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Abstract

Stellate neighborhoods are created by gluing half disks together along their straight edges. A 1-
stellate neighborhood is a half disk, a 2-stellate neighborhood is a disk, a 3-stellate neighborhood
is 3 half disks glued together to make a star-like shape, and so on. For a topological space
X, and for each n ∈ N, the n-stellate subspace of X is the set of all points in X that have
a neighborhood homeomorphic to an n-stellate neighborhood. I will be examining topological
spaces called stellate unions, where each point in the space is contained in an n-stellate subspace
for some n ∈ N. All surfaces and surfaces with boundary are stellate unions, yet there are many
stellate unions that are not surfaces or surfaces with boundary. I will explore some stellate
unions called extended graph twists and examine their orientability.
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1
What are Stellate Unions?

1.1 Preliminary Definitions

Before we begin we will go over some basic concepts of topology. These definitions come from

[2] and [5].

Definition 1.1.1. Let I ⊆ R be the unit interval. △

Definition 1.1.2. Let X be a topological space. Let x ∈ X be a point. A neighborhood of

x is an open subset N of X such that x ∈ N . △

A commonly used neighborhood in topology is an open disk in R2. To understand what an

open disk is we must first define some notation.

Let S1 and D2, the unit circle and open unit disk in R2, respectively, be defined by

S1 = {p ∈ R2 | |p| = 1} and D2 = {p ∈ R2 | |p| < 1}.

Definition 1.1.3. Let X be a topological space. Let N ⊆ X. The set N is an open disk if N

is homeomorphic to D2. △

Now with our definition of an open disk, we can begin to define half disks. This definition is

inspired by [1].

Definition 1.1.4.

1



2 CHAPTER 1. WHAT ARE STELLATE UNIONS?

1. Let H = {(x, y) ∈ R2 | x ≥ 0}.

2. Let P1 = D2 ∩H; the set P1 is referred to as a half disk.

3. Let L = {0} × (−1, 1) ⊆ P1.

4. Let n ∈ N. Let Pn be the space obtained by gluing n copies of P1 along the line L. We

will call these stellate neighborhoods.

△

See Figure 1.1.1 for P1, and Figure 1.1.2 and 1.1.3 for the stellate neighborhood Pn.

Figure 1.1.1: P1.

We will note that the line segment L does not include its endpoints. We will also note that

P1 is not an open set in R2. However P2 is homeomorphic to D2, which is open in R2.

We will use these concepts to take a look at some common topological spaces. First, we will

examine a torus.

Example 1.1.5. Let X be a torus. We know that for every point x in the torus, there exists

a neighborhood N of x where N is homeomorphic to D2. Thus, for every point x in the torus

there exists a neighborhood N of x where N is homeomorphic to P2. See Figure 1.1.4. ♢
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Figure 1.1.2: Gluing n half disks along the line h to make Pn.

Figure 1.1.3: Top view of Pn.

Figure 1.1.4: Torus containing point x with the neighborhood P2.
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Example 1.1.6. Let X be a Möbius Strip. Let M ⊆ X be an open Möbius Strip. Note that

for all points x ∈ M there exists a neighborhood N of x where N is homeomorphic to P2. Let

B ⊆ X be the boundary of the Möbius Strip. If we look at a point y ∈ B, there does not

exist any neighborhoods of y that is homeomorphic to P2. However, we find that for each point

y ∈ B there exists a neighborhood N ′ of y such that N ′ is homeomorphic to P1. Notice that

X = M ∪B and M ∩B = ∅. See Figure 1.1.5. ♢

Figure 1.1.5: Möbius Strip containing points x and y with the neighborhoods P2 and P1 respec-
tively.

Definition 1.1.7. Let X be a topological space. Let n ∈ N. Let

Gn = {x ∈ X | there exists a neighborhood N ⊆ X of x such that N ≈ Pn}.

The set Gn is referred to as the n-stellate subspace of X. If we need to specify the topological

space, then we write Gn(X). △

We will apply Definition 1.1.7 to Example 1.1.6. Since for all points x ∈ M there exists a

neighborhood N of x where N is homeomorphic to P2, and for all points y ∈ B there exists

a neighborhood N of y where N is homeomorphic to P1, then G2 = M and G1 = B. See

Figure 1.1.6. Hence X = G1 ∪G2.

We will now define topological concepts in terms of n-stellate subspaces.

Definition 1.1.8. Let X be topological space. If X = G2, then X is a 2-manifold, also called

a surface. △
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Figure 1.1.6: Möbius Strip separated into G1 and G2.

Definition 1.1.9. Let X be a topological space. If X = G1 ∪ G2 then X is a surface with

boundary; the boundary of X, denoted ∂X, is the set G1. △

We state the following lemma without proof.

Lemma 1.1.10. Let X be a topological space. Let n, k ∈ N. Suppose that n ̸= k. Then

Gn ∩Gk = ∅.

1.2 Stellate Unions

With our definitions stated, we can now define the spaces we will be looking at.

Definition 1.2.1. Let X be a topological space. The space X is a stellate union if

X =
∞⋃
i=1

Gi.

△

While some examples of stellate unions are a Möbius Strip (as seen in Figure 1.1.6) and a

torus (as seen in Figure 1.1.4), these topolgical spaces can get much more complicated. To better

understand these objects, we will look at some more examples.

Example 1.2.2. Let Y be the topological object pictured in Figure 1.2.1. Let point x be as

in the Figure. Observe that no neighborhood of x is homeomorphic to a stellate neighborhood.

Therefore x /∈ Gn for any n ∈ N. Thus X is not a stellate union. ♢
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Figure 1.2.1: Topological space Y that is not a stellate union.

Figure 1.2.2: Surface with boundary X separated into G1 and G2.

Example 1.2.3. LetX be a surface with boundary as pictured in Figure ref. By Definition 1.1.9,

we know that X = G1 ∪G2. Hence X is a stellate union.

♢

We can use this logic and Definitions 1.1.8 and 1.1.9 when examining our next lemma. We

will state the following lemma without proof.

Lemma 1.2.4.

1. Every surface X is a stellate union, where G2 = X and Gn = ∅ when n ̸= 2.

2. For all surfaces with boundary, we have Gn = ∅ when n > 2.



2
Non Trivial Examples of Stellate Unions

2.1 Stellate Washers

We will now see stellate unions that are not surfaces or surfaces with boundary.

Example 2.1.1. Imagine three strips of paper all glued together along one edge. We will label

the 3 strips a1, a2 and a3, respectively. Now imagine gluing the top of each strip to the bottom

of the same strip so that the end of a1 would attach to the beginning of a1, the end of a2 would

attach to the beginning of a2, and so on. See Figure 2.1.1.We will call this space R(3,0).

Notice that if we break this object up into n-stellate subspaces, then G1 is the union of three

disjoint circles, G2 is the union of three disjoint washers, and G3 is one circle. Also note that

this object equals G1 ∪G2 ∪G3. Thus, it is a stellate union. See Figure 2.1.2. ♢

Figure 2.1.1: Constructing a 3-flap stellate washer.

7
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Figure 2.1.2: 3-flap stellate washer separated into G1, G2 and G3.

Example 2.1.2. Imagine the three strips of paper glued along one edge as before. However,

before gluing the ends together we will first twist the structure so that the end of a2 will be

glued to the beginning of a1, the end of a3 will be glued to the beginning of a2, and the end of

a1 will be glued to the beginning of a3. See Figure 2.1.3. We will call this a R(3,1).

If we split the the object up into its n-stellate subspaces, we see that G1 is one big circle, G2

is one big twisted washer, and G3 is one circle. See Figure 2.1.4 ♢

Figure 2.1.3: Constructing a 3-flap stellate washer with a twist.

After these examples to help us with our intuition, we will state a formal definition of stellate

washers.

Definition 2.1.3. Let I ∈ R be the unit interval. Let n ∈ N. Glue n unit intervals at {0} ∈ I to

create a star-like shape denoted Tn as seen in Figure 2.1.5. For each i ∈ N such that 1 ≤ i ≤ n,

we will call the corresponding unit interval ai. △
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Figure 2.1.4: 3-flap stellate washer with a twist separated into G1, G2 and G3.

Figure 2.1.5: Constructing Tn.

Figure 2.1.6: Tn × I.

Definition 2.1.4. Let n ∈ N and let r ∈ {0, 1, . . . , n−1}. The (n, r)-stellate washer, denoted

R(n,r), is a quotient space of Tn×I defined by gluing ai×{0} to ai+r×{1} for all i ∈ {1, 2, . . . , n},

where addition is mod n. △

The space Tn×I is consisted of n strips all glued together along (0, x) ∈ ai×I for all 1 ≤ i ≤ n

as seen in Figure 2.1.6. The variable r determines how twisted the stellate washer is through
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Figure 2.1.7: Constructing R(n,0).

Figure 2.1.8: Constructing R(n,r).

the gluing of ai × {0} to ai+r × {1} as seen in Figure 2.1.8. Note that if r = 0 then a stellate

washer is created without a twist as seen in Figure 2.1.7.

It’s also important to note that the flaps of the stellate washer are glued under mod n. For

this reason we decide r ̸= n because i+ r = i+n ≡ i (mod n) and thus ai ×{0} would be glued

to ai × {1} for all i ∈ {1, 2, . . . , n}. Then, all (n, n)-stellate washers would be structurally the

same as (n, 0)-stellate washers and even contain the same stellate subspaces with the distinction

that (n, n)-stellate washers are twisted while (n, 0)-stellate washers are not.
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We can also see that depending on r, because Tn is symmetrical, Definition 2.1.4 produces

some stellate washers that are homeomorphic. For instance, in Example 2.1.2, we examine R(3,1)

which has one circle in G1, one washer in G2, and one circle in G3. If we examine R(3,2), we

will find the stellate subspaces to be homeomorphic. This is because if we look at twisting T3 2

notches, it is the same as if we twisted T3 1 notch backwards.

Lemma 2.1.5. Let n ∈ N and r ∈ {0, 1, . . . , n − 1}.. The stellate subspaces of R(n,r) are

homeomorphic to the stellate subspaces of R(n,n−r).

Essentially, Lemma 2.1.5 states that the gluing of stellate washers is symmetrical. Now we

will examine the stellate subspaces of stellate washers.

Theorem 2.1.6. Let n ∈ N such that n ≥ 2 and r ∈ {0, 1, . . . , n− 1}. Let m = gcd(n, r). Then

R(n,r) has one circle in Gn, m circles in G1 and m washers in G2.

Proof. First, we will prove that Gn contains one circle. Let v be the center vertex of Tn. We

know {v}×{0} will always be glued {v}×{1} in the construction of (n, r)-stellate washer. Thus,

the endpoints of the line v × I are glued together to create a circle. Note that for every point

in the circle there exists a neighborhood N of x where N is homeomorphic to Pn. Thus, by

Definition 1.1.7, there is one circle in Gn. Because there are no other points x ∈ R(n,r) where

there exists a neighborhood N of x where N is homeomorphic to Gn, then we know there is

only one circle in Gn. With this in mind, we will remove this circle.

Now we will prove that G1 contains m circles and that G2 contains m washers. By

Lemma 1.1.10, we know that the circle created by the gluing of {v} × I is not in G1 or G2.

Note that we can denote each flap of R(n,r) as an element of the finite cyclic group Zn with the

generator a = 1. Let ⟨[r]⟩ be the cyclic subgroup of Zn. Because m = gcd(n, r) and [r] ∈ Zn, we

know that ⟨[r]⟩ has n
m elements, as stated in [4]. In terms of our R(n,r), this means that there

are n
m flaps per washer. Thus, in order to glue all the flaps together, there must be m washers

total.
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Each of these washers are half open and half closed (due to removing the circle in Gn. The

remaining boundary of each washer creates one circle. For every point in these m circles there

exists a neighborhood N of x where N is homeomorphic to P1. Thus, by Definition 1.1.7, there

are m circles in G1. By Lemma 1.1.10, we know these m circles are not in G2. With this in mind,

we will remove them, Thus, we now have m open washers. For every point in these m washers

there exists a neighborhood N of x where N is homeomorphic to P2. Thus, by Definition 1.1.7,

there are m circles in G2.

Because there are no other points x ∈ R(n,r) where there exists a neighborhood N of x where

N is homeomorphic to either G1 or G2, we know there is nothing else in G1 and G2.

2.2 Layered Strip Spaces

Let’s take a look at another type of stellate union called a layered strip space. To understand

these spaces, we will first look at some examples.

Example 2.2.1. Let e1 be an edge with vertices v1 and v2. We will call this graph H1. See

Figure 2.2.1.

Figure 2.2.1: Constructing H1.

Now, consider H1 × I. Notice that the space created is one strip. In order to glue the two

ends to one another, we must use two functions: one that glues each vertex in {v1, v2} × {0} to

a vertex in {v1, v2} × {1}, and another function that glues e1 × {0} to e1 × {1}.

Since there are two vertices, we can either glue {v1} × {0} to {v1} × {1} and {v2} × {0} to

{v2}× {1} or we can glue {v1}× {0} to {v2}× {1} and {v2}× {0} to {v1}× {1}. Since there is

only one edge in H1, we are only able to glue the edge to itself. Thus there are only two ways

to glue H1 × {0} to H1 × {1}. See Figures 2.2.2 and 2.2.3.

Note that if we glue the vertices with their identity function, we create a washer with boundary

but if we glue the vertices by switching them, we create a Möbius Strip with boundary. ♢
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Figure 2.2.2: Making a 1-layered strip space with the vertices glued with the identity, which is
a washer.

Figure 2.2.3: Making a 1-layered strip space with the vertices glued switched which is a Möbius
strip.

Now, let’s look at an example of an layered strip space that has more than one edge.

Example 2.2.2. Let e1 and e2 be two edges with the same two vertices v1 and v2. Note that

this graph not a simple graph. We will call this graph H2. See Figure 2.2.4. Now, cross H2 with

I. Notice that the space created is two strips glued together along their sides.

As in Example 2.2.1, there are two functions to glue {v1, v2} × {0} to {v1, v2} × {1}. We can

either use the identity or we can glue the vertices switched. See Figures 2.2.5 and 2.2.6. To glue

the edges together, we can either glue {e1} × {0} to {e1} × {1} and {e2} × {0} to {e2} × {1} or

we can glue {e1}×{0} to {e2}×{1} and {e2}×{0} to {e1}×{1}. Thus, with two ways to glue

the vertices and two ways to glue the edges, there are four ways to glue H2 × {0} to H2 × {1}.

Note that if you glue the vertices and the edges with the identity, you get a torus, and if you

glue the vertices with the identity but the edges switched, then you get a Klein bottle. If you

glue the vertices switched and the edges with the identity, then you get a Klein bottle, and if
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you glue the vertices switched but the edges switched, then you get a torus. See Figures 2.2.7,

2.2.8, 2.2.9,and 2.2.10. ♢

Figure 2.2.4: H2.

Figure 2.2.5: Gluing the vertices together with the identity.

Figure 2.2.6: Gluing the vertices together switched.

Figure 2.2.7: Gluing the vertices and the edges with the identity to make a torus.



2.2. LAYERED STRIP SPACES 15

Figure 2.2.8: Gluing the vertices with the identity and the edges switched to make a Klein
bottle.

Figure 2.2.9: Gluing the vertices switched and the edges with the identity to make a torus.

Figure 2.2.10: Gluing the vertices and the edges switched a Klein bottle.

Now that we have an understanding of how a layered strip space is constructed, we will state a

formal definition of these spaces. To describe layered strip spaces, we will be using permutations

described with cyclic notation. Unconventionally, we will be including cycles of one element in

our notation for clarity later on. We will also be using standard notation for cyclic groups.

Definition 2.2.3. Let n ∈ N. Glue n intervals together at {0} ∈ I and {1} ∈ I to create

two vertices connected by multiple edges, denoted Hn, as seen in Figure 2.2.11. For each

i ∈ {1, 2, . . . , n} we will call the corresponding edge ei. △
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Figure 2.2.11: Hn.

Definition 2.2.4. Let V = {v1, v2} be the set of vertices of Hn. Let τ : {1, 2} → {1, 2} be a

permutation. Let Vτ : V × {0} → V × {1} be the function defined by Vτ ((vi, 0) = (vτ(i), 1) for

all i ∈ {1, 2}. △

There are only 2 permutations in S2, which are i2 as the identity permutation and τ = (1, 2).

We will denote the identity function on the vertices as Vi. Informally, the two permutations

cause Vi to glue each vertex to themselves, and Vτ to glue each vertex switched.

Definition 2.2.5. Let E = {e1, e2, . . . , en} be the set of edges of Hn. Let σ : {1, . . . , n} →

{1, . . . , n} be a permutation. Let Eσ : E×{0} → E×{1} be the function defined by Eσ((ei, 0)) =

(eσ(i), 1) for all i ∈ {1, . . . , n}. △

Note that there are n! permutations in the symmetric group Sn on {1, . . . , n}, thus there

are n! possible functions in Definition 2.2.5. We will define in as the identity permutation and

denote the identity function on the edges as Ei. Informally, each function glues each edge in

Hn × {1} to another edge in Hn × {1}.

Definition 2.2.6. Let n ∈ N. Let τ ∈ S2 and let σ ∈ Sn. A n-layered strip space, denoted

L(n, τ, σ), is the quotient space of Hn × I defined by gluing the vertices and edges of Hn × {0}

to the vertices and edges of Hn × {1} under the functions Vτ and Eσ. △

The space Hn × I is consisted of n strips all glued together along {v1} × I and {v2} × I as

seen in Figure 2.2.12. See Figures 2.2.13 and 2.2.14 to see how the layered strip spaces are glued

with Vi and Vτ .

Example 2.2.7. Using the formal definition of layered strip spaces, we will now examine all

3-layered strip spaces.
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Figure 2.2.12: Hn × I.

Figure 2.2.13: L(n, τ, σ) when τ is the identity.

Figure 2.2.14: L(n, τ, σ) when τ is not the identity.

Imagine Hn × I. As always, we can use either Vi or Vτ to glue the vertices. Because there are

3 edges in H3, there we can use one of the 6 permutations in S3 to glue the edges. Thus there

are 12 possible ways to glue H3 × {0} to H3 × {1}.
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Rather than representing these layered strip spaces as their true shape embedded into R3, we

will look at representations of layered strip spaces as 3 strips (which might be twisted) where

all edges with the same color are glued together. See Table 2.2.1. ♢

We saw that all 1-layered strip spaces are either a washer or a Möbius strip. We saw that

all 2-layered strip spaces are either a torus or a Klein bottle. We will now examine the stellate

subspaces of non-trivial layered strip spaces.

Theorem 2.2.8. Let n ∈ N. Suppose n ≥ 3. Let i2 ∈ S2 be the identity permutation and let

σ ∈ Sn. Let C(σ) be the number of cycles in σ. The following hold for L(n, i2, σ).

1. There are two circles in Gn.

2. There are C(σ) washers in G2.

3. Gi = ∅ if i ̸= 2 and i ̸= n.

Proof. 1. The vertices of Hn×{0} and Hn×{1} are glued using the identity function. This

means for all i ∈ {1, 2} the two endpoints of the line {vi}×I are glued together to create a

circle. Note that for every point x on the circle there exists a neighborhood N of x where

N is homeomorphic to Pn. Thus, by Definition 1.1.7, there are two circles in is Gn.

There are no other points x ∈ L(n, i2, σ) where there exists a neighborhood N of x where

N is homeomorphic to Gn. Hence, there are only two circles in Gn.

2. Since the two circles described in Part 1 of the proof are in Gn, we know by Lemma 1.1.10

that they are not in G2. With this in mind we remove these two circles. Without these

circles in L(n, i2, σ), we are left with n strips glued together by Eσ. Let r = C(σ). Let

c1, . . . , cr be the cycles in σ.

Let j ∈ {1, . . . , r}. Let k ∈ N be the length of cj . Note that k ≤ n. Let s1, . . . , sk be the

edges in Hn in the cycle cj . Thus, the edge sp will be glued to sp+1 for all p ∈ {1, . . . k},

where addition is mod k.
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Edge Function L(3, i2, σ) L(3, τ, σ)

σ = (1)(2)(3) = in

σ = (123)

σ = (321)

σ = (1)(23)

σ = (12)(3)

σ = (13)(2)

Table 2.2.1: All L(3, τ, σ).
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Because the vertices are glued using Vi, we know that each strip will not be twisted when

glued to the next strip. Thus when all of the edges are glued together except for one, one

long strip is created. Then, when the last edges are glued together the long strip becomes

a washer. Thus we know that each cycle in σ creates a washer. Hence there are C(σ)

washers. (Note that because we removed the two circles in Gn, the washers are without

boundary).

Because for each point x in an open washer there exists a neighborhood N of x such that

N is homeomorphic to P2, we know each washer is in G2 by Definition 1.1.7. Hence there

are C(σ) washers in Gn.

Since there are no other points x ∈ L(n, I, σ) where there exists a neighbourhood N of x

where N is homeomorphic to Pn, there is nothing else in Gn. Hence, there are only C(σ)

washers in Gn.

3. Because there is no other point x ∈ L(n, I, σ) where there exists a neighbourhood N of x

where N is homeomorphic to Pi if i ̸= 2 and i ̸= n, we know that Gi = ∅.

Theorem 2.2.9. Let n ∈ N. Suppose n ≥ 3. Let τ ∈ S2 not be the identity permutation and let

σ ∈ Sn. Let E(σ) be the number of even cycles in σ, let O(σ) be the number of odd cycles in σ

and let C(σ) be the total number of cycles in σ. The following hold for L(n, τ, σ).

1. There is one circle in Gn.

2. There are E(σ) washers and O(σ) Möbius strips in G2.

3. Gi = ∅ if i ̸= 2 and i ̸= n.

Proof. 1. The vertices of Hn are glued not using the identity function. Thus the vertices

must be glued together switched. This means that the endpoint (v1, 0) on the line {v1}×I

is glued to the endpoint (v2, 1) on the line {v2} × I. Note that the gluing of two lines

together makes one long line. This long line has the endpoints (v2, 0) and (v1, 1) which
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are also glued together under Vτ to make one big circle. Note that for every point x in

this circle there exists a neighborhood N of x where N is homeomorphic to Pn. Thus, by

Definition 1.1.7, there is one circle in Gn.

There are no other points x ∈ L(n, τ, σ) where there exists a neighborhood N of x where

N is homeomorphic to Gn. Thus, only one circle in Gn.

2. Since the circle described in Part 1 of the proof is in Gn, we know by Lemma 1.1.10 that it

are not in G2. With this in mind we will remove the circle. Without the circle in L(n, τ, σ),

we are left with n strips glued together by Eσ. Let r = C(σ). Let c1, . . . , cr be the cycles

in σ.

Let j ∈ {1, . . . , r}. Let k ∈ N be the length of cj . Note that k ≤ n.

Case 1: Suppose cj is an even cycle. Note that then k is even. Let s1, . . . , sk be the edges

in Hn in the cycle cj . Thus, the edge sp will be glued to sp+1 for all p ∈ {1, . . . k, } where

addition is mod k.

Because the vertices are glued using Vτ , we know that each strip will be twisted once before

being glued to the next strip. Thus, when all of the edges are glued together except for

one, one long strip is created that is twisted k times. Since k is even, we know that when

the last edges are glued together the long strip becomes a twisted washer.

Case 2: Suppose cj is an odd cycle. Note that then k is odd. Let s1, . . . , sk be the edges

in Hn in the cycle cj . Thus, the edge sp will be glued to sp+1 for all p ∈ {1, . . . k, } where

addition is mod k.

Again, because the vertices are glued using Vτ , we know that each strip will be twisted

once before being glued to the next strip. Thus, when all of the edges are glued together

except for one, one long strip that is twisted k times is created. Since k is odd, we know

that when the last edges are glued together the long strip becomes a Möbius strip.



22 CHAPTER 2. NON TRIVIAL EXAMPLES OF STELLATE UNIONS

Thus we know that each even cycle in σ creates a washer and each odd cycle in σ creates a

Möbius strip. Hence there are E(σ) washers and O(σ) Möbius strips. (Note that because

we are ignoring the two circles inGn, the washers and Möbius strips are without boundary).

Because for each point x in an open washer or open Möbius strip there exists a neighbor-

hood N of x such that N is homeomorphic to P2, we know each washer and Möbius strip

is in G2 by Definition 1.1.7. Hence there are E(σ) washers and O(σ) Möbius strips in Gn.

Because there are no other points x ∈ L(n, τ, σ) where there exists a neighborhood N of x

where N is homeomorphic to Pn, there is nothing else in Gn. Hence, there are only E(σ)

washers and O(σ) Möbius strips in Gn.

3. Because there is no other point x ∈ L(n, τ, σ) where there exists a neighborhood N of x

where N is homeomorphic to Pi if i ̸= 2 and i ̸= n, we know that Gi = ∅.

Corollary 2.2.10. Let n ≥ 3. Let τ ∈ S2 be the permutation other than the identity permuta-

tion, and let σ ∈ Sn. For L(n, τ, σ), if n is odd then there exists a Möbius strip in G2.

Proof. Suppose n is odd. Then there must be at least one odd cycle in σ. Thus, by Theo-

rem 2.2.9, we know that there exists a Möbius strip in G2.

2.3 Extended Graph Washers

An extended graph washer is created when a connected graph G is crossed with I and G× {0}

is glued to G × {1} using a function to glue the vertices together and a function to glue the

edges together. Both stellate washers and layered strip spaces are examples of extended graph

washers. We will informally define extended graph washers and talk about some possibilities for

further study.

First we will state some preliminary definitions on graph automorphisms. This definition

comes from [6].
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Definition 2.3.1. Let G be a simple graph. An automorphism, denoted ϕ of G, is a bijective

mapping of the vertex set of G with itself with the property that ϕ(v) and ϕ(w) are adjacent

whenever v and w are, for all vertices v and w of G. △

Note that this definition only applies to simple graphs. For our purposes, we state an alternate

definition.

Definition 2.3.2. Let G be a graph. An automorphism ϕ of a graph G consists of two

functions as follows.

1. Let V be a bijective mapping of the vertex set of G with itself with the property that ϕ(v)

and ϕ(w) are adjacent whenever v and w are, for all vertices v and w of G.

2. Let E be a bijective mapping of the edge set of G with itself with the property that if the

edge ϕ(e) is adjacent to vertex ϕ(v) then e is adjacent to vertex v, for all edges e of G and

vertices v of G.

△

Definition 2.3.3. The automorphism group of a graph G, denoted Γ(G), is the group of

automorphisms of G. △

In order to create an extended graph washer, we must glue together G×{0} to G×{1} using

an automorphism of G. The size of Γ(G) determines how many different extended graph washers

can be made out of G. Note that extended graph washers made from a simple graph would only

need to use the standard definition of automorphisms.

Lemma 2.3.4. If graph G contains one or more vertices connected by multiple edges, then

|Γ(G)| > 1.

Proof. Note that G is not a simple graph. As was the case for layered strip spaces, we can glue

the vertices of G using the identity and still glue the edges switched. Thus we know that there

will always more than one automorphism in which to glue G.
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Note that Lemma 2.3.4 does not mean that all non-simple graphsG have more than |Γ(G)| > 1.

For example, an otherwise simple graph with a loop would have only one automorphism.

Some extended graph washers that deserve further exploration are those made from a graph G

where |Γ(G)| = 1. Graphs with only one automorphism are called identity graphs or asymmetric

graphs. See [3] for more on these kinds of graphs. On the other end of the spectrum, we should

also examine extended graph washers made from graphs with many automorphisms which, as

we saw for stellate washers and layered strip spaces, can create many variations of extended

graph washers, and focus on how each gluing affects its stellate subspaces.

Conjecture 2.3.5. The stellate subspaces of all extended graph washers (made from connected

graphs) are made up of circles, and washers or Möbius strips.

While there is no proof of Conjecture 2.3.5 yet, based off of the two types of extended graph

washers we explored earlier in the chapter, both of which support this proposition, we can

start to see why this would be the case. Imagine that X is a stellate washer or layered strip

space constructed out of graph G and that v is a vertex in G connecting n edges. Because v is

essentially a point in G, then {v} × I is a line in G× I. If this line is glued to itself, it creates

a circle. If the endpoints of this line is glued to the endpoints of another line, it will also create

a circle. Thus no matter how G × {0} is glued to G × {1}, Gn will have a circle in it. We can

use similar logic to see how the edges create either a washer or a Möbius strip. Let e be an edge

of G. Because e is essentially a line in G, then {e} × I is a rectangle in G× I. If two opposite

edges of this rectangle are glued to themselves, then it creates either a washer or a Möbius strip

(depedning on how many times it is twisted before gluing). If a rectangle is glued to another

rectangle along one edge, and then the two opposite edges of the now one, long rectangle are

glued together, it also creates either a washer or a Möbius strip. Thus no matter how G× {0}

is glued to G × {1}, G2 will have either a washer or a Möbius strip in it. Since graphs are

always made up of vertices and edges, there is no reason to believe these would not be the same

outcomes for all extended graph washers.



3
Orientability and Connected Sums

3.1 Orientability

We will take a look at one way of defining 2-dimensional non-orientable objects.

Definition 3.1.1. Let X be a 2-dimensional topological space. The space X is non-orientable

if there exists a Möbius Strip M ⊆ X; otherwise, the space X is orientable. △

With this definition of non-orientable, we can take a look at how it applies within the context

of our stellate unions.

Definition 3.1.2. Let X be a stellate union. Suppose X is non-orientable.

1. The space X is strongly non-orientable if there exists a Möbius Strip M in G2.

2. The space X is weakly non-orientable if there exists a Möbius Strip M in X that is

not contained in G2.

△

Note that, because of Lemma 1.2.4, any non-orientable surface is strongly non-orientable.

Similarly, any non-orientable surface with boundary is strongly non-orientable. This is because

the Möbius strip in the surface must be in G2.

We will now look at some non-trivial examples of strongly and weakly non-orientable spaces.

25
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Figure 3.1.1: Creating R(4,2).

Example 3.1.3. We will examine R(4,2) as shown in Figure 3.1.1. Note that G1 contains two

circles, G2 contains 2 twisted washers and G4 contains one circle. While the washers in G2 are

twisted they are still orientable, meaning there is no Möbius Strip found within them. Thus, we

know R(4,2) cannot be strongly orientable.

Now let’s take a look at a2, a4 ∈ R(4,2). If we connect these flaps using the circle in G4, we

create a Möbius strip M1. See Figure 3.1.2. Similarly, if we connect a1, a3 and G4, we get

another Möbius strip M2. For now, we will focus on M1. Note that because M1 = a2 ∪ a4 ∪G4

of R(4,2) and a2, a4, G4 ∈ R(4,2) that M1 ∈ R(4,2). Thus, R(4,2) is weakly non-orientable. ♢

Figure 3.1.2: R(4,2) separated into G1, G2 and G4.

Now we will look at another, less obvious example of a weakly non-orientable surface.

Example 3.1.4. We will examine R(3,1). We know that R(3,1) is not strongly non-orientable

from Example 2.1.2 because G2 does not contain a Möbius strip.

To show that R(3,1) is weakly non-orientable, we will place a letter “F” on the space and move

it until it returns to the same starting place. We will track the movement of the F with various

gray Fs in previous positions. First, place F on a1 facing outward. Move the F downward until
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it moves onto a2. Then slide the F across G3 back to a1. Now the F is facing inwards. Thus,

we know there is a Möbius strip contained in R(3,1). Hence, R(3,1) is weakly non-orientable. See

Figure 3.1.5. ♢

Figure 3.1.3: Finding a Möbius strip in R(3,1).

Now we will look at an example of a strongly non-orientable stellate union.

Example 3.1.5. Let let τ ∈ S2 be the permutation other than the identity permutation, and

let σ = (123). We will be examining L(3, τ, σ) as seen in Figure 3.1.4.

As seen in the Example 2.2.7, we know that there is one circle in Gn and one Möbius strip in

G2. Thus L(3, τ, σ) is strongly non-orientable. ♢

Figure 3.1.4: L(3, τ, σ).
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Using the same technique used in Example 3.1.4, we can see that all stellate washers with a

twist are weakly non-orientable. Note that this strategy does not work if the stellate washer

does not have a twist.

Theorem 3.1.6. Let n ∈ N and let p ∈ {0, 1, . . . , n − 1}. For R(n,p), if p ̸= 0 then R(n,p) is

weakly non-orientable. If p = 0 then R(n,p) is orientable.

Using the same technique used in Example 3.1.4, we can also see that layered strip spaces

where either the function on the vertices or the function on the edges is not the identity are also

weakly non orientable.

Example 3.1.7. Let n = 3, let i2 ∈ S2 be the identity permutation, and let σ ∈ S3 be σ = (321).

We know from Theorem 2.2.8 that there is not a Möbius strip in G2. Thus we know L(3, i2, σ)

is not strongly non-orientable.

To show that L(3, i2, σ) is weakly non-orientable, we will place a letter “F” on the space and

move it until it returns to the same starting place. First, place F on {e1}× I facing towards v2.

Move the F downward until it moves onto {e3} × I. Then slide the F across {v2} × I back to

{e1}× I. Now the F is facing v1. Thus, we know there is a Möbius strip contained in L(3, i2, σ).

Hence, L(3, i2, σ) is weakly non-orientable. ♢

Figure 3.1.5: Finding a Möbius strip in R(3,1).

Theorem 3.1.8. Let n ∈ N. Let τ ∈ S2 and σ ∈ Sn Let O(σ) the the number of odd cycles in

σ. The following hold for L(n, τ, σ)

1. If both τ and σ are the identity permutations, then L(n, τ, σ) is orientable.



3.1. ORIENTABILITY 29

2. If τ is not the identity permutation and O(σ) ≥ 1 then L(n, τ, σ) is strongly non-orientable.

3. All remaining layered strip spaces are weakly non-orientable.

Proof. 1. Suppose both τ ∈ S2 and σ ∈ Sn are their identity permutations. Then L(n, τ, σ)

is essentially a torus with n layers. Because τ is the identity, we know that each layer is

not twisted before being glued. Thus, by Theorem 2.2.8, we know there is not a Möbius

strip in G2. Because σ is the identity, we cannot use the F strategy to go to another strip

and move back to the original strip to find a Möbius strip, because each strip is connected

through only the circle in Gn. Hence, no Möbius strip can be found in L(n, τ, σ), so it

must be orientable.

2. Suppose that τ is not the identity permutation and O(σ) ≥ 1. Because τ is not the identity

permutation, we know that each strip is twisted once before gluing. Thus we know it is

possible for there to exist a Möbius strip. Because O(σ) ≥ 1, by Theorem 2.2.9, we know

there is at least one Möbius strip in G2. Hence, by Definition 3.1.2, we know L(n, τ, σ) is

strongly non-orientable.

3. Suppose L(n, τ, σ) is not one of the two previous cases. Then either τ is the identity

permutation and σ is not the identity permutation, or τ is not the identity permutation

and O(σ) = 0.

Case 1: Suppose τ is the identity permutation and σ is not the identity permutation. By

Theorem 2.2.8, we know that there cannot exist a Möbius strip in G2. Thus, we know

L(n, τ, σ) cannot be strongly non-orientable. Because σ is not the identity permutation,

we know we can use the F strategy to find a Möbius strip in L(n, τ, σ). Thus, L(n, τ, σ) is

weakly non-orientable.

Case 2: Suppose τ is not the identity permutation and O(σ) = 0. By Theorem 2.2.9,

we know that there cannot exist a Möbius strip in G2. Thus, we know L(n, τ, σ) cannot

be strongly non-orientable. Because O(σ) = 0, we know that σ cannot be the identity
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permutation, because then O(σ) = n. Thus, we can use the F strategy to find a Möbius

strip in L(n, τ, σ). Hence, L(n, τ, σ) is weakly non-orientable.

Corollary 3.1.9. Let n ∈ N. Let τ ∈ S2 and σ ∈ S2. Let L(n, τ, σ) be a layered strip space.

Suppose n is odd and suppose τ is not the identity permutation. Then L(n, τ, σ) is strongly

non-orientable.

Corollary 3.1.9 is an extension of Corollary 2.2.10.

3.2 Connected Sums

Another potential area of exploration for stellate unions is how stellate unions are effected under

connected sums. Connected sums are created when two surfaces are glued together through

deleting a circle from each surface and gluing together these holes with a tube. The beauty

of this method is that the two holes can be created at any location on each surface and the

connected sum will stay the same. With stellate unions however, it is not as simple.

Example 3.2.1. Let τ ∈ S2 not be the identity permutation, and let σ ∈ S3 such that σ =

(1, 2)(3). We will be creating connected sums out of L(2, τ, σ) and a torus.

Imagine we cut out a circle from {e3} × I and glue it to a torus with a circle cut out. Then

in G2 there will be a washer, and a Möbius strip connected to a torus.

Now imagine that we cut out a circle from {e1} × I and glue it to a torus with a circle cut

out. Then in G2 there will a washer connected to a torus, and a Möbius strip.

Thus, we can see that the two different placements of where we cut out the circle has an

impact on the stellate makeup of the connected sum. ♢

Here we can tell how applying connected sums to stellate unions prove to be much more

complicated. Some further questions could be: Are there positions of the holes that cause the

number of components to change in stellate subspaces? Is there an extended graph washer where

the positions of the holes does not change the connected sum?
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