
BAB III METODE PENELITIAN

3.1. Desain Penelitian

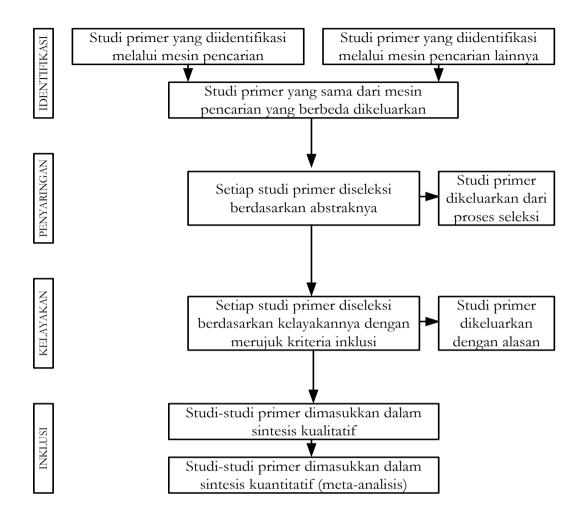
Metode yang digunakan dalam penelitian ini adalah Meta-analisis. Beberapa literatur mengungkapkan bahwa meta-analisis merupakan serangkaian metode sintesis dari sejumlah studi-studi primer yang relevan dengan pendekatan kuantitatif untuk mengestimasi dan menguji kekuatan hubungan antara dua variabel atau lebih (Borenstein dkk., 2009; Cleophas & Zwinderman, 2017; Cumming, 2012; Mike & Cheung, 2015). Shelby dan Vaske (2008) mengungkapkan bahwa meta-analisis memiliki keunggulan berupa memberikan bukti yang kuat dalam penolakan signifikan dan memberikan metodelogi yang ketat dalam proses sintesis. Model efek acak (*random effect model*) dipilih sebagai model efek estimasi dalam studi meta-analisis ini karena level pendidikan partisipan, demografi partisipan, konten matematika yang digunakan, dan intrumen (*self-efficacy*, penalaran serta pemecahan masalah matematis) yang digunakan berbeda-beda dari setiap studi primer (Borenstein dkk., 2009). Beberapa literatur seperti: Cooper dkk. (2013) dan Hunter dan Schmidt (2004) mengungkapkan bahwa meta-analisis sebagai metode, terdiri dari tujuh tahapan, yaitu:

- 1. Mendefinisikan masalah penelitian;
- 2. Menetapkan kriteria inklusi;
- 3. Menentukan strategi pencarian dokumen;
- 4. Menyeleksi data primer;
- 5. Mengekstraksi dan mengkoding data;
- 6. Menganalisis data;
- 7. Menginterpretasi dan membuat laporan.

Tahapan studi meta-analisis tersebut disajikan pada Gambar 3.1.

ambar 3.1. Tahapan Studi Meta-Analisis

3.2. Kriteria Inklusi


Masalah perbedaan hasil studi dan heterogenitas dari hubungan antara *self-efficacy* dan kemampuan penalaran serta pemecahan masalah matematis masih sangat luas dan umum. Sebagai akibatnya, studi-studi primer yang dilibatkan dalam meta-analisis ini perlu dibatasi dengan kriteria inklusi agar hasil analisis dan sintesis yang diperlu lebih fokus, spesifik, mendalam dan rinci. Kriteria inklusi dalam studi meta-analisis ini adalah sebagai berikut:

- 1. Jenis penelitian dalam studi primernya merupakan penelitian non-eksperimen dan eksperimen dengan desain korelasional.
- 2. Partisipan yang dilibatkan dalam studi primernya adalah siswa atau mahasiswa dari jenjang pendidikan sekolah dasar hingga perguruan tinggi di Indonesia.
- 3. Studi primernya dipublikasikan dalam dua tipe dokumen, yaitu: artikel jurnal dan artikel prosiding yang ditulis dalam bahasa Indonesia atau bahasa Inggris.
- Studi primernya dipublikasikan pada tahun 2015 2022 dan terindeks Google Scholar.
- 5. Studi primernya melaporkan data statistik yang lengkap untuk menghitung ukuran efek seperti: koefesien korelasi (r) dan ukuran sampel (N).

Beberapa kriteria inklusi tersebut digunakan untuk memfokuskan dalam pencarian dan penyeleksian studi primer (dokumen).

3.3. Pencarian dan Penyeleksian Studi Primer

Pencarian studi primer hanya dilakukan secara elektronik atau online. Beberapa database atau mesin pencarian seperti: Google scholar dan Semantic scholar digunakan untuk mencari dokumen. Beberapa kombinasi kata kunci seperti: "self-efficacy" atau "efikasi diri" dan "kemampuan penalaran matematis" atau "mathematical reasoning skills/ability" serta "kemampuan pemecahan masalah matematis" atau "mathematical problem-solving skills/ability" digunakan untuk mempermudah pencarian dokumen pada mesin pencarian. Dokumen-dokumen yang diperoleh akan diseleksi dengan merujuk pada PRISMA (Preferred Reporting Items for Systematic Review and Meta-Analysis) (Moher dkk., 2009). Tahapan dari seleksi dokumen disajikan pada Gambar 3.2.

Gambar 3.2. Tahapan Seleksi Dokumen

3.4. Ekstraksi dan Koding Data

Dokumen-dokumen yang telah memenuhi kriteria inklusi dan melalui tahapan seleksi, dokumen diekstrak dan dikoding ke dalam beberapa data yang akan digunakan dalam proses meta-analisis, proses pengkodingan dilakukan menggunakan protokol skema koding. Data tersebut dimasukkan ke dalam lembar koding yang berisi: kode, nama penulis, angka statistik, jenjang pendidikan, letak geografis, konten matematika, tipe dan tahun publikasi, nama jurnal atau prosiding, penerbit, database/mesin pencarian, email, dan link unduh dokumen. Secara rinci protocol skema koding disajikan pada Tabel 3.1.

Tabel 3.1. Protokol Skema Koding

No.	Item	Protokol Skema Koding Deskripsi			
1.	Kode	Kode setiap studi primer disimbolkan dengan satu huruf kapital			
		dan diikuti dengan bilangan secara berurutan, misalnya: A01,			
		A02 dan seterusnya. Studi primer merupakan artikel-artikel yang			
		dijadikan sebagai subjek penelitian dalam studi meta-analisis.			
2.	Sitasi	Jika studi primer terdiri dari satu atau dua orang penulis maka			
		tuliskan nama akhir dari masing-masing penulis tersebut beserta			
		tahun publikasinya. Misalnya: Haerani, 2021 atau Haerani &			
		Diana, 2021. Jika studi primer terdiri dari tiga orang atau lebih			
		maka cukup tuliskan nama akhir dari penulis pertama dan			
		singkatan dari dan kawan-kawan (dkk.) berserta tahun			
		publikasinya. Misalnya: Haerani dkk., 2021. Jika suatu studi			
		primer menghasilkan lebih dari satu ukuran efek maka			
		tambahkan urutan abjad dibelakang tahun publikasi. Misalnya:			
		Haerani, 2021a; Haerani, 2021b; dan seterusnya.			
3.	Data	Data statistik merupakan data yang digunakan untuk menentukan			
	Statistik	ukuran efek (effect size). Data statistik yang digunakan dapat			
		berupa kombinasi berikut:			
		Rata-rata, Simpangan Baku, dan Ukuran Sampel			
		Ukuran Sampel dan t-value			
		Ukuran Sampel dan p-value			
		Data statistik tersebut diperoleh dari hasil statistik deskriptif, uji-			
		t, ANOVA, atau uji-F.			
4.	Ukuran	Ukuran sampel merupakan banyaknya partisipan (siswa atau			
	Sampel	mahasiswa) yang dilibatkan dalam penelitian. Ukuran sampel			
		terdiri dari dua kategori, yaitu: ukuran sampel yang kurang atau			
		sama dengan 30 (≤30) partisipan atau ukuran sampel yang lebih			
		dari 30 (>30) partisipan.			

Jenjang pendidikan merupakan tingkat atau level pendidikan 5. Jenjang Pendidikan partisipan. Jenjang pendidikan terdiri dari lima kategori, yaitu Sekolah dasar (SD)/ Madarsah Ibtidaiyah (MI), Sekolah Menengah Pertama (SMP)/ Madrasah Tsanawiyah (MTs), Sekolah Menengah Atas (SMA)/ Madrasah Aliyah (MA), Sekolah Menengah Kejuruan (SMK), atau Perguruan Tinggi (PT). **Tempat** Tempat penelitian merupakan tempat dilakukannya proses 6. Penelitian penelitian. Tempat penelitian diukur dalam bentuk satuan gugusan pulau besar di Indonesia. Tempat penelitian terdiri dari 7 kategori, yaitu: Sumatera, Jawa, Kalimantan, Sulawesi, Bali dan Nusa Tenggara, Maluku, atau Papua. 7. Konten Konten matematika merupakan domain matematika yang Matematika dijadikan topik/materi dalam tes kemampuan penalaran serta matematis. Konten pemecahan masalah matematika dikelompokkan menjadi beberapa kategori yang ditemukan dalam proses pencarian data, berikut beberapa contoh konten matematika yang dapat ditemukan: aljabar, geometri, bilangan & operasi, pengukuran, dan data analisis & peluang (NCTM, 2000), serta konten gabungan. 8. Pengindeks Pengindeks yang dimaksud adalah pengindeks jurnal atau prosiding dari studi primer. Pengindeks jurnal atau prosiding terdiri dari empat kategori, yaitu Scopus, Web of Science/ Thompson Routers, Sinta, atau Google Scholar. Jika suatu jurnal atau prosiding terindeks oleh dua atau lebih pengindeks maka pengindeksnya merupakan pengindeks yang paling kredibel. Misalnya: suatu jurnal terindeks oleh Scopus dan Sinta maka pengindeks ditetapkan adalah Scopus. Jika jurnal terindeks Scopus atau Sinta maka berikan keterangan level kuartilnya atau level sintanya, misalnya: Scopus (Q1) atau Sinta 1.

9.	Tahun	Tahun publikasi merupakan tahun dipublikasikannya suatu
	Publikasi	artikel dalam jurnal atau prosiding. Tahun publikasi ditulis
		pertahun dan tidak dibuat interval. Misalnya: 2019, 2020, 2021,
		2022 atau 2023.
10.	Tipe	Tipe publikasi merupakan bentuk publikasi dari suatu artikel
	Publikasi	yang terpublikasi. Tipe publikasi terdiri dari dua kategori, yaitu:
		jurnal atau prosiding.
11.	Nama	Nama jurnal ditulis sesuai nama asli di websitenya, misalnya:
	Jurnal atau	Journal on Mathematics Education. Nama prosiding ditulis sesuai
	Prosiding	nama seminar/konferensi, misalnya: International Conference on
		Mathematics and Science Education.
12.	Penerbit	Penerbit dari jurnal atau prosiding merupakan
		perusahaan/company group, komunitas, lembaga/instansi, atau
		perguruan tinggi. Misalnya: Universitas Pendidikan Indonesia,
		LIPI, atau Indonesian Mathematics Society.
13.	Database	Database merupakan mesin pencarian studi primer. Database
		dapat berupa Google Scholar, Semantic Scholar, ERIC, DOAJ,
		IOP Science, AIP Proceeding, Atlantis Press, atau lainnya.
14.	Email	Email yang dimaksud adalah alamat email dari corresponding
		author. Misalnya: agushaerani@upi.edu
15.	Link	Link penelusuran merupakan alat untuk menelusuri studi primer
	Penelusuran	yang diperoleh. Link penelusuran diutamakan dalam bentuk DOI
		(Digital Object Identifier). Namun jika sulit ditemukan maka
		dapat berbentuk URL, misalnya:
		https://jurnal.untirta.ac.id/index.php/wilangan/article/view/7971.

Pengkode independen tersebut diberikan protokol skema koding yang berfungsi untuk memberikan deskripsi atau ilustrasi dari item-item data pada lembar koding seperti pada Tabel 3.1. Protokol skema koding tersebut merupakan instrumen yang digunakan dalam studi meta-analisis ini, dimana protokol tersebut disusun dan divalidasi secara teoritis oleh ahli dalam studi meta-analisis. Adapun instrumen validasi disajikan pada Tabel 3.2.

Tabel 3.2. Instrumen Validasi Skema Coding

	mistrumen vanuasi sko				nila			Catatan (Saran/
No	Aspek	Item		2	3	4	5	Rekomendasi)
1	Bahasa	Setiap item protokol skema koding dideskripsikan ditulis dengan kalimat yang sederhana, jelas dan mudah dipahami oleh pengkoding Setiap item protokol skema koding dideskripsikan dengan bahasa yang sesuai dengan kaidah penulisan bahasa Indonesia						
2	Isi/ Konten	Protokol skema koding terdiri dari item dan deskripsi. Setiap item dalam protokol skema koding dideskripsikan masingmasing yang disertai dengan ilustrasi atau contoh.						

Data tersebut diekstrak dari setiap dokumen ke lembar koding dengan menggunakan bantuan Microsoft Excel. Lembar koding tersebut dikembangkan sesuai dengan kebutuhan studi meta-analisis ini dimana lembar koding tersebut sangat membantu pengkoding (coder) dalam mengkoding data dari setiap dokumen (Dalyar & Demirel, 2015). Hasil data yang diekstrak tersaji dalam lembar koding seperti pada Tabel 3.3.

Tabel 3.3. Ekstraksi Data pada Lembar Koding oleh Peneliti

	Bilistrumsi Buttu p		110000	,,,,,,,	*******	
		Da	ıta Statistik	Correlation		
Kode	Sitasi	r-	p-value	n	Test	Sample
		value				
A01	Jatisunda, 2017	0.645		30	Pearson	<= 30
A02	Amalia dkk., 2018	0.408	0.023	31	Pearson	>30
A03	Yuliyani dkk., 2017	0.983		60	Pearson	>30
A04	Widiastuti dkk., 2018	0.002	0.991	36	Pearson	>30
A05	Zamnah, 2019	0.602		38	Spearman	>30
A06	Afifah dkk., 2020	0.221		34	Regression	>30
A07	Agumuharram & Soro, 2021	0.407		54	Regression	>30
A08	Pratiwi dkk., 2019	0.877		100	Pearson	>30
A09	Almika, 2021	0.545		100	Pearson	>30
A10	Somawati, 2018	0.983		60	Pearson	>30
A11	Nurseha & Apiati, 2019	0.57		32	Pearson	>30

A12	Utami & Wutsqa, 2017	0.104		389	Pearson	>30
A13	Khotimah dkk., 2020	0.276		108	Regression	>30
A14	Ma'rufi dkk., 2020	0.564		127	Pearson	>30
A15	Firmanti dkk., 2021	0.0094		34	Pearson	>30
A16	Fatmawati & Maryam, 2021	0.67		150	Pearson	>30
A17	Sari dkk, 2022	0.623		74	Regression	>30
A18	Padang dkk, 2022	0.0648		26	Pearson	<=30
A19	Islamiyah dkk, 2022	0.975		75	Pearson	>30
A20	Aprisal & Arifin, 2020	0.556		132	Pearson	>30
A21	Himmi, 2017	0.081	0.644	35	Pearson	>30
A22	Hadiat & Karyati, 2019	0.041		362	Regression	>30
A23	Profitasari dkk., 2020	0.3222		30	Pearson	<=30
A24	Umaroh dkk., 2020	0.2848		158	Pearson	>30
A25	Akuba dkk., 2020	0.425		75	Pearson	>30
A26	Sanhadi, 2015	0.942		328	Pearson	>30
A27	Rizkiah, 2022	0.291		68	Pearson	>30
A28	Santosa & Bahri, 2022	0.148		75	Regression	>30
A29	Lestari dkk, 2022	0.182		125	Pearson	>30
A30	Amaliyah dkk, 2022	0.972		92	Regression	>30

Lanjutan

	.) (T. C.	77 . 37	D ' 11
Kode	Jenjang	Tempat Penelitian	MLO	Konten Matematika	Pengindeks
A01	JHS	Pedesaan	MPSS	Konten Gabungan	Sinta 5
A02	JHS	Perkotaan	MPSS	Konten Gabungan	Sinta 4
A03	SHS	Metropolitan	MPSS	Kombinatorika	Sinta 2
A04	JHS	Pedesaan	MPSS	Aritmatika Sosial	Sinta 3
A05	SHS	Pedesaan	MPSS	Konten Gabungan	Sinta 3
A06	JHS	Pedesaan	MPSS	Konten Gabungan	Google Scholar
A07	SHS	Metropolitan	MPSS	Trigonometri	Sinta 3
A08	SHS	Perkotaan	MPSS	Konten Gabungan	Sinta 4
A09	College	Perkotaan	MPSS	Konten Gabungan	Google Scholar
A10	SHS	Metropolitan	MPSS	Konten Gabungan	Google Scholar
A11	JHS	Pedesaan	MPSS	Konten Gabungan	Google Scholar
A12	JHS	Pedesaan	MPSS	Konten Gabungan	Sinta 2
A13	JHS	Perkotaan	MPSS	Aritmatika Sosial	Google Scholar
A14	SHS	Pedesaan	MPSS	Program Linier	Google Scholar
A15	SHS	Pedesaan	MPSS	Program Linier	Google Scholar
A16	College	Perkotaan	MPSS	Konten Gabungan	Google Scholar
A17	JHS	Perkotaan	MPSS	Konten Gabungan	Google Scholar
A18	SHS	Pedesaan	MPSS	Program Linier	Google Scholar
A19	JHS	Perkotaan	MPSS	Konten Gabungan	Google Scholar
A20	JHS	Pedesaan	MRS	Konten Gabungan	Sinta 4
A21	College	Metropolitan	MRS	Trigonometri	Sinta 5
A22	SHS	Pedesaan	MRS	Konten Gabungan	Sinta 2
A23	JHS	Pedesaan	MRS	Konten Gabungan	Google Scholar
A24	JHS	Pedesaan	MRS	Konten Gabungan	Google Scholar
A25	ES	Metropolitan	MRS	Konten Gabungan	Google Scholar
A26	JHS	Perkotaan	MRS	Lingkaran	Google Scholar
A27	JHS	Metropolitan	MRS	Pythagoras	Google Scholar
A28	SHS	Perkotaan	MRS	Limit	Sinta 4
A29	SHS	Perkotaan	MRS	Konten Gabungan	Sinta 5
A30	SHS	Pedesaan	MRS	Konten Gabungan	Sinta 5

Lanjutan

Kode	Tahun	Tipe Publikasi	Nama Jurnal atau Prosiding
A01	2017	Journal	Jurnal Theorems
A02	2018	Journal	Jurnal Pembelajaran Matematika Inovatif
A03	2017	Journal	Jurnal Ilmiah Pendidikan Matematika
A04	2018	Journal	Jurnal Math Educator Nusantara (JMEN)
A05	2019	Journal	Daya Matematis: Jurnal Inovasi Pendidikan Matematika
A06	2020	Journal	Jurnal Pemikiran dan Penelitian Pendidikan Matematika
A07	2021	Journal	Jurnal Cendekia : Jurnal Pendidikan Matematika
A08	2019	Journal	Jurnal Kajian Pendidikan Matematika
A09	2021	Journal	Jurnal Pendidikan Tambusai
A10	2018	Journal	Jurnal Ilmiah Pendidikan Matematika
A11	2019	Proceeding	Prosiding Seminar Nasional Prodi Magister Pend. Math UNSIL
A12	2017	Journal	Jurnal Riset Pendidikan Matematika
A13	2017	Journal	JurnaL Edukasi dan Sains
A14	2020	Proceeding	Prosiding ICREAST
A15	2021	Journal	Jurnal of Mathematics Education and Applied
A16	2021	Journal	Psyche 165 Journal
A17	2022	Journal	Jurnal Ilmu Pendidikan dan Sosial
A18	2022	Journal	Jurnal Koloni
A19	2022	Proceeding	Prosiding SNAPMAT
A20	2020	Journal	Delta: Jurnal Ilmiah Pendidikan Matematika
A21	2017	Journal	Phytagoras: Jurnal Program Studi Pendidikan Matematika
A22	2019	Journal	Jurnal Riset Pendidikan Matematika
A23	2020	Journal	EKUIVALEN - Pendidikan Matematika
A24	2020	Journal	Wilangan: Jurnal Inovasi dan Riset Pendidikan Matematika
A25	2020	Journal	Jurnal Nasional Pendidikan Matematika
A26	2015	Proceeding	Seminar Nasional Matematika dan Pendidikan Matematika
A27	2022	Journal	Delta: Jurnal Ilmiah Pendidikan Matematika
A28	2022	Journal	Journal of Didactic Mathematics
A29	2022	Journal	Jurnal Didactical Mathematics
A30	2022	Journal	Jurnal Eduscience (JES)

Proses ekstraksi data melibatkan dua pengkode independen yang ahli dalam studi meta-analisis dengan tujuan untuk memverifikasi dan menjamin bahwa data yang telah dikoding oleh peneliti adalah valid dan kredibel (Vevea dkk., 2019). Data hasil ekstraksi oleh pengkoding 1 dan pengkoding 2 dari item-item coding ditransformasi menjadi data numerik dengan ketentuan yang tersaji pada Tabel 3.4.

Tabel 3.4.
Protokol Transformasi Data Hasil Ekstraksi ke Data Numerik

TIOTORO	Transformasi Data Trasii Ekstraksi ke Data Tranierik
Item	Deskripsi Transformasi Menjadi Data Numerik
Kode	Data hasil ekstraksi oleh pengkoding 1 dan pengkoding 2 dari
Sitasi	item-item disamping ditransformasi menjadi data numerik
Data Statistik	dengan ketentuan sebagai berikut:

m 1	
Tahun Publikasi	* 1, jika data tersebut sama atau sesuai dengan data hasil
Nama Jurnal/Prosiding	ekstraksi peneliti.
Penerbit	* 0, jika data tersebut tidak sama atau tidak sesuai dengan
Email	data hasil ekstraksi peneliti.
Link Penelusuran	
	Data hasil ekstraksi oleh pengkoding 1 dan pengkoding 2 dari
	item disamping ditransformasi menjadi data numerik dengan
Ukuran Sampel	ketentuan sebagai berikut:
	* 1, Jika ukuran sampel 30 atau kurang
	* 2, Jika ukuran sampel 31 atau lebih
	Data hasil ekstraksi oleh pengkoding 1 dan pengkoding 2 dari
	item disamping ditransformasi menjadi data numerik dengan
	ketentuan sebagai berikut:
Jenjang Pendidikan	* 1, Jika SD/ Sederajat
	* 2, Jika SMP/ Sederajat
	* 3, Jika SMA/ Sederajat
	* 4, Jika PT
	Data hasil ekstraksi oleh pengkoding 1 dan pengkoding 2 dari
	item disamping ditransformasi menjadi data numerik dengan
Letak Geografis	ketentuan sebagai berikut:
Sekolah	* 1, Jika Metropolitan
	* 2, Jika Perkotaan
	* 3, Jika Pedesaan
	Data hasil ekstraksi oleh pengkoding 1 dan pengkoding 2 dari
	item disamping ditransformasi menjadi data numerik dengan
	ketentuan sebagai berikut:
	* 1, Jika Aljabar
Konten Matematika	* 2, Jika Geometri
	* 3, Jika Kalkulus
	* 4, Jika Kombinatorika
	* 5, Jika Trigonometri
	* 6, Jika Konten Gabungan
	<u> </u>
Dangindalta	Data hasil ekstraksi oleh pengkoding 1 dan pengkoding 2 dari
Pengindeks	item disamping ditransformasi menjadi data numerik dengan
	ketentuan sebagai berikut:

	* 1, Jika Scopus
	* 2, Jika Web of Science/ Thompson Routers
	* 3, Jika Sinta
	* 4, Jika Google Scholar
	Data hasil ekstraksi oleh pengkoding 1 dan pengkoding 2 dari
	item disamping ditransformasi menjadi data numerik dengan
Tipe Publikasi	ketentuan sebagai berikut:
	* 1, Jika Prosiding
	* 2, Jika Jurnal
-	Data hasil ekstraksi oleh pengkoding 1 dan pengkoding 2 dari
	item disamping ditransformasi menjadi data numerik dengan
	ketentuan sebagai berikut:
Database	* 1, Jika Semantic Scholar
	* 2, Jika Google Scholar
	* 3, Jika DOAJ
	* 4, Jika ERIC
	Data hasil ekstraksi oleh pengkoding 1 dan pengkoding 2 dari
	item-item disamping ditransformasi menjadi data numerik
	dengan ketentuan sebagai berikut:
Kode	* 1, jika data tersebut sama atau sesuai dengan data hasil
	ekstraksi peneliti.
	* 0, jika data tersebut tidak sama atau tidak sesuai dengan
	data hasil ekstraksi peneliti.

Banyaknya studi primer terkait hubungan antara *self-efficacy* siswa dan kemampuan penalaran serta pemecahan masalah matematis dengan kriteria inklusi yang ditetapkan secara keseluruhan tidak diketahui secara pasti. Sebagai akibatnya, teknik transformasi Arctanh Fisher digunakan untuk menentukan banyaknya sampel (dokumen) yang dilibatkan dalam studi meta-analisis ini (Martadiputra, 2018). Langkah-langkah dalam melakukan transformasi arctanh Fisher sebagai berikut: (1) menentukan harga koefisien korelasi (ρ) terkecil antara variabel bebas dan variabel terikat, (2) menentukan taraf signifikansi (α) dan kuasa uji (1 – β), (3) menghitung nilai $Z_{1-\alpha}$ dan $Z_{1-\beta}$, dan (4) menentukan ukuran sampel (dokumen) secara iteratif dengan tahapan sebagai berikut:

Iterasi I

$$n = \frac{(Z_{1-\alpha} + Z_{1-\beta})^2}{U_0^2} + 3.$$
 (3.1)

dengan

$$U_{\rho} = \frac{1}{2} \ln \left(\frac{1+\rho}{1-\rho} \right). \tag{3.2}$$

Iterasi II

$$n = \frac{(Z_{1-\alpha} + Z_{1-\beta})^2}{U_0^2} + 3.$$
 (3.1)

dengan

$$U_{\rho} = \frac{1}{2} \ln \left(\frac{1+\rho}{1-\rho} \right) + \frac{\rho}{2(n-1)}.$$
 (3.3)

Semua dokumen dilibatkan dalam proses ekstraksi data yang dilakukan oleh pengkode. Pemilihan studi primer yang diekstrak dilakukan dengan cara sampling total.

Hasil kodingan yang dikerjakan oleh para pengkode diukur konsistensi dengan menggunakan uji reliabilitas koding. Besarnya tingkat konsistensi dari hasil kodingan antara pengkode dan peneliti mengindikasikan bahwa data yang diekstrak dari setiap dokumen ke lembar koding yang telah dilakukan oleh peneliti adalah valid dan kredibel (Suparman dkk., 2021). Uji reliabilitas koding yang digunakan adalah uji Kappa Cohen karena untuk memverifikasi validitas dan kredibilitas data, studi meta-analisis ini hanya melibatkan dua pengkode (Cooper dkk., 2013). McHugh (2012) mengajukan perhitungan Kappa Cohen dengan menggunakan rumus sebagai berikut:

$$\kappa = \frac{\Pr(a) - \Pr(e)}{1 - \Pr(e)}.$$
(3.4)

dimana Pr(a) merupakan persetujuan terobservasi yang baru (*actual observed agreement*) dan Pr(e) merupakan persetujuan kesempatan (*chance agreement*). Selanjutnya, nilai Kappa Cohen yang diperoleh diinterpretasikan dengan menggunakan klasifikasi Kappa Cohen, yaitu: $\kappa = 0.00 - 0.20$ (tidak ada), $\kappa = 0.21 - 0.39$ (minimal), $\kappa = 0.40 - 0.59$ (lemah), $\kappa = 0.60 - 0.79$ (sedang), $\kappa = 0.80 - 0.90$ (kuat), dan $\kappa > 0.90$ (sempurna) (McHugh, 2012).

3.5. Analisis Data

Setelah serangkaian prosedur meta-analisis dilakukan mulai dari mendefinisikan masalah penelitian, menetapkan kriteria inklusi, menentukan strategi pencarian dokumen, menyeleksi data primer, mengekstraksi dan mengkoding data, selanjutnya data primer dianalisis dengan berbantuan *Comprehensive Meta-Analysis (CMA) software* sehingga hasilnya dapat diinterpretasi dan dibuat laporan terkait bias publikasi dan ukuran efek dari hubungan antara *self-efficacy* dan kemampuan penalaran serta pemecahan masalah matematis, selain itu juga laporan yang disusun memuat informasi tentang variabel-variabel moderator potensial yang diuji dalam studi meta-analisis ini.

3.5.1 Bias Publikasi

Data statistik seperti koefesien korelasi r cenderung terhadap bias. Sebagai akibatnya, analisis bias publikasi sangat penting dilakukan untuk menjustifikasi bahwa data statistik yang dilibatkan dalam studi meta-analisis ini tahan terhadap bias publikasi. Beberapa analisis seperti: analisis plot corong (*funnel plot*) dan uji fail-safe N Rosenthal digunakan untuk menjustifikasi bahwa data ukuran efek dalam unit korelasi r atau z Fisher yang dilibatkan dalam studi meta-analisis ini tahan terhadap bias publikasi (Rothstein dkk., 2005).

3.5.2 Ukuran Efek

Sejak distribusi koefesien korelasi terutama korelasi Pearson cenderung untuk terjadi ketidaknormalan sehingga setiap koefesien korelasi antara *self-efficacy* dan kemampuan penalaran serta pemecahan masalah matematis harus dinormalisasi dengan menggunakan transformasi Fisher (Borenstein dkk., 2009). Transformasi koefesien korelasi r ke z Fisher diformulasikan sebagai berikut:

$$z = 0.5 \times \ln\left(\frac{1+r}{1-r}\right). \tag{3.4}$$

Rangkuman berupa rata-rata dari ukuran efek, interval kepercayaan, dan lainnya yang dalam z Fisher dikonversikan kembali kedalam unit korelasi r dengan persamaan sebagai berikut:

$$r = \frac{e^{2z} - 1}{e^{2z} + 1}. (3.5)$$

Klasifikasi ukuran efek secara keseluruhan dalam unit korelasi r disajikan pada Tabel 3.5 sebagai berikut (Taylor, 1990):

Tabel 3.5. Klasifikasi Ukuran Efek

r	Kategori
0,00 – 0,35	hubungan yang lemah
0,36 – 0,67	hubungan yang sedang
0,68 – 0,89	hubungan yang kuat
0,90 – 1,00	hubungan yang sangat kuat

Selain itu, uji Z digunakan untuk menguji signifikansi dari hubungan antara *self-efficacy* dan kemampuan penalaran serta pemecahan masalah matematis (Borenstein dkk., 2009).

3.5.3 Variabel Moderator

Kekuatan hubungan antara *self-efficacy* dan kemampuan penalaran serta pemecahan masalah matematis yang heterogeny dapat disebabkan oleh beberapa variabel moderator yang potensial (Lipsey & Wilson, 2001). Variabel-variabel moderator tersebut secara tidak langsung berperan dalam memoderasi hubungan antara *self-efficacy* dan kemampuan penalaran atau pemahaman masalah matematis. Sebagai akibatnya, variabel-variabel moderator yang potensial tersebut perlu diuji signifikansi perannya terhadap heterogenitas dari kekuatan hubungan antara *self-efficacy* dan kemampuan penalaran serta pemecahan masalah matematis. Uji Q Cochrane digunakan untuk menguji signifikansi dari peran variabel-variabel moderator tersebut terhadap heterogenitas dari kekuatan hubungan antara *self-efficacy* dan kemampuan penalaran serta pemecahan masalah matematis. (Higgins dkk., 2003). Variabel-variabel moderator potensial yang diuji dalam studi metanalisis ini adalah sebagai berikut:

1. Ukuran Sampel

Ukuran sampel yang dimaksud dalam studi meta-analisis ini adalah jumlah partisipan yang dilibatkan dalam penelitian dalam masing-masing studi primer.

Variabel ukuran sampel dikelompokkan menjadi dua grup, yaitu kurang dari sama dengan tiga puluh (\leq 30) dan lebih dari tiga puluh (> 30).

2. Jenjang Pendidikan

Jenjang pendidikan yang dimaksud dalam studi meta-analisis ini adalah jenjang pendidikan dari partisipan yang dilibatkan dalam studi primer yang berupa siswa atau mahasiswa. Variabel jenjang pendidikan dikelompokkan menjadi empat grup, yaitu: Sekolah Dasar/Madrasah Ibtida'iyah, Sekolah Menengah Pertama/Madrasah Tsanawiyah, Sekolah Menengah Atas/Sekolah Menengah Kejuruan/Madrasah Aliyah, dan Sekolah Tinggi/Institut/Universitas (UU No. 20 Tahun 2003).

3. Lokasi Geografis

Demografi yang dimaksud dalam studi meta-analisis ini adalah demografi dari partisipan yang dilibatkan dalam studi primer. Variabel demografi dikelompokkan menjadi dua grup, yaitu: wilayah perkotaan (*urban area*) dan wilayah pendesaan (*rural area*) (Xie dkk., 2020). Wilayah perkotaan yang dimaksud adalah keberadaan institusi sekolah partisipan dengan administrasi kotamadya, sedangkan wilayah pendesaan yang dimaksud adalah keberadaan institusi sekolah partisipan dengan administrasi kabupaten.

4. Konten Matematika

Konten matematika yang dimaksud dalam studi meta-analisis ini adalah domain matematika yang dijadikan topik/materi dalam tes kemampuan penalaran serta pemecahan masalah matematis. Variabel konten matematika dikelompokkan menjadi lima grup, yaitu: aljabar, geometri, bilangan & operasi, pengukuran, dan data analisis & peluang (NCTM, 2000), serta konten gabungan.