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Abstract 

Mining safety and health in the US can be better understood through the application of machine 

learning techniques to data collected by the Mine Safety and Health Administration (MSHA). By 

identifying hazardous conditions that could lead to accidents before they occur, valuable insights 

can be gained by MSHA, mining operators, and miners. In this study, we propose using a Random 

Forest machine learning model to predict whether a given mining violation will lead to an accident, 

and if so, whether it will be fatal or non-fatal. To achieve this, the model is trained on MSHA 

violation data and the sum of scheduled accident charges within 35 days of the violation. We 

experiment with different predictive models using varying data columns, training set sizes, 

prediction classes, and hyperparameters to achieve a reliable prediction. One of the challenges in 

generating these models is accurately predicting the sparse class of accidents, as opposed to the 

abundant class of no accidents. To address this, we propose utilizing sample minimizing to balance 

the false negative and false positive rate and create a more accurate predictive model. Our results 

demonstrate, with a high degree of confidence, the potential for machine learning to improve mine 

safety and health by identifying hazardous conditions and mitigating the risk of accidents. 
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Chapter 1: Introduction  

1.1 Motivation 

All employees have the right to a safe workplace. A safe workplace allows employees to 

satisfy their job requirements without compromising bodily safety and health. The goal of any 

workplace safety program is to eliminate injuries and fatalities by properly controlling or 

removing hazards. Effective workplace safety programs collect data on hazards, policy 

violations, and injuries on a periodic basis. The collected data not only facilitates gauging the 

safety aspect of a workplace, but it also provides valuable information that could be used to find 

patterns, identify new information, and forecast future issues. In the routinely collected safety 

records, there could be actionable information that may be used to prevent a dangerous situation 

from occurring. 

Often, this type of historical data is not used to its full potential for prediction or forecasting. 

The data is often used as a measuring stick for whether a safety goal was met or unmet – an entry 

in a spreadsheet for book-keeping or record keeping purposes. If a metric becomes particularly 

high, perhaps that area will receive some remediation if the correct stakeholder notices. 

Moreover, these metrics are usually measuring a particular season of time at a particular place, 

not observing the full gamut of other locations, analogous scenarios, or prior knowledge. 

Liberating predictive knowledge out of this historical data, hopefully, can be used to close a 

feedback loop to improve safety. Using the data as a measurement of safety is analogous to 

taking a daily temperature of the environment. It is an important prerequisite to deeper 

understanding of what causes unsafe environments. Predictive knowledge is analogous to 

forecasting the weather. However, the analogy stops short in that with safety, human action can 
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change what is written in the forecast. Enacting change, or completing the feedback loop, can 

allow workplaces to improve safety.  

1.2 Past Mining Incidents 

There are several mining disasters in living memory that underline the importance of 

preventing accidents and ensuring safety. One such incident that occurred in West Virginia in 

2010 was the Upper Big Branch mine disaster. Twenty-nine miners tragically died and two were 

injured in an explosion. The investigative Executive Summary report of the disaster by MSHA 

(Mine Safety and Health Administration) states, “the physical conditions that led to the explosion 

were the result of a series of basic safety violations at [Upper Big Branch] and were entirely 

preventable” [1, p. 2]. 

In 2006, at Darby Mine No. 1 in Kentucky, five miners were fatally injured due to an 

explosion [2]. In the investigation report, MSHA states: “The accident occurred because the 

operator did not observe basic mine safety practices and because critical safety standards were 

violated” [3, p. 56]. Moreover, “the company was cited for six conditions and/or practices which 

contributed in some way to the accident” [3, p. 1]. This mine was sealed following the accident 

[3, p. 55]. Disregard for safety practices and violating safety standards directly contributed to this 

accident. 

Aracoma Alma Mine #1 in West Virginia had an accident in 2006 that resulted in the deaths 

of two miners [2]. MSHA reports: 

 “As a result of the investigation, MSHA issued 25 citations and orders for violations 

which contributed to the cause or severity of the accident. Of these, 21 were the result 

of reckless disregard on the part of the mine operator” [4, p. 2]. 
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Two of the fatalities were found to be directly connected to several contributory violations [4, p. 

2]. This report highlights the fact that violations or citations do identify hazardous conditions and 

can cause serious fatal accidents if not properly addressed. 

    The Sago Mine disaster in 2006 in West Virginia resulted in twelve miners receiving fatal 

injuries due to an explosion [2]. The final conclusion and root causes of the report do not indicate 

specific prior violations, but indicate lightning likely ignited methane gas and caused an 

explosion, which unsealed unused parts of the mine that had elevated carbon monoxide that then 

entered occupied areas [5, pp. 187-188]. However, “the operator was subjected to a higher level 

of enforcement pursuant to section 104(d)” [5, p. 8] due to prior MSHA inspection results.  

Such disasters highlight how dangerous mining is and how steps must be taken to safeguard 

miner safety. One theme in most of the MSHA reports for these listed incidents is that if 

corrective safety actions were taken before the incidents, then, at the very least, the severity of 

the accidents would have been lessened.  

1.3 Regulations 

One of MSHA’s tasks is to regulate the mining industry to ensure best practices, 

requirements, and policies are followed. These rules are established to keep miners safe. 

Inspections are a tool to ensure mining operators are complying with federal laws. MSHA 

inspectors are examining the environment of the mine looking for potential hazards and policy 

violations. Underground mines must be inspected at least four times a year by MSHA inspectors 

[6]. These inspections ensure operators and miners follow all required safety protocols and look 

for hazardous conditions. Through the course of their work, MSHA inspectors log their findings 

into a publicly available MSHA database. In addition, mine operators are required to send 



4 

MSHA reports when certain events occur, such as an accident. Operators are also required to 

send quarterly reports on production or other notable events. 

     Early identification of dangerous conditions in mines could be used as a tool to improve mine 

safety. MSHA currently has a Pattern of Violations (PoV) report where they notify mines 

operating in dangerous elevated conditions. This report is created by compiling violations and 

accidents to create statistics that are used as a heuristic to determine if the mine shows poor 

conditions. The compiled report indicates a historical trend of past violations. One major issue 

with the PoV report is that it requires a long trend, i.e., a chain of many violations, before action. 

However, studying such trends, i.e., the recorded pattern of violations, can facilitate in predicting 

not only the potential future violations in a timely manner but also prevent them.  

1.4 Thesis Hypothesis 

     This thesis brings forward the following Hypothesis: 

“It is possible to create a predictive model to determine hazardous mining conditions by mining 

the large volume of MSHA violation and accident data.” 

More simply, this thesis envisions that by leveraging a machine learning algorithm, predictive 

models can be created from the large volume of violation and accident data MSHA has recorded 

in their database. Using these models, it is possible to predict if an accident will occur within 

thirty-five days of a particular safety violation. This time span was selected because it is a long 

enough period to reflect potential issues and was based on a prior work [7]. Such an early 

prediction of potential violations can facilitate the mining operators to rectify the especially 

hazardous conditions ⸺related to safety violations⸺ before violations turn into an accident that 

can cost miners’ lives. 
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1.4.1 Research Questions 

Primary Question (PQ): Can we utilize MSHA violation data to detect a potential future 

mining accident?  

     PQ Explanation: The aim of the thesis is to take MSHA mining safety records as an input to 

train a machine-learning model, then take a new unseen MSHA violation input to assess, and 

finally output how the new input ranks as a hazard. The output of this machine learning model 

will be a number of classes that reflects the likelihood of an accident based on the inputted safety 

violation. The thesis aims to produce a useful result to a mining safety subject matter expert that 

can then be acted on to improve safety.  

     There are many layers to solving this question, such as determining: 

• What machine learning technique to use.  

• What data to select as an input(s). 

• What is the best measure of a violation. 

• How tuning the machine learner can yield optimal results.  

     PQ Findings: MSHA violation data does have predictive features that can be used to predict 

the likelihood of an accident. The Random Forest (RF) machine learning technique was selected 

because it produces explainable models. MSHA’s violation and accident datasets contained the 

most important training features. Exploratory analytics was conducted on MSHA violation data 

to remove non-predictive and unrelated attributes. Related and important features were found 

and identified by reading MSHA data definitions and model experimentation. The 

SCHEDULE_CHARGE attribute in the MSHA accident’s table was determined to be an 

important attribute to predict, with a thirty-five day timeframe. Many different iterations of 

models were used to help determine model quality and improve each model. 
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RQ 1: What MSHA data is needed to build a robust prediction model?  

     RQ 1 Explanation: MSHA has amassed a large body of accurate data on U.S. mines through 

inspections and operator reports. Machine learning techniques can be applied to this data to build 

and train an incident prediction model. Quality of the prediction model greatly depends upon the 

quality of the underlying data. In order to make machine learning work well on new tasks, it 

might be necessary to design and train better features. Therefore, feature engineering is applied 

to identify important features (i.e., attributes) essential for building a quality predictive model. 

Feature engineering works to identify features that are deemed to facilitate prediction (among the 

hundreds available in the MSHA data) and removes features that act as noise to the model. At a 

high-level, feature engineering removes all the features that do not aid in answering the question 

“if an accident is likely to occur”. A feature that facilitates predicting the likelihood of accident 

to occur is retained. For example, the “day of week a violation occurs” may be important. A 

violation on a specific day of the week may act as a weight on the importance of the violation. 

This could indicate intuitive knowledge that a subject area expert might know, for example, that 

most mines are not generally inspected on a certain day of the week. Beyond feature engineering, 

it could be possible other datasets could aid in the predictive strength. An example related dataset 

might be the average price of coal for that region at the time the violation occurred. The RQ1 

seeks what independent variables, or features, are most useful and relevant for constructing 

incident prediction model using MSHA data. 

     RQ 1 Findings: This thesis identified a predictive set of violation features through 

researching MSHA data definitions and through model experimentation. Removing datetime 

features improved model understandability and eliminated some possible areas of data leaks. 
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Additionally, several sample sizes were utilized to better balance the abundant sample class of 

no-accidents with the sparse sample class of accidents.  

     RQ 2: What value should be predicted that best indicates a potential accident? 

     RQ 2 Explanation: Selecting what value to predict potential accidents from is not apparent in 

this dataset. There are several candidate dependent variables in the MSHA dataset that measure a 

hazard or accident. The difficulty lies in selecting a value to predict that subject matter experts 

are familiar with, have intrinsic meaning to the set at large, and is a useful metric. Careful 

selection will help better ensure the machine learning model applies to the real world.   

    RQ 2 Findings: An aggregated calculation of the accident’s SCHEDULE_CHARGE over 

thirty-five days was selected as the feature to predict. This feature was selected because it is a 

standardized numerical variable that MSHA uses to indicate accident’s severity. MSHA has a 

schedule of charges to assign to an accident. For example, a schedule charge of 6,000 indicates a 

fatal accident and a schedule charge of 300 indicates the loss of a thumb. Narrowing predictive 

classes into No Accident, Non-fatal Accident, and Fatal Accident also made it possible to better 

analyze the predictive quality of the predictive model through a confusion matrix. 

 

1.5 Outline 

     Mining stakeholders need a robust predictive model that has explainable results. This thesis 

presents a literature review of traditional reporting mining operators and regulators use, an 

overview of statistical based approaches, the impact of Internet of Things (IoT), and finally 

machine learning approaches and how the apply to this problem. 

     Next, the methodology used to create a machine learning model to predict potential safety 

issues is explained. The selected machine learning algorithm was the Random Forest technique. 
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Python was selected as the programming language to build the model using scikit-learn’s 

Random Forest implementation. Because MSHA has a large library of data sources, data had to 

be selected, pruned, and prepared for use in the model. Selecting a meaningful safety variable to 

predict was a key part of data selection. 

     Three Random Forest models were created with varying results. The first model used many 

data features and attempted to predict the SCHEDULE_CHARGE over thirty-five days of a 

given violation. The second model removed some data features in an attempt to limit data leaks. 

The final model limited features, changed from predicting the SCHEDULE_CHARGE over 

thirty-five days to the category of a given schedule charge (No Accident, Non-fatal Accident, 

and Fatal Accident), and improved sampling of accident observations during model training. 
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Chapter 2: Literature Review 

     Determining the safety of a mine and correcting potential issues before an accident occurs is a 

preoccupation of both MSHA and mining operators. A few approaches to this problem are 

through traditional recordkeeping and reporting, statistical analysis, utilization of Internet of 

Things (IoT) sensor network data, and machine learning. Machine learning is most relevance to 

the thesis and is covered in the most detail.  

2.1 Safety Recordkeeping and Reporting 

2.1.1 Traditional Recordkeeping 

     A traditional approach to identifying hazardous mining conditions is through the use of 

recordkeeping and time-bound reporting. This approach is familiar to both mining operators and 

regulatory bodies. Operators and regulators create reports on some specified timeframe 

attempting to identify if the mine is trending in an unsafe direction. Trends in the data such as 

increasing or decreasing safety are discovered through subject-matter experts reviewing reports 

and making judgements based on the report. MSHA has reporting requirements for all U.S. 

mines, [8] and the U.S Securities and Exchange Commission (SEC) also has mandatory 

reporting requirements for U.S. publicly traded mining-operator companies.  

    The purpose of traditional reporting is to identify and act on safety hazards. Operators ideally 

self-regulate and create their own internal reports to correct issues before they turn into 

catastrophe or an injury. “Large companies tend to have better safety records than smaller 

companies due to greater numbers of professional engineers and better management” [9, p. 1]. 

Self-identifying and solving safety hazards early on can keep the mine safe and operating 

efficiently. Managers and engineers can adjust procedures based on reports to solve issues. 
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      One of the MSHA traditional reports is the Mine Injury and Worktime report that is issued 

both quarterly and annually [10]. Operators are required to submit the data for these reports to 

MSHA because of Part 50 of Title 30 of the Code of Federal Regulations [11] [12]. Some 

examples of what kind of information is present in the reports include total number of fatal 

accidents, the number of non-fatal accidents with workdays lost, accidents with no days lost and 

the incident rate of these occurrences [13, p. 2]. Much of this data is also aggregated into 

summary form to provide regional and state-by-state safety overviews. 

     Publicly traded coal mining operators also have to report their safety record in their form 8-K 

SEC filings. They are required to report, “specified health and safety violations, orders and 

citations, related assessments and legal actions, and mining-related fatalities” [14]. Operators are  

also required to file a Form 8-K within four business days outside of periodic reporting if they, 

“receive notice from MSHA of an imminent danger order under section 107(a) of the Mine Act; 

notice of a pattern of violations under section 104(e) of the Mine Act, or notice of the potential to 

have a pattern of such violations” [15]. This reporting provides investors with clear information 

and knowledge about the safety record of the company they are investing in. 

     Traditional recordkeeping and reporting provides an important foundation for more 

sophisticated safety management. These basic reports are used by management and engineers to 

facilitate safe mines. The data collected for these reports will be used in machine learning and 

other techniques. 

2.2 Statistical Analysis Based Approaches 

2.2.1 Citation-related Reliability Analysis 

     One way to approach detecting potential mine safety issues is through citation-related 

reliability analysis (RA), based on statistical techniques. Harisha Kinilakodi and R. Grayson 
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champion the RA approach for mine safety issues. Citation-related RA is simply, “the 

probability of not getting a citation on a given inspector day, [and] is considered an analogue to 

the maintenance reliability approach, which many mine operators understand and use” [16, p. 

1015]. Harisha Kinilakodi and R. Grayson demonstrate this approach on 31 mines of various 

sizes. They emphasis that citation-related RA is independent of the size of the mines. They state 

that, “70% of the underground coal mines are small-size mines (less than 50 employees)” [16, p. 

1017]. For those 31 mines, they calculated the probabilities for zero, one or fewer, and greater 

than three citations [16]. An advantage of citation-related RA is that it is familiar to mining 

operators and can be applied at smaller operations.  

2.2.2 MSHA’s Pattern of Violations (POV) 

     MSHA uses the data it collects on U.S. mines to improve safety and discover issues before 

they occur. MSHA uses a statistical analysis approach in their quarterly mining safety reports 

[10]. These reports cover the state of U.S. mining safety. The statistics used in the reports could 

be used as a summary of the state of a mine; however, the reports are retrospective rather than 

predictive. Another way MSHA attempts to be more predictive is through its Pattern of Violation 

(POV) criteria.    

     A POV is used to determine if a mine is exhibiting escalating risk factors. The goal of the 

POV criteria is to, “identify mine operators who have demonstrated a recurring pattern of 

Significant and Substantial (S&S) violations of mandatory health and safety standards at their 

mines. An S&S violation is one that is reasonably likely to result in a serious injury or illness” 

[17] . S&S violations are also explicitly marked as such in the Violation table provided by 

MSHA. 
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     Each mine is evaluated at least once a year to determine if it meets the Pattern of Violations 

criteria. Two sets of criteria are used, meeting either one will result in issuing a Notice of Pattern 

of Violations. When notice of a POV is issued, MSHA may order mining to stop and require 

remediation of the violations [17]. 

POV Criteria One: 

1. 50 S&S violations within 12 months 

2. AND 8 S&S violations / 100 inspection hours within 12 months 

3. AND .5 elevated citations / 100 inspection hours within 12 months 

4. AND An Injury Severity Measure (SM) greater than other similar mines 

 

OR  

 

POV Criteria Two: 

1. 100 S&S violations within 12 months 

2. AND 40 elevated citations within 12 months 

 

     The POV approach is a good heuristic for identifying unsafe mines and exhibiting a high 

likelihood of safety issues. However, this approach only identifies potential safety issues in 

mines with consistent and high-risk associated violations. It does not capture mines that may 

have many low-risk citations that then increase the risk of accidents. 
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2.3 Internet of Things (IoT) Approach 

2.3.1 Internet of Things and the Future of Mining 

     Many related-works also highlight the potential benefits of the Internet of Things (IoT) and 

how it can make mining safer and more autonomous. The information that IoT sensors could 

provide mining operators can make mining safer through accurate and instantaneous information 

on the mine’s environment and equipment status. Sensor nets are already common in mines to 

monitor air quality and other factors, but the cost-effectiveness of inexpensive IoT devices could 

amplify sampling [18].  

     A critical aspect of IoT devices is that they only provide data, not analysis. These IoT sensor 

nets must be combined with statistical and machine-learning models to be a genuinely effective 

safety tool. However, because data collection and data analysis are planned together when 

creating an IoT solution, an interesting synthesis or more novel solution that would be unique 

from machine learning alone can occur.  

2.3.2 U.S. Industrial Internet of Things (IIoT) 

     The U.S. National Institute for Occupational Safety and Health (NIOSH) investigated existing 

mining sensor systems in U.S. underground coal mines to determine if they could be used to 

create Industrial Internet of Thing (IIoT) systems. They found that, “out of 40 percent of the 

installed post-accident systems require minimal or no modification to support IIoT applications” 

[19]. 

      The authors discuss the potential benefits of IIoT use in underground coal mines. They 

discuss that such a system could be used to monitor individual employee’s exposure to hazardous 

conditions, predictive maintenance, disaster forecasting, automation, ventilation on demand, 

remote diagnostics, post-accident coordination, and use in water systems [19, pp. 7-8]. Some 
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challenges they discuss are security and privacy, harsh physical environment, availability of 

networks, and creating a data analytics system specific to coal mining [19, pp. 9-10]. 

2.3.3 Forecasting and Prewarning of Coal Mining Safety Risks 

     Chong-mao et. al, discuss potential uses of IoT as applicable to coal mining [20]. They 

explored how an IoT network could be a beneficial pre-warning system in an underground coal 

mine.  

     Data on the physical environment can be collected and processed to alert to hazardous 

conditions before they occur. For example, the Chong-mao et. al state: “Before rock outbursts, 

there are changes and fluctuations of mine pressure, electromagnetic radiation, infrared radiation, 

temperatures and other data. Similarly, there are fluctuations in gas emission quantity, 

temperature, electromagnetic radiation, and other data before coal and gas outbursts. Similarly, 

there are relevant pre-warning indicators before water inrush accidents, roof accidents and fires” 

[20, p. 11581]. The authors also discuss how this data will need to be processed and classified to 

be used effectively in a real-time warning system, discuss big data, and the challenges of 

implementing [20]. 

     The authors also mention that in China, “small and medium-sized coal mines have low 

productivity and frequent safety accidents” [20, p. 11579]. This aligns with other research on 

U.S. mines on operation size and appears to be a theme. 

2.4 Machine Learning Approach 

2.4.1 Creating Predictive Models 

     A machine learning approach forms a model that uses past data to make predictions when 

given new data that the model has never encountered before. For coal mining safety, this would 
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mean using historical data, such as past accidents, violations, or sensor readings, and using that 

data to form a model that predicts hazardous conditions in a coal mine. 

     There are many techniques and options when creating predictive models. For this use case, 

machine learning techniques that create transparent decisions are ideal. Users of the model need 

to understand how the model found a result using the given data. 

2.4.2 Machine Learning Classification Models for More Effective Mine Safety Inspections  

One of the most comprehensive uses of machine learning on MSHA data is Jeremy 

Gernand’s use of a Random Forest model in his paper Machine Learning Classification Models 

for More Effective Mine Safety Inspections [21]. The guiding question in Gernand’s paper is to 

find, “what types of inspection findings are most indicative of serious future incidents for 

specific types of mining operations” [21, p. 1]. He builds both a single regression tree to explore 

this question and a Random Forest model to predict the lost-time incident rate for a given year. 

His goal is, “predicting whether or not a fatal or serious disabling injury is more likely to occur 

in the following 12-month period” [21, p. 1]. The two most important factors he found for his 

model were number of worker-days and total penalties due. 

To prepare the MSHA Part 50 data, Gernand limited the model training data to active 

underground coal mines and the years 2000 to 2014. The MSHA MINE_ID was used to cross-

reference data. He incorporated data from the Mines, Accidents, and Violations MSHA data 

tables. His final dataset contained records from 310 mines. The data in the model includes mine 

background data, aggregated total recorded violations, and aggregated accident details. Values 

were aggregated by year by mine. Rate of total lost work time is the dependent variable for this 

experiment [21].  
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The dependent variable selected for the model was, “the rate of accumulated lost days from 

injuries to total level of effort at a particular mine in a particular year” [21, p. 7] or, he otherwise 

states, “the rate of total lost work time as measured in days per 100,000 worker-days of 

operational effort” [21, p. 2]. One important comment Gernand makes about the choice of what 

to predict is that there are alternate options for safety measures. He mentions fatalities and lost 

workdays or injuries per 200,000 worker hours as alternate safety metrics to predict. He 

determines these are not ideal because, the first metric does not capture enough insight into the 

mine and the second metric, fatalities, is too uncommon to be statistically represented properly 

[21]. 

To create the Random Forest model, Gernand used MATLAB’s treebagger function, which 

uses Leo Breiman’s algorithm, to create the model. The hyperparameters he selected for random 

tree creation include a leaf size of five and splitting to reach a purse state based on mean squared 

error (MSE). The hyperparameters for the random forest include a sample of 1,000 random trees, 

and only randomly selecting a third of possible training variables for each tree [21]. 

One result from Gernand’s work was detecting variable importance. The three most 

important variables in the model were worker-days per week, total penalties due, and number of 

employees [21]. He also discovers that the two most important variables, worker-days and total 

penalties due, negatively correlate with the dependent variable. 

He discusses a few reasons why worker-days per week is such an important metric. First, a 

high number of worker-days means there is more chance for an accident to occur. Second, 

number of worker-days is a close approximation to size. He also states, “there also happens to be 

a well-established connection between the size of companies and their safety records. As 

organizations grow in size and total capital, their liability risk increases abreast giving these 
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larger organizations a greater incentive to put more effort in protecting the safety of their 

employees” [21, p. 5]. 

Total penalties due is also a key metric Gernand discusses. A finding he had was that 

incident rate decreased, as the average penalties increased in the prior year. The straightforward 

response Gernand has is that it could simply be operators responding to the penalties. They have 

monetary incentive to improve safety to avoid penalty. He also posits that penalties may tend to 

be for high severity issues, which can be directly identified by an inspector and corrected, instead 

of many harder to correct problems. Also, of great importance, he discusses, “it may also be 

possible that many penalties are often assessed after the fact for injuries that have already 

happened” [21, p. 5]. 

Because Gernand’s work is so instrumental in this thesis, the findings of the paper were 

reproduced. 

2.4.3 Reproduction of Machine Learning Classification Models for More Effective Mine 

Safety Inspections  

Reproducing Gernand’s work with similar parameters resulted in variable importance 

findings that align with the original work. However, total ‘penalties due’ did not rank as highly 

in this reproduction. 

To prepare the data for the reproduction, the same MSHA Part 50 data sets were downloaded 

as Gernand used. The Mines data set was reduced to only include mines that are in active status, 

in the underground category, and produce coal. A difference from Gernand’s work is that this set 

of mines are mines that are active, underground, coal mines as of 2020. Using exactly the same 

set of mines that Gernand used in 2014 is not possible because the MSHA data field only has the 

current mine status, not status changes or historical status. For example, a mine in 2014 may 
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have had the status “Active”, but in 2020 had the status of “Non-Producing”. That historical 

change in status is not captured in the MSHA database. That means it is not possible from the 

data to determine the mines in Gernand’s sample from the data directly. After selecting mines 

based on those attributes, 143 mines meet the criteria for modeling. Gernand’s set of eligible 

mines was 310. In addition to selecting certain mines to model, new model training fields were 

calculated based on the Accidents and Violations data set, as done in Gernand’s paper.  

Worker days per week was calculated from the MSHA Mine field, number of employees, which 

was then multiplied by the field, days per week, for each record. An aggregation was also 

calculated for Mine days lost, job experience, total experience, and mine experience. Days lost is 

a summation of all days lost for a mine, as specified in the Accidents data set, in a given calendar 

year. The other aggregation fields were averages of the Accidents reported for the year. Other 

calculated training fields, based on the violations data, include summation of the dollar amount 

due for violations in a calendar year and the average amount due per violation. See  

Table 2: Calculated Fields Used in Gernand’s Work for more information on the necessary 

calculations. 
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Independent Variables used in Reproduction of Gernand’s Work 
Table Feature or Field Minimum 

Value 
Maximum 

Value 
Mean Value Feature 

Importance 

Mines MINE_ID - - - 0.1457 
Mines STATE_CODE 1.00 69.00 26.61 0.0567 
Mines NO_EMPLOYEES 0.00 3,663.00 47.06 0.0961 
Mines HOURS_PER_SHIFT 0.00 24.00 6.27 0.0201 
Mines AVG_MINE_HEIGHT 0.00 9,998.00 16.12 0.1068 
Mines MILES_FROM_OFFICE 0.00 600.00 92.53 0.0894 
Mines 

Calculated 
WORKER_DAYS_PER_WEEK 0.00 25,641.00 294.06 0.1322 

Multiple CAL_YR 0.00 2,020.00 1,739.77 0.0453 
Accidents 
Calculated 

AVG_TOTAL_EXPERIENCE 0.00 65.00 8.69 0.0776 

Accidents 
Calculated 

AVG_JOB_EXPERIENCE 0.00 65.00 6.41 0.0612 

Accidents 
Calculated 

AVG_MINE_EXPERIENCE 0.00 57.00 5.70 0.0645 

Violations 
Calculated 

SUM_AMOUNT_DUE 0.00 12,100,513.00 14,746.55 0.0649 

Violations 
Calculated 

AVG_AMOUNT_DUE_PER_ 
VIOLATION 

0.00 57,853.07 266.86 0.0395 

 
Table 1: Features in Gernand's Work
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Calculated Fields in Reproduction of Gernand’s Work 
Field Calculation 

WORKER_DAYS_PER_WEEK NO_EMPLOYEES * DAYS_PER_WEEK 
SUM_OF_DAYS_LOST Summation of DAYS_LOST in Accidents 

Table by MINE_ID and CAL_YR 
AVG_JOB_EXPERIENCE Mean of JOB_EXPER in Accidents Table by 

MINE_ID and CAL_YR 
AVG_TOTAL_EXPERIENCE Mean of TOT_EXPER in Accidents Table by 

MINE_ID and CAL_YR 
AVG_MINE_EXPERIENCE Mean of MINE_EXPER in Accidents Table 

by MINE_ID and CAL_YR 
SUM_AMOUNT_DUE Summation of AMOUNT_DUE in Violations 

Table by MINE_ID and CAL_YR 
AVG_AMOUNT_DUE_PER_VIOLATION Mean of AMOUNT_DUE in Violations 

Table by MINE_ID and CAL_YR 
DAYS_LOST_PER_100,000_WORKER-

DAYS 
SUM_OF_DAYS_LOST/ 

((WORKER_DAYS_PER_WEEK/7) * 
100,000) 

 
Table 2: Calculated Fields Used in Gernand’s Work 
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     The dependent variable is also a calculated field in Gernand’s work. Days lost per 100,000 

worker days is the sum of days lost, divided by worker days. Worker days is the worker days per 

week divided by seven and then multiplied by 100,000. The random forest implementation for 

this reproduction is scikit-learn’s Random Forest Regressor. The selected hyperparameters for 

the forest include 1,000 estimators or trees, use of mean squared error (MSE) criterion, a 

minimum of five leaf samples, bootstrapping on, and out of bag score on. Figure 1. The resulting 

R2 was .9502 and the out of bag score was .9320. See Table 3: Results of Reproducing 

Gernand's Work for more details. The most important features found in the reproduction model 

were MSHA mine ID, worker days per week, average mine height, number of employees, and 

miles from office, as shown in Figure 1: Reproduction of Gernand’s RF Feature Importance. 

Each of these variables, except mine ID, appear in the top eleven variables Gernand discusses. A 

Random Forest Classifier model was also constructed as a comparison point.  
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Figure 1: Reproduction of Gernand’s RF Feature Importance 

 

 

Results of Reproducing Gernand’s Work 
Random 
Forest Type 

Record 
Count 

R2 Out of Bag 
Score 

Weighted 
Recall 

Weighted 
Precision 

Random 
Forest 
Regressor 

1,008,368 0.9502 0.9321 NA NA 

Random 
Forest 
Classifier 

1,008,368 0.9988 0.9972 0.9988 0.9988 

 
Table 3: Results of Reproducing Gernand's Work 

 

  

Random Forest Feature Importance 
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Chapter 3: Methodology 

3.1 Overview 

     The machine learning technique selected for this thesis was the Random Forest (RF) 

algorithm. RF was selected because it produces robust and explainable results on structured data. 

The scikit-learn implementation of Random Forests was used to generate the RF model. 

     Interactive Jupyter Notebooks were the primary tool to create the predictive model. Jupyter 

Notebooks are an open-source web application that one can use to create and share documents 

that contain live code, equations, visualizations, and text. We chose to use Jupyter Notebook 

because it has become ubiquitous among data scientists. Moreover, the notebooks can be easily 

shared with research communities to reproduce or replicate the thesis findings. 

     Several Python libraries were used, including Pandas and scikit-learn. Pandas is used for data 

cleaning analysis. It is the best tool for handling real-world messy data; the MSHA data requires 

a lot of cleaning. Scikit-learn is the most commonly used library for machine learning in Python. 

It provides efficient tools for predictive data analysis. The scikit-learn library was used to 

implement the predictive models for the thesis.  

     The data was directly downloaded from MSHA databases and loaded into a Juptyer 

Notebook. Next, the data was processed using Pandas to make it suitable for the machine learner 

to build robust predictive models. Then a machine learner was created using a scikit-learn 

Random Forest Classifier.  

     Three different scikit-learn Random Forest Classifier models were created to attempt to 

predict future mining accidents from MSHA violation data. Different models were created to 

explore the impact of different features, the impact of predicting a category versus an exact 

number, and the different trade-offs between each model and improve real-world usability. The 
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primary goal is to create a model mining stakeholders can use, which means finding the best 

model with the greatest reduction in false negatives and false positives. Table 4: Overview of 

Models Presented in Thesis lists an overview of the models and how they differ from each other. 

• The first model, Model A, uses almost the entirety of the accident record and attempts to 

predict the exact schedule charge aggregation for thirty-five days from the violation.  

• The second model, Model B, removes some of the datetime features from the accident 

column and attempts to predict the exact schedule charge for thirty-five days from the 

accident. The thirty-five day charge is the aggregation of the MSHA value 

SCHEDULE_CHARGE as found on the Accidents table. This was chosen as the value to 

predict because it indicates accident severity. The goal is to use a given violation to 

attempt to predict what the thirty-five day aggregated SCHEDULE_CHARGE will be for 

that violation. 

•  Model C uses the features without datetimes and simplifies the schedule charge to be 

different classes or categories of charges., i.e., No Accident (SCHEDULE_CHARGE of 

zero), Non-fatal Accident (SCHEDULE_CHARGE of less than 6,000), and Fatal 

Accident (SCHEDULE_CHARGE of greater than 6,000). This categorization led to more 

interpretable results. Model C also has three parts – using unchanged training samples 

(C.1), increasing the sparse class of accidents in the training sample (C.2), and sample 

minimizing with weighed samples (C.3). The unchanged training sample version uses the 

original training set as-is in the other models. The version that increases the sparse class 

uses the training set along with two subsets. Subset F is all fatal samples from the 

training set. Subset A is all non-fatal accident samples from the training set. These sets 

are then combined as the original set plus Subset F twenty times plus Subset A ten 
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times as a modified training set. The sample minimizing with weights version uses the 

above modified training set, but only uses 5% of the samples. The random sampling 

selects based on weight, with significant and substantial violations as the higher weight or 

higher priority selecting criteria.  

 

Model Features Predicting Training 
Set 

Is 
Boosted Hyperparameters 

A Violations 
Exact 35-day schedule 

charge aggregation 
from Accidents 

Full Set No 

Estimators: 5 
Leaf Samples 3 

Max Features: .5 

B 
Violations 

without 
datetimes 

Exact 35-day schedule 
charge aggregation 

from Accidents 
Full Set No 

C.1 Unchanged 
Features 

Violations 
without 

datetimes 

Category of 35-day 
schedule charge from 

Accidents 
Full Set No 

C.2 Increasing 
Sparse Classes 

Violations 
without 

datetimes 

Category of 35-day 
schedule charge from 

Accidents 

Full Set 
20x Fatal 

10x 
Accident 

Yes 

C.3 Sample 
Minimizing with 

Weights 

Violations 
without 

datetimes 

Category of 35-day 
schedule charge from 

Accidents 

5% of 
Set 

40x Fatal 
10x 

Accident 

Yes 

 
Table 4: Overview of Models Presented in Thesis 
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3.2 Technique 

     The machine learning technique selected for this thesis is the Random Forest algorithm. It 

was selected because the MSHA dataset is structured data, many safety outcomes are known 

within the MSHA data, RF models are robust, and RF models produces explainable results.  

     The MSHA dataset is structured data because it is tabular data that was stored in a relational 

database. It has a predefined data model, and each piece of information is categorized. For 

example, a mine’s record states if it is an UNDERGROUND or ABOVE GROUND mine. An 

example of unstructured data would be text or an image. Individual parts on text or an image are 

not categorized. A RF technique may be applied to structured data.  

      Additionally, the MSHA dataset is a good candidate for a supervised learning algorithm, 

such as RF, because and the outcomes of safety accidents are known. This means the algorithm 

can use known results when constructing the model. 

     RF is also an ensemble algorithm, so it aggregates multiple estimators to form the best 

prediction. The individual estimators or individual decision trees used here are Classification and 

Regression Trees (CART) trees. Each CART tree produces a prediction. The resultant prediction 

of each of the CART trees is then aggregated according to the RF algorithm into a final result. 

Ensemble algorithms tend to produce robust results by having dissimilar estimators that average 

out predictive shortcomings and produce a stable overall model. For example, intuitively, an 

individual CART tree may be ideally suited to predicting UNDERGROUND accidents, another 

may be best suited to ABOVE GROUND accidents, and a third tree that has acceptable accuracy 

at predicting both types of accidents. By aggregating the results of all three trees, a more accurate 

result should be achieved when predicting both types of accidents. In practice, the trees are not 

divided this way, but the example illustrates how the results are more stable overall. 
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     The most important reason the RF algorithm was selected is that the model produces 

explainable results, which is necessary for safety-critical decisions. Each decision tree in a RF 

shows where splits occur and how a prediction arrived at a given conclusion. The aggregating or 

final result selection process is also clear. This is useful for subject matter experts to use when 

evaluating a prediction. This algorithm provides transparent results that decision-makers can 

leverage. Each node of the corresponding tree shows where the tree split and how the predicted 

value was achieved. This is beneficial to stakeholders using the model because they can see the 

reasoning and identify potential flaws. Non-transparent algorithms are not suitable for safety 

decision making. See 3.2.2 Interpreting a Random Forest for more information.  

3.2.1 Random Forest 

     A Random Forest model is a machine learning algorithm that uses multiple decision trees to 

make a prediction. Random Forests were introduced by Leo Breiman in his paper Random 

Forests. Breiman describes creating multiple decision trees that use different features to create 

each tree and then each tree votes for a specific prediction [22, pp. 5-6].  Ensemble techniques as 

a whole combine multiple estimators into one prediction. The idea behind an ensemble technique 

is that any given estimator may have a weakness, but when the different individual estimators are 

combined, then that that weakness is reduced because each estimator works differently. 

Estimators should also be created to be dissimilar from one another. 

     The scikit-learn implementation of Random Forests, which is used in this thesis, randomizes 

the sample from the training set and how many features or columns are used to create each 

individual tree [23]. It uses, “an optimized version of the CART algorithm” [24], for the 

individual decision trees that make up the Random Forest. The documentation for Random 

Forests goes on to say:   
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“The purpose of these two sources of randomness is to decrease the variance of the forest 

estimator. Indeed, individual decision trees typically exhibit high variance and tend to 

overfit. The injected randomness in forests yield decision trees with somewhat decoupled 

prediction errors. By taking an average of those predictions, some errors can cancel out. 

Random forests achieve a reduced variance by combining diverse trees, sometimes at the 

cost of a slight increase in bias. In practice the variance reduction is often significant 

hence yielding an overall better model” [23]. 

These sources of randomness generate more dissimilar individual tree estimators, which create a 

more robust overall model. A notable difference in the scikit-learn implementation of the 

Random Forest algorithm and the original algorithm by Leo Breiman [22] that the 

documentation mentions is that, “the scikit-learn implementation combines classifiers by 

averaging their probabilistic prediction, instead of letting each classifier vote for a single class” 

[23]. 

3.2.2 Interpreting a Random Forest 

    This section will show how to create an interpret a basic Random Forest using an example. 

First, the environment must be setup, as shown later in 3.3 Environment Tools and Libraries, and 

the data must be processed, as shown later in section 3.4 Data. However, the purpose of this 

section is to show the basic process of Random Forest generation and interpretation.  

     For this example, a simplified Random Forest Classifier was created in scikit-learn with the 

hyperparameters of three estimators, a max tree depth of two, and only using half of the features 

when deciding a split. The three individual trees that make up this Random Forest Classifier are 

shown in Figure 2: Example Random Forest Trees. In scikit-learn, each tree is of the type 

DecisionTreeClassifier [25]. In this example, and as is the default in scikit-learn, each individual 
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CART tree was created by using Gini impurity as the deciding factor in creating splits [25]. 

Notice that there are three trees as the hyperparameters specified three estimators and are shallow 

with only two splits. These trees would not predict well in-practice because they have very 

limited decision splits, but they are easier to interpret for an example. Table 5 has an example 

violation record. The goal is to predict if this violation record will lead to No Accident, an 

Accident, or a Non-fatal Accident. The encoded value refers to how the model categorizes the 

value and how it is displayed in the trees produced by scikit-learn in Figure 2. All values must be 

numeric in the model. Using Table 5 as an example, it would proceed as follows through the 

trees in Figure 2: 

CART Tree 1: 

• At node SIG_SUB <= 1.5: 

o SIG_SUB in this example is yes, which is encoded as 2. 2<=1.5 is false, so will 

proceed to node VIOLATOR_VIOLATION_CNT <= 284.5. 

• At node VIOLATOR_VIOLATION_CNT <= 284.5 

o VIOLATOR_VIOLATION_CNT in this example is 128. 128 <=283.5 is true, so 

proceed to left leaf node. 

• Tree 1 predicts the record’s result as No Accident. 

CART Tree 2: 

• At node SIG_SUB <= 1.5: 

o SIG_SUB in this example is yes, which is encoded as 2. 2<=1.5 is false, so 

proceed to node VIOLATOR_INSPECTION_DAY_CNT <= 399.5.  

• At node VIOLATOR_INSPECTION_DAY_CNT <= 399.5: 
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o VIOLATOR_INSPECTION_DAY_CNT in this example is 170. 170 <= 399.5 is 

true, so proceed to left leaf node. 

• Tree 2 predicts the record’s result as No Accident. 

CART Tree 3: 

• At the node MINE_TYPE <= 2.5: 

o MINE_TYPE in this example is Underground, which is encoded as 3. 3 <=2.5 is 

false, so proceed to node VIOLATOR_INSPECTION_DAY_CNT <= 444.5. 

• At the node VIOLATOR_INSPECTION_DAY_CNT <= 444.5: 

o VIOLATOR_INSPECTION_DAY_CNT in this example is 170. 170 <=444.5 is 

true, so proceed to the left leaf node. 

• Tree 3 predicts Fatal Accident. 

 

Mine Type Likelihood Significant and 
Substantial 

Violator 
Violation 

Count 

Violator 
Inspection Day 

Count 
… 

Underground 
(Encoded as 3) 

Reasonably 
(Encoded as 4) 

Y  
(Encoded as 2) 128 170 

 
Table 5: Example Violation Record 

     Tree 1 and Tree 2 predicted No Accident and Tree 3 predicted a Fatal Accident. The 

Random Forest would predict No Accident because it has the highest prediction probability 

when averaging each tree’s prediction. Also shown in Figure 2 is the prediction probabilities that 

scikit-learn calculated, which is represented in the value column. This array corresponds to the 

categories No Accident, Non-fatal Accident, and Fatal Accident. According to the 

documentation, “the predicted class probability is the fraction of samples of the same class in a 

leaf” [25].  



31 

Table 7 shows each tree’s prediction probabilities and the average the Random Forest would use 

for predicting.  

 Tree 1 Tree 2 Tree 3 Random 
Forest 

No Accident 69.64 % 70.23 % 34.03 % 57.97 % 

Accident 13.92 % 13.64 % 30.34 % 19.30 % 

Fatal Accident 16.42 % 16.11 % 35.62 % 22.72 % 

 
Table 6: Example Scikit-learn Calculated Prediction Probabilities 
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Example Random Forest 

 

Figure 2: Example Random Forest Trees 
This Random Forest was generated using scikit-learn. The RandomForestClassifier’s 
hyperparameters were set to create three estimators, a depth of two, and only consider half 
of the features for each split. The number of accident samples was increased in the training 
sample. The yellow boxes highlight the path of the example violation in Table 5. 
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3.3 Environment Tools and Libraries 

The environment used to create the machine learning model includes: 

• Interactive Python (IPython) [26] 

• Visual Studio Code [27] 

• Anaconda Python Environment Management (conda) [28] 

• Numerical Python (numpy) [29] 

• Python Data Analysis Library (pandas) [30] 

• Numerical Python (numpy) [29] 

• Scikit Learn (scikit-learn) [31] 

• Matplot Library (matplotlib) [32] 

• FastAI Library v. 0.7 [33] 

Interactive Python (IPython) 

The primary software environment for creating the model was a Python interactive 

notebook. We selected Python due to its focus on simplicity, readability, and large volumes of 

readily available analytics and machine learning libraries, much needed for building our 

prediction models. An interactive environment was selected due to the ease of seeing the results 

of a given line of code immediately. An interactive Python environment has cells for each 

segment of related code. Selecting the run button will run a given cell's code. After running a 

cell, what was executed remains in the memory of the notebook if the notebook is live and the 

notebook server is running. For example, for this project, imports were the first cell of a 

notebook with no other code. After running this cell, the imports are now available in all 

subsequently ran cells. This code cell segment format allows for a more iterative approach 

through ease of access to variables and flexibility.  
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Visual Studio Code 

     Visual Studio Code (VS Code) was the primary Integrated Development Environment (IDE) 

used for this project. VS Code can create and run Interactive Python notebook files and can be 

used to control the Python environment [27]. 

 

Figure 3: Example Cell Output in Visual Studio Interactive Python Notebook 

      Figure 3 shows a sample cell in an Interactive Python notebook running in Visual Studio 

code. The Python code is in a cell and is executed by activating the play button. In this example, 

the code is setting up a mathplotlib scatter plot. The code for the scatterplot is contained in one 

cell for ease of reuse and experimenting. After activating the play button, the code and the output 

will appear below, in this example, the output is the scatterplot below the cell. Other items to 

notice are the conda environment, in this case, ml (Python 3.8.13), and that it is a local Jupyter 

Server. Remote servers can also be used to execute the code. Variables, such as validate actual, 
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were specified earlier in the notebook, once a cell runs, then that cell’s context is available to the 

other cells in the file. 

Anaconda Python Environment Management (Conda) 

      Conda is a Python version and library management environment. Different Python 

environments are needed for different projects. Conda provides a toolset to organize library 

dependencies and control Python versions. Organizing library dependencies properly is 

important because it prevents different library requirements from interfering with each other. For 

example, if one project requires a certain version of the pandas library and another a different 

version, then a proper conda environment will prevent dependency conflicts. It also allows 

management of different versions of Python so that the same system can have one environment 

setup for Python 3.5 and another for Python 3.6, for example [28]. 

Numerical Python (numpy) 

     Numerical Python or NumPy is a Python library that optimizes arrays in Python and is a 

dependency of the pandas library and can be used with the Matplotlib package. It is important for 

arrays to be highly efficient due to the quantity of data and many operations required for this 

project [29]. 

Python Data Analysis Library (Pandas) 

One Python package instrumental to creating this model is the Python Data Analysis Library 

(Pandas). Pandas is a powerful tool for processing and organizing data in Python. Dataframes are 

the central pandas data structure used in this project. A pandas dataframe, as stated in the 

documentation, is a, "two-dimensional, size-mutable, potentially heterogeneous tabular data ... 

[that] can be thought of as a dict-like container for Series objects" [34] A dataframe has columns 

and rows of data. Columns can be an incrementing integer index or use specified textual names. 



36 

Pandas dataframes have many features that makes data processing easier. Manipulating a column 

as a series of data can be accomplished with user-friendly array-like accessing. For example, the 

following syntax, dataframe['Column to Access'] = dataframe['Column to Access'] * 2, takes the 

column named 'Column to Access' and sets that column value to 'Column to Access' times two, 

row-wise. Dataframes also have functionality to sort, remove data, set datatypes, merge, or join 

two dataframes, and have built-in aggregation functions. It is also straightforward to initialize a 

dataframe from Comma Separated Values (CSV) files or Excel files, through the read_csv 

function. This is a powerful tool for cleaning up and reorganizing data. 

Scikit-Learn 

Scikit-learn is another central Python library used in generating the model. This machine 

learning package contains implementations of many machine learning algorithms, graphing 

functions, and data cleanup routines. The Random Forest classes are utilized to build the model. 

This will be discussed further when describing the model building process. 

Matplot Library (matplotlib) 

Matplotlib is the graphing utility for this project. Both pandas and scikit-learn leverage this 

library to create detailed graphs, charts, and diagrams. It is also used in its freestanding form 

when more advanced graphing features are needed. Notably for creation of a confusion matrix 

and scatterplots.  

FastAI Library 

FastAI is a key Python utility used in this project. This utility provides additional tools to 

prepare data for model training and enhances scikit-learn. For example, it has a built-in function 

to prepare categorical data and format it into numeric, which is a prerequisite for model building. 

An earlier version, 0.7, of fastai was used. 
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3.4 Data 

MSHA is tasked with preventing mining accidents through educating miners, mine 

inspections, and establishing criteria for safe mining conditions. MSHA collects a wealth of data 

on U.S. mines through mine permits and inspection reports. “Every underground coal mine in the 

U.S. is inspected by an MSHA inspector on a quarterly basis to check whether a mine is 

complying with the mandatory health and safety standards. During an inspection, the MSHA 

inspector(s) issue citation(s) for mandatory health and safety standards that are violated and 

determine the degree of seriousness based on tabled criteria and their judgement” [16, p. 1016]. 

This data is then published by MSHA as reports, web tools, and raw collections.  

The data used for this project was the raw flat files that MSHA exports and publishes from a 

relational database [35]. In this MSHA data collection, there are twenty sets of flat files in total  

[35]. 

MSHA Datasets 

MSHA Dataset Name Description 

Accident Injuries Accidents reported on MSHA form 7000-1 

Area Samples Physical samples 

Coal Dust Samples Operator and inspector dust samples 

Conferences Mediation on violations issued 

Civil Penalty Dockets and Decisions Petitions for changing violation penalties 

Contractor Employment Production 
Quarterly 

Coal production as reported by contractors 

Contractor Employment Production 
Yearly 

Coal production as reported by contractors 
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Controller Operator History Shows historical changes in Controllers at a given 
mine 

Employment Production Yearly Coal production as reported by operators 

Employment Production Quarterly Coal production as reported by operators 

Inspections MSHA inspection listing 

Mine Address of Record Legal address of mine 

Mines Listing of all Mines since 1970 

Noise Samples Physical noise samples 

Personal Health Samples Physical samples 

Quartz Samples Quartz samples 

Violations Violations issued by inspectors on MSHA from 
7000-3 

Contested Violations Violations protested by the operator 

Assessed Violations Violations that have been assessed penalties 

107(a) Orders Inspector ordered immediate withdrawal from 
mine 

 
Table 7: MSHA Publicly Available Data Sets 

The three datasets used in the machine learning model and of focus in this thesis are the 

Mines, Violations, and Accidents datasets. These datasets were selected because they directly 

relate to safety or contain detailed information on the mine. Factors contributing to the selection 

of these datasets over the multitude of choices are the relative importance of the information, and 

clear relation to the primary goal of predicting potential hazards. 
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     Other datasets provided by MSHA do have valuable information but are more tangential to 

this goal. They would be valuable for our future work since they contain rich environmental 

samples, such as coal dust, coal production and other economic factors⸺ these could also be of 

interest because they might provide insight into how operations change when prices are high or 

low, and total coal production⸺ this may also provide insight into the size or capacity of the 

mine.  

The Mines dataset is the first important data set used in the thesis for constructing the 

machine learning model. This MSHA dataset has general information on U.S. mines; it contains 

information such as MSHA ID, mine type, address, status of mine, number of employees, shifts, 

mine height, and mining methods used. This file contains biographical information on the mine 

[36]. The MSHA ID uniquely identifies a mine and is the primary key in the MSHA database; it 

is utilized by other datasets when they reference a mine [36]. Establishing a list of all U.S. mines 

is a critical first step upon which the rest of the datasets build upon. 

Another important dataset chosen for training the model is the Violations file because it 

contains information on a mine’s policy violations or potential dangers. A violation is one of the 

first recorded indications that something could be amiss from a safety standpoint within the 

mine. The Violations dataset is amassed from MSHA Form 7000-3 [35]. This form is for MSHA 

inspectors to issue citations to mines. The most notable fields in this dataset include what part of 

the mining section was violated, whether the violation was significant and substantial, the 

likelihood of occurrence, seriousness of injury, violation fee, and number of miners impacted 

[37]. 

One significant aspect of MSHA Form 7000-3 is the inspector’s evaluation of the gravity of 

the specific violation. MSHA, in a citation handbook, defines gravity as,  
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“… an evaluation of the seriousness of the violation. It is determined by the three factors 

listed in § 100.3 (e) (Determination of penalty amount; regular assessment). Section 

100.3 states: ‘Gravity is determined by the likelihood of the occurrence of the event 

against which a standard is directed; the severity of the illness or injury if the event has 

occurred or was to occur; and the number of persons potentially affected if the event has 

occurred or were to occur’” [38, p. 10].  

The section the handbook refers to is The Federal Mine Safety and Health Act of 1977 (Mine 

Act) [38, p. 1]. The MSHA inspector’s assessment of incident gravity is a qualitative 

determination of the violation that occurred. This qualitative determination is then recorded into 

a categorical quantitative metric. The gravity of an incident is beneficial when training the model 

because it naturally signals the importance of a violation.   

The likelihood of a violation resulting in an accident is also judged by the inspector before 

being included in the violation dataset. The set of values for this field, i.e.,, Violation Likelihood, 

are No Likelihood, Unlikely, Reasonably Likely, Highly Likely, and Occurred. The Occurred 

designation is significant because it, “… can only be checked when an injury or illness has 

actually occurred” [38, p. 11]. The handbook provides special guidance for Occurred injuries. It 

provides an example that if an accident is worse than expected, the evaluation should be 

evaluated on what happened. The handbook provides a further example, where if an incident is 

better than typically expected, then the instance should be evaluated on the typical, worst case 

scenario [38, p. 12]. The gist of the handbook is that a conservative worst-case evaluation should 

always be selected in the case of a violation that resulted in an injury directly. Similar to gravity 

measurements, likelihood also can act as a signal how severe a violation was.   
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The third important data set is Accidents and Injuries dataset. The data set is composed 

from the information collected from MSHA Form 7000-1 [35]. When an accident occurs, the 

operator is required to fill out this form explaining what occurred to cause the accident or injury 

and how severe the incident was [39, pp. 28-35]. MSHA, for this form, defines an accident as 

meeting one of twelve criteria [39, pp. 3-4]. The criteria include deaths, near-fatal injuries, 

entrapments greater than thirty minutes, unexpected gas or liquid entry, gas or dust explosions, 

unplanned fires greater than thirty minutes, unplanned explosion, unplanned roof fall, rock 

outburst that disrupts work greater than an hour, unstable refuse pile, hoisting equipment damage 

disrupting work greater than thirty minutes, and deaths or injuries that occur due to the mine [39, 

pp. 3-4]. A few important fields include, degree of injury, mining method, experience, days lost, 

and scheduled charge [40]. “The MSHA inspectors also perform field checks on accuracy and 

for possible underreporting of accidents” [16, p. 1016]. 

One central field in the Accidents dataset is scheduled charges, which was selected as the 

dependent variable or value predicted in the machine learning model. This is the field that the 

model will attempt to predict. Scheduled charges, as stated in PC7014 Report on 30 CFR Part 50, 

“… are based on an estimate of the future loss of productive time brought about by an 

employee's permanent loss of a body member or permanent impairment of function. This 

measurement highlights the more serious injuries occurring in the mining industry” [39, p. 2]. 

“The scheduled charge for fatalities and permanent total disabilities is 6,000 days. Charges are 

assigned to determine the relative severity of certain injuries regardless of the actual days lost” 

[39, p. 17]. In a consistent and detailed manner, this field captures the severity of an accident. 

The table below from MSHA PC-7014 details how various injuries are categorized. For example, 
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an amputation of the hand is assigned a scheduled charge of 3,000 and an amputation of the foot 

is assigned a schedule charge of 2,400. See Table 9 for full list of scheduled charges by MSHA. 

     MSHA inspectors assign a schedule charge based on the MSHA PC-7014 table. This is a 

measure of severity. Table 7 shows a mean calculation using Pandas on the MSHA field 

“INJURY_SOURCE” for the Accidents MSHA table. This schedule charge is the mean schedule 

charge for all Accidents in the specified category. Of note is that the methane category injury 

source carries a mean charge of 6,000, which is a fatal schedule charge. Table 8 shows a mean 

calculation using Pandas on the MSHA field “NATURE_INJURY” for the Accidents MSHA 

table. Both tables were abbreviated to only include the mean schedule charges greater than one 

hundred. The mean schedule charge for each category of injury source and nature of injury helps 

illustrate how the scores scale depending on the Accident type. For example, an accident in a 

critical injury category, such as a heart attack, have a high mean schedule charge of 3,965.73, 

whereas more chronic conditions, such as black lung have a low mean schedule charge of 

128.47. This shows that individual Accidents are weighed proportionally to the severity of the 

type and nature of injury. During model training, this scaling of severity of Accidents is an 

important criterion to ensure proper weighing. 
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MSHA Categorized Injury Source Mean Schedule 
Charge 

METHANE GAS-IN MNE & PROC 6000.00 
OXYGEN DEFICIENT ATMOSPHR 3000.00 

VEHICLES,NEC 2000.00 
LANDSLIDE (SURF ONLY) 1500.00 

WATER 1163.93 
MISCELLANEOUS,NEC 921.30 

TRANSFORMERS,CONVERTERS 807.69 
NOXIOUS MINE GASES,NEC 418.60 

NARO G RAIL CR,MTR-UG EQP 381.59 
STD G RAIL CR,MTR-SURF EQ 362.26 

FLAME,FIRE,SMOKE,NEC 310.71 
KILNS,MELT FURNACE,RETORT 305.00 

UNDERGROUND,NEC 260.87 
ELEVATORS,CAGES,SKIPS,ETC 244.22 

SAND,GRAVEL,SHELL 228.81 
PASS CARS,PICKUP TRUCKS 224.79 

PLANTS,TREES,VEGETATION 221.67 
CRANES,DERRICKS 204.34 
CONVEYORS,NEC 161.22 

LONGWALL CONVEYOR 160.00 
STREET,ROAD 155.84 

HGHWY ORE CARIER,LRGE TRK 152.47 
STEAM 150.00 

GENERATORS 148.21 
CAVING ROCK,COAL,ORE,WSTE 133.15 

MINE JEEP,KERSEY,JITNEY 126.88 
BELT CONVEYORS 121.20 

RDIATNG SUBST OF EQIP,NEC 120.00 
EXPLOSIVE-DIR REL TO INJR 119.77 

UNDERGRD MINING MACHINES 118.37 
ELECTRICAL APPARATUS,NEC 117.39 
SURFACE MINING MACHINES 117.38 
HOISTING APPARATUS,NEC 109.07 

MACHINE-MILL,CLEANING PLT 105.63 
LONGWALL SUPT,JKS & CHOCK 102.95 

STORAGE TANKS AND BINS 101.92 
 
Table 7: Mean Schedule Charge by Source 
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MSHA Categorized Nature of Injury Mean Schedule 
Charge 

HEART ATTACK 3965.73 
SUFFOC,SMOK INHILAT,DROWN 3450.00 
CEREBRAL HEMORAGE-NT CCUS 2238.46 
ELECT SHOCK,ELECTROCUTION 1063.55 

MULTIPLE INJURIES 963.44 
CRUSHING 816.17 

ASBESTOSIS 600.00 
AMPUTATION OR ENUCLEATION 498.02 
OTHER PNEUMOCONIOSIS,NEC 230.77 

OTHER INJURY,NEC 173.07 
PNEUMOCONIOSIS,BLACK LUNG 128.47 

POISONING,SYSTEMIC 123.38 
 
Table 8: Mean Schedule Charge by Nature of Injury 

     The schedule charge of an Accident will be aggregated to form the variable the model will 

predict. Schedule charge was selected over the other candidate variable of severity because the 

charge levels are predetermined, whereas the operator or inspector judge severity qualitatively 

with fields such as LIKILYHOOD. An aggregation of the ‘schedule charge’ over thirty-five days 

of accidents was selected because one accident could have multiple heralding violations and was 

used in a prior work [7]. The larger timespan also gave some lead time between violation and 

accident for events to occur.   
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Table of Scheduled Charges in Days 
A. For Loss of Member – Traumatic or Surgical 

Amputation involving all or 
part of bone Thumb 

Fingers 
Index Middle Ring Little 

Distal phalange --- 300 100 75 60 50 
Middle phalange --- --- 200 150 120 100 

Proximal phalange --- 600 400 300 240 200 
Metacarpal --- 900 600 500 450 400 

Hand at Wrist 3,000 --- --- --- --- --- 
 

Toe, foot, and ankle 
Amputation involving all or parts of bone Great toe Each of other toes 

Distal phalange --- 150 35 
Middle phalange --- --- 75 

Proximal phalange --- 300 150 
Metatarsal --- 600 350 

Foot at ankle 2,400 --- --- 
 
 

Arm 
Any point above elbow, including shoulder joint 4,500 
Any point above wrist and at or below elbow 3,600 

 
Leg 

Any point above knee 4,500 
Any point above ankle and at or below knee 3,000 

 
B. Impairment of Function 

One eye (loss of sight), whether or not there is sight in the other 
eye 

1,800 

Both eyes (loss of sight), in one accident 6,000 
One ear (complete industrial loss of hearing), whether or not 
there is hearing in the other ear 

600 

Both ears (complete industrial loss of hearing), in one accident 3,000 
Unrepaired hernia (For repaired hernia, use actual days) 50 

 
Table 9: Table of Scheduled Charges in MSHA PC-7014 Appendix C [39, p. 23] 
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3.5 Data Preparation 

      The MSHA provided Mines, Violations, and Accidents datasets were first loaded into an 

interactive python notebook by using the pandas library read-csv function. Read-csv converts the 

raw CSV into a pandas DataFrame. Required parameters for these datasets are to use latin 

encoding and pipe(|) delimination. The pipe delimters facilitates to distinguish between the 

different attributes value in CSV file. The date fields also need to be specified directly for read-

csv to parse them correctly too, MSHA labeled these columns as <Column_Name>_DT. Figure 

4 shows the MSHA provided Mines table data before processing. Figure 5: Notebook with Mines 

Loaded into a Pandas DataFrame shows how the data will appear in Visual Studio after 

processing. Notice that the live variables may be viewed in the bottom panel. The Mines data 

used had 88,685 rows and 59 columns. Once in the Pandas DataFrame, the data may be 

manipulated and cleaned and exported out as another .csv file or loaded as a feather format [41] 

to easily transport between Notebooks. 
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Figure 4: Unprocessed Mines Pipe Deliminated Data 
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Figure 5: Notebook with Mines Loaded into a Pandas DataFrame 

      Once each dataset is loaded into a DataFrame, extra calculations are made as part of pre-

processing. This is discussed further below. The operations performed on the data include: 

• Calculating the SCHEDULE_CHARGE_SUM_35_DAYS for the model to predict. 

• Dividing the data into a training, validation, and test set. 

• Removing redundant or unimportant columns of data 
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• Processing all non-numeric data types to numeric forms the model can use. This includes 

changing fields such as dates and categorical data. 

• Identifying missing or null data. 

     The field SCHEDULE_CHARGE_SUM_35_DAYS is what the model will attempt to 

predict; however, this field does not exist directly in the dataset. It is calculated as a derived 

attribute by taking a given violation and summing all accident SCHEDULE_CHARGES that 

occur within thirty-five days of that violation. We used this attribute as our prediction class, i.e., 

what the model will try to predict. The idea is that the model will be given a given violation and 

it will attempt to predict the likelihood if the violation will lead to an accident within thirty-five 

days. Besides the prediction class, no other attributes from the Accident dataset are used in 

constructing the prediction model. Procedure for calculating the 

SCHEDULE_CHARGE_SUM_35_DAYS field: 

     For each MSHA violation record: 

• Select the violation’s MSHA MINE_ID and VIOLATION_OCCUR_DT fields. 

• Calculate thirty-five days from the VIOLATION_OCCUR_DT as the temporary field 

THIRTY_FIVE_DAYS_FROM_VIOLATION_DT. 

• Select MSHA accident records that occur between VIOLATION_OCCUR_DT and 

THIRTY_FIVE_DAYS_FROM_VIOLATION_DT for the given MINE_ID.  

o From the selected accident records, select each accidents 

SCHEDULE_CHARGE and sum together to form 

SCHEDULE_CHARGE_SUM_35_DAYS. 

o Append SCHEDULE_CHARGE_SUM_35_DAYS to the violation record. 
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An example using this procedure may be found in Figure 6: Example 

SCHEDULE_CHARGE_SUM_35_DAYS Calculation. For Model C, the field 

SCHEDULE_CHARGE_SUM_35_DAYS was also simplified into three classes of No-Accident 

(score of zero), Non-fatal Accidents (score greater than zero, but less than 6,000), and Fatal 

Accidents (scores greater than 6,000). 

    The data is also divided into a training set, a validation set, and a test set based on the field 

INSPECTION_BEGIN_DT. The training set is used for model training. The validation set is 

used to check that the model produced from the training set is behaving as expected. For 

example, the validation set can be used to determine if the model is overfitting to the training 

data. The idea is the validation set can be used as a way to benchmark and help drive adjustments 

to the training model. The final set is the test set, which, for this thesis, is the holdout set. This 

separate data is used for final evaluation of the model and is not used for calibrating the model. 

For example, if overfitting is observed in evaluating the validation set, then this might drive 

different hyperparameters in the model. The test set is only used to evaluate how well the model 

performs.  

     The field INSPECTION_BEGIN_DT was used to sort the data and form the different sets 

based on time. The model is trained on earlier data and attempts to predict later data. The 

training set was used to train the data and the validation and test set were used to see how well 

the machine learner made predictions. The dataset was processed this way because it is much 

easier to predict data around the same time as another sample. This breakdown ensures the model 

is not predicting a timeframe it has already seen samples for, which makes it more true to its 

intended use as predictive. 
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MSHA Data Sets     
Earliest Inspection Latest Inspection Samples Percentage 

of Total 
Train January 02, 2000 August 07, 2015 2,100,000 81% 

Validate August 07, 2015 August 18, 2016 100,000 4 % 
Test (Holdout) August 18, 2016 October 08, 2020 390,301 15% 

 

Table 10: MSHA Training, Validation, and Test Set Overview 

     A few redundant columns are also removed, for example, record identifiers or codes that are 

captured elsewhere as categories. Additionally, the Mines data set is also removed during data 

preparation. The reason for this is that while the biographical information of the mine is likely 

predictive, it can also go stale. For example, a violation may have occurred years ago when the 

mine had less than fifty employees. However, the database only lists current data. So, that mine 

may have expanded and now has hundreds of employees. The model would then attempt to use 

incorrect categorization of hundreds of employees in the model, while at the time, it only had 

less than fifty. 

      All non-numeric fields must also be converted to data types the model can process. First, 

non-existent dates (0000-00-00 00:00:00) are converted to NaT (not-a-time) values. Next, 

additional date parts are added by using the FastAI library on some models. Examples of 

additional date parts that will be added as columns to the dataset include day of week, day of 

year, and quarter. 

      Next categorical data is set to numeric data through using FastAI’s train_cats function. This 

function takes a given category, such as bituminous or non-bituminous coal and converts it to a 

numerical value such as zero and one. Likewise, ordinals are set as being in the correct 

increasing order. 
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      Finally, the FastAI helper function ‘proc_df’ is applied on the dataframe to finalize the 

removal of all non-numeric data and missing values. It also sets a new column on the data frame 

for missing data. The function also splits the feature that will be predicted, 

SCHEDULE_CHARGE_SUM_35_DAYS, from the data sets to prepare the data for use in a sci-

kit learn Random Forest.  

      The Random Forest Classifier is selected over a Random Forest Regressor because the 

schedule charges form a stepwise function. The chart of scheduled charges has a limited number 

of values, see Table 9 for combinations. For example, a number like 302 for 

SCHEDULE_CHARGE_SUM_35_DAYS will not occur in the dataset because the schedule 

charge chart only uses numbers divisible by five. This makes a Random Forest Regressor, not a 

good choice because the schedule charges essentially act as classes. This is also why one of the 

models, Model C, is able to easily split into No Accident, Non-fatal and, Fatal categories.  
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Figure 6: Example SCHEDULE_CHARGE_SUM_35_DAYS Calculation 

 

 

    MSHA Violation Record 
MINE_ID MINE_TYPE VIOLATION_OCCUR_DT PART_SECTION SECTION_OF_ACT_1 … 
1234567 Underground 2003-06-28 75.220(a)(1) 104(a) 

  
 
    Selecting Relevant Accidents Within Thirty-Five-Days of Violation 

MINE_ID ACCIDENT_DT SCHEDULE_CHARGE CLASSIFICATION … 
1234567 2003-07-22 0 POWERED HAULAGE 
1234567 2003-08-02 600 DUST DISEASE OF LUNGS 
1234567 2003-07-20 0 HANDTOOLS (NONPOWERED) 
1234567 2003-07-21 480 DISORDERS (REPEATED TRAUMA) 

 
 
   Violation Record After Calculation Added 

MINE_ID MINE_TYPE VIOLATION_OCCUR_DT SCHEDULE_CHARGE_SUM_35_DAYS … 
1234567 Underground 2003-06-28 1080 

SCHEDULE_CHARGE_SUM_35_DAYS Example Calculation 

The example violation is 75.220(a)(1), which requires mine operators to have a roof control plan [47]. The accidents that 
occurred within 35-days of the violation are not necessarily related to roof control. The idea is that some violations are 
indicative of poor conditions overall. For example, a mine without a roof control plan may be susceptible to accidents of all 
varieties because such a vital necessity was not properly planned. If a different violation occurred that day, it would also have 
the same score based on the accidents. With enough records, trends may emerge and violations with unrelated accidents or 
will have a lower signal than related accidents overall. 
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Chapter 4: Analysis and Results 

     Several Random Forest models were created to explore different possible robust solutions to 

predict potential safety hazards from MSHA data. The different models highlight the different 

trade-offs necessary to find a predictive model. For example, Models A and B attempt to predict 

granularly a specific numerical SCHEDULE_CHARGE_SUM_35_DAYS, whereas Model C 

attempts to predict a category of No Accident, Non-fatal Accident, or Fatal Accident. This 

exploration of using different training features, value to predict, and model hyperparameters help 

produce robust machine learning models. 

4.1 Model A: Violation Features with Date Times 

     Model A is a scikit-learn RandomForestClassifier using five estimators, three samples a leaf, 

and using half of the features available, without bootstrapping. These hyperparameters were 

selected to balance speed of model building with accuracy of results. Five estimators, the number 

of trees used to make up the random forest, were selected so that the model may be constructed 

within around ten minutes. Predicting the values for validation and test set can occur in an 

additional ten minutes. Earlier models were constructed using one-hundred estimators or trees 

and these models took a full day to construct a model. There was a difference in accuracy, with 

more trees being more accurate. However, there was also a tendency for the Jupyter Notebook 

kernel to crash and lose all processing work, which requires the code to be re-ran and the model 

reconstructed. Testing additional estimators and their impact would be key to finalizing the 

model. The other hyperparameters of using three samples a leaf and half of the features available 

were selected during early model building based on returning better mean accuracy. Again, final 

model construction for production use would benefit from a deep investigation to find optimal 
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hyperparameters. These were selected on the basis of producing generally more accurate results 

over other hyperparameter options, generally quick execution speed, and overall platform 

stability. 

    Model A was trained using most independent variable features present in the MSHA 

Violations data. A few identification fields were removed from the data such as 

CONTROLLER_ID because this value is also specified as free text as CONTROLLER_NAME. 

The full list of features used is presented in Table 11 and Table 12. The dependent variable or 

predicted variable used is SCHEDULE_CHARGE_SUM_35_DAYS. The possible values for 

this schedule charge are any value that has appeared in the database before, which generally 

encompasses MSHA’s provided schedule charge table, along with larger values that occur from 

aggregating the charges. Table 9 has the possible values of SCHEDULE_CHARGE and Figure 6 

goes through an example of aggregating these charges. For example, if an accident resulted in 

loss of the distal phalange on the ring finger (schedule charge of 60) and another separate 

accident resulted in loss of a distal phalange on a non-great toe (schedule charge of 35) and they 

occurred within thirty-five days of a violation, then the 

SCHEDULE_CHARGE_SUM_35_DAYS for that violation (and potentially others) would be 

95. The violation and accident are not necessarily causal. The value is more a measure of hazard. 

MSHA Violation Features (Independent Variables) Present in Model A, B, C 
AMOUNT_DUE  NO_AFFECTED  
AMOUNT_PAID  ORIG_TERM_DUE_TIME  
ASMT_GENERATED_IND  PART_SECTION  
CAL_QTR  PRIMARY_OR_MILL  
CAL_YR  PROPOSED_PENALTY  
CIT_ORD_SAFE  REPLACED_BY_ORDER_NO  
COAL_METAL_IND_V  SECTION_OF_ACT  
CONTESTED_IND  SECTION_OF_ACT_1  
CONTRACTOR_ID  SECTION_OF_ACT_2  
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DOCKET_NO  SIG_SUB  
DOCKET_STATUS_CD  SPECIAL_ASSESS  
ENFORCEMENT_AREA  TERMINATION_TIME  
FISCAL_QTR  TERMINATION_TYPE  
FISCAL_YR  VACATE_TIME  
INITIAL_VIOL_NO  VIOLATION_ISSUE_TIME  
INJ_ILLNESS  VIOLATOR_INSPECTION_DAY_CNT  
LAST_ACTION_CD  VIOLATOR_NAME  
LATEST_TERM_DUE_TIME  VIOLATOR_TYPE_CD  
LIKELIHOOD  VIOLATOR_VIOLATION_CNT  
MINE_NAME  WRITTEN_NOTICE  
MINE_TYPE  CONTROLLER_NAME  
NEGLIGENCE  *Additional NA fields 

 
Table 11: Model A, B, and C Features 

Model B and C only use this list of features without datetimes. 
See Appendix for MSHA provided field definitions.  
 
* NA fields are used to indicate data was not present before the data cleanup to all numerical 
values. E.g., data encoded from an empty string (“”) to zero would have a corresponding NA 
column with an entry of true (value of one) to indicate that the field was originally null and had 
to be changed to zero. If the original column was zero, then the NA entry would be false (value 
of zero) because the data field was not coerced into a numerical value. 
 

Datetime Features (Independent Variables) Present Only in Model A 
BILL_PRINT_DT ORIG_TERM_DUE_DT 
CONTESTED_DT RIGHT_TO_CONF_DT 
FINAL_ORDER_ISSUE_DT TERMINATION_DT 
INSPECTION_BEGIN_DT VACATE_DT 
INSPECTION_END_DT VIOLATION_ISSUE_DT 
LAST_ACTION_DT VIOLATION_OCCUR_DT 
LATEST_TERM_DUE_DT * Additional date and NA fields 

 
Table 12: Model A Additional Datetime Features 

* Non-listed date fields are a further breakdown of the “DT” fields, including month end, quarter 
end, day of week, etc.  
 

     The performance and feature importance of Model A was in line with the expectations found 

in earlier work [7]. The earlier work used a few different techniques to aggregate the data. The 
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prior work used a SQL database to store and perform the work. Model A’s data preparation and 

model training was entirely created in Python. 

      The training accuracy of this model is 99.92% and this value is so high that it appears to be 

an overfit model. However, the validation and test values have an accuracy of 97.16% and 

96.73%.  

Table 13 has an overview of these results. An overfit model would not result in such high 

accuracy during validation and testing. An overfit model occurs when the model is so tailored to 

the training data that it makes decision trees and forests that are only good at predicting the 

values for the training data itself. Model C explores this issue further with a confusion matrix 

with limited schedule charge prediction categories later.  

    As stated in the earlier work, there is concern that a “data leak” is occurring [7]. A “data leak” 

is when there is a feature that would not be present if the later fact were not already known. For 

example, in the Mines MSHA datatable, there is a field, CURRENT_103I_DT. (This field was 

not used in this model; this is only illustrative.) The CURRENT_103I_DT field indicates that: 

 “If a mine has experienced an ignition or explosion of methane or other explosive gases that 

resulted in a fatality or in a permanently disabling injury as defined under 30 C.F.R. § 50.20-

6(b)(3)(i) or § 50.20-6(b)(3)(ii) at any time during the previous five years, the mine shall be 

placed in Section 103(i) status as directed by the Act regardless of total liberation, and a 

minimum of one Section 103(i) spot inspection of all or part of the mine during every five 

working days at irregular intervals shall be conducted” [42]. 

In this example of CURRENT_103I_DT, a mine with a date in this field has already had an 

accident. If a model were to use this field, it would be much easier to predict historical accidents 

rather than contemporary accidents. In other words, the model could perform much better in 
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testing than it would work in application – the “data leak” gives away the answer. No known 

“data leaks” were present in this model; however, they tend to be challenging to identify. 

Model A       
Earliest Inspection Latest Inspection Samples Mean 

Accuracy 
RMSE 

Train January 02, 2000 August 07, 2015 2,100,000 0.9992 218.7088 
Validate August 07, 2015 August 18, 2016 100,000 0.9716 510.0146 

Test August 18, 2016 October 08, 2020 390,301 0.9673 513.0333 
 
Table 13: Model A Overview 

Model A     
  Weighted 

Avg. Recall 
Weighted Avg. 
Precision 

Weighted 
Avg. F1 

Train  0.9992 0.9992 0.9992 
Validate  0.9716 0.9572 0.9637 
Test  0.9673 0.9582 0.9627 

 
Table 14: Model A Performance Evaluation 

     Model A’s feature importance chart notably has many datetime features. This feature 

importance chart was created using FastAI library `rf_feat_importance` function which uses the 

Random Forest Classifiers’ `feature_importances_` property. From the documentation, it is 

calculated using Gini impurity: “The higher, the more important the feature. The importance of a 

feature is computed as the (normalized) total reduction of the criterion brought by that feature. It 

is also known as the Gini importance” [43].  Now, using the many datetime fields could simply 

be how the decision trees are splitting and not indicative of the feature’s predictive power. They 

also could be introducing a subtle “data leak” too. For example, inspectors could be retroactively 

updating a violation after an accident. There is no evidence of this, but it illustrates how easily a 

leak could be introduced for model training. Model B eliminates the datetime fields to gain a 

better understanding of feature importance. The datetime features were likely used as 

convenience splits to divide the data. 
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      A confusion matrix was created for Model A; however, due to many unique prediction 

classes, the resulting matrix was difficult to interpret. (Model C later reduces the available 

prediction classes to three to generate an interpretable confusion matrix.) There are many 

prediction classes due to the different ways Table 9: Table of Scheduled Charges in MSHA PC-

7014 Appendix C can be combine together over a thirty-five day period. Based on the 

scatterplots of observed versus predicted, Model A does appear to predict values other than zero 

(indicating no following accident within thirty-five days), the most common case. In the 

scatterplot in Figure 8, several striations can be seen in the validation and test scatterplots at the 

Figure 7: Model A Feature Importance 

Model A Feature Importance 
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6,000 mark (fatal) and a few values in-between. In later models, where there are more limited 

classes the model is attempting to predict, the confusion matrix makes it clear what classes are 

over or underpredicted. This model may be overpredicting a schedule charge of zero, which is 

the most common case. Later models explore this further by limiting the prediction classes. 

     Model A is a good baseline to compare the other following models with. The other models 

attempt to improve this base model. Its primary flaws are too many features, which could be 

Model A Observed and Predicted Values 

Figure 8: Model A Scatterplot of Observed and Predicted Values 
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introducing a “data leak”, and difficulty interpreting confusion matrices due to too many 

prediction classes. Models B and C both iterate on Model A to explore further. Model A is the 

most comparable to the prior work [7]. 

4.2 Model B: Violation Features Without Date Times 

      The features used to train Model B are the same as Model A, but without datetime features 

(see Table 11). However, there is some inherit ordering used when training this model because 

the data was initially sorted by INSPECTION_BEGIN_DT and separated into three different sets 

before removing the fields. One reason for this change is to better understand the predictive 

features and avoid potential “data leaks” that date times could introduce without much predictive 

benefit. A potential “data leak” could be that violations are updated after an accident occurs. An 

updated date could inadvertently signal that a violation is more important. For example, 

LAST_ACTION_DT is the “date the last action taken against this violation” [37]. Potentially, if 

an accident occurred in the future, an MSHA employee could have needed to revise a violation, 

which inadvertently signals its potential importance.  

     Model B’s accuracy (Table 15) is comparable to Model A’s (Table 13) Removing the 

datetime was a prudent choice because it reduces the possibility of a data leak and does not seem 

to have meaningfully impacted the accuracy of the model. 

     In this model, VIOLATOR_VIOLATION_CNT, VIOLATOR_INSPECTION_DAY_CNT, 

MINE_NAME, and VIOLATOR_NAME all rank in the top features based on Gini importance 

of both Model A, Figure 7, and Model B, Figure 9. It does appear that Model A was only using 

datetime features to create splits in the dataset. 
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    VIOLATOR_VIOLATION_CNT in the MSHA database is the “total number of assessed 

violations for this violator at this time during the violation history period. Used in penalty 

calculation. [sic] Applies to an Operator or a Contractor” [8]. 

VIOLATOR_INSPECTION_DAY_CNT, likewise, is a similar metric. These two fields that 

have high feature importance is interesting as it appears that the quantity of violations during the 

inspection has an impact. It could mean that when an inspector finds many violations, it is an 

indication that the mine is operating haphazardly. 

     When designing Model B, another model was made that trimmed the training features further. 

However, the model stopped becoming predictive of serious and fatal injuries. This alternate 

model began predicting only zero values. For future work, careful elimination of features is 

recommended to gain more insight on what features are strictly necessary for a predictive model.  

Model B       
Earliest Inspection Latest Inspection Samples Mean 

Accuracy 
RMSE 

Train January 02, 2000 August 07, 2015 2,100,000 0.9985 221.9560 
Validate August 07, 2015 August 18, 2016 100,000 0.9744 511.0338 

Test August 18, 2016 October 08, 2020 390,301 0.9707 449.0654 
 
Table 15: Model B Overview 

Model B    
 Weighted 

Avg. Recall 
Weighted Avg. 
Precision 

Weighted 
Avg. F1 

Train 0.9985 0.9985 0.9985 
Validate 0.9744 0.9595 0.9665 
Test 0.9707 0.9574 0.9640 

 
Table 16: Model B Performance Evaluation 
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Model B Feature Importance 

Figure 9: Model B Feature Importance 
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Model B Observed and Predicted Values 

Figure 10: Model B Scatterplot of Observed and Predicted Values 
Model B still shows that it is predicting values other than zero for predicting. Like Model A, 
there are too many features to effectively examine a confusion matrix of this model's 
performance. 
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4.3 Model C: Violation Features Without Date Times and Simple Schedule Charge 

      Model C uses the features listed in Table 11, the same features as used in Model B. Model C 

differs in that it simplifies the dependent variable SCHEDULE_CHARGE_SUM_35_DAYS into 

three classes, instead of any value that has appeared in the dataset. The simple schedule charge 

classes are No Accident (calculated charge of 0), Non-fatal Accident (charge greater than 0 and 

less than 6,000), and Fatal Accident (greater than 6,000). These values are more representative of 

the seriousness of the accident than true determinations. The way the values were aggregated, a 

“Fatal Accident” may indeed be two 3,000 schedule charge accidents aggregated together over 

the thirty-five-day period; however, the value is indicative of the serious nature of the accident or 

accidents (a near miss of a fatal accident). The purpose of this division is to allow for better 

confusion matrix examination; these target variables are also useful for decision-making. 

Model C Schedule Charges 
Class Value 
No Accident 0 
Non-fatal Accident 1 
Fatal Accident 2 

 
Table 17: Model C Classes 

     Model C has three varieties: one with unchanged sampling similar to Models A and B (C.1), 

one with increased sparse samples (C.2), and one with sampling minimizing by weight (C.3). 

Model C.1 is most akin to Models A and B. Models A, B, and C.1 can oversample the no-

accident classes and subsequently predict the most common outcome of no accident or 0. Model 

C.2 attempts to improve the prediction capability of Non-fatal and fatal accidents but does not 

perform well through increasing the amount of accident samples present during training. Finally, 

Model C.3 begins to show promise as a usable model.  
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4.3.1 Model C.1: Unchanged Features 

     Model C.1 is a good baseline for how Models A and B behave. Notice the accuracies are 

similar (Model A: Table 13, Model B: Table 15, Model C.1: Table 18) of around 99% accuracy 

for training, 97% for test, and 96-97% for validation. The RMSE is different in Model C.1 from 

Models A and B because the possible prediction values are between 0 and 2 for C.1 (Table 17), 

whereas the possible values for Models A and B are between 0 and 174,000. The 174,000 

SCHEDULE_CHARGE_SUM_35_DAYS maximum value is the Upper Big Branch Mining 

disaster. 

Model C.1 Unchanged Features - Overview  
Earliest Inspection Latest Inspection Samples Mean 

Accuracy 
RMSE 

Train January 02, 2000 August 07, 2015 2,100,000 0.9987 0.0508 
Validate August 07, 2015 August 18, 2016 100,000 0.9717 0.2097 

Test August 18, 2016 October 08, 2020 390,301 0.9743 0.2008 
 
Table 18: Model C.1 Unchanged Features Overview 

 Weighted 
Avg. Recall 

Weighted Avg. 
Precision 

Weighted 
Avg. F1 

Train 0.9987 0.9987 0.9987 
Validate 0.9717 0.9599 0.9647 
Test 0.9743 0.9651 0.9692 

 
Table 19: Model C.1 Unchanged Features Performance Evaluation 

      Model C.1’s training confusion matrix shows that the model may be predicting the class No 

Accident as occurring too much. The false negative rate for fatal accidents is very high with 

98.05% of the violation test set and 100% of the test set missing fatal accidents (see Table 22). 

Likewise, the Non-fatal false positive rate is very poor at 93.25% and 79.94% (see Table 21). 

The goal of the sample minimizing models, C.2 and C.3, is to limit false negatives better. 
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Model C.1 Unchanged Features - No Accident 
Data True 

Positive 
Rate 

True 
Negative 

Rate 

False 
Positive Rate 

False 
Negative 

Rate 
Train 0.9998 0.9398 0.0602 0.0002 

Validate 0.9934 0.0569 0.9431 0.0066 
Test 0.9933 0.1654 0.8346 0.0067 

 
Table 20: Model C.1 Unchanged Features, No Accident Confusion Matrix 

Model C.1 Unchanged Features - Non-fatal Accident 
 

Data True 
Positive 

Rate 

True 
Negative 

Rate 

False 
Positive Rate 

False 
Negative 

Rate 
Train 0.9456 0.9998 0.0002 0.0544 

Validate 0.0675 0.9937 0.0063 0.9325 
Test 0.2006 0.9936 0.0064 0.7994 

 
Table 21: Model C.1 Unchanged Features, Non-fatal Accident Confusion Matrix 

Model C.1 Unchanged Features - Fatal Accident 
Data True 

Positive 
Rate 

True 
Negative 

Rate 

False 
Positive Rate 

False 
Negative 

Rate 
Train 0.9219 0.9999 0.0001 0.0781 

Validate 0.0195 0.9998 0.0002 0.9805 
Test 0.0000 0.9996 0.0004 1.0000 

 
Table 22: Model C.1 Unchanged Features, Fatal Confusion Matrix 
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Training Confusion 

Validation Confusion Test Confusion Matrix 

Model C.1 Unchanged Features Confusion 

Figure 11: Model C.1 Unchanged Features Confusion Matrices  
The unchanged features confusion matrix has an extremely high number of false negatives for fatal 
and non-fatal accidents. The model appears to be overpredicting the dominate class of no accident. 
The increased sparse classes and sample minimizing models attempts to correct this issue. 
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4.3.2 Model C.2: Increasing Sparse Samples 

     Model C.2 has the same setup as Model C.1, except for Model C.2, non-fatal schedule 

charges are additionally sampled ten times in the training set and the fatal charges twenty times. 

Unfortunately, simply increasing the sparse samples of non-fatal and fatal accidents did not 

improve the false negative rate for non-fatal accidents nor fatal accidents. Notice the 100% false 

negative rate in the fatal accident test set (Table 27). The next model, which includes sample 

minimizing, shows movement in these values.  

     One interesting improvement over model C.1 is the training confusion matrix. In C.1’s 

confusion matrix for training (Figure 11), notice the model does not fit closely to Non-fatal 

Accidents and Fatal Accidents, i.e., during training, it is not fitting those samples well in the 

model. However, in C.2, the confusion matrix (Figure 12) shows improvement in model fitting 

for Non-fatal and Fatal Accidents. This is promising for better fitting the sparse class. 

Unfortunately, this better fit did not translate when running the model on the validation and test 

sets, which still have poor prediction levels whenever the true value is Non-fatal or Fatal 

Accidents. 

Model C.2 Increasing Sparse Samples - Overview  
Earliest Inspection Latest Inspection Samples Mean 

Accuracy 
RMSE 

Train January 02, 2000 August 07, 2015 2,569,210 0.9985 0.0550 
Validate August 07, 2015 August 18, 2016 100,000 0.9727 0.2095 

Test August 18, 2016 October 08, 2020 390,301 0.9731 0.2076 
 
Table 23: Model C.2 Increased Sparse Samples Overview 
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 Weighted 
Avg. Recall 

Weighted Avg. 
Precision 

Weighted 
Avg. F1 

Train 0.9985 0.9985 0.9985 
Validate 0.9727 0.9610 0.9661 
Test 0.9731 0.9638 0.9680 

 
Table 24: Model C.2 Increased Sparse Samples Performance Evaluation 

Model C.2 Increasing Sparse Samples 
 

 
True 

Positive 
Rate 

True 
Negative 

Rate 

False 
Positive 

Rate 

False 
Negative 

Rate 
Train 0.9981 1.0000 0.0000 0.0019 

Validate 0.9939 0.0944 0.9056 0.0061 
Test 0.9927 0.1415 0.8585 0.0073 

 
Table 25: Model C.2 Increased Sparse Samples, No Accident Confusion Matrix 

Model C.2 Increasing Sparse Samples - Non-fatal Accident  
True 

Positive 
Rate 

True 
Negative 

Rate 

False 
Positive 

Rate 

False 
Negative 

Rate 
Train 1.0000 0.9988 0.0012 0.0000 

Validate 0.0968 0.9944 0.0056 0.9032 
Test 0.1695 0.9935 0.0065 0.8305 

 
Table 26: Model C.2 Increased Sparse Samples, Non-fatal Accident Confusion Matrix 

Model C.2 Increasing Sparse Samples - Fatal Accident  
True 

Positive 
Rate 

True 
Negative 

Rate 

False 
Positive 

Rate 

False 
Negative 

Rate 
Train 1.0000 0.9995 0.0005 0.0000 

Validate 0.0195 0.9992 0.0008 0.9805 
Test 0.0000 0.9991 0.0009 1.0000 

 
Table 27: Model C.2 Increased Sparse Samples, Fatal Accident Confusion Matrix 
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Training Confusion Matrix 

Validation Confusion Matrix Test Confusion Matrix 

Model C.2 Increased Sparse Classes Confusion Matrix 

Figure 12: Model C.2 Increased Sparse Class Confusion Matrices 
The increase sparse classes greatly improved the training fit for non-fatal and fatal accidents. However, 
this model does not abstract out to cover the validation and test sets. Notice the false negatives are still 
high. 
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4.3.3 Model C.3: Sample Minimizing with Weights 

     The best-performing model is Model C.3 with sample minimizing with weights. This model 

had Fatal Accidents sampling increased by forty times and Non-Fatal Accident sampling 

increased ten times as appeared in the training set. In addition, the sampling rate of training data 

was reduced to a weighed pseudo-random sampling at 5% of the original training data. 

SIG_SUB violations were used as the weight for sampling with non-Significant & Substantial 

(S&S) violations weighed as 3, S&S violations weighed at 100, and non-entered values as 1.  

     The pandas ‘sample’ function was used to conduct the sampling [44]. In addition, a new 

hyperparameter was added to the Random Forest Classifier for scikit-learn to use “balanced” 

class weights – this “mode uses the values of y to automatically adjust weights inversely 

proportional to class frequencies in the input data as n_samples / (n_classes * np.bincount(y))” 

[43]. 

Pseudo-random Sampling using 
S&S Violations as Weights 

S&S Type Weight 

Yes, a S&S Violation 100 

Not a S&S Violation 3 

No Value 1 

 

Table 28: Model C.3 S&S Weights for Random Sampling 

     One feature that increased in feature importance for the model was SIG_SUB. This criterion 

was used when sampling, and it was the second most important feature in this model version. 

     The false negative rate for Fatal Accidents is improved but is still less than ideal. For the test 

set, 84.96% and 94.14% (Table 33). However, the model shows promise in the Non-Fatal 
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Accidents false negative rate of 66.85% and 32.08% (Table 32). When tuning the model, the 

false negative rate for non-fatal accidents values was sometimes better when sampling more of 

this accident class. This did not make it into final tuning because it worsened the fatal false 

negative rates. 

     The overall accuracy rate of this model has fallen to 73.35% for the validation set and 70.09% 

for the test set (Table 29). However, the improvements in predicting the sparse class of Non-fatal 

and Fatal Accidents is very important. The false positive rate for No Accidents is 54.29% and 

33.49% (Table 31). The test set has many more samples, so it looks like it may be even lower in 

practice. Balancing this with the false negative rate is critical. On the one hand, missing a Fatal 

Accident is a much worse outcome, so optimizing false negatives are important. However, overly 

sensitive models tend to erode user confidence in the model. In future work, achieving this 

balance would be important for a real-life model. 

   Another area of improvement for this model is random sampling. This introduces entropy on 

how the model is trained. Determining what separates good sampling from poor sampling to 

create a more static sampling function would be ideal. 

Model C.3 Sample Minimizing with Weights – Overview 
Set Earliest Inspection Latest Inspection Samples Mean Accuracy RMSE 

Train January 02, 2000 August 07, 2015 787,390 0.9978 0.0657 

Validate August 07, 2015 August 18, 2016 100,000 0.7335 0.6987 

Test August 18, 2016 October 08, 2020 390,301 0.7009 0.7418 

 
Table 29: Model C.3 Sample Minimizing with Weights Overview 
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Model C.3 Sample Minimizing with Weights – 
Performance 

Set Weighted 
Avg. Recall 

Weighted Avg. 
Precision 

Weighted 
Avg. F1 

Train 0.9978 0.9978 0.9978 
Validate 0.7335 0.9608 0.8285 

Test 0.7009 0.9676 0.8059 
 
Table 30: Model C.3 Sample Minimizing with Weights Performance Evaluation 

  Model C.3 Sample Minimizing with Weights – No Accident 
Data True Positive Rate True Negative Rate False Positive Rate False Negative Rate 

Train 0.9834 1.0000 0.0000 0.0166 
Validate 0.7440 0.4571 0.5429 0.2560 

Test 0.7043 0.6651 0.3349 0.2957 
 
Table 31: Model C.3 Sample Minimizing with Weights, No Accident Confusion Matrix 

Model C.3 Sample Minimizing with Weights - Non-fatal Accident 
Data True Positive Rate True Negative Rate False Positive Rate False Negative Rate 
Train 1.0000 0.9978 0.0022 0.0000 

Validate 0.3315 0.8161 0.1839 0.6685 
Test 0.6792 0.7865 0.2135 0.3208 

 
Table 32: Model C.3 Sample Minimizing with Weights, Non-fatal Accident Confusion 
Matrix 

Model C.3 Sample Minimizing with Weights - Fatal Accident 
Data True Positive Rate True Negative Rate False Positive Rate False Negative Rate 
Train 1.0000 0.9984 0.0016 0.0000 

Validate 0.1504 0.9262 0.0738 0.8496 
Test 0.0586 0.9177 0.0823 0.9414 

 
Table 33: Model C.3 Sample Minimizing with Weights, Fatal Accident Confusion Matrix 
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Training Confusion Matrix 

Validation Confusion Matrix Test Confusion Matrix 

Model C.3 Sample Minimizing with Weights Confusion 

Figure 13: Model C.3 Sample Minimizing with Weights Confusion Matrices 
Sample minimizing with Weights helps improve the false negative rate but increases false positives. 
Finding the appropriate balance is critical for real-world use of the model. 



76 

 

Chapter 5: Conclusion and Future Work 

     Creating a predictive machine learning model using random forests on MSHA violation and 

accident data is possible. Finding an ideal model to predict possible mining accidents based on 

violation data involves balancing many different factors. Identifying the best machine learning 

method, timescale, independent and dependent variables, and model hyperparmeters all are 

required to create a robust model that can be used by mining stakeholders. 

5.1 Model Feature Improvements 

     MSHA provides a great wealth of information on U.S. mines. Identifying additional 

predictive features and creating additional calculated features could be beneficial in improving 

model robustness and predictive capability. Identifying additional safety-values to predict could 

also improve the model. There are other MSHA values or calculated values that could be used to 

determine accident severity or type. For example, worker days lost incidence rates and MSHA 

inspector severity. Further exploring other potential values to predict would also be another 

possible future improvement. For example, SCHEDULE_CHARGE is only one of a few other 

MSHA fields that indicate severity of an accident. DAYS_LOST could also be a good candidate 

for predicting accident severity. Using them in conjunction could help create a more holistic 

model. 

     Possible future work would be exploring the smallest predictive number of features further 

and identifying additional predictive features, as MSHA has vast quantities of available 

candidate model feature data. Finding the smallest predictive number of features would give 

good insight into what parts of the data are most important. Certain thresholds on false positives 

and false negatives would also need to be established. This core of required features could then 
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be used as a baseline when adding in new features. Exploring new feature data could include 

adding in existing MSHA data, such as environmental samples, to attempt to improve the model. 

Other potentially useful data sources could include coal production amounts, publicly traded 

mining operator’s financial reports, and coal commodity trading prices.   

     Exploring models and features to predict accidents in small versus large, versus medium 

mines also would be valuable. A common trend in this area of research is that large mines have 

fewer accidents than small mines. Adding a variable that accurately indicates mine size would 

likely improve the model. One difficulty in using the MSHA mines overview data source, which 

has information such as number of employees and shifts, is that this data is only the current 

number of employees and does not track changes in operation size. Using other public data, such 

as SEC reports could be used to find past number of employees. Other data, such as MSHA’s 

employment production table, has yearly employee hours and production. Using this data could 

provide valuable insight to size-of-mine and how it impacts safety. 

5.2 Model Tuning Improvements 

     In this thesis, many potential models were presented that used different parameters and 

variables. The model with the most potential was Model C.3, which limited the number of 

features and narrowed down the predictive classes of accident types. The fatal accident false 

negative rate needs to be improved before this model could be put into use, as well as the no 

accident false positive rate. 

     For future work, improving Model C to limit false negatives and false positives is imperative. 

Using multiple models may be a solution to this issue. For example, creating multiple binary 

classification models to assist in violation categorization could be a possible way to improve 

these rates. These models would each have the options of no accident versus other outcomes, 
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non-fatal accidents versus other outcomes, and fatal accidents versus other outcomes. This could 

then be used to gain more granularity in a specific violation's risk. This approach would also 

offer further transparency to mining decision makers.  

     Testing other ideas for separating out models could improve performance too. For example, 

different models and features for large mines versus small mines and underground versus surface 

mines. The reasoning behind different models depending on mine size are that different features 

might be disproportionately important for smaller or larger mines. For example, it is likely that 

the price of coal will impact smaller mines more than large mines with the assumption that 

smaller mines will shut down or seriously curtail production at lower prices. Additionally, 

creating models based on certain accident categorizations could be of benefit. MSHA Accidents 

attributed to methane as an injury source are much more critical and severe than accidents 

attributed to sunburn, for example. Focusing on injury source or the nature of the injury the 

accident produces could also be of use. 

5.3 Model Improvements 

      Continuing to find alternate ways to increase the non-fatal and fatal accident signal relative to 

no accidents is also important for creating predictive models that do not simply predict the most 

common case, in this instance no accidents. As seen on some of the earlier models produced in 

this thesis, the model can appear predictive, but is in-fact only over predicting the most common 

case. Using the SIG_SUB (Significant and Substantial) column showed to be a good factor to 

weigh training on to increase the sparse class sample of an accident. There are other columns that 

could also be used to improve the signal. For example, the NEGLIGENCE or LIKILIHOOD 

column could also be used as a factor in selecting the training set values. Identifying especially 

important features could improve feature sampling. 
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     Additionally, presenting stakeholders with visualizations of the model would be imperative 

for real world use. Knowing how the model arrived at the solution is critical for building a usable 

solution. This could be achieved through drawing decision trees and how certain the model is at 

the answer. A workable tool needs to be transparent to users. Dashboards complete with 

visualizations such as histograms, line charts, and tables could be prepared for stakeholders to 

research potential issues before they occur. 

5.4 Identifying Top Mining Incidents 

     In the future, our work will also involve scanning the ultra-large MSHA data repository, 

which contains numerous tables, to create traceability among them and identify all the incidents 

that have occurred. This process will help us to determine the most frequently occurring and the 

most fatal incidents. We firmly believe that identifying the top incidents in the mining industry is 

crucial for several reasons.  

• Safety: The mining industry is inherently dangerous due to the nature of the work and the 

environment in which it takes place. Identifying the top incidents helps to identify the 

risks associated with mining operations, which can help to reduce the occurrence of 

accidents and injuries. 

• Compliance: Mining companies are required to comply with safety regulations and 

standards set by regulatory bodies. Identifying top incidents can help companies to 

understand which safety regulations they are failing to comply with and take measures to 

rectify this. 

• Reputation: Incidents in the mining industry can have a negative impact on a company's 

reputation. Identifying top incidents and taking measures to address them can help to 

improve a company's reputation and maintain stakeholder trust. 
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• Financial: Incidents in the mining industry can be costly in terms of damage to 

equipment, loss of production, and compensation claims. Identifying top incidents can 

help companies to take measures to reduce the financial impact of incidents. 

     Therefore, identifying top incidents as part of future work can help mining companies to 

comply with safety regulations, maintain their reputation, and reduce the financial impact of 

incidents. Thereby, enhancing safety and promoting best practices in the mining industry. 
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Appendix B: MSHA Violation Fields Used Data Definitions 

 

Violation Field MSHA Database Definition Description1 
 AMOUNT_DUE  "The current dollar value of the proposed 

assessment, reflecting any modifications that have 
been made since it was originally assessed." 

 AMOUNT_PAID  "The total dollar value of all payments applied to 
this proposed assessment to date." 

 ASMT_GENERATED_IND  "If the violator is an Operator or Contractor, the 
indicator is N.  If the violator is an Agent, the 
indicator is Y.  If the violator is a Miner, the 
indicator can be Y or N.  If none of the above, the 
indicator is ?" 

 CAL_QTR  "Calendar Quarter of the date the citation or order 
was issued by the MSHA inspector." 

 CAL_YR  "Calendar year during which the citation/order 
was issued by the MSHA inspector." 

 CIT_ORD_SAFE  "Specifies the type of Citation: Citation, Order, 
Safeguard, Written Notice or Notice." 

 COAL_METAL_IND_V  "Identifies if the record is for a Coal or 
Metal/Non-Metal mine." 

 CONTESTED_IND  "Indicates if this violation has been assessed and 
is being contested (Y or N)." 

 CONTRACTOR_ID  "Code identifying the contractor to whom the 
citation or order was issued. May contain null 
values if the contractor was not cited." 

 DOCKET_NO  "The Docket Number assigned by the Court to this 
group of Assessments being contested." 

 DOCKET_STATUS_CD  "Denotes the current status of this docket:  
Approved (approved by the court) or Proposed 
(not yet been approved by the court)." 

 ENFORCEMENT_AREA  "Specifies the enforcement areas affected by the 
violating condition or practice constitute a health 
hazard, safety hazard, both or other type of 
hazard. May contain null values." 

 FISCAL_QTR  "Fiscal Quarter of the date the citation or order 
was issued by the MSHA inspector." 

 FISCAL_YR  "Fiscal Year of the date the citation or order was 
issued by the MSHA inspector. MSHAs fiscal 
year begins October 1 and ends September 30." 

 

1 Feature description is provided by MSHA’s data definition file for the VIOLATIONS table [37]. 
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 INITIAL_VIOL_NO  "This is the preceding citation record when there 
is a need to relate a citation to a previous one. For 
example this would apply when an order follows a 
citation. This relationship is needed to calculate 
the good faith reduction penalty points." 

 INJ_ILLNESS  "Value assigned to a violation for gravity of 
injury. Measure of seriousness of violation being 
cited as measured by severity of the injury or 
illness to persons if accident were to occur due to 
the conditions of the violation:  Fatal, LostDays, 
NoLostDays or Permanent." 

 LAST_ACTION_CD  "Last action taken against this violation such as 
1stDemandPrinted, BillingReady, 
ApprovedforTreasury and Proposed." 

 LATEST_TERM_DUE_TIME  "Time by which the conditions cited on the 
citation/order are to be abated." 

 LIKELIHOOD  "This is a measure of the seriousness of the 
violation being cited as measured by the 
likelihood of the occurrence of an accident:  
Highly, NoLikelihood, Occurred, Reasonably or 
Unlikely. May contain null values if situation does 
not apply." 

 MINE_NAME  "Name of the mine where the violation was 
issued." 

 MINE_TYPE  "Mine type of the mine where the violation has 
been issued:  Facility, Surface or Underground." 

 NEGLIGENCE  "Codes representing the degree of negligence that 
the Inspector assigned to the violator due to the 
violation:  HighNegligence, LowNegligence, 
ModNegligence, NoNegligence or Reckless. A 
high degree of negligence is assigned when the 
operator was in a position to be aware of the 
condition that contributed to a dangerous situation 
and there were no mitigating circumstances, or if 
there are unique aggravating circumstances 
associated with the violation, such as repeated 
past violations of the same standard at the mine." 
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 NO_AFFECTED  "This is a measure of the number of persons 
affected or potentially affected by the conditions 
at the Mine due to the violation. Can be zero.'  ,  
NEGLIGENCE VARCHAR (20) COMMENT 
'Codes representing the degree of negligence that 
the Inspector assigned to the violator due to the 
violation:  HighNegligence, LowNegligence, 
ModNegligence, NoNegligence or Reckless. A 
high degree of negligence is assigned when the 
operator was in a position to be aware of the 
condition that contributed to a dangerous situation 
and there were no mitigating circumstances, or if 
there are unique aggravating circumstances 
associated with the violation, such as repeated 
past violations of the same standard at the mine." 

 ORIG_TERM_DUE_TIME  "Original time by which the cited condition was to 
be abated." 

 PART_SECTION  "Code of Federal Regulations: Part/section of 
Title 30 CFR violated in format PPSSSSSXXXX 
where (P) Part, (S) Section and (X) Suffix. Four-
digit section numbers are expanded to five within 
one leading zero. May contain null values." 

 PRIMARY_OR_MILL  "A code indicating if the Violation was observed 
in the Primary Mine location or in an associated 
Mill (Metal/Non-Metal only). May contain null 
values." 

 PROPOSED_PENALTY  "The original dollar value of the proposed penalty 
prior to any modifications such as those possibly 
resulting from a decision on a contested case." 

 REPLACED_BY_ORDER_NO  "Order number which replaced the original 
citation.  May contain null values if situation does 
not apply." 

 SECTION_OF_ACT  "Section of the Act under which the citation/order 
was issued. May contain null values." 

 SECTION_OF_ACT_1  "Primary Section of Act which gives the MSHA 
Inspector the authority to take the action specified 
by this Issuance.   More than one type of action 
may be cited." 

 SECTION_OF_ACT_2  "Secondary Section of Act which gives the 
MSHA Inspector the authority to take the action 
specified by this Issuance at Metal/Non-Metal 
mines only. More than one type of action may be 
cited." 
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 SIG_SUB  "An indicator as to whether or not the gravity is 
determined by the inspector to be significant and 
substantial. If this is Y, the inspector has indicated 
that based upon the particular facts surrounding 
the violation there exists a reasonable likelihood 
the hazard contributed to will result in an injury or 
illness of a reasonably serious nature." 

 SPECIAL_ASSESS  "Specifies whether this citation has been 
designated for Special Assessment based on 
Special Assessment Review (Y or N)." 

 TERMINATION_TIME  "Time of day (24 hour) at which the citation/order 
was terminated. May contain null values if 
citation has not yet been terminated." 

 TERMINATION_TYPE  "Code identifying the type of termination:  Issued, 
ReplacedByOrder or Terminated." 

 VACATE_TIME  "Time of day (24 hour) at which the citation/order 
was vacated. May contain null values if the 
violation was not vacated." 

 VIOLATION_ISSUE_TIME  "Time (24 hour) the citation or order was issued 
by the MSHA inspector." 

 VIOLATOR_INSPECTION_DAY_CNT  "Total number of assessed violations for this 
violator at this time during the violation history 
period. Used in penalty calculation. Applies to an 
Operator or a Contractor." 

 VIOLATOR_NAME  "Name of the operator active at the time the 
violation was cited. May contain null values if this 
record pertains to a violation issued to a 
contractor." 

 VIOLATOR_TYPE_CD  "Each Violator record represents an entity 
(Operator, Contractor, Agent or Miner) that has 
one or more violations at a mine." 

 VIOLATOR_VIOLATION_CNT  "Total number of assessed violations for this 
violator at this time during the violation history 
period. Used in penalty calculation. Applies to an 
Operator or a Contractor." 

 WRITTEN_NOTICE  "Indicates if this citation is a result of a Miner or 
Agent notice of complaint to MSHA (written 
notice 103(g)):  (Y  or N). May contain null 
values." 

CONTROLLER_NAME  "Name of the controller active at the time the 
violation was cited. May contain null values if this 
record pertains to a violation issued to a 
contractor." 
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Datetime Violation Field MSHA Database Definition Description2 
BILL_PRINT_DT "Date the bill was printed. This date always represents the first time 

the bill was printed." 
CONTESTED_DT "Date of the most recent docket status for this violation." 

FINAL_ORDER_ISSUE_DT "Date that this assessment becomes a Final Order. This date is set 
when the Certified Return Receipt date (CRR) is set. Note that this can 
be a projected future date that is set as soon as the CRR is entered." 

INSPECTION_BEGIN_DT "Start date of the inspection (mm/dd/yyyy)." 
INSPECTION_END_DT "Inspection close out date (mm/dd/yyyy)" 
LAST_ACTION_DT "Date the last action taken against this violation." 
LATEST_TERM_DUE_DT "Date by which the conditions cited in the citation/order are to be 

abated. For Metal mines, this can be the termination due date to which 
the citation/order is extended." 

ORIG_TERM_DUE_DT "Original date by which the cited condition was to be abated. Original 
time by which the cited condition was to be abated." 

RIGHT_TO_CONF_DT "Date the operator was advised of his right to a conference 
(Metal/Non-Metal only). May contain null values." 

TERMINATION_DT "Date on which the citation/order was terminated. May contain null 
values if citation has not yet been terminated." 

VACATE_DT "Date on which the citation/order was vacated. May contain null 
values if the violation was not vacated." 

VIOLATION_ISSUE_DT "Date the citation or order was issued by the MSHA inspector." 

VIOLATION_OCCUR_DT "Actual date of occurrence of the violation." 
 

  

 

2 Feature description is provided by MSHA’s data definition file for the VIOLATIONS table [37]. 
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Appendix C: Acronymns 

 

CART Classification and Regression Tree 

conda Anaconda Python Environment Management 

CSV Comma Separated Values 

DoL U.S. Department of Labor 

IIoT Industrial Internet of Things 

IoT Internet of Things 

IPython Interactive Python 

matplotlib Matplot Library 

Mine Act The Federal Mine Safety and Health Act of 1977 

MSE Mean Squared Error 

MSHA U.S. Mine Safety and Health Association 

NaN Not a number in computing 

NaT Not a time in computing 

NIOSH U.S. National Institute for Occupational Safety and Health 

numpy Numerical Python 

pandas Python Data Analysis Library 

POV MSHA Pattern of Violations 

R2 R-squared or coefficient of determination 

RA (Citation-related) Reliability Analysis 

RMSE Root Mean Squared Error 

S&S Significant and Substantial MSHA Violation 
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scikit-learn Scikit Learn 

SEC U.S Securities and Exchange Commission 

SM Severity Measure 
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