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ABSTRACT OF DISSERTATION

High Dimensional Data Analysis: Variable Screening and Inference

This dissertation focuses on the problem of high dimensional data analysis, which
arises in many fields including genomics, finance, and social sciences. In such settings,
the number of features or variables is much larger than the number of observations,
posing significant challenges to traditional statistical methods.

To address these challenges, this dissertation proposes novel methods for vari-
able screening and inference. The first part of the dissertation focuses on variable
screening, which aims to identify a subset of important variables that are strongly
associated with the response variable. Specifically, we propose a robust nonparamet-
ric screening method to effectively select the predictors that marginally independent
but conditionally dependent on the response.

The second part of the dissertation focuses on an application of high dimensional
inference problem in microbiome related disease study. The microbial community
in the human gut is teeming with metabolic activity and plays a key role in host
physiology and health. But the host-microbiome interactions are not well understood
in terms of the molecular mechanism, while the microbial metabolites have been hy-
pothesized to play a critical role. We developed a statistical framework that not only
integrate the microbiome and metabolites but also integrate multi-view microbiome
data, to inference the causal effect of metabolites for disease outcome. We borrow
the idea of debiasing lasso to construct the inference procedures. In numerical study
and a real data application, we demonstrate our method’s superior performance.

KEYWORDS: High Dimensional inference, Variable Screening, Nonparametric In-
dependence Measure, Causal Inference, Debiased Lasso
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Chapter 1 Introduction

With the increasing availability of data from various fields, such as genetics, finance,
biomedical area, and social media, high dimensional data analysis has become a vital
area of research in statistics. With high dimensional data, the number of variables,
often much greater than the sample size, which presents challenges in traditional sta-
tistical methods, in terms of data processing, analysis, and interpretation. To analyze
high dimensional data, typically we believe the sparsity assumption, that is only a few
of the variables are truly related to the response variable. Based on this common and
reasonable assumption, many high dimensional variable selection method has been
proposed. The most famous and popular one is Lasso for its efficient variable selection
performance in high dimensional linear model. However, there are limitations, as the
consistency and the selection stability requires the assumption of dimensionality and
sample size. Such assumption may not valid in real ultra-high dimensional data to
guarantee its asymptotic property, e.g. in genetic studies, the number of SNPs can be
millions while sample size can only be as large as hundreds. Other variable selection
methods are also suffering the so-called ”curse of dimensionality”. To handle this
issue, people often pre-processed the ultra-high dimensional data by variable screen-
ing. The goal of variable screening is to select a subset of the predictors, which has
small cardinality, while catching all the true related predictors. This whole method
depends on some independent measure, especially the nonparametric one to allow
flexibility and much broader application in real data.

In this thesis, we aim to contribute to the field of high dimensional data analysis
by first developing a novel variable screening method by a new nonparametric depen-
dence measure : Martingale Difference Correlation. This is new measure is motivated
to address the potential issue of missing the conditional only active predictors to the
mean of response variable. In Chapter 2, we present this new measure and its unbi-
ased estimator based on U-statistics. We also study its asymptotic properties, and
most importantly, its sure screening property for variable screening. We demonstrate
its robust and superior performance via simulation studies and real data application.
All the proofs are included in the supplement A and additional discussion of the
marginal measure is included appendix A.

The second part of our contribution to the high dimensional data analysis is
a high dimensional inference problem arised in microbime-metabolome study. In
general, we want to investigate how the microbime affect human body, indirectly
through metabolites or directly associated with some traits or disease. In Chapter
3, we proposed a structural high dimensional linear model to include both microbes
and metabolite and explore the causal effect of metabolite by letting some microbes
as instrumental variable. We developed the inference for such causal effect following
the idea of debiased Lasso. In addition, we have demonstrated the effectiveness
of our method through a guided simulation study and a real data application of
inflammatory bowl disease.
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Chapter 2 Variable Screening via Conditional Martingale Difference
Correlation

2.1 Introduction

Variable screening has been a research area that deals with ultrahigh-dimensional
data, where high-dimensional methods may fail due to the curse of dimensionality, as
[10] suggested. [9]’s seminal work suggests to screen the ultrahigh-dimensional data
before conducting variable selection. They proposed a sure independent screening
(SIS) method for linear models to screen out inactive variables based on Pearson cor-
relation. After that, variable screening receives more attention since it only requires
that the selected set of variables covers the set of active variables, which is referred
to as the sure screening property [9]. Screening methods with this property suffer less
from instability [44] that is seen in many variable selection methods.

Various model-based screening methods have been developed. For linear regres-
sion models, screening methods have been proposed based on different measures, in-
cluding marginal Pearson correlation [9], forward regression [38], marginal empirical
likelihood ratio [3], and Kendall’s rank correlation [19]. For linear quantile regression,
screening methods based on quantile partial correlation [23] and conditional quantile
correlation [47] have been proposed to handle heterogeneous data. In the context
of generalized linear models, screening methods based on the maximum marginal
likelihood or its estimate [11], the sparsity-restricted maximum likelihood estimator
[42], and Kolmogorov-Smirnov statistic [24] have also been proposed. Other screen-
ing methods include model settings such as linear regression models with interactions
[15, 12, 17], Cox models [48], varying coefficient models [5, 32], and additive models
[8].

An alternative approach is the model-free screening method, which recently has
gained popularity due to its less stringent assumptions. [50] proposed a sure inde-
pendence ranking and screening approach (SIRS) for index models. [20] proposed a
screening method (DC-SIS) based on distance correlation, which can be applied to
grouped variables. [6] proposed a model-free screening method (MV-SIS) based on
empirical conditional distribution function for discriminant analysis. [31] proposed
the use of martingale difference correlation (MDC), which can be applied to mean
and quantile screening. [25] proposed the fused Kolmogorov filter that works with
different types of response variables and high covariate correlation. [27] proposed a
screening method based on covariate information number (CIN) motivated by Fisher
information. [14] developed a screening framework from the perspective of loss func-
tions and proposed a screening method based on conditional strictly convex losses.
Based on ball correlation, [28] proposed a generic screening method for biomedical
discovery.

As pointed out by [20, 31, 34], screening methods based on marginal measures
(e.g., the marginal correlation between the response and each predictor) will possibly
miss the marginally but not jointly independent predictors. Two types of approaches
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have been developed to handle this issue. One approach is conditional screening,
a screening procedure based on a given set of variables. For example, [2] proposed
conditional sure independence screening (CSIS) for assessing the conditional (on a
given conditional set) contribution of a predictor to the response in generalized lin-
ear models. Based on conditional distance correlation, [40] proposed a method that
adjusts for confounding variables. [35] proposed a conditional independence mea-
sure and its corresponding screening method (CIS) with false discovery rate (FDR)
control, which also works for heavy-tailed predictors/responses. Another approach
is screening via iterative procedures. For example, the aforementioned forward re-
gression iteratively selects the variables. [42] considered a method based on sparse
MLE, where the algorithm iteratively updates the coefficients in the link function.
[49] proposed a model-free forward screening method that iteratively updates the
conditional set and is robust to outliers. [34] proposed an iterative variable screening
method based on random subspace ensembles (RaSE) with a theoretical guarantee
for iterative screening procedures.

However, two challenges remain. Model-based iterative methods (e.g., iterative
SIS) may rely on a specific variable selection method, which makes the procedure less
stable. On the other hand, the conditional screening method requires prior knowl-
edge of the conditional set and its performance becomes unstable if an unreasonable
conditional set is selected. It motivates us to develop a stable model-free screen-
ing method that identifies both marginally and jointly dependent variables to the
response. We propose a kernel-based measure that captures both conditional and
marginal mean-independent relationships. In particular, via Bochner’s theorem [41],
we transform the problem of choosing weights, a key element in our independence
measure, to the problem of choosing kernels and their bandwidths in reproducing
kernel Hilbert space (RKHS). This flexible kernel-based fashion allows our method to
perform well in various settings, as illustrated in the synthetic and real data analysis.

The advantages of our method are as follows. First, we propose a kernel-based
independence measure (CMDH) that is able to characterize both conditional and
marginal mean independence. Thus, we propose a CMDH-based screening method
that can detect both marginally and jointly dependent/active variables. Second, the
proposed model-free screening method is stable against outliers, data heterogeneity,
and high covariate correlation. Third, we show the sure screening property holds
for screening both marginally and jointly dependent variables under mild regularity
conditions. We also suggest selecting a data-driven conditional set for conducting
conditional screening when no prior information is available.

The rest of the article is organized as follows. Section 2.2 introduces the proposed
independence measure and its theoretical properties. In Section 2.3, we propose a
model-free variable screening procedure and present its sure screening property. The
simulation results and two real data examples are reported in Section 2.4, followed
by the conclusion in Section 2.5. Additional theorems are presented in the appendix.
Auxiliary simulation results and technical proofs are included in the supplementary
material.
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2.2 General methodology

Notations. Throughout the article, we use upper case (e.g., V ) to denote a random
variable and use bold font to denote a random vector (e.g., U). We use (U ′

1,U
′
2, V

′)
and (U ′′

1,U
′′
2, V

′′) to denote i.i.d copies of (U 1,U 2, V ). For a complex function f(s) :
Rq → Cp, denote its RKHS norm as ||f(s)||2Hk

=
∫
Rq |f(s)|2w(t)dt, where w(t)

corresponds to the kernel function k in RKHS.
For a sequence {tij} with double indices i, j = 1, ..., n, we define

t∗ij = tij − t̄i. − t̄.j + t̄.., (2.1)

where t̄.j = 1
(n−2)

∑n
i=1 tij, t̄i. = 1

(n−2)

∑n
j=1 tij, and t̄.. = 1

(n−1)(n−2)

∑n
i=1

∑n
j=1 tij.

Denote ⟨a, b⟩ as the inner product of any two vectors a, b of the same dimension.

2.2.1 Conditional Martingale Difference Divergence

A motivating example. Assume two random variablesX1 andX2 are independent
with E(X2) = 0, and let Y = X1X2. We have E(Y |X1) − E(Y ) = E(X2) · (X1 −
E(X1)) = 0 as long as E(X2) = 0. The condition “E(X2) = 0” is mild as we
can standardize predictors in the dataset to have mean 0 in practice. This example
indicates that mean independence measures based on the relationship E(Y |X1) −
E(Y ) will misleadingly suggest that X1 is independent from mean of Y . It was
pointed out by [20] and [31] that the marginal measures/methods such as DC and
MDC will possibly miss the variables that only jointly contribute to the response
variable. It motivates us to consider the following:

E(Y |X1, X2)− E(Y |X2),

which equals to X2 · (X1 − E(X1)) in this example. More generally, we consider the
equality E(V |U 1,U 2) = E(V |U 1), i.e., the response variable V and covariate vector
U 2 given the covariate vector U 1. If in addition, U 1 and U 2 are independent, we
have E(V |U 1,U 2) = E(V |U 1) if and only if E(V ei⟨t1,U1⟩|U 2) = E(V ei⟨t1,U1⟩) for any
t1 (the proof is presented in supplementary material S2 (b)). This motivates us to
propose the following independence measure in Definition 1, which can be treated as
either a conditional or a marginal (see Remark 2) mean independence measure.

Definition 1. Given a random vector U 1 ∈ Rp, the conditional martingale difference
divergence of a random variable V and a random vector U 2 ∈ Rq is defined as

CMDH
2(V,U 2|U 1)

=

∫∫
|E(V ei(⟨t1,U1⟩+⟨t2,U2⟩))− E(V ei⟨t1,U1⟩)E(ei⟨t2,U2⟩)|2w1(t1)w2(t2)dt1dt2,

where w1(t1) and w2(t2) are weight functions.

The measure CMDH depends on two ingredients: a mean independence measure
of a random vector and a random variable, and an adjusting method of the effect of a
third vector. It provides valuable information on the conditional contribution of U 2

to the mean of V given U 1.

4



Remark 1. We choose the weight function w1(t1) and w2(t2) to be integrable, relaxing
the strong assumption of the boundedness of U 1 and U 2 as in the literature. The
choice of an integrable weight function makes the proposed independence measure
more flexible. In particular, we can rewrite CMDH(V,U 2|U 1) as a functional of
kernel functions in RKHS. See more details in Theorem 1(a) and Remark 3.

We now define a scale-invariant version of the proposed measure.

Definition 2. Let k1 and k2 be the two kernel functions that correspond to the weight
function w1(t1) and w2(t2), as illustrated in Theorem 1(a). We define the conditional
martingale difference correlation

CMCH(V,U 2|U 1) =


CMDH(V,U 2|U 1)√
v(k2,U 2)v(k1V ,U 1)

if v(k2,U 2)v(k1V ,U 1) > 0

0 otherwise,

where v(k,U) := E[k2(U ,U ′)] + E2[k(U ,U ′)] − 2E[k(U ,U
′
) · k(U ,U ′′

)] and
kV (U ,U

′) := V V
′
k(U ,U ′) for any kernel function k.

Remark 2. When U 1 contains no useful information (U 1 = ∅, U 1 ≡ c, or U 1

is independent from (V,U 2)), the definition of CMDH reduces to a marginal mean
independence measure. That is,

MDH
2(V,U 2) :=

∫
|E(V ei⟨t2,U2⟩)− E(V )E(ei⟨t2,U2⟩)|2w(t2)dt2.

Note that MDH(V,U 2) is a generalized version of MDD [31] by kernerlizing the L2

distance of U 2 and its i.i.d. copy U ′
2. The standardized version MCH is defined

similarly as CMCH.

As will be seen in Theorem 1, the definition of the CMCH is more convenient
for variable screening purpose since it takes values in [0, 1]. More detailed discussion
of CMCH is included in Section 2.3. Now we show the theoretical properties of the
proposed conditional independence measure.

Theorem 1. Assume E(V 2) <∞, we have the following properties:

(a). We can rewrite CMDH
2(V,U 2|U 1) as

CMDH
2(V,U 2|U 1)

= E(V V ′k1(U 1,U
′

1)k2(U 2,U
′

2)) + E(V V ′k1(U 1,U
′

1))E(k2(U 2,U
′

2))

− 2E(V V ′k1(U 1,U
′

1)k2(U 2,U
′′

2)),

where k1 and k2 are RHKS kernel functions determined by w1(t1) and w2(t2)
defined in Definition 1, respectively.

(b). 0 ≤ CMCH(V,U 2|U 1) ≤ 1, and CMCH(V,U 2|U 1) = 0 ⇔ E(V |U 1,U 2) =
E(V |U 1) a.s. if U 1 ⊥ U 2.
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(c). Given two constants d ∈ R and e ∈ R, CMCH(a + bV, c + dU 2|eU 1) =
CMCH(V,U 2|U 1) for any scalars a, b ∈ R and c ∈ Rq. If the kernels k1 and k2
in (a) are scale-invariant, the above equality holds for any scalars d and e as
well.

(d). If the random variables U, V ∈ R are independent, then

MCH
2(V U, U) =

E2(V )

V ar(V ) + E2(V ) + E2(U)V ar(V )
V ar(U)

MCH
2(U,U).

Furthermore, if E(V ) = 0, then MCH(V U, U) = 0.

Remark 3. If we take non-integrable weight functions w1(t1) and w2(t2) in Definition
1, then k1 and k2 in Theorem 1(a) may not be translation-invariant kernels in RKHS
(e.g., the Euclidean distance function). See dCov [33] for an example that adopts a
non-integrable weight in its definition.

Remark 4. Property (b) shows the equivalence between the conditional mean inde-
pendence and CMCH being 0, which suggests CMCH is a suitable tool for conducting
variable screening. Note that the independence of U 1 and U 2 in Property (b) is to ease
the proof. Indeed, if we define a new independence measure CMDH

2
,new(V,U 2|U 1) =∫∫

|E(V ei(⟨t1,U1⟩+⟨t2,U2⟩)|U 1) − E(V ei⟨t1,U1⟩|U 1)E(e
i⟨t2,U2⟩|U 1)|2w1(t1)w2(t2)dt1dt2,

then
CMDH,new(V,U 2|U 1) = 0 a.s.⇔ E(V |U 1,U 2) = E(V |U 1) a.s..

This removes the independence condition of U 1 and U 2. Then we need to replace our
U-statistics estimator with the conditional U-statistics to estimate the new indepen-
dence measure. Note that this new measure CMDH,new is a function of the random
vector U 1. Such a conditional measure and its associated screening method is left
as future work of interest. In this article, we stick to our original proposed measure
CMDH. In the simulations, as we see, even U 1 and U 2 are not independent (e.g.,
high variable correlations ρ = 0.5, 0.8, 0.9 in Example 1, and nonlinearly associated
predictors in Example 4), our variable screening method still performs well, or even
outperforms other methods in almost all the simulation settings.

Remark 5. Property (c) shows that the proposed CMCH is scale-invariant. Property
(d) directly shows the deficiency of marginal-type mean independence measure (MCH)
in interaction screening. Thus we propose the variable screening procedure based on
CMCH.

2.2.2 Empirical Estimators and Asymptotic Properties

Based on property (a) in Theorem 1, we construct the U -statistic to estimate CMCH.

Definition 3. Let (U 1i,U 2i, Vi)
n
i=1 be i.i.d. observations of (U 1,U 2, V ). Denote aij =

ViVjk1(U 1i,U 1j) and bij = k2(U 2i,U 2j) for i, j = 1, ..., n. Define the corresponding
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a∗ij and b∗ij as in Equation (2.1). The U-statistic estimator of CMDH is

ĈMDH(V,U 2|U 1) =
1

n(n− 3)

∑
1≤i ̸=j≤n

a∗ijb
∗
ij,

and the corresponding estimator of CMCH is:

ĈMCH(V,U 2|U 1) =

∑
1≤i ̸=j≤n a

∗
ijb

∗
ij√∑

1≤i ̸=j≤n a
∗2
ij

∑
1≤i ̸=j≤n b

∗2
ij

.

Remark 6. Compared to the adoption of V -statistic estimator, we choose the U-
statistic because it is unbiased and less computationally expensive.

We now show the strong consistency of the proposed estimators.

Theorem 2. (Consistency) If E (V 2) <∞, then

limn→∞ĈMDH(V,U 2|U 1) = CMDH(V,U 2|U 1) a.s., (2.2)

and
limn→∞ĈMCH(V,U 2|U 1) = CMCH(V,U 2|U 1) a.s.. (2.3)

In the next theorem, we derive the asymptotic distribution for CMDH(V,U 2|U 1).
Denote the following functions: gU2

(t2) := E(ei⟨t2,U2⟩), gV,U1
(t1) :=

E(V ei⟨t1,U1⟩), and F (t1, t2) := E(V 2ei⟨t1,U1⟩ei⟨t2,U2⟩). Define the covari-
ance function covΓ((t1, t2), (t

′
1, t

′
2)) := F (t1 − t′1, t2 − t′2) + (F (t1 − t′1, 0) +

gV,U1
(t1)gV,U1

(t′1)){gU2
(t2)gU2

(t′2) − gU2
(t2 − t′2)}−F (t1 − t′1, t2)gU2

(t′2) − F (t1 −
t′1,−t′2)gU2

(t2).

Theorem 3. Assume E(V 2) <∞, we have the following:

a. If CMDH(V,U 2|U 1) = 0, then

nĈMDH
2
(V,U 2|U 1)

d→ ||Γ(s)||2Hk
(2.4)

as n→∞, where Γ(·) is a complex-valued zero-mean Gaussian random process
with covariance function covΓ((t1, t2), (t

′
1, t

′
2)).

b. If CMDH(V,U 2|U 1) = 0 and E(V 2|U 2) = E(V 2), then

nĈMDH
2
(V,U 2|U 1)/Sn

d→
∞∑
j=1

λjZj

as n→∞, where Sn = ( 1
n

∑
i V

2
i − 1

n(n−1)

∑
i ̸=j aij)(1−

1
n(n−1)

∑
i ̸=j bij), Zj

i.i.d.∼
χ2
1, and {λj}∞j=1 are nonnegative constants such that E(

∑∞
j=1 λjZj) = 1.

c. If CMDH(V,U 2|U 1) > 0, then n · ĈMDH
2
(V,U 2|U 1)/Sn

p→∞ as n→∞.

The properties stated in the theorems of this section motivate us to propose

variable screening algorithm based on CMCH and its estimate ĈMCH.

7



2.3 CMCH-based Variable Screening

In this section, we show the sure screening property of CMCH in Section 2.3.1. In
Section 2.3.2, we introduce a variable screening algorithm named S-CMCH to ac-
commodate the dependence among predictors. The algortihm works reasonably well
when the data suffer from outliers, high correlation, and heterogeneity as seen in the
numerical studies.

2.3.1 Sure Screening Property

Without loss of generality, let Y be a univariate continuous response variable and
X = (X1, ..., Xp)

T be the predictor vector. Denote the sample as (X1k, ..., Xpk, Yk)
n
k=1,

where p≫ n. For any index set S ⊆ {1, ..., p}, denote XS := {Xj : j ∈ S}. Given a
conditional set XS with cardinality d1, we define

DS = {j : E(Y |(XS, Xj)) depends on Xj}

as the index set of dependent/active predictors conditional on XS, and

IS = {j : E(Y |(XS, Xj)) is independent from Xj}

as the index set of independent/inactive predictors conditional on XS. Note that DS

is a subset of D := {j : E(Y |X) depends on Xj}, the set of all dependent predictors.
Suppressing S, we denote ωj = CMC2

H(Y,Xj|XS) as the dependence score of Xj

given XS. Let ω̂j = ĈMCH
2
(Y,Xj|XS) be the estimator of ωj and

D̂S = {j : ω̂j ≥ cn−κ, for j ∈ Sc}

be the set of selected variables after screening. Before stating the sure screening
property, we assume the following conditions.

(A1) There exists a constant s0 > 0 such that E(exp(sY 2)) <∞ for all 0 < s ≤ 2s0.

(A2) For any given XS, minj∈DS
ωj ≥ 2cn−κ for some constant c > 0 and 0 ≤ κ <

1/2.

Condition (A1) puts constraint on the tail distribution of the response variable and
Condition (A2) requires that the conditional active/dependent variables and inac-
tive/independent variables are well separated.

Theorem 4. Under Condition (A1), for any 0 < γ < 1/2 − κ, there exist positive
constants c1 and c2 such that

P

{
max

1≤j≤p−d1
|ω̂j − ωj| ≥ cn−κ

}
≤ O((p− d1)[exp(−c1n1−2(κ+γ)) + n exp(−c2nγ)]).

(2.5)
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If Conditions (A2) also holds, we have

P (DS ⊂ D̂S) ≥ 1−O(sn[exp(−c1n1−2(κ+γ)) + n exp(−c2nγ)]) (2.6)

for any conditional set XS, where sn is the cardinality of DS. In particular, let
δ = minj∈DS

ωj −maxj∈ISωj, we have the ranking consistency:

P

{
max
j∈IS

ω̂j < min
j∈DS

ω̂j

}
≥ 1− 2O((p− d1)[exp(−c′1δ2n1−2γ) + n exp(−c2nγ)]) (2.7)

for a positive constant c′1.

Remark 7. The above theorem shows the sure screening property holds for any given
conditional set XS. Define M := {j : E(Y |Xj) depends on Xj} as the set of
marginally dependent/active predictors. For the special case where the conditional
set XS = X, we have DS = D, which is the common sure screening property in
the literature. In Appendix A.3, we also show that, similarly to Theorem 4, the sure
screening property holds when the conditional set is empty. In that case, CMCH re-
duces to MCH, and the sure screening property holds for selecting the set D as well
asM. We discuss more details of selecting the conditional set XS in Section 2.3.2.

Remark 8. The error terms exp(−c1n1−2(κ+γ)) and n exp(−c2nγ) in (3.5) comes
from estimating the three terms in CMDH as in Theorem 1(a). In the proof, take
the first term E(V V ′k1(U 1,U

′

1)k2(U 2,U
′

2)) := E(h) for example, we decompose it
into a bounded term E[hI(h < M)] plus an unbounded term E[hI(h > M)] for some
large enough M > 0. Similar decomposition is done to the other two terms. Setting
M = nγ for some 0 < γ < 1/2− κ, we obtain the two error terms exp(−c1n1−2(κ+γ))
and n exp(−c2nγ) for estimating the sum of the bounded terms and that of the un-
bounded terms, respectively. The role of the parameter γ is a trade-off of estimating
the bounded and unbounded terms. By setting γ = 1−2κ

3
, we achieve a balance and ob-

tain the optimal convergence rate. As mentioned in [31], their bound (3.5) can be fur-
ther improved by assuming a stronger moment condition on Y , i.e., E(exp(sY 4)) <∞
for all s ∈ (0, 2s0]. Their improved bound is the same as our bound. It is also worth
mentioning that we do not impose moment conditions on the variable X as in [31].
The reason why our method enjoys a better rate under a weaker condition is that our
proposed measure CMCH only computes the RKHS kernel functions of X (as shown in
Theorem 1 (a)). Such kernels are bounded, which frees us from assuming additional
moment conditions on X. In contrast, the Martingale Difference Correlation requires
to calculate the Euclidean distance (Theorem 1 (1) in [31]), which is unbounded.
Thus, they require the stronger assumptions.

2.3.2 A Variable Screening Algorithm S-CMCH

The sure screening property holds for any conditional set. In practice, if the condi-
tional set is not given, we use the top d1 predictors suggested by MCH, which also
enjoys the sure screening property, as shown in Theorems 10 and 11 in the appendix.
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We propose to use the following variable screening algorithm S-CMCH as stated in
Algorithm 1.

Algorithm 1 The procedure of the S-CMCH for variable screening.

Input: The conditional set XS (optional) and its cardinality d1 (optional), the number of variables
d2 to select (optional), and the data {(yi,xi)}ni=1.

1. If XS is not given, calculate M̂CH(Xi) := M̂CH(Y,Xi) for each i = 1, ..., p. Let the condi-

tional set XS be the set of the top d1(if not given, d1 =
⌊√

n/ log n
⌋
where ⌊·⌋ is the floor

function) predictors with the largest M̂CH(Xi).

2. For each i ∈ {1, ..., p − d1}, calculate ĈMCH(Xci) := ĈMCH(Y,X⊥
ci |XS), where each ci is

from Sc and X⊥
ci = Xci − PXS

Xci with PXS
being the projection matrix onto the column

space of XS .

3. Calculate the score Ai := max(
MCH(Xci

)

max
1≤i≤p−d1

MCH(Xci
) ,

CMCH(Xci
)

max
1≤i≤p−d1

CMCH(Xci
) ) for each i = 1, ..., p−d1.

Keep the top d2 − d1 predictors with the largest scores. If d2 is not given, d2 = ⌊n/ log n⌋.

Output: The index set of the d2 selected variables {i1, ..., id2
} ⊆ {1, ..., p} (the d1 variables selected

in Step 1 plus the d2 − d1 variables selected in Step 3).

The R code of S-CMCH is available in the supplement file.

Remark 9. The parameters d1 and d2 are predefined values. In general, larger d1
will lead to worse performance if the set XS contains larger proportion of inactive
variables. It will not affect the theoretical performance of CMCH. However, compu-
tationally, the estimation of the expected kernel function of long vectors inside CMCH
becomes less reliable if the sample size is limited. Thus we recommend to choose small

d1(e.g., d1 =
⌊√

n/ log n
⌋
) in practice.

Remark 10. The adoption of X⊥
ci

is to handle the scenario when the independence
assumption of XS and Xi is violated. Note that this only removes the linear depen-
dence. See more discussion in Remark 4.

Remark 11. In the last step, an alternative way is to use a linear combination

w1
MCH(Xci )

max
1≤i≤p−d1

MCH(Xci )
+ w2

CMCH(Xci )

max
1≤i≤p−d1

CMCH(Xci )
to rank all the predictors. The weights can

be adaptively chosen driven by the data, which we leave as a potential future work.

2.3.3 Extension to Quantile Screening

In this section, we extend our method to the quantile screening setting. For a uni-
variate random response Y , denote Yτ = τ − 1(Y ≤ qτ ) as its binary version with
τ ∈ (0, 1), where qτ is the τ -th quantile of the distribution of Y . Given i.i.d. obser-
vations {yk}nk=1 of Y , denote Ŷτ = τ − 1(Y ≤ q̂τ ) as the estimate of Yτ , where q̂τ is
the sample τ -th quantile. So for each observation yk, we denote ykτ = τ −1(yk ≤ q̂τ ).
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Let ωj(Yτ ) = CMC2
H(Yτ , Xj|XS) and ω̂j(Ŷτ ) = ĈMC

2

H(Ŷτ , Xj|XS). Similarly, we
denote Dqτ = {j : E(Yτ |(XS, Xj)) depends on Xj} as the quantile active predictors

conditional on XS, and denote D̂qτ = {j : ω̂j(Ŷτ ) ≥ cn−κ, for j ∈ Sc} as the selected
variables.

Next we show the sure screening property for the quantile version of CMCH.

Theorem 5. Under condition (C1) in the appendix, for any 0 < γ < 1/2 − κ and
κ ∈ (0, 1/2), there exist positive constants c1, c2 such that for any c > 0,

P

{
max

1≤j≤p−d1
|ω̂j(Ŷτ )−ωj(Yτ )| ≥ cn−κ

}
≤ O((p−d1)[exp{−c1n1−2(κ+γ)}+n exp(−c2nγ)]).

(2.8)
If Condition (C2) in the appendix holds in addition, we have

P (Dqτ ⊆ D̂qτ ) ≥ 1−O(s̃n[exp{−c1n1−2(κ+γ)}+ n exp(−c2nγ)]), (2.9)

where s̃n is the cardinality of Dqτ .

2.4 Numerical Studies

In this section, we evaluate the finite-sample performance of the proposed method
CMCH.

The choice of kernel functions Denote the translation-invariant Gaussian kernel
as

K(x1,x2) := exp(−1

h
(x1 − x2)

T (x1 − x2)), (2.10)

where x1,x2 ∈ Rt, t ∈ N, and h is the bandwidth. For the proposed CMCH, we
use K(x1,x2) for both k1 and k2. In our simulations, the performance of CMCH for
variable screening is robust against the bandwidths of k1 and k2. So we set h = 2
for both k1 and k2. For MCH, we adopt Gaussian kernel and conduct a sensitivity
analysis of the bandwidth, the results of which are presented in the supplementary
material S1.1. The performance of MCH is sensitive to the bandwidth h. In particular,
MCH with smaller h performs better for selecting covariates that are linearly related
to the response variable, while larger h is more suitable for selecting nonlinearly
related covariates. To select the conditional set XS and avoid cherry-picking, we first
calculate the values of MCH using two bandwidths h = 2σ̂2

Xi
and h = 6σ̂2

Xi
for each

predictor Xi, where σ̂
2
Xi

is sample variance of Xi and i = 1, ..., p. Our experience is
that h = 2σ̂2

Xi
and h = 6σ̂2

Xi
generally perform well for the simulations. Then we take

the maximum of the two MCH values for each predictor. One can also use Laplacian
kernel and Cauchy kernel in practice. However, in our examples, they yield similar
performance to that of the Gaussian kernel.
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Criteria of evaluating variable screening performance Following [20], we con-
sider three criteria for evaluating the variable screening performance: 1) Sq: the
(100q)-th quantile of the minimal model size required to contain all the active pre-
dictors. 2) Pi: the proportion that the predictor Xi is selected, and 3) Pall: the
proportion of all active predictors being selected. Essentially, an Sq closer to the
total number of active predictors is preferred. The three criteria are connected in a
way that a smaller minimal model size suggests a larger Pall and a lager Pi for each
active variable.

Screening thresholds We compare S-CMCH with six variable screening methods,
including two marginal screening method (DCSIS2 in [17] and MDC), three condi-
tional screening methods (CSIS in [2], CDCSIS in [40] and CIS in [35]), and one
iterative methods (RaSE1-eBIC in [34]. For each screening method, we keep the top
d2 = ⌊n/log(n)⌋ variables, where n is the sample size. We report the Pi, Pall and S0.5
values based on 100 repetitions for each example. Since conditional screening methods
require a pre-selected conditional set XS, we either artificially set up the conditional
set based on the variables in the true model or select the top d1 = ⌊

√
n/log(n)⌋

variables suggested by MCH. We also include a sensitivity analysis of using different
methods (e.g. SIS, LASSO and forward regression) to choose the conditional set in
the supplementary material S1.2.

2.4.1 Simulation

Example 1 (Marginally inactive but jointly active predictors). Following
the idea of [9], we generate samples {Yi,X i}ni=1 from the linear regression model

Y = X1 +X2 +X3 +X4 +X5 − cX6 + ϵ,

where the coefficient c is designed so that cov(X6, Y ) = 0. That is, the pre-
dictor X6 is marginally independent from the response Y . The predictor vector
X = (X1, ..., Xp) ∼ N(0,Σ), where Σ has (i, j)-th entry σij = ρI{i ̸=j}. The error
term ϵ ∼ N(0, 1) and is independent from X. We set the sample size n = 200 and the
dimension p = 3000. We consider three cases: (c, ρ) ∈ {(2.5, 0.5), (4, 0.8), (4.5, 0.9)}.
Note that X6 is dependent with Y if given one or more predictors from {X1, ..., X5}.

The simulation results are reported in Table 2.1. The marginal screening method
MDC fails to detect the marginally independent predictor X6 in all cases, while other
methods identify X6 as an active predictor. As the correlation increases from ρ = 0.5
to ρ = 0.9, the selection proportion Pi decreases for i = 1, 2, ..., 5. Consequently,
Pall decreases as the correlation increases. Note that if the conditional set XS1 =
{X1}, the proportion of selecting X1 is set to 1. We set d2 = ⌊n/log(n)⌋ = 37 in
this example. Note that the minimal model size S0.5 is small only in the first case
where ρ = 0.5, which explains the low values of Pall for all the methods for the high
correlation case (ρ = 0.8 or 0.9). The three conditional methods: CIS, CSIS and
CDC-SIS, fail to detect the active variables X2, X3, X4 and X5 when the correlation
increases to ρ = 0.9.
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Table 2.1: The Pi, Pall and S0.5 in Example 1.

P1 P2 P3 P4 P5 P6 Pall S0.5
c = 2.5, ρ = 0.5

MDC 0.89 0.94 0.93 0.91 0.90 0.00 0.00 3000.0
CSIS (XS1) 1.00 0.97 0.98 0.98 0.97 0.87 0.78 14.0
CSIS (XS2) 0.71 0.75 0.75 0.72 0.72 1.00 0.17 1580.5
CDC-SIS (XS1) 1.00 0.95 0.95 0.95 0.93 0.16 0.14 708.5
CDC-SIS (XS2) 0.73 0.76 0.74 0.72 0.72 1.00 0.16 1541.5
CIS(XS1) 1.00 0.83 0.88 0.87 0.87 0.71 0.34 58.0
CIS(XS2) 0.97 0.91 0.94 0.94 0.97 0.01 0.01 2997.5
S-CMCH (XS1) 1.00 0.94 0.94 0.92 0.92 0.53 0.39 90.5
S-CMCH (XS2) 0.91 0.95 0.94 0.93 0.92 1.00 0.72 17.5
RaSE1-eBIC 0.99 1.00 0.99 0.99 1.00 1.00 0.97 6.0

c = 4, ρ = 0.8
MDC 0.61 0.63 0.64 0.63 0.62 0.00 0.00 3000.0
CSIS (XS1) 1.00 0.48 0.44 0.40 0.44 1.00 0.10 320.0
CSIS (XS2) 0.39 0.34 0.36 0.41 0.33 1.00 0.00 2988.5
CDC-SIS (XS1) 1.00 0.56 0.53 0.54 0.54 0.93 0.06 264.0
CDC-SIS (XS2) 0.39 0.34 0.36 0.41 0.34 1.00 0.00 2623.5
CIS(XS1) 1.00 0.39 0.31 0.34 0.42 1.00 0.03 546.0
CIS(XS2) 0.70 0.59 0.67 0.64 0.69 1.00 0.09 268.0
S-CMCH (XS1) 1.00 0.73 0.71 0.66 0.67 1.00 0.26 127.5
S-CMCH (XS2) 0.61 0.73 0.72 0.66 0.67 1.00 0.16 156.5
RaSE1-eBIC 0.80 0.92 0.76 0.79 0.87 1.00 0.35 2312.5

c = 4.5, ρ = 0.9
MDC 0.48 0.40 0.39 0.48 0.40 0.00 0.00 3000.0
CSIS (XS1) 1.00 0.14 0.09 0.13 0.08 1.00 0.00 2339.0
CSIS (XS2) 0.28 0.24 0.23 0.24 0.20 1.00 0.00 2992.5
CDC-SIS (XS1) 1.00 0.29 0.28 0.29 0.28 0.98 0.01 875.0
CDC-SIS (XS2) 0.28 0.24 0.23 0.24 0.21 1.00 0.00 2875.0
CIS(XS1) 1.00 0.11 0.08 0.07 0.16 1.00 0.00 2037.5
CIS(XS2) 0.43 0.44 0.47 0.46 0.41 1.00 0.00 897.0
S-CMCH (XS1) 1.00 0.48 0.47 0.51 0.45 1.00 0.07 269.5
S-CMCH (XS2) 0.53 0.48 0.47 0.51 0.47 1.00 0.03 338.0
RaSE1-eBIC 0.62 0.89 0.73 0.65 0.68 1.00 0.19 2316.0

The conditional set is either XS1 = {X1} or XS2 = {the first d1 =
6 predictors selected by MDCH}.

When the conditional set changes from an oracle set XS1 to a data-dependent set
XS2 , the performances of the three conditional screening methods (CIS, CSIS and
CDC-SIS) deteriorate. Our proposed S-CMCH instead shows robustness against the
conditional set. The performance of our method decreases due to the extra cost of
selecting X1 when the conditional set becomes data-dependent.

In this example, from the perspective of the minimal model size S0.5, the minimal
model size for RaSE1-eBIC changes from 6 to 2316 when ρ increases from 0.5 to 0.9.
In contrast, the stable performance of S-CMCH in S0.5 indicates that our method
is more robust against the correlation ρ. In terms of Pall and Pi, RaSE1-eBIC and
S-CMCH are better than any other method. RaSE1-eBIC is better than S-CMCH,
which may be due to the good performance of RaSE1-eBIC in the linear case.

Example 2 (Interaction terms). We consider the following model with interac-
tion terms:

Y =X1 +X5 +X10 +X1X15 + 1.5X5X20 + 2X10X25 + ϵ.

The predictor vector X = (X1, ..., Xp) ∼ N(0,Σ), where Σ has (i, j)-th entry σij =
ρ|i−j|. We consider two cases: ρ ∈ {0, 0.9}. The error term ϵ ∼ N(0, 1) and is
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Table 2.2: The Pi, Pall and S0.5 in Example 2.

P1 P5 P10 P15 P20 P25 Pall S0.5
ρ = 0

MDC 0.94 0.96 0.90 0.01 0.00 0.03 0.00 2662.5
CSIS (XS1) 1.00 1.00 1.00 0.04 0.03 0.07 0.00 2452.0
CSIS(XS2) 0.97 0.93 0.90 0.03 0.02 0.04 0.00 2147.0
CDC-SIS (XS1) 1.00 1.00 1.00 0.01 0.03 0.26 0.00 1639.0
CDC-SIS (XS2) 0.84 0.86 0.84 0.07 0.17 0.43 0.00 1529.0
DCSIS2 0.40 0.70 0.99 0.11 0.35 0.85 0.00 1372.5
CIS(XS1) 1.00 1.00 1.00 0.02 0.12 0.45 0.00 566.0
CIS(XS2) 0.99 0.98 0.96 0.01 0.01 0.02 0.00 2278.0
S-CMCH (XS1) 1.00 1.00 1.00 0.18 0.62 0.99 0.09 196.5
S-CMCH(XS2) 0.94 0.96 0.91 0.11 0.37 0.77 0.01 851.5
RaSE1-eBIC 0.87 0.82 0.79 0.01 0.01 0.04 0.00 2295.5

ρ = 0.9
MDC 1.00 1.00 1.00 0.97 0.52 0.14 0.13 350.5
CSIS (XS1) 1.00 1.00 1.00 0.08 0.15 0.13 0.02 1887.0
CSIS (XS2) 0.78 0.97 0.74 0.08 0.12 0.13 0.02 1870.0
CDCSIS (XS1) 1.00 1.00 1.00 0.03 0.04 0.06 0.00 2024.5
CDCSIS(XS2) 0.52 0.96 0.80 0.86 1.00 1.00 0.40 66.0
DCSIS2 0.93 1.00 1.00 0.87 0.91 0.81 0.62 30.5
CIS(XS1) 1.00 1.00 1.00 0.28 0.93 1.00 0.27 62.0
CIS(XS2) 0.78 0.99 0.83 0.43 0.92 0.85 0.2 88.5
S-CMCH(XS1) 1.00 1.00 1.00 0.90 1.00 1.00 0.90 25.0
S-CMCH(XS2) 1.00 1.00 1.00 0.90 1.00 0.99 0.89 26.0
RaSE1-eBIC 0.41 0.42 0.37 0.02 0.02 0.01 0.01 2403.0

We set the conditional set to be XS1={X1, X5, X10} or XS2 ={the first d1 = 6
predictors selected by MCH}.

independent from X. We set the sample size n = 200 and the dimension p = 3000.
The results are reported in Table 2.2. The three variables X15, X20, X25 all jointly

contribute to the mean of Y , but are marginally independent of the mean of Y . It
is difficult for the marginal screening methods to detect these three terms. Note
that X25 has a larger coefficient in its interaction term than that of X20 or X15.
As the signal/coefficient of the interaction term increases, its effect is easier to be
detected (P25 > P20 > P15) for all the methods. RaSE1-eBIC fails in detecting
those three variables in this example. This is possibly due to the fact that RaSE1-
eBIC targets additive models. In comparison to the interaction screening method
DCSIS2, the proposed method S-CMCH has a comparable performance in selecting
X15, X20 and X25 for both ρ = 0 and ρ = 0.9. But S-CMCH performs better
than DCSIS2 in selecting the marginally active variables X1, X5 and X10. What’s
more, S-CMCH has the smallest S0.5 among all the methods. Similar to Example
1, the performance of S-CMCH is stable against the conditional set. We also did
a sensitivity analysis against the conditional set. We consider three more cases:
the conditional set is selected by Lasso, SIS, and forward regression. The results are
reported in the supplementary material S1.2, demonstrating a better and more stable
performance of S-CMCH compared to other conditional methods (CSIS, CDC-SIS).
Finally, we include a block structure correlation setting where the correlation among

14



active predictors are 0.2 and 0.1 otherwise. We report the result in the supplementary
material S1.3, which clearly shows the advantage of S-CMCH.

Example 3 (Heteroscedasticity & Quantile screening). In this example, we
demonstrate that our screening method can help in heteroskedastic model specifica-
tion. We consider the following model:

Y =X1 +X5 +X1X10 + 1.5X5X15 + ϵ · exp(X35 +X40).

The predictor vector X = (X1, ..., Xp) ∼ N(0,Σ), where Σ has (i, j)-th entry σij =
ρ|i−j|. We consider two cases: ρ ∈ {0, 0.9}. The error term ϵ ∼ N(0, 1) is independent
from X. We set the sample size n = 400 and the dimension p = 3000. For the
purpose of quantile screening, we change the continuous response Y to a binary
response Yτ = τ − 1(Y ≤ q̂τ ), where q̂τ is the τ -th sample quantile of the response.
Then we apply S-CMCH and MDC on the data (Yτ ,X). Note that in fixed design,
the population quantile qτ does not depend on (X20, X25) if and only if τ = 0.5. We
consider two choices of the quantile: τ = 0.5 and τ = 0.75.

The results are presented in Table 2.3 with conditional set selected by MCH. In
this example, we also evaluate the method QaSIS [16], a quantile-adaptive model-free
variable screening method for heterogeneous data. Overall, our proposed method
S-CMCH performs the best across all four combinations of (ρ, τ). In particular, S-
CMCH is dominantly better in S0.5 than any other method even under high correlation
setting. When there is no correlation among predictors (ρ = 0), from the perspective
of quantile screening, MDC, CDC-SIS, QaSIS, and S-CMCH correctly differentiate
the different roles ofX35 andX40 under two values of τ . However, these three methods
(MDC, CDC-SIS, QaSIS) fail to identify X15 (compared to X10) when τ = 0.5. In
contrast, S-CMCH has a better performance in separating the active variables from
the inactive variables. When high correlation exists among predictors, all methods
receive improved performance and S-CMCH still remains competitive. This is because
the marginal relationship between X10 (X15) and the response Y is strengthened by
the high correlation among predictors. We also include the scenario when conditional
set is {X1, X5, X10} in the supplementary material S1.4.

Example 4 (Nonlinear case). We consider the following nonlinear case.

Y = 3I(X1 > 0.5)X2 + 3sin2(2πX1)X3 + 3(X2
1 − 1)X4 + exp(X1)X5 + ϵ,

where we first generate U1, U2
i.i.d∼ Unif[0, 1] and then let X1 = (U1 + U2)/2 and

Xk = (Zk + 2U1)/4 for k = 2, 3, ..., p. We consider two scenarios, symmetric dis-

tribution Zk
i.i.d∼ N(0, 1) and asymmetric distribution Zk

i.i.d∼ χ2
(1). The error term ϵ

is independently drawn from standard normal distribution. We set the sample size
n = 200 and the dimension p = 3000. The results are reported in Table 2.4.

In this example, the active predictors are nonlinearly associated with each other.
Each element in this model is an interaction effect of two variables. The proposed S-
CMCH demonstrates its competitive performance for selecting all the active predictors
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Table 2.3: The Pi, Pall and S0.5 in Example 3 with XS selected by MCH.

Method τ
ρ = 0 ρ = 0.9

P1 P5 P10 P15 P35 P40 Pall S0.5 P1 P5 P10 P15 P35 P40 Pall S0.5
MDC

0.5 1.00 1.00 0.06 0.03 0.04 0.02 0.00 1910.0 1.00 1.00 0.97 0.49 0.06 0.05 0.49 71.0
0.75 0.99 1.00 0.24 0.38 0.52 0.55 0.03 986.5 1.00 1.00 1.00 1.00 0.91 0.92 0.86 29.5

CSIS
0.5 1.00 0.99 0.01 0.03 0.20 0.16 0.00 2025.5 1.00 1.00 0.19 0.07 0.31 0.24 0.00 1854.5
0.75 0.97 0.95 0.06 0.14 0.39 0.42 0.00 2207.0 0.86 0.96 0.39 0.11 0.31 0.30 0.00 2138.5

CDC-SIS
0.5 1.00 0.99 0.13 0.28 0.23 0.30 0.04 757.0 1.00 1.00 0.28 0.94 1.00 1.00 0.27 172.5
0.75 0.96 0.97 0.13 0.51 0.42 0.47 0.04 1159.5 0.88 0.97 0.41 0.87 0.95 0.92 0.25 214.5

QaSIS
0.5 1.00 1.00 0.16 0.16 0.28 0.27 0.03 1085.0 1.00 1.00 1.00 0.90 0.69 0.55 0.90 20.5
0.75 0.92 0.99 0.14 0.38 0.69 0.72 0.03 600.0 0.99 1.00 1.00 0.97 0.99 0.97 0.92 35.5

DCSIS2
0.5 0.18 0.41 0.04 0.08 0.93 0.90 0.00 1443.5 0.07 0.15 0.06 0.05 1.00 1.00 0.00 918.0
0.75 0.18 0.41 0.04 0.08 0.93 0.90 0.00 1443.5 0.07 0.15 0.06 0.05 1.00 1.00 0.00 918.0

CIS
0.5 1.00 0.99 0.07 0.04 0.01 0.02 0.01 1982.5 1.00 1.00 0.31 0.89 0.95 0.98 0.29 121.5
0.75 1.00 0.99 0.06 0.14 0.21 0.3 0.00 2537.5 1.00 0.99 0.47 0.76 0.9 0.91 0.33 129.0

S-CMCH
0.5 1.00 1.00 0.18 0.80 0.05 0.04 0.13 240.0 1.00 1.00 0.97 0.93 0.34 0.38 0.90 16.0
0.75 0.99 1.00 0.33 0.67 0.49 0.58 0.05 574.5 1.00 1.00 1.00 0.95 0.97 0.93 0.86 28.0

RaSE1-eBIC
0.5 0.49 0.31 0.00 0.00 0.03 0.01 0.00 1816.0 0.25 0.07 0.00 0.00 0.04 0.03 0.00 2425.5
0.75 0.49 0.31 0.00 0.00 0.00 0.00 0.00 2427.0 0.25 0.07 0.00 0.00 0.01 0.02 0.00 2427.0

Table 2.4: The Pi, Pall and S0.5 in Example 4 with XS selected by MCH.

Zk
i.i.d∼ N(0, 1) Zk

i.i.d∼ χ2
(1)

P1 P2 P3 P4 P5 Pall S0.5 P1 P2 P3 P4 P5 Pall S0.5
MDC 1.00 0.79 0.84 0.00 0.85 0.00 2974.5 1.00 0.64 0.80 0.00 0.85 0.00 2725.0
CSIS 0.99 0.56 0.55 1.00 0.69 0.17 554.5 1.00 0.61 0.70 1.00 0.81 0.26 100.5
CDC-SIS 0.99 0.62 0.53 0.34 0.68 0.11 1101.5 1.00 0.45 0.60 0.65 0.60 0.11 962.5
DCSIS2 1.00 0.84 0.57 0.00 0.52 0.00 2235.0 1.00 0.90 0.71 0.05 0.70 0.01 1284.5
CIS 1.00 0.95 0.90 0.31 0.94 0.24 153.0 1.00 0.76 0.78 0.42 0.78 0.17 155.0
S-CMCH 1.00 0.79 0.84 0.95 0.85 0.52 33.5 1.00 0.63 0.78 0.90 0.82 0.35 77.0
RaSE1-eBIC 0.28 0.60 0.60 0.58 0.74 0.06 2250.0 0.98 0.47 0.63 0.95 0.73 0.18 2253.5

with relatively high Pi and Pall, and smallest S0.5, in both scenarios. The methods
DCSIS2 and MDC fail to detect X4. It is worth pointing out that the contribution of
variable X4 is also underestimated by the methods CDC-SIS and CIS. This may be
because that X4’s conditional contribution to Y is diffused by the exponential term
exp(X1)X5, as indicated by the much larger P5 in the four methods mentioned above.

2.4.2 Data Applications

2.4.2.1 Single Cell Malt Tumor CITE-seq Dataset

The Malt Tumor Cellular Indexing of Transcriptomes and Epitopes by sequencing
(CITE-seq) dataset (http://www.10xgenomics.com) contains single-cell level sequenc-
ing RNA data and as well as the surface protein expression count. We are interested
in identifying the genes that affect the surface protein level. The dataset contains
33555 genes and proteins from 8412 single cells. Following the data pre-processing
procedure in [35] (filtering out cells with more than 90% zero entries and genes that
has zero variance), we obtain a sample of n = 207 single cells and p = 18702 genes.
And we set protein CD8 as the response variable and the protein CD3 as conditional
variable. Interested readers are referred to [35] for detailed scientific explanations of
using CD3 as the conditional variable. To evaluate the prediction performance of each
screening method, we randomly split the observations into a training set of size 176
and a test set of size 31. We select d2 = 38 variables by the following four conditional
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Table 2.5: The prediction accuracy in MALT data.

Method MSE paired t-test p-value
CSIS 1.364 < 2.2× 10−16

CDC-SIS 1.162 < 2.2× 10−16

CIS 1.268 < 2.2× 10−16

S-CMCH 0.748 –

Table 2.6: The prediction accuracy in Riboflavin production data.

Method MSE paired t-test p-value
MDC 0.301 0.017
CSIS 0.357 2.909× 10−15

CDC-SIS 0.323 5.62× 10−5

CIS 0.323 5.62× 10−5

RaSE1-eBIC 0.293 0.401
S-CMCH 0.292 –

The conditional set XS contains the top d1 = 4 variables suggested by MCH.

methods: CSIS, CDCSIS, CIS and SCMCH including CD3. Then a random forest
model is fitted with the selected variables and the response, with log transformations
on the response and the variables. The mean squared errors (MSE) of the methods
on the test set for 100 repetitions are reported in Table 2.5. In each of the 100 rep-
etitions, we calculate the difference between the MSE of S-CMCH and that of each
competing method. Then we conducted a one-sided paired two-sample t-test with the
alternative hypothesis that our method S-CMCH has a smaller average mean squared
error (MSE). Our method has the smallest MSE and the p-values of the paired t-test
indicates S-CMCH outperforms each method in prediction accuracy.

2.4.2.2 Riboflavin Production Dataset

The dataset [18] contains information about riboflavin (vitamin B2) production by
n = 71 bacillus subtiliswith, where p = 4088 gene expression levels are recorded. The
dataset is provided by Royal DSM (Switzerland) and is available in the R package
hdi.

Our goal is to find which genes are most related in predicting the riboflavin pro-
duction rate. We randomly split the sample into a training set of size 60 and a test set
of size 11. To evaluate the prediction performance of each screening method, we select
d2 = 16 variables for each screening method and train a random forest model on the
training set. Then we calculate the mean squared error (MSE) of each method on the
test set. The average MSE’s based on 100 data splittings into training/test sets are
reported in Table 2.6. Similar to Section 2.4.2.1, we conducted the same one-sided
paired two-sample t-test with the alternative hypothesis that our method S-CMCH
has a smaller averge mean squared error (MSE).Our method has the smallest MSE
and the p-values suggest that it significantly improves the MSE.
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2.5 Conclusion

In this article, we propose the conditional martingale difference divergence (CMDH)
to measure the dependence between a response variable and a predictor vector given
a third vector. It is primarily designed to overcome the limitation of marginal inde-
pendence measures. Based on CMDH, we develop a new screening procedure called
S-CMCH by combining the merits of the CMCH and MCH for selecting both marginal
and jointly active variables. The proposed framework can be easily extended to quan-
tile screening. The simulations and real data applications demonstrate that S-CMCH
has a competitive and stable performance under variety model settings for mean or
quantile screening. We also provide a data-driven method for selecting the condi-
tional set XS. The limitation of this method is that we do need to predetermine a
proper number of variables in conditional set to get a satisfactory performance. Us-
ing ⌊

√
n/ log n⌋, as done in our numerical study, may not suffice for the cases when

the true underlying model consists jointly only active variables that depends on a
large conditional set. Designing a variable screening method that is free of tuning
the cardinality of the conditional set is a challenging future research topic.

Copyright© Lei Fang, 2023.
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Chapter 3 High dimensional inference in integration of multiview
microbiome data for causal discoveries of complex trait-metabolite
associations

3.1 Introduction

The human microbiome refers to the collection of microorganisms, including bacteria,
viruses, fungi, and other microbes, that reside within and on our bodies. These
microbes play a crucial role in maintaining our health and well-being by aiding in
digestion, immune system regulation, and synthesizing essential nutrients.

However, an imbalance or disruption in the microbiome can lead to various
microbiome-related diseases. These conditions arise when the composition and di-
versity of the microbial community are altered, resulting in negative health effects.
Examples of such disease including inflammatory bowel disease (IBD), obesity and
metabolic disorders, allergies and asthma, mental health disorders, and clostridium
difficile infection. Understanding the complex interactions between the microbiome
and various diseases is critical. It would provide promising directions for developing
targeted interventions, such as probiotics, prebiotics, and fecal microbiota transplan-
tation, to restore a healthy microbiome and improve patient outcomes. The primary
mode that microbiome interact with host is through the microbiome metabolism,
producing the corresponding metabolites. It is naturally to suspect that microbiome
metabolism plays an important role during the pathogenesis of those diseases.

We demonstrate such hypothesis is reasonable with a real data example: iHMP-
IBDMDB-2019 (IHMP) dataset in [22], which comes from a longitudinal IBD study
consists of 79 patients and 26 controls. The microbiome abundance measurement is
from shotgun and metabolites is measured from the untargeted and four complimen-
tary LC-MS methods, see [22] for a detailed description of data collection. We only
consider subjects’ baseline measurement obtained at the time of their enrollment.
The detailed data processing are described in Section3.4.

Our response is the IBD biomarker: C-Reactive Protein (CRP) level in mg/L,
which is a protein that human liver makes. Elevated levels of CRP are observed
in the bloodstream during inflammation, which naturally makes it a good indicator
for IBD. See [37] for a detailed illustration and justification. Indeed, the exclusive
availability of CRP level measurement is the reason we choose this iHMP dataset.
By a simple linear regression on each metabolite, we obtain their marginal coefficient
and p-value and make a volcano plot in Figure 3.1. Despite the limited sample size
of 54, we have discovered 43 significant metabolites (annotated in blue dots).
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We then want to test whether these 43 significant metabolites are actually as-
sociated with microbiome. From Microbiome Regression-Based Kernel Association
Tests (MiRKAT), which is a kernel based global test in [4], 28 metabolites shows
significance.

Now, we have presented a reasonable hypothesized pathogenesis for IBD: micro-
biome→metabolites→ IBD(CRP). Our ultimate goal here is to understand how does
microbiome affect such disease. To be more specific, we want to test the hypothesis
that microbiome has an causal affect on IBD through the microbiome metabolism
(or metabolites). To this end, it is not sufficient to draw conclusions from marginal
analysis on metabolites, as such discovery could be false positive. It is necessary to
include both metabolites and microbiome abundance in the analysis.

Fortunately, we have such data available called multi-view microbiome data. Each
observation contains the high dimensional metabolites and microbiome abundance
data. Indeed, the aforementioned IHMP dataset is one such data. However, there are
two challenges. The first one is that such datasets usually have small sample size as
metabolites measurement is expensive. Small sample size is problematic because of
weak power for the test, especially in a high dimensional setting. The second difficulty
is the availability a particular microbiome generated metabolites of interest or pheno-
type response. For example, some metabolites are not measured in IHMP dataset but
it is found in another IBD dataset from [13]. Another situation is that, while large
microbiome-wide association data are available, they lack metabolites measurement.
Can we also integrate it with multi-view mcirobiome data and potentially improve
the power?

To address these issues, we develop a general framework to integrate microbiome
datasets, as well as metabolites and microbiome. Specifically, with a structural model
in section 3.2.1 , we are able to test the causal effect of the metabolite. Our proposed
method is very natural: we can impute the unobserved metabolite from another in-
formative multi-view microbiome dataset. And we show that the resulting inference
remains reliable both theoretically and numerically. One particular appealing advan-
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tage of our method is that the type I error is well controlled regardless the choice of
external multi-view microbiome dataset.

The rest of the article is organized as follows: in Section 3.2.1, we introduce our
proposed structural model and describe the inference procedure in detail. In Section
3.3, we demonstrate the performance of our method with simulation study and a real
data application. The concluding discussion and future research area in Section 3.5.

3.2 Methodology

3.2.1 Model

We consider the following linear structral equation model for our target i.i.d. data
{mi, Xi,·, Yi}:

Yi =Miθ
∗ + β∗∗⊤Xi,· + εi (3.1)

and

Mi = γ⊤Xi,· + δi, (3.2)

where Yi ∈ R is the univariate phenotype, andXi,· ∈ Rp denotes the CLR-transformed
microbiome abundance from p microbes, Mi ∈ R represents the unobserved metabo-
lite of interest. εi refer to the error term but independent from microbiome abun-
dance. Without loss of generality, we assume δi and εi are from normal distribution
with mean 0, but we allow cov(δi, εi) ̸= 0. In other words, ε is correlated with M .
The θ∗ hence can be viewed as the causal effect of metabolite.

To see this, we rewrite εi = ϕ⊤Hi,· + ξi, where term Hi,· ∈ Rq represents the
true hidden confounding variables that correlated with M and ξi ∈ R represents the
random error that independent from M . Model 3.1 is now transformed as a common
hidden confounding model. Because we account for the hidden confounding variable
in our full model (3.1). Our goal is to estimate and test the causal effect θ∗.

When cov(δi, εi) ̸= 0, even if everyMi is observed, the estimation of θ∗ under OLS
setting will be biased as the independence assumption is violated. In high dimensional
setting, this is also problematic as even the consistency estimation of θ∗ is generally
not attainable, see [21] for detailed discussion.

Since the interested metabolite M is unobserved, a natural strategy is to impute
it by a predicted M̂ from an external multi-view microbiome dataset. The valid-
ity of conducting inference based on predicted predictor has been discussed in [39].
Therefore, our working model (3.3) is the following:

Yi = M̂iθ + β∗⊤Xi,· + ϵi, (3.3)

where the M̂i = γ̂⊤Xi,·. And γ̂ is predicted from a informative external dataset with
the following model:

M ′
j = γ⊤X ′

j + δ′j, (3.4)
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where each δ′j is i.i.d from normal distribution with mean 0. As M̂i is predicted

from external dataset, the error term ϵi is independent from M̂i. The aforementioned
bias issue is potentially bypassed, as well as the unavaibility of M , see Thorem 6
for details. However, our working model (3.3) may not be identifiable as the M̂i is
potentially collineared with Xi,·.

Indeed, a necessary and sufficient identifibility condition in our working model is
that there exists at least one instrumental microbe. To see this, we let A = {1, ..., p}
index all p microbes, and categorize the microbes into the following four scenarios
based on their coefficients in β∗∗ and γ:

(1) G1 = {l ∈ A | β∗
l ̸= 0 and γl ̸= 0}, microbes in G1 are related to both outcome

and the metabolites. These microbes are confounders when the interest is to infer
metabolome-outcome associations.

(2) G2 = {l ∈ A | β∗
l = 0 and γl ̸= 0}, microbes in G2 are only related to the

metabolites but not directly associated with outcome. These microbes may be served
as instrumental variables for deciphering the causal relationship between the metabo-
lites and the outcome.

(3) G3 = {l ∈ A | β∗
l ̸= 0 and γl = 0}, microbes in G3 directly associated with the

outcome without affecting the synthesis of the metabolites.
(4) G4 = {l ∈ A | β∗

l = 0 and γl = 0}, microbes in G4 are irrelavent.
See Figure 3.2 shows below for a clear illustration of their relationship.

Figure 3.2: confouder G1 and instrumental variable G2

Throughout the rest of the paper, we assume G2 ̸= ∅ and we leave the gap be-
tween γ̂ and γ to the variable selection consistency property of the variable selection
methods.

3.2.2 Two Stage Parameter Estimation and Inference

From our working model (3.3), the estimation of θ∗ consists of two stages. The first
stage is to estimate γ from an external dataset and the second stage is plugging in the
predicted M̂ to estimate θ∗. In the first stage, we adopt the popular variable selection
method Lasso and the estimator γ̂ is obtained from the following optimization:

γ̂ = argmin
γ

{
∥M ′ −X ′γ∥22

2m
+ λγ

p∑
i=1

|γi|
}
, (3.5)
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where λγ is a tuning parameter. The M̂ is estimated as Xγ̂. In the second stage, we
also use Lasso to the estimate θ∗ . A notable difference here is that since we want to
keep microbiom realated metabolite M̂ during the variable selection, we do not put
penalty on M̂ as seen in (3.6). This is similar to weighted lasso where the weight on
penalty for M̂ is 0.

θ̂, β̂∗ = argmin
θ,β∗

{
∥Y − M̂θ −Xβ∗∥22

2n
+ λ

p∑
i=1

|βi|
}

(3.6)

Proposition 1. (consistency of Lasso estimator) denote S0 =: {βi ̸= 0}, s0γ =
∥γ∥0 and s0β = ∥β∥0. With the compatibility condition (see supplement), there exist

constant ϕ2, such that ∥θ∗− θ̂, β∗−β̂∥1 ≤ 4λ(s0β+1)/ϕ2 for a λ ≍ (λγs
2
0γ∨

√
log p/n).

If we choose λγ ≍
√
log p/m for γ̂, if s0β = o(

√
m/(s40γ log p) ∧

√
n/ log p), then

∥θ∗ − θ̂, β∗ − β̂∥1 → 0.

However, the consistency estimator θ̂ from Lasso is not unbiased nor it has a
distribution to allow for hypothesis test. Fortunately, such problem has been solved
by the development of debiased lasso (see [36] or [46]). We hence follow the idea in
[46] to construct an unbiased estimator of θ∗.

Let z denote a score function of M̂ defined as follows:

ẑ = M̂ −Xb̂, b̂ = argmin
b

{
∥M̂ −Xb∥22

2n
+ λz

p∑
k=1

wk|bk|
}
. (3.7)

Our debiased Lasso estimator of θ̃ is defined as θ̂ +
ẑ⊤(Y − M̂ θ̂ −Xβ̂∗)

ẑ⊤M̂
, where

θ̂ and β̂∗ are the initial lasso estimator of θ and β∗ in (3.6).

Remark 12. θ̃ can also be decomposed into of three components: θ∗, noise and bias,
that is

θ̃ − θ∗ = z⊤ε

z⊤M̂
+

z⊤δθ

z⊤M̂
+

p∑
i=1

z⊤xi(βi − β̂i)
z⊤M̂

+

p∑
i=1

z⊤xi(γi − γ̂i)θ∗

z⊤M̂︸ ︷︷ ︸
bias

. (3.8)

Theorem 6. Suppose the regularity conditions in [46] are satisfied and we choose the
λz from their algorithm, θ̃ is an unbiased estimator of θ∗. Furthermore, under the
null hypothesis when θ = 0, we have

z⊤M̂

∥z∥2σ̂ε
θ̃ → N(0, 1) (3.9)

if λγ ≍
√

log p/m and λ ≍ (λγs
2
0γ∨

√
log p/n) and s0 = o(

√
m/(s20γ log p)∧

√
n/ log p).
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Under the null hypothesis θ∗ = 0, the bias part
∑p

i=1

z⊤xi(γi − γ̂i)θ
z⊤M̂

in θ̃ from

(3.8) is vanished, which implies the impact from the poor estimation of γ (hence
the prediction of M ) is negligible. Thus the test statistics of θ∗ in Theorem 1 is
robust against external dataset and so does the type I error. This finding has a very
important implication in practice, because it provides additional guard for choosing
a suitable external dataset, if we are concerned more about type I error.

3.2.3 Partially-Informative External Dataset

In reality, it is hard to guarantee that external dataset share exactly the same relation-
ship between the metabolites and the microbiome abundance as the target dataset.
When the γ in model (3.4) is different from the model (3.2), a natural question arises:
is our framework still valid? We do need some additional assumptions for the new γ ′

in external dataset. See proposition (2) for details.

Proposition 2. (variation from external dataset) If the external dataset has a slight
different relationship between M and X, say M ′ = X ′γ ′+δ, then Proposition 1 and
Theorem 6 also holds if ∥γ − γ ′∥1 ≲ s0γ′

√
log p/m and s0γ′ ≲ s0γ .

Unfortunately, in practice, we can not verify if our external dataset is informative
or not as we have no information of γ in the target dataset. But based on Theorem
(6), this will not affect the type I error under the null hypothesis θ∗ = 0.

3.3 Numerical Study

3.3.1 Simulation Study

We conduct guided simulation studies to demonstrate the performance of proposed
test. Compare to general simulation studies, in guided simulation studies, the design
matrix is generated from the real data, which is the microbiome abundance data in our
case. The rest terms are simulated, e.g. the error terms ε and δ, our response y, and
both metabolite M and M ′. The data was obtained from a collection curated data
from 14 gut microbiome-metabolomic studies in [26]. Specifically, we let the shotgun
measured microbiome abundance from [13] to be our design matrix in target dataset,
and the one from [43] as our external dataset. We pick these two for their relative large
sample size of 347 and 220, respectively. We first filter out the microbes that have
missing values more than 10% from each sample. Then we select their shared microbes
for our design matrix, resulting the dimension p of 393. We finally perform the
centered log ratio (CLR) transformation on the compositional microbiome abundance,
which is a typical approach for handling such compositional data.

In terms of model setting, the coefficient γ for microbiome-metabolite association
consist of -0.5 for the first 20 microbes and 0.5 for the last 20 microbes, with 0 for
the rest. The coefficient β∗ consist of 0.1 for the first 10 microbes followed by -0.1
for 30 microbes and 0 for the remaining microbiome abundance. Such small scale of
coefficient is from the practical consideration that the associations between micro-
biome and phenotype are generally weak. This parameter setting actually lead to 20
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confounding microbes belong to G1 and 20 causal microbes belong to G2 and 20 mi-
crobes belong to G3. The error terms in (3.1) and (3.2) are generated from a bivariate
normal distribution, whose covaraince matrix consist of 0.5 for off-diagonal entry and
1 for diagonal entry. All samples are randomly draw from the aforementioned two
dataset. All simulation result are based on 100 times repetition.

We first fix θ∗ = 0.2, and investigate how the sample size of external and target
dataset would affect the accuracy of our estimation of θ∗. We plot their squared error
in the boxplot as shown in Figure 3.3 and Figure 3.4.

It is not surprising to see the estimation of θ∗ becomes more accurate as the
increase of the external sample size in Figure 3.3. Figure 3.4 reveals the similar
pattern for target sample size. A interesting pattern here is that Figure 3.3 suggests
a moderate external sample size (e.g. 200) is sufficient for a good estimation of θ.

We further explore the the impact of external and target sample size to the Type
I error and power. And we plot the rejection rate of H0 against the θ∗ in Figure 3.5
and Figure 3.6. Figure 3.5 shows the Type I error is well controlled regardless the
external sample size, and there is not much power gain from increasing it from 200
to 300. In Figure 3.6, we do notice the small target sample size (e.g. 50) would yield
a slightly Type I error inflation and require a strong signal to achieve a high power.
And it seems the power is more sensitive to the target sample size.

3.3.2 Variation Between Target and External Dataset

In this section, we demonstrate that how will the Type I error power change when
we have a partially-informative external dataset. That is the γ would be different
from external and target datasets. Theorem 6 implies that at least the Type I error
will not be affected. Since there are many different ways how the γ can vary, it is
not reasonable to explore them all. Here, we only consider one simple case where
each of the nonzero γi in γ will now independently fluctuate with a random error
from normal distribution with mean 0 and standard deviation of s, where s varies
from 0 to 0.1. s here actually represent the magnitude of the fluctuation. The rest
parameters will be set the same as in the previous guided simulation, but we use the
full target and external dataset with θ∗ = 0.2. The Figure 3.7 shows the type I error
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is stable under different s, which is consistent with Theorem 6. Figure 3.8 shows the
power would slowly decrease if the fluctuate of the variation is excessive.

3.4 A Real Data Application

In this section, we use the IHMP dataset and FRAN dataset from 3.1 to demonstrate
the new findings with our method. We report the significant causal metabolites in
the IBD pathogenesis.

3.4.1 Data Description

We use their curated version from [26] to be consistent. Our target dataset is the
IHMP dataset mentioned in the section 3.1. which comes from a longitudinal IBD
study consists of 79 patients and 26 controls. The microbiome abundance measure-
ment is from shotgun and metabolites is measured from the untargeted and four
complimentary LC-MS methods, see [22] for a detailed description of data collection.
We only consider subjects’ baseline measurement obtained at the time of their enroll-
ment. Our response is the IBD biomarker: C-Reactive Protein (CRP) level in mg/L,
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which is a protein that human liver makes. Elevated levels of CRP are observed in
the bloodstream during inflammation, which naturally makes it a good indicator for
IBD. See [37] for a detailed illustration and justification. After removing the missing
CRP, the final sample size is reduced to 54. We also take log transformation on it to
deal with the heterogeneity.

For the preprocess of the microbiome abundance data. We first remove the mi-
crobes with more than 30% missing values. Since microbiome abundance data are
compositional, we take the central log ratio (CLR) transformation as suggested by [1].
Because of the missing value, we add a small value 10−8 to each microbiome abun-
dance before taking CLR. In terms of the metabolites measurement, we first remove
the metabolites measurements with missing values and then take log transformation
as they are count data. Since we only consider microbiome related metabolites, we
apply MiRKAT to screen them based on the microbiome abundance. We identified
total 157 significant metabolites.

We choose FRANZOSA-IBD-2019 (FRAN) to be the external dataset, which is
from another IBD study in [13]. FRAN dataset has total 220 sample size including
56 controls. FRAN and IHMP datasets share the same method for microbiome abun-
dance measurement and metabolites measurement. However, FRAN dataset does not
have the response CRP measurement. We apply the same procedure to process the
microbiome adundance data and metabolites measurement. We have identified 113
metabolites in FRAN dataset. And we use the common microbes (p = 448) from
both datasets for the design matrix X.

In the MiRKAT screened metabolites from the FRAN dataset, 70 of them are
both found in IHMP. 43 of them are exclusively from FRAN dataset, what makes
it more interesting is that 14 of them are not even measured in IHMP, and the
rest are measured but not selected by MiRKAT. The takeaway message here is that
using external dataset can also help picking up additional microbiome correlated
metabolites.

3.4.2 Analysis Results

Our focus here is to test the causal effect of the selected 43 metabolites in FRAN
dataset. Our method has found found 10 new significant metabolites (annotated in
red dots) as shown in Figure 3.9 below. Among the 10 metabolites, some of them have
a valid clinical meaning, e.g., ADMA may play a role in suppressing inflammatory
processes, according to [7].

For completeness, we also test the causal effect of rest 70 metabolites, see figure
3.10 below. Among the 12 significant metabolites(annotated in red dot), arachidonic
acid pathway is a central regulator of inflammatory response as stated in [29]. And
pantothenate, also known as vitamin B5, may have antioxidant effect that reduces
low-grade inflammation. We leave our significant findings to be confirmed to the
future experimental valididations.
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3.5 Discussion

In this article, we proposed a new framework to study the metabolites human trait
association with the microbiome by integrating multiview microbiome data. Our
method can efficiently estimate the causal effect of an metabolite that unfortunately
not observed in the target dataset. We also demonstrate that our proposed method
has a good control of type I error as well as satisfying power when conducting the
hypothesis test. We also explore the impact of variation of the microbiome and
metabolites association across the training and testing sample. Our model only in-
volves single metabolite for analysis, it would be ideal but challenging to include
all existing metabolites. Specifically, it would require all the metabolites are not
collineared with each other, and at least one instrumental microbe for each metabo-
lites. Can we address identifiability issue with a more relaxed assumption? This
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would be a challenging but important question left for a future research topic. Essen-
tially, developing complicated but efficient models that contain both information of
microbiome and metabolites is the key to study their relationship and help us really
understand how the microbiome affect human body.

Copyright© Lei Fang, 2023.
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Appendices

Appendix A: Proofs and Supplemental Materials of Chapter 2

A.1 Bochner’s Theorem

Lemma 1. [41, Theorem 6.6] A continuous function k : Rp+q → R is positive semi-
definite if and only if it is the Fourier transform of a finite nonnegative Borel measure
W (ξ)dξ on Rp+q , that is,

k(z) =

∫
R(p+q)

e−izT ξW (ξ)dξ, ∀z ∈ Rp+q.

A.2 Properties of MCH

Some important properties of MDH and MCH are presented as follows.

Definition 4. Given i.i.d. observations (U i, Vi)
n
i=1 from the distribution of (U , V ).

Let aij = ViVj and bij = k(U i − U j), where k is a kernel in RKHS. The unbiased

sample RKHS type martingale difference divergence M̂DH
2
(V,U) is defined as

M̂DH
2
(V,U) =

1

n(n− 3)

n∑
i ̸=j

a∗ijb
∗
ij (3.10)

and the unbiased sample RKHS type martingale difference correlation M̂CH
2
(V,U) is

defined by

M̂CH
2
(V,U) =


M̂DH

2
(V,U)

varn(V )varnH(U )
if varn(V )varnH(U) > 0

0 otherwise,

(3.11)

where varn(V ) = ( 1
n(n−3)

∑n
i ̸=j |a∗ij|2)1/2, and varnH(U ) = ( 1

n(n−3)

∑n
i ̸=j |b∗ij|2)1/2.

Theorem 7. The following properties hold if E(V 2) <∞ :

a. MD2
H(V,U ) = E[(V − E(V ))(V ′ − E(V ′))k(U −U ′)].

b. 0 ≤ MCH(V,U) ≤ 1, and MCH(V,U) = 0⇔ E(V |U ) = E(V ) almost surely.

c. MCH(a+ bV, c+U) = MCH(V,U) for any scalars a, b ∈ R and c ∈ Rq.

Theorem 8. If E (V 2) <∞, then

limn→∞M̂DH(V,U) = MDH(V,U) a.s., (3.12)

and
limn→∞M̂CH(V,U) = MCH(V,U ) a.s.. (3.13)
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Theorem 9. Assume E(V 2) <∞, we have the following:

a. If MCH(V,U) = 0, then

nM̂DH
2
(V,U)

D−−−→
n→∞

||Γ(s)||2Hk
, (3.14)

where Γ(·) denotes a complex-valued zero-mean Gaussian random process with
covariance function

covΓ(s, s0) = F (s− s0)− gU (s− s0)E2(V ) + {E(V 2) + E2(V )}gU (s)gU (s0)
− F (s)gU (s0)− gU (s)F (s0)

with s, s0 ∈ Rq and gU (s) = E(ei⟨s,U⟩), F (s) = E[V 2 exp(i⟨U , s⟩)].

b. If MCH(V,U) = 0 and E(V 2|U) = E(V 2), then

nM̂DH
2
(V,U)/Sn

D−−−→
n→∞

Q,

where Sn = (1 − 1
n(n−1)

∑
k ̸=l k(U k − U l))(

1
n

∑
k(Vk − V̄n)2), and Q is a non-

negative quadratic form Q =
∑∞

i=1 λiZ
2
i , where Zi are independent standard

normal random variables. {λi} are nonnegative constants that depend on the
distribution of (U,V) and E(Q) = 1.

c. If MCH(V,U) ̸= 0, then nM̂DH
2
(V,U)/Sn

P−−−→
n→∞

∞.

A.3 Sure Screening Property of MCH

Let ψi = MCH(Y,Xi) for predictor Xi and ψ̂i = M̂CH(Y,Xi). Denote M̂ = {j : ψ̂j ≥
cn−κ, for 1 ≤ j ≤ p}. Similar to CMCH, we need the following two assumptions.

(B1) There exists a positive constant s0 such that for all 0 < s ≤ 2s0, then
E{exp(sY 2)} <∞.

(B2) The minimum MCH value of active predictors is greather than 2cn−κ, for some

constant c > 0 and 0 ≤ κ <
1

2
.

Theorem 10. Under Assumption (B1), for any 0 < γ < 1/2− κ, there exist postive
constants c1 and c2 such that

P

{
max
1≤j≤p

|ψ̂j − ψj| ≥ cn−κ

}
≤ O(p[exp{−c1n1−2(κ+γ)}+ n exp(−c2nγ)]). (3.15)

Under conditions (B1) and (B2), we have that

P (M⊂ M̂) ≥ 1−O(sn[exp{−c1n1−2(κ+γ)}+ n exp(−c2nγ)]), (3.16)

where sn is the cardinality ofM.
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For the sure screening property of quantile screening by MCH, we require
the condition (C1) in the following Section A.4. Denote Mqτ := {j :

E(Yτ |Xj) depends on Xj} and M̂qτ := {j : ψ̂j(Ŷτ ) ≥ cn−κ, for 1 ≤ j ≤ p}.

Theorem 11. Under (C1), for any 0 < γ < 1/2 − κ and κ ∈ (0, 1/2), there exists
positive constants c1, c2 such that for any c > 0,

P

{
max
1≤j≤p

|ψ̂j(Ŷτ )− ψj(Yτ )| ≥ cn−κ

}
≤ O(p[exp{−c1n1−2(κ+γ)}+ n exp(−c2nγ)]).

(3.17)
If the minimum MCH value of active predictors satisfies minj∈Mqτ

ψj(Yτ ) ≥ 2cn−κ

for some constant c > 0 and 0 ≤ κ < 1/2, we can show that

P (Mqτ ⊆ M̂qτ ) ≥ 1−O(s̃n[exp{−c1n1−2(κ+γ)}+ n exp(−c2nγ)]), (3.18)

where s̃n is the cardinality ofMqτ .

A.4 Sure Screening Property of Quantile Screening using CMCH

We require the two assumptions below:

(C1) The CDF of Y (FY ) is continuously differentiable in a small neighborhood of
qτ = qτ (Y ), say [qτ − δ0, qτ + δ0] for δ > 0. Let G1(δ0) = inf y∈[qτ−δ0,qτ+δ0]fY (y),
and G2(δ0) = sup y∈[qτ−δ0,qτ+δ0]fY (y) where fY is the density function of Y .
Assume that 0 < G1(δ0) ≤ G2(δ0) <∞.

(C2) The minimum CMCH value of active predictors satisfies minj∈Dqτ
ωj(Yτ ) ≥

2cn−κ for some constant c > 0 and 0 ≤ κ < 1/2.

The following proposition from [31] is necessary for proving the sure screening prop-
erty.

Proposition 3. Under condition (C1), there exists ϵ0 > 0 and c1 > 0, such that for
any ϵ ∈ (0, ϵ0),

P

(
1

n

n∑
l=1

|ŷlτ − ylτ | > ϵ

)
≤ 3 exp(−2nc1ϵ2) (3.19)

A.5 Sensitivity Analysis of Using Different Bandwidths in MCH

We consider the following example from [31]. Let g1(x) = x, g2(x) = (2x−1)2, g3(x) =
sin(2πx)/(2 − sin(2πx)), and g4(x) = 0.1sin(2πx) + 0.2cos(2πx) + 0.3sin2(2πx) +
0.4cos3(2πx) + 0.5sin3(2πx).
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Example A. Y = g1(X1) + g2(X2) + g3(X3) + g4(X4) + 1.5g1(X5) + 1.5g2(X6) +
1.5g3(X7)+ 1.5g4(X8)+ 2g1(X9)+ 2g2(X10)+ 2g3(X11)+ 2g4(X12)+

√
0.5184ϵ, where

the predictors Xj, j = 1, ..., p are i.i.d. from Unif(0,1), and ϵ is independent from
the predictors and follows the standard normal distribution. We set n = 400 and
p = 1000, and select ⌊n/log(n)⌋ = 66 variables.

Table 7: Sensitivity on Example A based on 500 replications.

bandwidth P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 Pall

0.001 0.21 0.21 0.58 0.76 0.49 0.55 0.97 1.00 0.83 0.88 1.00 1.00 0.00
0.50 0.68 0.46 0.95 0.99 0.96 0.90 1.00 1.000 1.00 1.00 1.00 1.00 0.22
2 0.74 0.24 0.91 0.90 0.97 0.63 1.00 1.00 1.00 0.95 1.00 1.00 0.07
4 0.75 0.11 0.89 0.79 0.97 0.30 1.00 0.99 1.00 0.68 1.00 1.00 0.01
8 0.75 0.07 0.88 0.74 0.97 0.12 1.00 0.98 1.00 0.23 1.00 1.00 0.00
100 0.78 0.05 0.86 0.58 0.98 0.04 0.99 0.88 1.00 0.08 1.00 1.00 0.00

We report the results in Table 7. For X1 which is linearly related to Y , P1

increases as the bandwidth increases. But for X2, X3 and X4, the corresponding
selection proportions decrease as the bandwidth increases except when bandwidth is
0.001. Similar pattern can be observed with other predictors.

A.6 Sensitivity Analysis against the Conditional Set

Table 8 indicates our proposed method has a stable performance against the choice
of the conditional set.

A.7 Performance under the block correlation structure

The correlations among active predictors are 0.2 and 0.1 otherwise. In addition, the
variance of predictor is set as 1. Table 9 shows the superior performance of S-CMCH
with the block correlation structure among predictors.

A.8 Additional Simulation Results of Example 2

Per reviewer’s comment, we evaluate the selection probability for all the interaction
terms in Example 2 with a modified dimension p1 = 100. In particular, the input
data now has p1 + p1(p1 − 1)/2 predictors. The results are presented in Table 10.
We can see that if we consider all two-way interaction terms as predictors, we are
able to select all the six terms in the true model with most of the screening methods
except RASE1-eBIC. It is worth pointing out that the main effects X15, X20, X25

have low selection probability. In this new example, we are indeed only screening
the marginally active variables among the p1 + p1(p1 − 1)/2 predictors. Thus, by
including all the interaction effects as predictors, we are unable to demonstrate the
ability of the conditional variable screening methods on screening conditionally active
predictors.
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Table 8: The Pi, Pall and S0.5 in Example 2, with conditional set selected by different
methods.

Example 2 with ρ = 0, n = 200, p = 3000
P1 P5 P10 P15 P20 P25 Pall S0.5

Conditonal set selected by Lasso
CSIS 0.97 0.96 0.92 0.02 0.02 0.06 0.00 2241.0
CDC-SIS 0.67 0.27 0.35 0.02 0.06 0.15 0.00 2178.0
CIS 0.92 0.69 0.70 0.00 0.00 0.00 0.00 2269.0
S-CMCH 0.95 0.94 0.82 0.04 0.02 0.04 0.00 2263.0

Conditonal set selected by SIS
CSIS 0.97 0.93 0.91 0.03 0.00 0.04 0.00 2179.5
CDC-SIS 0.87 0.88 0.86 0.06 0.16 0.41 0.00 1285.5
CIS 0.99 0.97 0.95 0.02 0.02 0.04 0.00 2368.5
S-CMCH 0.94 0.96 0.94 0.12 0.36 0.75 0.02 1051.0

Conditonal set selected by Forward Regression
CSIS 0.94 0.91 0.90 0.04 0.03 0.04 0.00 2347.0
CDC-SIS 0.89 0.85 0.87 0.04 0.20 0.48 0.01 1396.0
CIS 0.99 0.96 0.96 0.02 0.01 0.06 0.00 2496.0
S-CMCH 0.95 0.95 0.93 0.15 0.43 0.81 0.07 801.5

Table 9: The Pi, Pall and S0.5 in Example 2, with block design correlation structure.

Example 2 with n = 200, p = 3000
P1 P5 P10 P15 P20 P25 Pall S0.5

ρ=0
MDC 0.98 1.00 0.98 0.22 0.27 0.27 0.05 536.0
CSIS(XS1) 1.00 1.00 1.00 0.03 0.05 0.07 0.00 2199.5
CSIS(XS2) 0.96 0.96 0.93 0.08 0.07 0.16 0.00 2574.5
CDC-SIS(XS1) 1.00 1.00 1.00 0.05 0.10 0.22 0.00 1542.0
CDC-SIS(XS2) 1.00 0.99 0.99 0.1 0.07 0.17 0.01 2190.5
DCSIS2 0.59 0.83 0.97 0.29 0.39 0.89 0.06 434.0
CIS(XS1) 1.00 1.00 1.00 0.10 0.21 0.54 0.00 529.0
CIS(XS2) 0.53 0.20 0.27 0.07 0.00 0.13 0.00 1901.5
S-CMCH(XS1) 1.00 1.00 1.00 0.30 0.61 1.00 0.19 121.0
S-CMCH(XS2) 0.98 0.99 0.97 0.25 0.42 0.83 0.10 273.0
RaSE.ebic1 0.84 0.78 0.78 0.01 0.00 0.01 0.00 2245.0
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Table 10: The Pi, Pall and S0.5 in Example 2 consider all two-way interaction terms.

Example 2 with n = 200, p = 100
P1 P5 P10 P15 P20 P25 P1,15 P5,20 P10,25 Pall S0.5

ρ=0
MDC 0.92 0.89 0.92 0.01 0.00 0.04 0.86 1.00 1.00 0.63 23.0
CSIS(XS2) 1.00 1.00 1.00 0.00 0.00 0.02 1.00 1.00 1.00 1.00 7.0
CDC-SIS(XS2) 0.77 0.74 0.76 0.11 0.01 0.00 0.72 0.99 1.00 0.32 176.5
S-CMCH(XS2) 0.99 0.97 0.99 0.13 0.43 0.62 0.91 1.00 1.00 0.86 13.0
RASE1-eBIC 0.49 0.11 0.41 0.07 0.07 0.16 0.36 0.77 0.98 0.01 4238.5
CIS 1 1 0.99 0.02 0.04 0.06 0.61 0.91 0.96 0.51 35.5

Table 11: The Pi, Pall and S0.5 in Example 3, with XS = {X1, X5}.

Method τ
ρ = 0 ρ = 0.9

P1 P5 P10 P15 P20 P25 Pall S0.5 P1 P5 P10 P15 P20 P25 Pall S0.5
MDC

0.5 1.00 1.00 0.06 0.03 0.04 0.02 0.00 1910.0 1.00 1.00 0.97 0.49 0.06 0.05 0.49 71.0
0.75 0.99 1.00 0.24 0.38 0.52 0.55 0.03 986.5 1.00 1.00 1.00 1.00 0.91 0.92 0.86 29.5

CSIS
0.5 1.00 1.00 0.00 0.04 0.24 0.17 0.00 2071.0 1.00 1.00 0.02 0.05 0.31 0.24 0.00 1957.0
0.75 1.00 1.00 0.00 0.04 0.24 0.17 0.00 2345.5 1.00 1.00 0.02 0.05 0.31 0.24 0.00 2389.5

CDC-SIS
0.5 1.00 1.00 0.86 1.00 0.95 0.92 0.86 8.0 1.00 1.00 0.71 0.98 1.00 1.00 0.70 30.5
0.75 1.00 1.00 0.86 1.00 0.95 0.92 0.76 18.0 1.00 1.00 0.71 0.98 1.00 1.00 0.70 30.5

QaSIS
0.5 1.00 1.00 0.16 0.16 0.28 0.27 0.03 1085.0 1.00 1.00 1.00 0.90 0.69 0.55 0.90 20.5
0.75 0.92 0.99 0.14 0.38 0.69 0.72 0.03 600.0 0.99 1.00 1.00 0.97 0.99 0.97 0.92 35.5

DCSIS2
0.5 0.18 0.41 0.04 0.08 0.93 0.90 0.00 1443.5 0.07 0.15 0.06 0.05 1.00 1.00 0.00 918.0
0.75 0.18 0.41 0.04 0.08 0.93 0.90 0.00 1443.5 0.07 0.15 0.06 0.05 1.00 1.00 0.00 918.0

CIS
0.5 1.00 1.00 0.92 1.00 0.96 1.00 0.92 15.0 1.00 1.00 0.98 1.00 1.00 1.00 0.98 23.0
0.75 1.00 1.00 0.92 1.00 0.96 1.00 0.88 20.0 1.00 1.00 0.98 1.00 1.00 1.00 0.98 23.0

S-CMCH
0.5 1.00 1.00 0.64 1.00 0.06 0.01 0.64 37.5 1.00 1.00 0.93 0.99 0.29 0.35 0.93 13.0
0.75 1.00 1.00 0.69 0.96 0.54 0.61 0.27 183.5 1.00 1.00 1.00 1.00 0.99 0.98 0.97 26.0

RaSE1-eBIC
0.5 0.49 0.31 0.00 0.00 0.03 0.01 0.00 1816.0 0.25 0.07 0.00 0.00 0.04 0.03 0.00 2425.5
0.75 0.49 0.31 0.00 0.00 0.00 0.00 0.00 2427.0 0.25 0.07 0.00 0.00 0.01 0.02 0.00 2427.0

A.9 Additional Simulation Results of Example 3

Table 11 shows the performance all screening methods when conditional set is selected
as {X1, X5}.

A.10 Proof of Theorem 1

(a) Let gV,U1,U2
(t1, t2) = E(V ei⟨t1,U1⟩ei⟨t2,U2⟩), gV,U1

(t1, ) = E(V ei⟨t1,U1⟩), and

gU2
(t2) = E(ei⟨t2,U2⟩). If we expand the CMDH(V,U 2|U 1) in the representation of

characteristic functions, it is∫
|gV,U1,U2(t1, t2)− gV,U1(t1)gU2(t2)|2w1(t1)w2(t2)dt1dt2

=

∫
(|gV,U1,U2(t1, t2)|2 − gV,U1,U2(t1, t2)ḡV,U1(t1)ḡU2(t2)−

ḡV,U1,U2(t1, t2)gV,U1gU2(t2) + |gV,U1(t1)|2|gU2(t2)|2)w1(t1)w2(t2)dt1dt2,
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where

|gV,U1,U2(t1, t2)|2 = E[V V ′ei⟨t1,U1−U
′
1⟩ei⟨t2,U2−U

′
2⟩],

gV,U1,U2(t1, t2)ḡV,U1(t1)ḡU2(t2) = E[V V ′ei⟨t1,U1−U
′
1⟩ei⟨t2,U2−U”

2⟩],

ḡV,U1,U2(t1, t2)gV,U1(t1)gU2(t2) = E[V V ′ei⟨t1,U1−U
′
1⟩ei⟨t2,U2−U”

2⟩],

|gV,U1(t1)|2|gU2(t2)|2 = E[V V ′ei⟨t1,U1−U
′
1⟩] · E[ei⟨t2,U2−U”

2⟩].

The weight function w1(t1) and w2(t2) are integrable. With Bochner’s theorem, for a
translation-invariant positive-definite kernel k(x,x′) = k(x−x′), we can immediately
get

CMD2
H(V,U 2|U 1)

= E(V V ′k1(U 1,U
′

1)k2(U 2,U
′

2)) + E(V V ′k1(U 1,U
′

1)) · E(k2(U 2,U
′

2))

− 2E(V V ′k1(U 1,U
′

1)k2(U 2,U
”
2))

(b) To show CMCH(V,U 2|U 1) ≤ 1, we can rewrite CMD2
H as

CMD2
H(V,U 2|U 1)

= E[(E(V V ′k1(U 1,U
′

1)) + V V ′k1(U 1,U
′

1)− EV,U1(V V
′k1(U 1,U

′

1))−
EV ′ ,U

′
1
(V V ′k1(U 1,U

′

1)))× (E(k2(U 2,U
′

2)) + k2(U 2,U
′

2)−

EU2(k2(U 2,U
′

2))− EU ′
2
(k2(U 2,U

′

2))].

We have v(k2,U 2)

= E(k22(U 2,U
′

2)) + E2(k2(U 2,U
′

2))− 2E[k2(U 2,U
′

2) · k2(U 2,U
”
2)]

=E(E(k2(U 2,U
′

2)) + k2(U 2,U
′

2)− EU2(k2(U 2,U
′

2))− EU
′
2
(k2(U 2,U

′

2)))
2,

and

v(k1V ,U 1)

= E(V 2(V ′)2k21(U1,U
′
1)) + E2(V V ′k1(U1,U

′
1))− 2E[V 2V ′V ”k1(U1,U

′
1) · k1(U1,U

”
1)]

= E(E(V V ′k1(U 1,U
′

1)) + k1(U 1,U
′

1)− EU1(k1(U 1,U
′

1))− EU
′
1
(k1(U 1,U

′

1)))
2,

where CMCH(V,U 2|U 1) ≤ 1 follows from an application of the Cauchy-Schwarz
inequality. Furthermore, it is trivial to see that CMC2

H(V,U 2|U 1) ≥ 0.
Recall that CMC2

H is a standardized version of CMD2
H:

CMDH
2(V,U 2|U 1)

=

∫∫
|E(V ei(⟨t1,U1⟩+⟨t2,U2⟩))− E(V ei⟨t1,U1⟩)E(ei⟨t2,U2⟩)|2w1(t1)w2(t2)dt1dt2.

Thus, CMC2
H(V,U 2|U 1) = 0 is equivalent to E(V ei⟨t1,U1⟩ei⟨t2,U2⟩) =

E(V ei⟨t1,U1⟩)E(ei⟨t2,U2⟩) for any t1 ∈ Rp and t2 ∈ Rq. To prove “Given U 1 ⊥ U 2,
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E(V |U 1,U 2) = E(V |U 1) a.s. if and only if CMC2
H(V,U 2|U 1) = 0”, it suf-

fices to prove “Given U 1 ⊥ U 2, E(V |U 1,U 2) = E(V |U 1) a.s. if and only if
E(V ei⟨t1,U1⟩ei⟨t2,U2⟩) = E(V ei⟨t1,U1⟩)E(ei⟨t2,U2⟩) for any t1 ∈ Rp and t2 ∈ Rq.”

We first prove the “⇒ ” direction. By definition, with probability being one,∫
V
f(V,U 1,U 2)

f(U 1,U 2)
dV =: E(V |U 1,U 2) = E(V |U 1) :=

∫
V
f(V,U 1)

f(U 1)
dV,

where by a slight abuse of notation, we denote f(·) as the corresponding probability
density functions. Plugging in U 1 ⊥ U 2 (i.e., f(U 1,U 2) = f(U 1)f(U 2)), we have
almost surely ∫

V
f(V,U 1,U 2)

f(U 2)
dV =

∫
V f(V,U 1)dV. (3.20)

Denote g1(U 1) :=
∫
V
f(V,U 1,U 2)

f(U 2)
dV and g2(U 1) :=

∫
V f(V,U 1)dV . Recall a

function f(x) can be transformed to its Fourier transform f̂(ξ) :=
∫∞
−∞ f(x)e−i2πξxdx

when the Dirichlet’s condition holds, i.e., the integral of f(x) is finite over every finite
measure of support of x. Since g1(U 1) = g2(U 1) and they are Fourier transformable,
taking the Fourier transformation on g1(U 1) yields

ĝ1(−t1/2π) =
∫
Rp

g1(U 1)e
i⟨t1,U1⟩dU 1 =

∫
Rp

g2(U 1)e
i⟨t1,U1⟩dU 1, (3.21)

which is equivalent to E(V ei⟨t1,U1⟩|U 2) = E(V ei⟨t1,U1⟩) a.s. for any t1 ∈ Rp. Denote
g3(U 2) := f(U 2) ·E(V ei⟨t1,U1⟩|U 2) and g4(U 2) := f(U 2) ·E(V ei⟨t1,U1⟩), and we have
g3(U 2) = g4(U 2). Again, taking the Fourier transformation on g3(U 2) leads to

ĝ3(−t2/2π) =
∫
Rq

g3(U 2)e
i⟨t2,U2⟩dU 2 =

∫
Rq

g4(U 2)e
i⟨t2,U2⟩dU 2, (3.22)

which is equivalent to E(V ei⟨t1,U1⟩ei⟨t2,U2⟩) = E(V ei⟨t1,U1⟩)E(ei⟨t2,U2⟩) for any t1 ∈ Rp

and t2 ∈ Rq. This completes the “only if” direction.
We next prove the ” ⇐ ” direction. By the reverse Fourier transformation (or

known as Fourier inversion theorem): the function f(x) can be recovered by its Fourier
transform f̂(ξ). That is, f(x) =

∫∞
−∞ f̂(ξ)ei2πξxdx. Since E(V ei⟨t1,U1⟩ei⟨t2,U2⟩) =

E(V ei⟨t1,U1⟩)E(ei⟨t2,U2⟩) for any t1 ∈ Rp and t2 ∈ Rq, we have∫
Rq

g3(U 2)e
i⟨t2,U2⟩dU 2 =

∫
Rq

g4(U 2)e
i⟨t2,U2⟩dU 2, (3.23)

which implies the equality of their Fourier transform functions, i.e.,

ĝ3(−t2/2π) = ĝ4(−t2/2π).

Thus,

g3(U 2) =

∫
Rq

ĝ3(−t2/2π)e−i⟨t2,U2⟩dU 2 =

∫
Rq

ĝ4(−t2/2π)e−i⟨t2,U2⟩dU 2 = g4(U 2).
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By the definition of g3(·) and g4(·), dividing f(U 2) on both sides of g3(U 2) = g3(U 2),
we have

E(V ei⟨t1,U1⟩|U 2) = E(V ei⟨t1,U1⟩)

a.s. for any t1 ∈ Rp, which is equivalent to the equality (3.21). Similar arguments
of applying the reverse Fourier transformation to (3.21) yields g1(U 1) = g2(U 1).
Dividing f(U 1) on both sides of g1(U 1) = g2(U 1), together with the condition U 1 ⊥
U 2, we have E(V |U 1,U 2) = E(V |U 1) a.s.. This completes the “if” direction.
(c) The proof is straightforward by the definition of CMCH(V,U 2|U 1) and is omitted
here.
(d) The proof is straightforward by the definition of MCH(V |U) and is omitted
here.□

A.11 Proof for U-statistic of CMCH

Recall the following notations: aij = ViVjk1(U 1i,U 1j) and bij = k2(U 2i,U 2j), a
∗
ij =

aij−
1

n− 2

∑n
j=1 aij−

1
n−2

∑n
i=1 aij+

1
(n−1)(n−2)

∑n
i,j=1 aij, and b

∗
ij = bij− 1

n−2

∑n
j=1 bij−

1
n−2

∑n
i=1 bij +

1
(n−1)(n−2)

∑n
i,j=1 bij. In addition, we let ai. =

∑n
j=1 aij, a.j =

∑n
i=1 aij,

a.. =
∑n

i,j=1 aij, bi. =
∑n

j=1 bij, b.j =
∑n

i=1 bij, b.. =
∑n

i,j=1 bij, āi. =
1

n−2
ai., ā.j =

1
n−2

a.j, ā.. =
1

(n−1)(n−2)
a... b̄i. =

1
n−2

bi., b̄.j =
1

n−2
b.j, and b̄.. =

1
(n−1)(n−2)

b...
Then,∑

i ̸=j

Ai,jBi,j =
∑
i ̸=j

(aijbij − aij b̄i. − aij b̄.j + aij b̄.. − āi.bij + āi.b̄i. + āi.b̄.j − āi.b̄..

− ā.jbij + ā.j b̄i. + ā.j b̄.j − ā.j b̄.. + ā..bij − ā..b̄i. − ā..b̄.j + ā..b̄..)

=
∑
i ̸=j

aijbij −
∑
i

ai.b̄i. −
∑
j

a.j b̄.j + a..b̄..

−
∑
i

āi.bi. + (n− 1)
∑
i

āi.b̄i. +
∑
i ̸=j

āi.b̄.j − (n− 1)
∑
j

ā.j b̄..

−
∑
j

ā.jb.j +
∑
i ̸=j

āi.b̄.j + (n− 1)
∑
i

āi.b̄i. − (n− 1)
∑
j

ā.j b̄..

+ ā..b.. − (n− 1)
∑
i

ā..b̄i. − (n− 1)
∑
j

ā..b̄.j + n(n− 1)ā..b̄...
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Let T1 =
∑

i ̸=j aijbij, T2 = a..b.., T3 =
∑

i ai.bi.. Then,∑
i ̸=j

Ai,jBi,j =T1 −
1

n− 2
T3 −

1

n− 2
T3 +−

1

(n− 1)(n− 2)
T2

− 1

n− 2
T3 +

n− 1

(n− 2)2
T3 +

1

(n− 2)2
(T2 − T3)−

1

(n− 2)2
T2

− 1

n− 2
T3 +

1

(n− 2)2
(T2 − T3) +

n− 1

(n− 2)2
T3 −

1

(n− 2)2
T2

+
1

(n− 1)(n− 2)
T2 −

1

(n− 2)2
T2 −

1

(n− 2)2
T2 +

n

(n− 1)(n− 2)2
T2

= T1 −
2

n− 2
T3 +

1

(n− 1)(n− 2)
T2.

Let (n)k = n!/(n − k)! and Ink be the collections of k-tuples of indices (chosen from
1,2, ...,n) such that each index occurs exactly once. Then corresponding U-statistics
estimator is

E(V V ′k1(U 1i,U
′

1j)k2(U 2,U
′

2)) =(n)−1
2 E(

n∑
(i,j)∈In2

ViVjk1(U 1i,U
′

1j)k2(U 1i,U
′

1j))

=(n)−1
2 E(T1),

E(V V ′k1(U 1,U
′

1)) · E(k2(U 2,U
′

2)) =(n)−1
4 E(

n∑
(i,j,q,r)∈In2

ViVjk1(U 1i,U
′

1j)k2(U 2q,U
′

2r))

=(n)−1
4 E(T2 − 4T3 + 2T1),

and

E(V V ′k1(U1,U
′

1)k2(U2,U
′

2)) = (n)−1
3 E(

n∑
(i,j,r)∈In

2

ViVjk1(U1i,U
′

1j)k2(U2i,U
′

2r)) = (n)−1
3 E(T2−T1).

Combine the expectations, we get CMDH = E(T1 − 2
n−2

T3 +
1

(n−1)(n−2)
T2). Then the

unbiased estimator is T1 − 2
n−2

T3 +
1

(n−1)(n−2)
T2. □

A.12 Proof of Theorem 2

If E(V 2) < ∞, we need to prove almsot surely convergence for the following two
expressions.

limn→∞ĈMDH(V,U 2|U 1) = CMDH(V,U 2|U 1), (3.24)

and
limn→∞ĈMCH(V,U 2|U 1) = CMCH(V,U 2|U 1). (3.25)

By the Strong law of large numbers for U-statistics, we can immediately get the result.
□
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A.13 Proof of Theorem 3

(a). Under the conditional independence, we have E(V |U 1,U 2) = E(V |U 1) and
U 1 ⊥ U 2. Define the process Γn(t1, t2) =

√
nξn(t1, t2) =

√
n(gnV,U1,U2

(t1, t2) −
gnV,U1

(t1)g
n
U2

(t2)), then E(Γn(t1, t2)) = 0. The weak convergence of ||Γn||2H to ||Γ||2H
follows from multivariate central limit theorem and continuous mapping theorem.
Let F (t1, t2) = E(V 2 exp(i⟨t1,U 1⟩)exp(i⟨t2,U 2⟩)). We have

E[Γn(t1, t2)Γn(t
′
1, t

′
2)]

= E(n(gnV,U1,U2
(t1, t2)− gnV,U1

(t1)g
n
U2

(t2))(gnV,U1,U2
(t′1, t

′
2)− gnV,U1

(t′1)g
n
U2

(t′2))).

A direct calculation yields to the following:

E[Γn(t1,t2)Γn(t
′
1, t

′
2)] =

(n− 1)2

n2
F (t1 − t′1, t2 − t′2) +

n− 1

n
gU2(t2 − t′2)[

1

n
F (t1 − t′1, 0)−

gV,U1(t1)gV,U1(t
′
1)] +

n− 1

n
[gV,U1(t1)gV,U1(t

′
1)+

n− 2

n
F (t1 − t′1, 0)]gU2(t2)gU2(t

′
2)−

(n− 1)2

n2
(F (t1 − t′1, t2)gU2(t

′
2)+

gU2(t2)F (t1 − t′1,−t′2)).

In particular,

E|Γn(t1,t2)|2 =
n− 1

n
E(V 2)(1 +

n− 2

n
|gU2(t2)|2)−

n− 1

n
|gV,U1(t1)|2(1− |gU2(t2)|2)−

(n− 1)2

n2
[F (0, t2)gU2(t

′
2) + gU2(t2)F (0,−t′2)].

(b). According to the first assertion, we have

E||Γ||2H =

∫
CovΓ((t1, t2), (t1, t2))dw

=

∫
{[E(V 2)− |gV,U1

(t1)|2](1− |gU2
(t2)|2) + 2E(V 2)|gU2

(t2)|2 − F (0, t2)gU2(t2)−

gU2(t2)F (0,−t2)}dw.

Under the assumption E(V 2|U 2) = E(V 2), which implies F (0, t2) = E(V 2)gU2(t2),
we have E∥Γ∥2H = E(V 2) − E(V 2)E(k2(U 2 − U ′

2)) − E(V V ′k1(U 1 − U ′
1)) +

E(V V ′k1(U 1 −U ′
1)k2(U 2 −U ′

2)).
Let Sn = ( 1

n

∑
i V

2
i − 1

n(n−1)

∑
i ̸=j aij)(1 −

1
n(n−1)

∑
i ̸=j bij), then by the SLLN

for U-statistics, Sn
a.s−−−→

n→∞
E∥Γ∥2H. Therefore nĈMD

2

H(V,U 2|U 1)/Sn
D−−−→

n→∞
Q,

where E(Q)=1 and Q is a nonnegative quadratic form of centered Gaussian ran-
dom variable following the argument in the proof of Corollary 2 of Szekely er al.(2007).

(c). Suppose that CMDH(V,U 2|U 1) > 0, then Theorem 3 im-

plies that ĈMD
2

H(V,U 2|U 1)
a.s.−−−→

n→∞
CMD2

H(V,U 2|U 1) > 0, therefore

nĈMD
2

H(V,U 2|U 1)
a.s.−−−→

n→∞
∞. By the SLLN, Sn converges to a constant, and

therefore nĈMDH(V,U 2|U 1)/Sn
a.s.−−−→

n→∞
∞. □
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A.14 Proof of Theorem 4

For the notational convinence, we use Y, Z,X to represent the original notation V,U 1

andU 2. Let S
j
1 = E[Y Y ′k1(Z−Z ′)k2(Xj−X ′

j)], S
j
2 = E[Y Y ′k1(Z−Z ′)]E[k2(Xj−X ′

j)]

and Sj
3 = E[Y Y ′k1(Z−Z ′)k2(Xj−X ′′

j )], where (X
′
j, Y

′, Z ′) and (X ′′
j , Y

′′, Z ′′) are i.i.d.
copies of (Xj, Y, Z). (n)k = n!/(n−k)! and Ink be the collections of k-tuples of indices
(chosen from {1, 2, ..., n}) such that each index occurs exactly once. Correspondingly,
their unbiased sample counterparts are

Sj
1n = (n)−1

2

∑
(k,l)∈In2

YkYlk1(Zk − Zl)k2(Xjk −Xjl),

Sj
2n = (n)−1

4

∑
(k,l,h,q)∈In4

YkYlk1(Zk − Zl)k2(Xjh −Xjq), and

Sj
3n = (n)−1

3

∑
(k,l,h)∈In3

YkYlk1(Zk − Zl)k2(Xjk −Xjh).

Since CMDj
H and ĈMD

j

H can be expressed as (CMDj
H)

2 = Sj
1 + Sj

2 − 2Sj
3 and

(ĈMD
j

H)
2 = Sj

1n + Sj
2n − 2Sj

3n. We shall establish the consistency result for each
part separately.

Consistency of Sj
1n. Since Sj

1n is a U-statistic with the kernel function
h1(Xjk, Yk, Zk;Xjl, Yl, Zk) = YkYlk1(Zk − Zl)k2(Xjk − Xjl). Rewrite Sj

1n = {n(n −
1)}−1

∑
k ̸=l h1I{|h1| ≤M}+{n(n−1)}−1

∑
k ̸=l h1I{|h1| > M} = Sj

1n,1+S
j
1n,2. Corre-

spondingly, its population counterpart can also be decomposed as Sj
1 = E[h1I{|h1| ≤

M}]+E[h1I{|h1| > M}] = Sj
1,1+S

j
1,2. Note that S

j
1n,1+S

j
1n,2 are unbiased estimators

of Sj
1,1 + Sj

1,2, respectively.

To show the consistency of Sj
1n,1, we note that all U-statistics can be expressed

as an average of averages of iid random variables, see [30] (section 5.1.6). Denote

m = ⌊n/2⌋, and define Ω(Xj1, Y1, Z1; ...;Xjn, Yn, Zn) = 1
m

m−1∑
r=0

h
(r)
1 I{|h(r)1 | ≤ M},

where h
(r)
1 = h1(Xj 1+2r, Y1+2r, Z1+2r;Xj 2+2r, Y2+2r, Z2+2r). Then, we have Sj

1n,1 =
(n!)−1

∑
n! Ω(Xji1 , Yi1 , Zi1 ; ...;Xjin , Yin , Zin), where

∑
n! denote summation over all n!

permutations (i1, ..., in) of (1, ..., n). By Jensen’s inequality, for t > 0, we have

E[exp(tSj
1n,1)] = E[exp{t(n!)−1

∑
n!

Ω(Xji1 , Yi1 , Zi1 ; ...;Xjin , Yin , Zin)}

≤ (n!)−1
∑
n!

E[exp(t
m−1∑
r=0

h
(r)
1 I{|h(r)1 | ≤M}/m)]

= Em[exp(th
(r)
1 I{|h(r)1 | ≤M}/m)],
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which entails that

P (Sj
1n,1 − S

j
1,1 ≥ ϵ) ≤ exp(−tϵ) exp(−tSj

1,1)E[exp(tS̃
j
1n,1)]

≤ exp(−tϵ) · Em{exp[t(h(r)1 I{|h(r)1 | ≤M} − Sj
1,1)/m]}

≤ exp(−tϵ) · exp{t2M2/(2m)},

using Markov’s inequality and Hoeffding’s inequality (see lemma 1 of [20]) in the first
and third inequality above, respectively. Set t = ϵm/M2 and utilize the symmetry of
U-statistics, we can then obtain P (|Sj

1n,1 − S
j
1,1| ≥ ϵ) ≤ 2 exp{−ϵ2m/(2M2)}.

The next part is for dealing with Sj
1n,2. By Cauchy-Schwarz inequality and

Markov’s inequality, (Sj
1,2)

2 = (E[h1I{|h1| > M}])2 ≤ E[h21] · P{|h1| > M} ≤
E[h21]E[|h1|q] ·M−q for any q ∈ N. From the inequality |ab| ≤ (a2 + b2)/2, a, b ∈ R,
we get |h1(Xjk, Yk, Zk;Xjl, Yl, Zl)| ≤ 1

2
(Y 2

k + Y 2
l )(k1(Zk − Zl)k2(Xjk −Xjl)) ≤ K2Y 2

k

as the kernel k1 and k2 are bounded by some constant K. Hence E[|h1|q] is bounded
basd on assumption (A1). Thus, if we letM = nγ for 0 < γ < 1/2−κ, then Sj

1,2 ≤ ϵ/2
for sufficiently large n (in the sense we sepecify ϵ = cn−κ and q can be any integer
greater than 2κ/γ). Hence, P (|Sj

1n,2 − S
j
1,2| ≥ ϵ) ≤ P (|Sj

1n,2| ≥ ϵ/2). Since the event

{|Sj
1n,2| ≥ ϵ/2} implies the event {Y 2

k ≥M/K2, for some 1 ≤ k ≤ n} , we have that

P{|Sj
1n,2| ≥ ϵ/2} ≤ P (∪nk=1{Y 2

k ≥M/K2})

≤
n∑

k=1

P ({Y 2
k ≥M/K2})

≤ nP ({Y 2
k ≥M/K2}).

Invoking assumption (A1) and Markov’s inequality, there must exist a constant
C, such that P ({Y 2

k ≥M/K2} ≤ C exp(−sM/K2) for any k and s ∈ (0, 2s0]. Conse-
quently, for sufficiently large n, max1≤j≤pP (|Sj

1n,2−S
j
1,2| ≥ ϵ) ≤ max1≤j≤p P (|Sj

1n,2| ≥
ϵ/2) ≤ max1≤p≤n nP ({Y 2

k ≥ M/K2}) ≤ nC exp(−sM/K2). In combination with the
convergence result of Sj

1n,1, we get that for large enough n,

P (|Sj
1n − S

j
1| ≥ 2ϵ) ≤ P (|Sj

1n,1 − S
j
1,1| ≥ ϵ) + P (|Sj

1n,2 − S
j
1,2| ≥ ϵ)

≤ 2 exp(−ϵ2n1−2γ/4) + Cn exp(−snγ/K2).

Consistency of Sj
2n. We can rewrite Sj

2n as follows:

Sj
2n

=
1

(n)4

∑
k<l<h<q

4[YkYlk1(Zk − Zl)k2(Xjh −Xjq) + YkYhk1(Zk − Zh)k2(Xjl −Xjq)+

YkYqk1(Zk − Zq)k2(Xjl −Xjh) + YlYhk1(Zl − Zh)k2(Xjq −Xjk)+

YlYqk1(Zl − Zq)k(Xjh −Xjk) + YhYqk1(Zh − Zq)k2(Xjl −Xjk)]

=24(n)−1
4

∑
k<l<h<q

h2(Xjk, Yk, Zk;Xjl, Yl, Zl;Xjh, Yh, Zh;Xjq, Yq, Zq),
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where h2(Xjk, Yk, Zjk;Xjl, Yl, Zjl;Xjh, Yh, Zjh;Xjq, Yq, Zjq) is the kernel function. Fol-
lowing the same argument in ⟨i⟩, we write Sj

2n as Sj
2n = 24(n)−1

4

∑
k<l<h<q

h2I(|h2| ≤

M) + 24(n)−1
4

∑
k<l<h<q

h2I(|h2| ≥ M) = Sj
2n,1 + Sj

2n,2 and their population versions

Sj
2 = E[h2I{|h2| ≤M}] +E[h2I{|h2| ≥M}] = Sj

2,1 + Sj
2,2. Using the same argument

as for Sj
1n,1, we can show that

P (|Sj
2n,1 − S

j
2,1| ≥ ϵ) ≤ 2 exp{−ϵ2m′/(2M2)},

where m′ = ⌊n/4⌋, due to the fact that Sj
2n is a fourth-order U-statistics.

Now it remains to establish the uniform convergence of the other part Sj
2n,2. Note

that |h2(Xjk, Yk, Zk;Xjl, Yl, Zl;Xjh, Yh, Zh;Xjq, Yq, Zq)| ≤ [
1

4
(Y 2

k +Y
2
l +Y

2
h +Y

2
q )]∗K2,

so the event {|Sj
2n| ≥ ϵ/2} implies the event {Y 2

k ≥ M/K2} for some 1 ≤ k ≤ n.
Therefore, following a similar argument as presented in Part I, we have

P (|Sj
2n,1 − S

j
2,1| ≥ ϵ) ≤ P (|Sj

2n,2| ≥ ϵ/2)

≤ P (∪nk=1[Y
2
k ≥M/K2])

≤ Cn exp(−sM/K2),

for any k and s ∈ (0, 2s0]. Combining the two convergence results for Sj
3n,1 and Sj

3n,2

with M = nγ for some 0 < γ < 1/2− κ, it follows that

P (|Sj
2n − S

j
2| ≥ 2ϵ) ≤ 2 exp(−ϵ2n1−2γ/8) + Cn exp(−snγ/K2).

Consistency of Sj
3n. We can rewrite Sj

3n as follows:

Sj
3n =(n)3

−1
∑

k<l<h

[YkYlk1(Zk − Zl)k2(Xjk −Xjh)+

YkYhk1(Zk − Zh)k2(Xjk −Xjl) + YlYkk1(Zl − Zk)k2(Xjl −Xjh)]+

YlYhk1(Zl − Zh)k2(Xjl −Xjk) + YhYkk1(Zh − Zk)k2(Xjh −Xjl)+

YhYlk1(Zh − Zl)k2(Xjh −Xjk)

=6(n)3
−1

∑
k<l<h

h3(Xjk, Yk, Zk;Xjl, Yl, Zk;Xjh, Yh, Zh),

where h3(Xjk, Yk, Zk;Xjl, Yl, Zk;Xjh, Yh, Zh) is the kernel function. Again, we
write Sj

3n as Sj
3n = 6{n(n − 1)(n − 2)}−1

∑
k<l<h

h3I(|h3| ≤ M) + 6{n(n − 1)(n −

2)}−1
∑

k<l<h

h3I(|h3| ≥ M) = Sj
3n,1 + Sj

3n,2 and its population counterpart as Sj
3 =

E[h3I{|h3| ≤ M}] + E[h3I{|h3| ≥ M}] = Sj
3,1 + Sj

3,2. By using the same argument

for Sj
1n,1, we can show that

P (|Sj
3n,1 − S

j
3,1| ≥ ϵ) ≤ 2 exp{−ϵ2m′/(2M2)},
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where m′ = ⌊n/3⌋, due to the fact that Sj
3n is a third-order U-statistics. Now it

remains to establish the uniform convergence of the other part Sj
3n,2. Note that

|h3(Xjk, Yk, Zk;Xjl, Yl, Zk;Xjh, Yh, Zh)| ≤ [
1

3
(Y 2

k +Y
2
l +Y

2
h )]∗K2, so the event {|Sj

3n| ≥
ϵ/2} implies the event {Y 2

k > M/K2} for some 1 ≤ k ≤ n. Therefore, following a
similar argument as presented in Part I, we have

P (|Sj
3n,1 − S

j
3,1| ≥ ϵ) ≤ P (|Sj

3n,2| ≥ ϵ/2)

≤ P (∪n
k=1[Y

2
k ≥M/K2])

≤ Cn exp(−sM/K2),

for any k and s ∈ (0, 2s0]. Combining the two convergence results for Sj
3n,1 and Sj

3n,2

with M = nγ for some 0 < γ < 1/2− κ, it follows that

P (|Sj
3n − S

j
3| ≥ 2ϵ) ≤ 2 exp(−ϵ2n1−2γ/6) + Cn exp(−snγ/K2)).

This, together with the consistency in Part I, Part II and Part III, we have

P{|(2Sj
3n − S

j
1n − S

j
2n)− (2Sj

3 − S
j
1 − S

j
2)| ≥ ϵ}

≤ P (|Sj
3n − S

j
3| ≥

ϵ

4
) + P (|Sj

2n − S
j
2| ≥

ϵ

4
) + P (|Sj

1n − S
j
1| ≥

ϵ

4
)

= O{exp(−c1ϵ2n1−2γ) + n exp(−c2nγ)}.

for some positive constants c1 and c2 and the bound is uniform with respect to j =
1, ..., p. Analyzing the denominator of ω̂j would have the same form of convergence
rate, so we omit the details here. Let ϵ = cn−κ, where κ satisfies 0 < κ + γ < 1/2,
we then have

P{ max
1≤j≤p−d1

|ω̂j − ωj| ≥ cn−κ} ≤(p− d1) max
1≤j≤p−d1

P{|ω̂j − ωj| ≥ cn−κ}

≤O((p− d1)[exp{−c1n1−2(κ+γ)}+ nexp(−c2nγ)]).

If DS ⊈ D̂S, then there exist some j ∈ DS, such that ω̂j < cn−κ. According
to assumption (A2), for this particular j , we would have |ω̂j − ωj| ≥ cn−κ, which

implies that A = {DS ⊈ D̂S} ⊆ {|ω̂j − ωj| ≥ cn−κ, for some j ∈ DS} = B and hence
Bc ⊆ Ac. Finally,

P (Ac) ≥ P (Bc) = 1− P (B) = 1− P (|ω̂j − ωj| ≥ cn−κ, for some j ∈ DS)

≥ 1− sn max
(j∈DS)

P (|ω̂j − ωj| ≥ cn−κ)

≥ 1−O(sn[exp{−c1n1−2(κ+γ)}+ nexp(−c2nγ)]).

where the first inequality above is due to Bonferroni’s inequality.
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Ranking Consistence. Recall the assumption that δ = minj∈DS
ωj −maxj∈DS

ωj,

P

{
min
j∈DS

ω̂j ≤ max
j∈IS

ω̂j

}

= P

{
min
j∈DS

ω̂j − min
j∈DS

ωj + δ ≤ max
j∈IS

ω̂j −max
j∈IS

ωj

}

≤ P

{
max
j∈DS

|ω̂j − ωj| ≥ δ/2

}
+ P

{
max
j∈IS
|ω̂j − ωj| ≥ δ/2

}
.

Hence,

P

{
min
j∈IS

ω̂j < max
j∈DS

ω̂j

}
≥ 1− 2O((p− d1)[exp(−c′1δ2n1−2γ) + n exp(−c2nγ)]).

□

A.15 Proof of proposition 1

Following the proof of Proposition 2 in [31], we rewrite |ylτ−ŷlτ | as |I(yl ≤ qτ )−I(yl ≤
q̂τ )|, which is I(q̂τ < yl ≤ qτ ) + I(qτ < yl ≤ q̂τ ). Then P ( 1

n

∑n
l=1 |ŷlτ − ylτ | > ϵ) ≤

P ( 1
n

∑n
l=1 |ŷlτ − ylτ | > ϵ, |q̂τ − qτ | ≤ δ) + P (|q̂τ − qτ | ≥ δ| =: P1 + P2. For P2, we

apply [30] Theorem 2.3.2 and get P2 = P (|q̂τ − qτ | ≥ δ) ≤ 2 exp(−2nL(δ)2), where
L(δ) = min{FY (qτ + δ) − τ, τ − FY (qτ + δ)}. Under the Assumption (B1), we have
G1(δ0)δ ≤ L(δ) ≤ G2(δ0)δ. Let δ = min(ϵ/{4G2(δ0)}, δ0) if ϵ < ϵ0 = 4G2(δ0)δ0. Then
for ϵ ∈ (0, ϵ0), we have

P2 ≤ 2 exp(−2nG1(δ0)
2δ2) ≤ 2 exp(−2n G1(δ0)

2

16G2(δ0)2
ϵ2).

Setting Pqτ = P (|yl − qτ | ≤ δ), we can find a bound for P1:

P1 ≤ P (
1

n

n∑
l=1

I(|yl − qτ | ≤ δ) > ϵ) = P (
1

n

n∑
l=1

I(|yl − qτ | ≤ δ)− Pqτ > ϵ− Pqτ ).

By Hoeffding’s inequality, P1 ≤ exp(−2(ϵ − Pqτ )
2n). Since Pqτ ≤ 2δG2(δ0) ≤ ϵ/2

when ϵ ∈ (0, ϵ0), then I1 ≤ exp(−2nϵ2/4). Together with the bound for P2, we have

P

(
1

n

∑n
l=1 |ŷlτ − ylτ | > ϵ

)
≤ 3exp(−2nc1ϵ2). □

A.16 Proof of theorem 5

We shall show the uniform consistency of ω̂j(Ŷτ ) = CMC2
H(Ŷτ , Xj|XS) under

the assumptions (B1) and (B2). Due to the similarity of its numerator and
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denominator, we only present the numerator part, which is the consistency of

ĈMD
2

H(Ŷτ , Xj|XS)). First we show the consistency of ĈMD
2

H(Yτ , Xj|XS), and then

show the ĈMD
2

H(Ŷτ , Xj|XS) is a consistent estimator of ĈMD
2

H(Yτ , Xj|XS). Follow-
ing the similar procedures in the proof of section 5, for any γ ∈ (0, 1/2 − κ), there
exist positive constants c1 and c2 such that

P (|CMD2
H(Yτ , Xj |XS)− ĈMD

2

H(Yτ , Xj |XS)| ≥ ϵ) ≤ C[exp{−c1ϵ2n1−2γ}+ nexp(−c2nγ)].

(3.26)

for a sufficiently small ϵ (i.e. ϵ = cn−κ, which will be defined later). Next we

focus on the difference between ĈMD
2

H(Yτ , Xj|XS) and ĈMD
2

H(Ŷτ , Xj|XS). Denote

T̂ j
1n = (n)−1

2

∑
(k,l)∈In2

ŷkτ ŷlτk1(Zk−Zl)k2(Xjk−Xjl), T̂
j
2n = (n)−1

4

∑
(k,l,h,q)∈In4

ŷkτ ŷlτk1(Zk−

Zl)k2(Xjh−Xjq), and T̂
j
3n = (n)−1

3

∑
(k,l,h)∈In3

ŷkτ ŷhτk1(Zk−Zh)k2(Xjk−Xjl) . Similarly,

T j
1n, T

j
2n and T j

3n are defined as {ŷkτ}nk=1 replaced with {Wk}nk=1. Let C0 = τ + 1. By
using the triangle inequality and the boundedness of ykτ and ŷkτ , we can derive that

|ĈMD
2

H(Ŷτ , Xj|XS)− ĈMD
2

H(Yτ , Xj|XS)| ≤ |T̂ j
1n − T

j
1n|+ |T̂

j
2n − T

j
2n|+ 2|T̂ j

3n − T
j
3n|

= |(n)−1
2

∑
(k,l)∈In2

[ŷkτ ŷlτ − ykτylτ ]k1(Zk − Zl)k2(Xjk −Xjl)|+

|(n)−1
4

n∑
(k,l,h,q)∈In4

[ŷkτ ŷlτ − ykτylτ ]k1(Zk − Zl)k2(Xjh −Xjq)|+

2|(n)−1
3

∑
(k,l,h)∈In3

[ŷkτ ŷhτ − ykτyhτ ]k1(Zk − Zh)k2(Xjk −Xjl)|

≤ (n)−1
2

∑
(k,l)∈In2

[|ŷkτ (ŷlτ − ylτ )|+ |ylτ (ŷkτ − ykτ )|]k1(Zk − Zl)k2(Xjk −Xjl)+

(n)−1
4

∑
(k,l,h,q)∈In4

[|ŷkτ (ŷlτ − ylτ )|+ |ylτ (ŷkτ − ykτ )|]k1(Zk − Zl)k2(Xjh −Xjq)+

2(n)−1
3

∑
(k,l,h)∈In3

[|ŷkτ (ŷhτ − yhτ )|+ |yhτ (ŷkτ − ykτ )|]k1(Zk − Zl)k2(Xjk −Xjl).

For the first part:

(n)−1
2

∑
(k,l)∈In2

[|ŷkτ (ŷlτ − ylτ )|+ |ylτ (ŷkτ − ykτ )|]k1(Zk − Zl)k2(Xjk −Xjl)

≤ K{(n)−1
2

∑
(k,l)∈In2

|ŷkτ (ŷlτ − ylτ )|+ (n)−1
2

∑
(k,l)∈In2

|ylτ (ŷkτ − ykτ )|}

≤ K{C0(n)
−1
2

∑
(k,l)∈In2

|(ŷlτ − ylτ )|+ C0(n)
−1
2

∑
(k,l)∈In2

|(ŷkτ − ykτ )|}

= 2KC0(n)
−1
2

∑
(k,l)∈In2

|(ŷlτ − ylτ )|.
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For the second part:

(n)−1
4

∑
(k,l,h,q)∈In4

[|ŷkτ (ŷlτ − ylτ )|+ |ylτ (ŷkτ − ykτ )|]k1(Zk − Zl)k2(Xjh −Xjq)

≤ 2KC0(n)
−1
4

∑
(k,h,q)∈In3

|ŷkτ − ykτ |.

For the third part:

2(n)−1
3

∑
(k,l,h)∈In3

[|ŷkτ (ŷhτ − yhτ )|+ |yhτ (ŷkτ − ykτ )|]k1(Zk − Zl)k2(Xjk −Xjl)

≤ 2K{(n)−1
3

∑
(k,l,h)∈In3

[|ŷkτ (ŷhτ − yhτ )|+ 2(n)−1
3

∑
(k,l,h)∈In3

[|ŷhτ (ŷkτ − ykτ )|}

= 2KC0(n)
−1
3 (

∑
(k,h,l)∈In3

|ŷhτ − yhτ |+
n∑

(k,l)∈In2

|(ŷkτ − ykτ )|).

If we combine the above three parts together, we get

|ĈMD
2

H(Yτ , Xj|XS)− ĈMD
2

H(Ŷτ , Xj|XS)|

≤ 4KC0(n)
−1
2

∑
(k,l)∈In2

|(ŷlτ − ylτ )|+ 4KC0(n)
−1
3

n∑
(k,h,l)∈In3

|ŷhτ − yhτ |

=
8KC0

n

n∑
l=1

|(ŷlτ − ylτ )|.

By Proposition 1, we have:

P (
8C0

n

n∑
k=1

|(ŷlτ − ylτ )| ∗ Z ≥ ϵ) = P (
1

n

n∑
k=1

|(ŷlτ − ylτ )| ≥
ϵ

8KC0

) ≤ 3 exp(−2nc1ϵ2).

Consequently, in view of (3.26), we have that

P (|ĈMD
2

H(Ŷτ , Xj|XS)− CMD2
H(Yτ , Xj|XS)| ≥ 2ϵ)

≤P (|ĈMD
2

H(Yτ , Xj|XS)− CMD2
H(Yτ , Xj|XS)| ≥ ϵ)+

P (|ĈMD
2

H(Ŷτ , Xj|XS)− ĈMD
2

H(Yτ , Xj|XS)| ≥ ϵ)

≤C[exp{−c1ϵ2n1−2γ}+ nexp(−c2nγ)],

for a sufficiently small ϵ > 0 and some positive constant c1 and c2. The analysis of the

denominator of ĈMC
2

H(Ŷτ , Xj|XS) will generate a similar form of the convergence
rate. Therefore, if we set ϵ = cn−κ, where κ satisfies 0 < κ+ γ < 1/2, we have

P{ max
1≤j≤p−d1

|ω̂j(Ŷτ )− ωj(Ŷτ )| ≥ cn−κ}

≤ p max
1≤j≤p−d1

P{|ω̂j(Ŷτ )− ωj(Ŷτ )| ≥ cn−κ}

≤ O((p− d1)[exp{−c1n1−2(κ+γ)}+ nexp(−c2nγ)]).
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□
The proofs of Theorems 6-10 in the appendix follow exactly the similar lines of

argument as in their corresponding CMDH or CMCH versions, we thus omit the
details here.

Appendix B: Proofs of Chapter 3

B.1 Proof of Proposition 1

We use G = Xγ for the ease of the presentation. In the working model, we are
using Lasso predicted M̂ from internal dataset, we start with the basic inequalities
in Lasso:

∥Y − M̂ θ̂ −Xβ̂∥22/n+ λ∥β̂∥1 ⩽ ∥Y − M̂θ∗ −Xβ∗∥22/n+ λ∥β∗∥1
∥Gθ∗ +Xβ∗ + δθ∗ + ε− M̂ θ̂ −Xβ̂∥22/n+ λ∥β̂∥1 ⩽ ∥(G− M̂)θ∗ + δθ∗∥22/n+ λ∥β∗∥1

∥M̂(θ∗ − θ̂) +X(β∗ − β̂) + (G− M̂)θ∗ + δθ∗ + ϵ∥22/n+ λ∥β̂∥1
⩽ ∥(G− M̂)θ∗ + δθ∗ + ε∥22/n+ λ∥β∗∥1

∥M̂(θ∗ − θ̂) +X(β∗ − β̂)∥22/n+ 2(M̂(θ∗ − θ̂) +X(β∗ − β̂))⊤((G− M̂)θ∗ + δθ∗ + ε)/n

⩽ λ∥β∗∥1 − λ∥β̂∥1.

∥M̂(θ∗ − θ̂) +X(β∗ − β̂)∥22/n (27)

⩽ 2(M̂(θ̂ − θ∗) +X(β̂ − β∗))⊤((G− M̂)θ∗ + δθ∗ + ε)/n+ λ∥β∗∥1 − λ∥β̂∥1. (28)

We start looking at the right hand side of the (28). Since ε is not independent of M̂ ,

M̂⊤(ε+ δθ∗)/n = (Xγ̂)⊤(ε+ δθ∗)/n (29)

= (X(γ̂ − γ))⊤(ε+ δθ∗)/n+ (Xγ)⊤(ε+ δθ∗)/n (30)

Now, (X(γ̂ − γ))⊤(ε+ δθ∗)/n ≤ |γ̂ − γ|1|X⊤(ε+ δθ∗)/n|∞
On set S := {max1<i<p2|X⊤

i (ε + δθ∗)|/n ∨ |(Xγ)⊤(ε + δθ∗)|/n ≤ λ01}, as
ε and δ from bivariate normal distribution, ε + δθ∗ follows a normal distribution,
we have 2|(ε + δθ∗)⊤M̂(θ̂ − θ∗)/n| ⩽ λ01∥γ̂ − γ∥1|θ̂ − θ∗| + λ01|θ̂ − θ∗|, and 2|(ε +
δθ∗)⊤X(β∗−β̂)/n| ⩽ λ01∥β∗−β̂∥1. The above inequality holds with high probability
if λ01 ≍

√
log p/n.

For the remaining component, we have

(M̂(θ̂ − θ∗))⊤(G− M̂)θ∗/n = (θ∗ − θ̂)γ̂⊤Σ̂(γ̂ − γ) (31)

⩽ |θ̂ − θ∗|(∥Σ̂γ̂∥∞∥γ̂ − γ∥1 (32)

⩽ |θ̂ − θ∗|O(∥γ̂∥1)∥γ̂ − γ∥1 (33)

⩽ |θ̂ − θ∗|O(s0γ )∥γ̂ − γ∥1 (34)
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as |γ̂| = O(s0γ ) from [45].

where ∥γ̂ − γ∥1 = O(λγ ∗ s0γ ) with λγ ≍
√

log p/n in Lasso estimated γ̂. While

(X(β̂ − β∗))⊤(G− M̂)θ∗/n = (β̂ − β∗)⊤Σ̂(γ̂ − γ) (35)

⩽ ∥(β̂ − β∗)⊤Σ̂∥∞∥γ̂ − γ∥1 (36)

= O(∥β∗ − β̂∥1)∥γ̂ − γ∥1. (37)

And λ∥β∗∥1 − λ∥β̂∥1 ≤ λ∥β̂ − β∗∥1, we have

∥M̂(θ∗ − θ̂) +X(β∗ − β̂)∥22/n ≤ λ∥θ̂ − θ∗∥1 + λ∥β̂ − β∗∥1

for some constant λ = O(λγs
2
0γ ).

We need to show the following to complete the proof:

∥(θ∗ − θ̂,β∗
S0β
− β̂S0β

)∥21 ⩽ ∥M̂(θ∗ − θ̂) +X(β∗ − β̂)∥22/n (38)

for some constant ϕ. Hence we assume the following compatibility condition. That
is, there exist ϕ0

2 such that for all ∆ satisfying ∥∆Sc
0
∥ ⩽ 3∥∆S0β

∥, it holds that

∆⊤ (Xγ, X)⊤(Xγ, X)

n
∆/ϕ2

0 ≥ ∥∆S0β
∥22.

where ∆ = [(θ∗ − θ̂,β∗ − β̂)]. Now we want to show the above condition still hold
when M is replaced with M̂ . Specifically, there exists ϕ′2

0 such that

∥M̂(θ∗ − θ̂) +X(β∗ − β̂)∥22/(nϕ′2
0) ≥ ∥∆S0β

∥22. (39)

∥M̂(θ∗ − θ̂) +X(β∗ − β̂)∥22/n
= ∥Xγ(θ∗ − θ̂) +X(β∗ − β̂) + (M̂ −Xγ)(θ∗ − θ̂)∥22/n
= ∥Xγ(θ∗ − θ̂) +X(β∗ − β̂)(θ∗ − θ̂)∥22/n+ 2(θ∗ − θ̂)(M̂ −Xγ)⊤X(β∗ − β̂)/n+

2(θ∗ − θ̂)(M̂ −Xγ)⊤Xγ(θ∗ − θ̂)/n+ ∥(M̂ −Xγ)(θ∗ − θ̂)∥2/n,

where the cross product terms can be diminished if s0γ is op(
√
λγ) from (34) and

(37). Finally, we have the compatibility condition (39).

Lemma 2. On set S, if λ ≥ max(2λ01), we have 2∥M̂(θ∗ − θ̂) +X(β∗ − β̂)∥22/n +
λ∥β̂Sc

0
∥1 ≤ 3λ(∥θ∗ − θ̂∥1 + ∥β∗

S0β
− β̂S0β

∥1)

Proof: from 28, On S, we have

2∥M̂(θ∗ − θ̂) +X(β∗ − β̂G)∥22/n+ 2λ∥β̂∥1 ≤ λ∥θ∗ − θ̂∥1 + λ∥β∗ − β̂∥1 + 2λ∥β∗∥1
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2∥M̂(θ∗ − θ̂) +X(β∗ − β̂)∥22/n+ λ∥β̂G,Sc
0β
∥1

≤ λ∥θ∗ − θ̂∥1 + λ∥β∗ − β̂∥1 + 2λ∥β∗∥1 + λ∥β̂Sc
0
∥1 − 2λ∥β̂∥1

≤ λ∥θ∗ − θ̂∥1 + λ∥β∗
S0β
− β̂S0β

∥1 + 2λ∥β∗∥1 + 2λ∥β̂Sc
0β
∥1 − 2λ∥β̂∥1

≤ λ∥θ∗ − θ̂∥1 + λ∥β∗
S0β
− β̂S0β

∥1 + 2λ∥β∗
S0β
∥1 − 2λ∥β̂S0β

∥1

≤ λ∥θ∗ − θ̂∥1 + 3λ∥β∗
S0β
− β̂S0β

∥1

≤ 3λ(∥θ∗ − θ̂∥1 + ∥β∗
S0β
− β̂S0β

∥1),

Finally, we have

2∥M̂(θ∗ − θ̂) +X(β∗ − β̂)∥22/n+ λ∥(θ∗ − θ̂, β − β̂)∥1
≤ 2∥M̂(θ∗ − θ̂) +X(β∗ − β̂)∥22/n+ λ(∥θ∗ − θ̂∥1 + ∥β∗

S0β
− β̂S0β

∥1) + λ∥β̂Sc
0β
∥1

≤ 4λ(∥θ∗ − θ̂∥1 + ∥β∗
S0β
− β̂S0β

∥1)

≤ 4
√
s0 + 1 ∗ ∥M̂(θ∗ − θ̂) +X(β∗ − β̂)∥2/

√
(nϕ2)

≤ ∥M̂(θ∗ − θ̂) +X(β∗ − β̂)∥22/n+ 4λ2(s0 + 1)/ϕ2

Therefore on set S, we obtain ∥(θ∗ − θ̂,β∗ − β̂)∥1 ≤ 4λ(s0 + 1)/ϕ2 for a λ =
O(λγs

2
0γ ∨

√
log p/n).

B.2 Proof of Theorem 1

Let z be the projection of M̂ to the X ,

z = M̂ −Xb̂, b̂ = argmin
b
∥M̂ −Xb∥22/2n+ λz

p∑
i=1

wi|bi|

following debiased lasso estimator, we propose

θ̃ =
z⊤y

z⊤M̂
−

p∑
i=1

z⊤xiβ̂

z⊤M̂

=
z⊤y

z⊤M̂
−

p∑
i=1

z⊤xiβ̂M̂

z⊤M̂
− z⊤M̂θ̂

z⊤M̂
+

z⊤M̂θ̂

z⊤M̂

= θ̂ +
z⊤(y − M̂θ̂ −Xβ̂)

z⊤M̂

θ̃ − θ∗ = z⊤ϵ

z⊤M̂
+

z⊤δθ∗

z⊤M̂
+

p∑
i=1

z⊤xi(βi − β̂i)
z⊤M̂

+
z⊤(G− M̂)θ∗

z⊤M̂

Therefore
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|z⊤M̂ |
∥z∥2

(θ̃ − θ∗) (40)

=
z⊤ϵ

∥z∥2
+

z⊤δθ∗

∥z∥2
+

1

∥z∥2

p∑
i=1

z⊤xi(βi − β̂i) +
1

∥z∥2

p∑
i=1

z⊤xi(γi − γ̂i)θ
∗ (41)

p∑
i=1

z⊤xi(βi − β̂i,)
∥z∥2

≤ 1

∥z∥2
max1≤i≤p|z⊤xi|∥β∗ − β̂∥1

1

∥z∥2

p∑
i=1

z⊤xi(γi − γ̂i)θ
∗ ≤ 1

∥z∥2
max1≤i≤p|z⊤xi|∥γ − γ̂∥1θ∗

Based on Algorithm 2 of finding penalty λz in [46],
1

∥z∥2
max1≤i≤p|z⊤xi| can be

bounded by C
√
logp for some constant C. For the completeness, we present their

algorithm below and we define:

b̂(λz) = argmin
b
∥M̂ −Xb∥22/2n+ λz

p∑
i=1

wi|bi|

z(λz) = M̂ −Xb̂(λz)

η(λz) =
1

∥z(λz)∥2
max1≤i≤p|z(λz)⊤xi|

τ(λz) = ∥z(λz)∥2/|z(λz)⊤xi|

Algorithm 2 The procedure of computing z

Input: an upper bound η∗ for the bias factor, with default value η∗ =
√
2logp, tuning

parameters κ0 ∈ [0, 1] and κ1 ∈ (0, 1];

1. (very/adjust η and compute the corresponding noise factor τ)

If η(λz) > η∗ for all λz > 0, η∗ ← (1 + κ1)infλz>0η(λz);

λz ←max{λz : η(λz) ≤ η∗λ}, η∗ ← η(λz), τ
∗ ← τ(λz);

2. further reduction of the bias factor λz ← min{λz : τ(λz) ≤ (1 + κ0)τ
∗}

Output: λz, z ← z(λz), τ ← τ(λz), η ← η(λz)

Under the null hypothesis θ∗ = 0, the bias term in (40) related to γ̂ is 0, and the

left bias
1

∥z∥2
∑p

i=1 z
⊤xi(β

∗ − β̂) ≍ s0
√
log pλ. If we have s0 = o(

√
m/(s20γ log p) ∧
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√
n/ log p), then

|z⊤M̂ |
∥z∥2

θ̃ → N(0, σ2
ε). Now if we replace σε with the consistent

estimator σ̂ε, we have
|z⊤M̂ |
∥z∥2σ̂ε

θ̃ → N(0, 1).

B.3 Proof of Propositioin 2

In the proof of Theorem 1. We have the following requirement of the consistency of
γ̂. Now consider

M = Xγ + δ (42)

M ′ = X ′γ ′ + δ, (43)

where (43) is from a external dataset. In the previous proof, we have ∥γ̂ − γ∥1 ≍
s0γ

√
log p/m, now let us study the bound of ∥γ̂ ′ − γ∥1, where

∥γ̂ ′ − γ∥1
= ∥γ̂ ′ − γ ′ + γ − γ ′∥1
≤ ∥γ̂ ′ − γ ′∥1 + ∥γ − γ ′∥1
= O(s0γ′

√
log p/m) + ∥γ − γ ′∥1.

Therefore, if ∥γ − γ ′∥1 ≲ s0γ′

√
log p/m and s0γ′ ≲ s0γ , the result in Proposition 1

and Theorem 1 still holds.
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