 
effect sizes individually but more common in the popu-
lation have shown promise to add information to better 
stratify individuals with different breast cancer risks as 
compared to age-based screening programs [11–13].

Non-genetic risk prediction models are attractive as 
they are non-invasive and are easier to implement in a 
general population or primary care screening setting. 
Currently, breast cancer risk prediction is predominantly 

based on information on age, family history, lifestyle, and 
reproductive factors. These data can be collected at a low 
cost. There is evidence that genetics contribute to risk 
prediction but the data generation will incur additional 
costs to individuals or the health system. Hence, there is a 
need to evaluate how much information genetics can add 
to the identification of high-risk individuals over non-
genetic risk factors. In this case-only analysis involving 
7600 Asian breast cancer patients, we look at the overlap 
of individuals with a family history of breast cancer and 
those identified to be at high risk based on family history, 
the Gail model, breast cancer predisposition genes, and 
polygenic risk score.

Methods
Study populations
Breast cancer patients from two multi-ethnic populations 
recruited in Singapore and Malaysia, with ethnic groups 
of Chinese, Malay, and Indian descent were included in 
this study. These patients were recruited as part of the 
Singapore Breast Cancer Cohort (SGBCC) [14] and the 
Malaysian Breast Cancer Genetic Study (MyBrCa) [15]. 
Controls were recruited from the Singapore Multi-Eth-
nic Cohort (MEC) study [16] and the Malaysian Mam-
mography Study (MyMammo) [15]  for the calculation 
of the mean PRS and SD for the standard population. 
A prospective cohort study of healthy individuals—the 
Singapore Chinese Health Study (SCHS)—was used as a 
validation cohort [17]. Full details on each study and their 
respective DNA isolation and genotyping protocols are 
available in Additional file 1 [14–23].

Carriership of protein‑truncating variants in nine breast 
cancer predisposition genes
Target-enriched sequencing libraries of germline DNA 
for the breast cancer cases (SGBCC and MyBrCa) were 
prepared at the Centre for Cancer Genetic Epidemiol-
ogy (University of Cambridge) as part of a larger effort 
(Breast Cancer Risk after Diagnostic Gene Sequenc-
ing) [10]. Details of the library preparation, sequenc-
ing, variant calling, and quality control methods are 
given in Dorling et  al. [10]. Protein-truncating variants 
(PTVs) include nonsense single-nucleotide variants 
(SNVs), frameshift insertions or deletions (indels), and 
splice-disrupting SNVs. PTVs occurring in the last exon 
of each gene were excluded to avoid including variants 
that do not lead to nonsense-mediated decay. Here, we 
studied nine genes found to be relevant for breast can-
cer risk as reported in Dorling et al. [10]—ATM, BRCA1, 
BRCA2, CHEK2, PALB2, BARD1, RAD51C, RAD51D, 
and TP53—in 192 and 193 breast cancer patients from 
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SGBCC and MyBrCa, respectively (Additional file  2 – 
Tables S1 and S2) [10].

Polygenic risk score (PRS)
PRS is estimated as the weighted sum of effect alleles 
in 313 single nucleotide polymorphisms (SNPs) found 
to be associated with breast cancer, using plink (version 
3) with the scoresum option (full details in Additional 
file 1) [19].

Gail model
Data on breast cancer risk factors (age at menarche, age 
at first live birth, ever had a biopsy, and family history 
of breast cancer) were obtained from structured ques-
tionnaires. Family history of breast cancer was available 
as a binary variable (yes/no). Weights (logistic regres-
sion coefficients derived from the Gail model) and 
attributable risks of Asian-Americans (“Asian.AABCS”, 
BCRA​ package in R) were used in the calculation of the 
Gail model absolute risk [22].

Five‑year absolute risk
Five-year absolute risk at the age of breast cancer diag-
nosis, for both PRS and the Gail model relative risk, 
was estimated for breast cancer patients aged between 
30 and 75 from SGBCC and MyBrCa. The absolute risk 
was based on ethnic-specific or overall breast cancer 
incidence rates (period of 2013 to 2017) for Singapore 
Citizens and mortality rates (the year 2016) in Singa-
pore (Additional file  3) [20, 23]. Both incidence and 
mortality rates were recorded in 5-year intervals. The 
5-year absolute risk based on PRS was estimated using 
an iterative method detailed by Mavaddat et  al. [13]. 
The 5-year absolute risk predicted by the Gail model 
was estimated using the method in the BCRA​ package 
in R [22]. Details on the calculation of 5-year absolute 
risks are available in Additional file 1.

Statistical analysis
Individual risk of developing breast cancer over 5 years based 
on PRS and Gail model
A comparison between the 5-year absolute risks pre-
dicted by PRS and the Gail model was examined using 
the Wilcoxon signed-rank test. Spearman’s correlation 
coefficient was estimated.

Classification of breast cancer patients into high‑ or low‑risk 
groups
To illustrate a potential screening program where only 
high-risk individuals are screened, individuals were 
classified into high or low breast cancer risk groups. 
The following criteria were used to define high-risk 

groups: (1) at least one first degree relative diagnosed 
with breast cancer or ovarian cancer (effect of fam-
ily history), (2) 5-year absolute risk above 1.3% esti-
mated by PRS (effect of common genetic variants), (3) 
5-year absolute risk above 1.3% estimated by Gail risk 
model (effect of non-genetic variants), and (4) carrier-
ship of PTV in ATM, BRCA1, BRCA2, CHEK2, PALB2, 
BARD1, RAD51C, RAD51D, or TP53 (effect of rare 
genetic variants). The current recommendation is for 
women aged between 40 and 49 years to start screen-
ing when their individual 5-year risk is the same as or 
exceeds that of an average 50-year-old woman [24]. The 
threshold of 1.3% is equivalent to the 5-year absolute 
risk of developing breast cancer for an average Cauca-
sian woman aged 50 years [24]. Cohen’s kappa was used 
to test pairwise concordance between the classification 
of breast cancer patients based on PRS and the Gail 
model [25].

Agreement between criteria
The agreement between pairs of different criteria to iden-
tify breast cancer patients at high risk was estimated 
using kappa scores. The incremental proportions of 
breast cancer patients identified as being at high risk are 
presented for 5-year age intervals.

Analyses were performed on a combined dataset of 
SGBCC and MyBrCa breast cancer patients and repeated 
for each cohort separately. In addition, the analyses were 
repeated for the prospective SCHS study, but without 
PTV.

Analysis was performed in R version 4.0.3.

Results
Description of SGBCC and MyBrCa breast cancer patients 
diagnosed between ages 30 and 75
Table  1 describes the summary characteristics of the 
combined 7600 breast cancer patients included in the 
case-only analysis from SGBCC (n=4284) and MyBrCa 
(n=3316). The median age at diagnosis was 53 years 
(interquartile range [IQR]: 45 to 59). Fifteen percent 
of the patients had first-degree relatives with breast 
(n=1133) and 2% with ovarian cancer (n=151). Five per-
cent (n=385) of our breast cancer patients were PTV car-
riers with one or more of the nine known breast cancer 
predisposition genes [10] (Additional file  2 – Table  S3). 
Additional file  2 – Table  S4 describes the attributes of 
the breast cancer patients of three participating studies 
separately.

Low correlation between breast cancer absolute risk 
by PRS and the Gail model by study
The median 5-year absolute risk was 1.1 (IQR: 0.7 to 
1.6) by PRS and 0.9 (IQR: 0.7 to 1.2) by the Gail model 
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(Table  1). Spearman’s correlation coefficient between 
the 5-year absolute risks by PRS and the Gail model was 
low (r=0.27) (Fig. 1A). The median difference between 
the 5-year absolute risks estimated by PRS and the Gail 
model was − 0.097 (IQR: − 0.591 to 0.296, Wilcoxon 

signed-rank test p value <0.001) (Fig. 1B). Comparison 
by cohorts (SGBCC and MyBrCa) are shown in Addi-
tional file 2 – Fig. S1.

PRS and the Gail model identified larger proportions 
of unique high‑risk individuals among breast cancer 
patients compared to PTV carriership and family history
Approximately half of all (53%, n=4041) breast cancer 
patients were considered high risk by any of the four risk 
classification criteria studied (Fig. 2A). PRS (5-year abso-
lute risk ≥1.3%) alone identified the largest proportion of 
high-risk patients (n=2774 (36%)) (Fig. 2A). This was fol-
lowed by Gail model (5-year absolute risk ≥1.3%, n=1592 
(21%)), positive family history (n=1247 (16%)), and PTV 
carriership (n=385 (5%)) (Fig. 2A). Among 385 PTV car-
riers, 110 (28%) were considered high risk by PRS. We 
observed poor or slight concordance between each pair 
of criteria in classifying patients as high risk; Cohen’s 
kappa ranged from − 0.025 to 0.095 with the exception of 
0.621 for the Gail model with a family history of breast or 
ovarian cancer (Additional file 2 – Table S5).

Family history and genetic risk stratification models 
identified much younger breast cancer patients at high risk
For women below standard mammography screening 
entry age of 50 years (age 30 to 50 years; n=3227), the 
breast cancer risk stratification tools studied identified 
40% (n=1276) of the breast cancer patients to be high 
risk. Risk stratification by positive family history, PTV 
carriership, and 5-year absolute risk ≥1.3% by PRS or 
the Gail model identified 470 (15%), 213 (7%), 769 (24%), 
and 325 (10%) unique breast cancer patients who were 
considered at high risk of breast cancer, respectively 
(Fig.  2B). The genetic risk stratification models, PTV 
carriership and PRS, identified 114 and 610 additional 
high-risk individuals that were not identified by family 
history and the Gail model. Thirty-seven individuals were 
considered high risk based on both PTV carriership and 
PRS. Slight concordance was observed between the crite-
ria based on the 5-year absolute risks by PRS and the Gail 
model in classifying young patients as high risk (Cohen’s 
kappa: 0.052, p<0.001, Additional file 2 – Table S6). Addi-
tional file 2 – Fig. S2 presents the classification of high-
risk patients by study.

Proportion of breast cancer patients identified as being 
at high risk within 5‑year age groups
As an individual criterion, the 5-year absolute risk, by 
PRS or the Gail model, identified the largest proportion 
of high-risk patients in the breast cancer screening age 
group (50 to 65 years) (Fig. 3). The 5-year absolute risk by 
PRS identified the largest proportion of high-risk patients 

Table 1  Description of 7600 breast cancer patients diagnosed 
between ages 30 and 70. Patients were recruited as part of the 
Singapore Breast Cancer Cohort (SGBCC) and the Malaysian 
Breast Cancer Genetic Study (MyBrCa). The description of the 
study is in Additional file Table S4. IQR interquartile range

Variable Statistic

Median age at diagnosis (IQR) 52 (45–59)

Study
  SGBCC 4284 (56%)

  MyBrCa 3316 (44%)

Case-type
  Incidence (enrolled within one year of diagnosis) 4511 (59%)

  Prevalence 3087 (41%)

  Missing 2 (0%)

Ethnicity
  Chinese 5724 (75%)

  Malay 1145 (15%)

  Indian 645 (8%)

  Other 82 (1%)

  Unknown 4 (0%)

Age at menarche, years, n (%)
  ≥14 2212 (29%)

  12 to 13 3968 (52%)

  <12 803 (11%)

  Unknown 617 (8%)

Age at first birth, years, n (%)
  <20 335 (4%)

  20 to 25 1479 (19%)

  25 to 30 2289 (30%)

  ≥30 1792 (24%)

  Nulliparous 1294 (17%)

  Unknown 411 (5%)

Family history of breast cancer
  No 6364 (84%)

  Yes 1132 (15%)

Number of first degree relatives with ovarian cancer
  No 7444 (98%)

  Yes 151 (2%)

Carriers of breast cancer predisposition genes, n (%)
  Non-carrier 7215 (95%)

  Carrier 385 (5%)

Median 5-year absolute risk (IQR)
  Gail model relative risk 0.9 (0.7–1.2)

  Polygenic risk score (PRS) 1.1 (0.7–1.6)
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in age groups including ages of 40 years and above, with 
the highest proportion (50%) in the age group 60 to 64 
years (Fig. 3). For both criteria (PRS or the Gail model), 
the proportion identified as at high risk decreases in the 
younger age groups, with less than 10% being identified 
in the youngest age group 30 to 34 years. Family history 

remained at the level of less than 20% for all age groups 
younger than 70 years.

More than 50% in the older age groups (50 years and 
above) of breast cancer were identified as at high risk 
when we added information of each criterion sequen-
tially (starting with family history → above 1.3% 5-year 

Fig. 1  Comparing the 5-year absolute risk prediction using the Gail model and polygenic risk score (PRS). A A scatterplot of the 5-year absolute risk 
of the Gail model against PRS, by cohorts (the Singapore Breast Cancer Cohort [SGBCC] and the Malaysian Breast Cancer Genetic Study [MyBrCa]). 
The linear fitted lines (solid: SGBCC, dashed: MyBrCa) and Spearman’s correlation coefficients by cohort are shown. B The difference between the 
5-year absolute risk of the Gail model and the polygenic risk score

Fig. 2  Venn diagram of breast cancer patients at high risk of breast cancer. Patients were identified as being at high risk by first-degree family 
history of breast cancer, protein-truncating variant (PTV) carriership in nine breast cancer predisposition genes (ATM, BRCA1, BRCA2, CHEK2, PALB2, 
BARD1, RAD51C, RAD51D, and TP53), and 5-year absolute risk by polygenic risk score (PRS) or Gail risk score. A High-risk breast cancer patients. B A 
subset of high-risk young breast cancer patients
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absolute risk by the Gail model → above 1.3% 5-year 
absolute risk by PRS → PTV carriership) (Fig.  3). The 
addition of the PRS criterion produced the largest change 
in proportion identified as at high risk (Fig. 3). Additional 
file 2 – Figs. S3 and S4 show the proportion of high-risk 
patients in each age group by study.

Validation in SCHS, a prospective cohort of healthy 
individuals
Summary characteristics and allele frequencies corre-
sponding to the 313 variants included in the PRS of the 
10,213 women from SCHS are presented in Additional 
file  2 – Tables S4 and S7, respectively. Four percent 
(n=418) developed breast cancer over a median follow-
up of 20 years (IQR: 18 to 21), of which 19% (n=81) 
occurred within 5 years of recruitment. Among the 81, 

38% (n=31) were above 1.3% 5-year absolute risk by PRS, 
while only 6% were above 1.3% 5-year absolute risk by the 
Gail model, suggesting a higher performance of the PRS 
than the Gail model for breast cancer risk stratification 
for middle-aged or older Chinese women.

Due to the small number of events within 5 years of 
recruitment, we studied all breast cancer patients ignor-
ing time to event. The proportion of patients with above 
1.3% 5-year absolute risk by PRS (in SCHS’s breast cancer 
patients) was higher than that observed in SGBCC and 
MyBrCa’s patients (SCHS = 41%, SGBCC + MyBrCa = 
36%) (Additional file 2 – Fig. S5). However, the propor-
tion of patients with above 1.3% 5-year absolute risk 
by the Gail model was lower (SCHS = 7%, SGBCC + 
MyBrCa = 21%).

Fig. 3  Proportion of breast cancer patients identified as being at high-risk within 5-year age groups. Proportions are presented by case-type 
(incident [i.e. enrolled within one year of diagnosis date] and prevalent). Criteria: (1) at least one first degree relative diagnosed with breast or 
ovarian cancer [FH], (2) 5-year absolute risk above 1.3% estimated by PRS [PRS], (3) 5-year absolute risk above 1.3% estimated by Gail risk model 
[Gail], and (4) carriership of PTV in ATM, BRCA1, BRCA2, CHEK2, PALB2, BARD1, RAD51C, RAD51D, or TP53 [PTV]
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Identifying women (with no personal history of breast 
cancer, n=10,213) at above 1.3% 5-year absolute risk by 
PRS resulted in a larger proportion of high-risk women 
(n=2761, 27%) as compared to using the Gail model (6%) 
(Additional file  2 – Fig. S5). However, 6% (n=172, of 
2761) of these high-risk women identified by PRS devel-
oped breast cancer, which was similar to the 5% (n=28, of 
587) by the Gail model, and 6% (n=11, of 180) by family 
history. Adding PRS to risk stratification identified 165 
more breast cancer cases. Figure  4 shows the percent-
age of women identified as high risk by adding the Gail 
model and PRS to family history across different age 
groups. The Gail model identified up to 10% more high-
risk individuals, while PRS identified an additional ~27% 
on top of the Gail model and family history.

Discussion
Currently, in many countries, population-based mam-
mography screening is recommended based on age alone. 
However, not every woman is at the same level of risk of 
developing breast cancer. In practice, family history of 
the disease is widely used as a risk assessment tool. Breast 
cancer risk of women with a sister or a mother with 
breast cancer is reported to be approximately twice as 
high as those who do not have first-degree family mem-
bers diagnosed with the disease [26]. In addition, fam-
ily history information of high quality is reported to be 
highly correlated to the carriership of actionable genomic 
variants [21]. Prediction models using breast cancer risk 
factor information collected using questionnaires, such 
as the Gail model, are also widely used [27]. On the indi-
vidual level, these risk estimates are encouraged to be 
included in conversations with clinicians to help make 
informed decisions about potential interventions, includ-
ing chemoprevention with tamoxifen [27, 28].

While family history and conventional breast can-
cer risk factors may change over time and thus require 
updates and reassessments, an individual’s genetic 
risk based on either established breast cancer predis-
position genes or PRS may be determined at birth. 
However, the implementation of genetic tests in pop-
ulation-wide screening is highly debatable. Pathogenic 
variants in high-penetrance breast cancer genes are rare; 
hence, most women in the general population will not 
benefit and may develop a false sense of security [29]. 
Previously, the evidence that common genetic variants 
(used in the calculation of PRS) provide superior risk 
stratification over conventional breast cancer risk factors 
is lacking [30, 31]. There was also no consensus on which 
variants to include in the PRS calculation. However, 
recent international mega-consortia studies examining 
over a hundred thousand women show that the tail ends 
of PRS enable more precise risk differentiation [11–13].

With the latest developments in genetic risk prediction, 
it is timely to consider whether every woman in the gen-
eral population should be genetically screened for high-
risk genes and the use of PRS in a screening program. 
Our findings show that both genetic and conventional 
risk stratification tools have their own merits and are able 
to identify unique individuals at risk. Each risk assess-
ment tool is a partial predictor at best. The inclusion of 
multiple predictive tools can pick up additional high-risk 
individuals who are missed out from using any one tool 
alone. In our study, family history and genetic risk per-
form better for women below age 50, as compared to the 
Gail model. This is noteworthy as the entry age for sub-
sidized breast screening in many countries is 50 years. 
Genetic risk profiles will help younger women in making 
informed decisions on whether they should start screen-
ing at an earlier age. High-risk individuals may benefit 
from specific recommendations or interventions based 
on their personal breast cancer risk profiles.

In countries where breast screening uptake is low, 
breast cancer risk assessment tools function more than 
just predictive scores. The knowledge of breast cancer 
risk on an individual level may serve as a tool to moti-
vate behavioral change. For example, a Finnish study 
studied the impact of genetic and non-genetic personal 
risk scores for cardiovascular diseases on health behav-
ior in over 7000 participants. The results show that risk-
reducing behavior is observed in participants across all 
risk strata, although more individuals at high risk made 
a health behavioral change (42.6% vs 33.5% of individu-
als not at high risk) [32]. The contributions of genetic and 
non-genetic risk profile feedback were reported to be 
independent of each other [32], further supporting the 
inclusion of both genetic and non-genetic risk factors for 
stratification in screening programs.

In terms of mammography screening, PRS has been 
reported to perform well at identifying the women who 
are most likely to benefit from this mode of detection 
[33]. The association between PRS and tumor charac-
teristics in our study confirms this observation. Not all 
tumors grow at the same rate. Despite the advances in 
technology, routine mammography screening on aver-
age fails to detect ~10–30% of all breast cancers [5, 34]. 
Some of these missed tumors are interval cancers that are 
diagnosed between two screening episodes [35]. Women 
at high risk based on PRS will thus benefit from increased 
screening frequency and compliance to screening.

The main strength of our study is that this is one of the 
largest and most well-characterized breast cancer cohorts 
of Asian women. However, many of the breast cancer risk 
assessment tools and the PRS are established based on 
European populations and their utility in Asian breast 
cancer populations remains unclear. Approximately 
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Fig. 4  Proportion of breast cancer patients from the validation dataset identified as being at high risk. The prospective cohort of healthy women—
the Singapore Chinese Health Study [SCHS]—was used for validation. Criteria for high-risk: (1) at least one first degree relative diagnosed with 
breast or ovarian cancer [FH], (2) 5-year absolute risk above 1.3% estimated by the polygenic risk score [PRS], and (3) 5-year absolute risk above 1.3% 
estimated by Gail risk model [Gail]. PRS is standardized with mean and standard deviation of Chinese controls from the Singapore and Malaysia 
dataset. *Note: This plot uses age at recruitment; breast cancer may not occur within 5 years of recruitment
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half of the breast cancer population were identified as 
high risk, suggesting that other factors not considered 
in the risk prediction models (e.g., mammographic den-
sity, physical activity, alcohol, smoking) studied may be 
responsible. We classified breast cancer patients into 
risk categories based on 5-year absolute risks at the age 
of breast cancer diagnosis; this may not be representa-
tive of women without breast cancer. While we are likely 
to overestimate the 5-year absolute risk, results from the 
prospective cohort (SCHS) support the use of genetic 
factors on top of family history and the Gail model. As 
this is a case-only cohort, the proportions from the risk 
classification analysis are not representative of the gen-
eral population, where most women will be classified as 
low risk. Nonetheless, this will not affect the comparison 
of how different criteria identify women at high risk.

While this study’s main focus was to highlight the lack 
of an overlap between high-risk women identified by 
genetic and non-genetic risk factors, it is worth noting 
that other works in the field have studied the potential 
improvements in risk prediction by combining different 
risk factors. For instance, Choudhury et al. explored the 
value of adding mammographic density and PRS to clas-
sical risk factors in a population of women of European 
ancestry [36]. In a more recent study, Yang et al. assessed 
the performance of breast cancer risk prediction mod-
els incorporating genetic and non-genetic risk factors 
in 20,444 breast cancer cases and 106,450 controls from 
the Asia Breast Cancer Consortium [37]. These develop-
ments are complementary to the findings of this study 
and will help pave the way for more patient-centric, data-
driven healthcare systems in the future.

Conclusions
In summary, our assessment shows that family history 
and genetic and non-genetic risk stratification tools have 
the potential to complement one another to identify 
women at high risk in breast screening programs. The 
results add to the growing body of evidence to support 
a paradigm shift from an approach that is age-based to 
risk-based.
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