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ABSTRACT OF DISSERTATION

Geometric and Combinatorial Properties of Lattice Polytopes Defined from Graphs

Polytopes are geometric objects that generalize polygons in the plane and polyhedra
in 3-dimensional space. Of particular interest in geometric combinatorics are families
of lattice polytopes defined from combinatorial objects, such as graphs. In particular,
this dissertation studies symmetric edge polytopes (SEPs), defined from simple undi-
rected graphs. In 2019, Higashitani, Jochemko, and Micha lek gave a combinatorial
description of the hyperplanes that support facets of a symmetric edge polytope in
terms of certain labelings of the underlying graph.

Using this framework, we explore the number of facets that can be attained by
the symmetric edge polytopes for graphs with certain structure. First, we establish
formulas or bounds for the number of facets attained by families of sparse, connected
graphs, and give conjectures concerning the maximum and minimum facet counts
for more general families. We also consider the number of facets of SEPs arising
from graphs generated by several random graph models and investigate a conjectured
connection between facet counts for SEPs and clustering metrics on their underlying
graphs.

KEYWORDS: lattice polytope, symmetric edge polytope, facet, random graph
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Uwe, Martina, and Matt for exploring some beautiful math with me. I will always

cherish the friendships I’ve made in graduate school. In particular, I am so thankful

to Angela, Courtney, and Lewis for the countless vent sessions, sanity checks, and

silly little treats. I regret to inform you that you are now stuck with me forever, sorry

about your luck. To all of these people, and many other friends and mentors, I am

so grateful to know you.

My family did not always understand why I decided to do the whole PhD thing.

Nevertheless, their unwavering support carried me through the days when even I

didn’t understand why I was doing the whole PhD thing. First, foremost, and always,

I owe everything to my parents. Jim and Barb Bruegge never once let me believe

iii



there was something I couldn’t do. They, along with aunts, uncles, and cousins too

numerous to name, have loved me through every moment of my 27 years and reminded

me to be grateful for every crazy opportunity. Finally, I am incredibly lucky to have

many friends whom I also count as family. Jenny, Maria, Mikaila, Ashley, and Laura,

you have been there through pretty much everything. You are my sisters, and there

is nothing you can do about it!

To all of these people and the many more I could name given infinite space and

time, thank you. You’ve made this seemingly impossible thing feel only improbable.

iv



TABLE OF CONTENTS

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Chapter 1 Introduction and Background . . . . . . . . . . . . . . . . . . . . 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Lattice Polytopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2.1 Essential Definitions . . . . . . . . . . . . . . . . . . . . . . . 1
1.2.2 Some Properties of Interest . . . . . . . . . . . . . . . . . . . 3

1.3 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Symmetric Edge Polytopes . . . . . . . . . . . . . . . . . . . . . . . . 8

Chapter 2 Facets of Symmetric Edge Polytopes for Graphs with Few Edges . 10
2.1 Useful Tools and Known Results . . . . . . . . . . . . . . . . . . . . . 11
2.2 Graphs With Few Edges and Disjoint Cycles . . . . . . . . . . . . . . 13

2.2.1 Graphs with n vertices and n edges . . . . . . . . . . . . . . . 13
2.2.2 Graphs with n vertices and n + 1 edges . . . . . . . . . . . . . 14

2.3 Graphs with Few Edges and Overlapping Cycles . . . . . . . . . . . . 19
2.4 Further Conjectures and Open Problems . . . . . . . . . . . . . . . . 31

Chapter 3 Facets of Random Symmetric Edge Polytopes, Degree Sequences
and Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
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Chapter 1 Introduction and Background

1.1 Introduction

This dissertation contains results, conjectures, and questions related to two projects,
each of which is focused on the study of symmetric edge polytopes, a family of
lattice polytopes defined from simple, undirected graphs. Chapter 1 gives necessary
background information concerning lattice polytopes, including some popular areas of
study and the introduction of our structure of interest, the symmetric edge polytope.
This chapter also sets the scene for where the work of this dissertation fits in the
community more broadly. The results in Chapters 2 and 3 make progress toward the
goal of understanding how the structure of a graph impacts the number of facets of its
symmetric edge polytope. Chapter 2 focuses on determining bounds for the number
of facets attainable by a symmetric edge polytope for a graph with a fixed number of
vertices. Chapter 3 explores what can be said about the symmetric edge polytopes for
graphs generated by three different random graph models. Finally, Chapter 4 gives
a further description of some of the computational techniques used and experiments
conducted throughout this work.

1.2 Lattice Polytopes

1.2.1 Essential Definitions

Polytopes are geometric objects that generalize the notion of a polygon in the plane or
a polyhedron in 3-dimensional space to real spaces of any dimension (Rn). Figure 1.1
presents some examples of polytopes in R3 that may be familiar.

Figure 1.1: The octahedron, cube, and tetrahedron above are examples of 3-
dimensional polytopes, or polyhedra, obtained by taking the convex hull of points
in R3. The tetrahedron is also a 3-simplex.

The study of polytopes is an active area of inquiry in geometric combinatorics
and has a variety of applications. For example, polytopes naturally arise as the
feasible regions in linear programming problems. When defined using other algebraic
or combinatorial objects (e.g. permutations, matroids, graphs), the structure of the
polytope can give interesting insights into their defining objects, and vice versa.

For any positive integer n, a polytope contained in Rn is a convex subset of points
that can be defined in two ways, each derived from an attribute of its boundary. The
first describes a polytope as a convex hull of points.
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Definition 1.2.1. For a set of points X ⊆ Rd, the convex hull, conv{X}, is the
intersection of all convex sets containing X.

For finite sets,

conv{v1, v2, . . . , vn} =

{
n∑

i=1

λivi : λi ≥ 0,
∑

λi = 1

}
.

When the set X is finite and irredundant, meaning that no point in X lies in the
convex hull of the others, the points in X are called the vertices of conv{X}. These
vertices span an affine subspace of Rn, which we can visualize as some linear subspace
that has been shifted away from the origin.

Definition 1.2.2. Given a d-dimenisonal vector space L ⊆ Rn, a d-dimensional affine
subspace parallel to L is of the form v0 + L for some v0 ∈ Rn.

On the other hand, given points (or vectors) v0, v1, . . . , vm ∈ Rn, the affine span
of these m + 1 points is given by{

m∑
i=0

αivi : αi ∈ R,
∑

αi = 1

}
.

The dimension of a polytope is the dimension of the affine space spanned by its
vertices. Putting this all together gives the following description of a polytope, called
the V-description.

Definition 1.2.3. A subset P ⊂ Rn is a d-dimensional (convex) polytope if

P = conv{v1, . . . ,vm}

such that the vertices v1, . . . ,vm ∈ Rn span a d-dimensional affine subspace of
Rn. Additionally, if the vertices lie in the integer lattice Zn, we say that P is a
d-dimensional lattice polytope.

Example 1.2.4. The polytope P in Figure 1.2 is a cube in R2 obtained as the product
of two copies of the interval [−1, 1] ⊂ R. We can describe P by its vertices as

P := conv{(−1,−1), (1,−1), (−1, 1), (1, 1)}.

If a collection of d+ 1 points span an d-dimensional affine subspace of Rd (i.e. the
points are affinely independent), the convex hull of those points is called a d-simplex.
For example, the tetrahedron in Figure 1.1 is a 3-simplex. Further, the simplex in
Rd defined as the convex hull of the origin and the standard basis vectors e1, . . . ed is
called the standard d-simplex, denoted by ∆d.

The second definition describes a d-dimensional polytope as the intersection of
closed halfspaces, each of which is bounded by a (d− 1)-dimensional hyperplane.

Definition 1.2.5. A hyperplane H is a support hyperplane of the polytope P if P
is contained in one of the two closed halfspaces bounded by H and the intersection
H ∩ P is nonempty.

The intersection F = H ∩ P is called a face of P . For a d-dimensional polytope,
any face of dimension d− 1 is called a facet.

2



x1

x2

(1,1)(-1,1)

(1,-1)(-1,-1)

Figure 1.2: A 2-dimensional cube, [−1, 1]2.

Every polytope has a unique irredundant description as an intersection of halfs-
paces, called the H-description. Since every support hyperplane can be encoded as a
linear equation, the H-description can be written as a system of linear inequalities.
Each inequality in the H-description, when satisfied with equality, determines a facet
of the polytope.

Example 1.2.6. The cube P in Figure 1.2 has the following H-description.

P :=

(x1, x2) ∈ R2 :


1 0
0 1

−1 0
0 −1

[x1

x2

]
≤


1
1
1
1




It is worth noting that, given a polytope, the fact that it has both V- and H-
descriptions and a process for translating between the two are non-trivial to show [32,
Section 1.1].

1.2.2 Some Properties of Interest

For any lattice polytope, there are many questions we can ask regarding its geometry
and combinatorics.

Face Structure

Since every face of a polytope P is the intersection of P with some support hyperplane,
we can further describe how faces “glue” together to create the boundary of the
polytope. Namely,

• faces can intersect only at their boundaries,

• intersections of faces are faces,

• every face is attainable as an intersection of facets.

The face vector (or f-vector) and the face lattice of a polytope are invariants of a
polytope that give information about the number of faces of each dimension and how
faces are arranged.

3



Definition 1.2.7. For a d-dimensional polytope P , the f-vector is f = (f0, f1, . . . , fd−1)
where fi is the number of i-dimensional faces of P .

Definition 1.2.8. The face lattice of a polytope P is a partially ordered set where
the elements are faces of P ordered by inclusion. In other words, if F and F ′ are
faces of P , then F ≤ F ′ in the face lattice if F ⊆ F ′ in the polytope. The minimal
element of the face lattice is the empty face , and the maximal element is the entire
polytope P .

Example 1.2.9. For a d-dimensional simplex, the f-vector has entries fi =
(
d+1
i+1

)
,

and the face lattice is the boolean lattice Bd+1.

Remark 1.2.10. The f-vector and face lattice are both concepts that generalize to
the study of polytopal complexes, geometric objects constructed by gluing polytopes
along faces. When every polytope in a complex is a simplex, these are called simplical
complexes, which are widely studied in algebraic combinatorics.

Additionally, every face of a polytope is itself a polytope, and anything we can
ask about P (such as the questions that follow) can also be asked about faces of P .

Normalized Volume

As polytopes are geometric objects, we’re often interested in understanding their
volume.

Definition 1.2.11. For a d-dimensional polytope P , the normalized volume is defined

V ol(P ) := d! · vol(P )

where vol(P ) denotes the Euclidean volume of P .

Multiplying the Euclidean volume by d! gives that the normalized volume of the
standard simplex ∆d is 1. We say that any simplex with normalized volume equal to
1 is a unimodular simplex.

In general, normalized volume is difficult to compute. For a lattice polytope P , we
can sometimes make use of a relationship between V ol(P ) and the number of lattice
points in dilates of P . This relationship and other questions surrounding lattice point
enumeration are the focus of Ehrhart theory [1].

Definition 1.2.12. For a polytope P ∈ Rd, the lattice point enumerator is the
function

LP (t) := |tP ∩ Zd|,

which counts the integer points contained in the tth dilate of P .
The Ehrhart series of P is the generating function for LP (t), defined

EhrP (z) := 1 +
∑
t≥1

LP (t)zt.

4



It has been shown that, for d-dimensional lattice polytopes, LP (t) is a polynomial
in t and the Ehrhart series can be expressed as a rational function

EhrP (z) =

∑d
j=0 h

∗
jz

j

(1 − z)d+1
.

The numerator of this rational form of the Ehrhart series is called the h∗-polynomial
of P , which is known to have coefficients that are nonnegative integers. Finding
combinatorial interpretations of the h∗ coefficients for families of lattice polytopes is
an active area of study. One thing that is known is a connection with normalized
volume.

Corollary 1.2.13. For a d-dimensional lattice polytope P ,

V ol(P ) =
d∑

j=0

h∗
j .

Triangulations

Like studying face structure tells us how the boundary of a polytope can be de-
composed into simpler pieces, studying triangulations can tell us information about
decomposing the polytope as a whole.

Definition 1.2.14. A triangulation of a d-dimensional polytope P = conv{v1, . . . , vn}
is a subdivision of P into d-simplices S1, . . . , Sk such that

• the vertices of Si are in {v1, . . . , vn} for all i,

•
k⋃

i=1

Si = P ,

• Si ∩ Sj is a face of both Si and Sj (possibly the empty face) for every i and j.

Some classical and well-studied examples are triangulations of a regular n-gon in
R2, which are known to be counted by the Catalan numbers [28].

One nice family of triangulations for a given polytope are regular triangulations.

Definition 1.2.15. For a polytope P = conv{v1, . . . , vn} ∈ Rd, and a height function
ω : {v1, . . . , vn} → R, a regular subdivision of P arises from ω by constructing the
lifted polytope P ω ∈ Rd+1 with vertices {(v1, ω(v1)), . . . , (vn, ω(vn))}. The lower faces
of P ω are those that minimize a chosen linear functional. Projecting the lower faces
of P ω back to Rd gives the subdivision of P .

When all the lower faces of P ω are simplices, we obtain a regular triangulation.

Example 1.2.16. Figure 1.3 illustrates the construction of a regular triangulation of
a unit cube P ⊂ R2 (shown embedded into R3). The lower faces of P ω (shown in green
and purple in the figure) are the 2-simplices conv{(0, 0, 5), (1, 0, 5), (1, 1, 3)} and
conv{(0, 0, 5), (0, 1, 5), (1, 1, 3)}. These project to the simplices conv{(0, 0), (1, 0), (1, 1)}
and conv{(0, 0), (0, 1), (1, 1)} in R2, which triangulate P .
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x1

x2

x3

(0,0,0)

(1,0,0)
(1,1,0)

(0,1,0)

(0,0,5)

(1,0,5)

(1,1,3)

(0,1,5)

P

Pω

x1

x2

x3

(0,0,0)

(1,0,0)
(1,1,0)

(0,1,0)

(0,0,5)

(1,0,5)

(1,1,3)

(0,1,5)

Figure 1.3: A regular triangulation of the unit cube P ⊂ R2.

It is fairly straightforward to obtain regular triangulations computationally, as
they depend only on the choice of the height function and the linear functional that
determines the lower faces.

Another desirable type of triangulation are unimodular triangulations, that is
triangulations where the normalized volume of every simplex is 1. Though construct-
ing unimodular triangulations still can be difficult, if we can find them for a given
polytope P , the also difficult of question of computing V ol(P ) can be answered by
counting the simplices in the triangulation.

Duals and Reflexivity

Given a collection of points (such as a polytope) in Rd, we can construct its geometric
dual‘[32].

Definition 1.2.17. For X ⊆ Rd, the dual (or polar) X∗ of X is the set

X∗ := {z ∈ Rd : zT · x ≤ 1 for all x ∈ X}.

When our set X is actually a polytope P , we get a nice result.

Proposition 1.2.18. If P ⊂ Rd is a d-dimensional polytope containing the origin in
its interior, there is a bijection between facets of P and the vertices of P ∗.

Example 1.2.19. In any dimension d, the cube [−1, 1]d and conv{±ei : i = 1, . . . , d},
the d-dimensional cross polytope are dual to each other. The 2-dimensional case
is shown in Figure 1.4. We saw in Example 1.2.6 that the facets of the cube are
defined by hyperplanes with (inward-pointing, unit) normal vectors that are exactly
the vertices of the cross polytope. The same relationship can be verified for the facets
of the cross polytope and the vertices of the cube.
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x1

x2

(1,1)(-1,1)

(1,-1)(-1,-1)

x1

x2

(1,0)(-1,0)

(0,-1)

(0,1)

Figure 1.4: The [−1, 1]-cube and the cross polytope in R2. These polytopes are duals
of each other. Thus both are reflexive.

In the example above, the dual of a lattice polytope was also a lattice polytope,
which is not true in general. Lattice polytopes that have this property are called
reflexive. We also have an alternate way to describe reflexive polytopes that makes
this property very useful.

Definition 1.2.20. A lattice polytope P that contains the origin in its interior is
reflexive if all of the facets of P are contained in hyperplanes that are lattice distance
1 from the origin. In other words, the H-description of P can be expressed

P = {x ∈ Rn : Ax ≤ 1}

where A ∈ Mk×n is a matrix with integer entries and 1 ∈ Rk is the vector of all ones.

In any given dimension, there are finitely many reflexive lattice polytopes up to
unimodular equivalence (a lattice-preserving transformation).

1.3 Graphs

A graph is a combinatorial structure often used to model relationships among collec-
tions of objects. Here we will restrict ourselves to a particular family of graphs.

Definition 1.3.1. A simple, undirected graph is a pair of sets, G = (V,E)

• V , a set of vertices (or nodes),

• E, a set of edges, unordered pairs of vertices.

Commonly, we will express a graph as a collection of dots representing the vertices
and line segments representing the edges such as in Figure 1.5.

Throughout this work, we mainly concern ourselves with connected graphs, those
in which there is a path of edges between any two vertices. A path of at least 3 edges
that begins and ends at the same vertex is called a cycle. For example, the edges
among vertices u, v, and w in Figure 1.5 form a cycle of length 3. A connected graph
that contains no cycles is called a tree, and a graph that contains no cycles of odd
length is called bipartite.
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u

v

w x y
G

Figure 1.5: A simple, undirected graph G with vertex set V = {u, v, w, x, y} and edge
set E = {uv, uw, vw,wx, xy}.

While graphs are structures that store information about relationships, we can
also use graphs to define and study other structures. Of particular interest in this
work are polytopes that are defined from graphs.

1.4 Symmetric Edge Polytopes

Symmetric edge polytopes are a class of lattice polytopes defined from simple, undi-
rected graphs that were introduced by Matsui, Higashitani, Nagazawa, Ohsugi, and
Hibi in [19].

Definition 1.4.1. For a simple graph G = (V,E), the symmetric edge polytope is
defined

PG := conv{±(ev − ew) : vw ∈ E} ⊂ RV ,

where ev ∈ RV is the standard basis vector indexed by the vertex v of G.

u v

w

xu

xv

xw

eu − ev

ev − eu

ew − ev

ev − ew

eu − ew

ew − eu

Figure 1.6: The complete graph K3 (left) and it’s symmetric edge polytope PK3

(right), which is a 2-dimensional hexagon in R3.

Figure 1.6 demonstrates several properties that symmetric edge polytopes have in
general. First, the symmetric edge polytope for a connected graph with n vertices is
an (n−1)-dimensional polytope in Rn. It is straightforward to see that any symmetric
edge polytope is contained in the hyperplane

∑n
i=1 xi = 0, the orthogonal complement

of ⟨1⟩ ⊂ Rn, the linear subspace spanned by the vector where every entry is one.
Symmetric edge polytopes are also centrally symmetric, meaning that for every point
x ∈ PG, −x is also in PG. This also implies that every symmetric edge polytope
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contains the origin. Finally, for any connected graph G with n vertices, PG is reflexive
with respect to the lattice Zn/⟨1⟩.

Symmetric edge polytopes (called type PV adjacency polytopes in some settings)
have been the subject of intense recent study [6, 7, 8, 9, 10, 15, 18, 19, 23, 25]. In
addition to investigating the interesting structure of these polytopes for its own sake,
there are applications to the study of algebraic Kuramoto equations, systems of differ-
ential equations that model the behavior of coupled oscillators [7]. The relationships
between the oscillators can be modeled by a graph, and it has been shown that the
normalized volume of the symmetric edge polytope associated to that graph gives
an upper bound on the number of solutions to the system. However, as discussed
in Section 1.2.2, computing normalized volume can be a difficult or computationally
costly task.

Unimodular triangulations are a tool that can assist in this case. Applying a result
of Sturmfels, Higashitani, Jochemko, and Micha lek [15] proved that symmetric edge
polytopes have regular, unimodular triangulations. Still, counting the simplices of a
unimodular triangulation is nontrivial. This process is aided by information about
the number and volumes of facets in the polytope. The work of this thesis sits in this
world– establishing formulas and bounds for the number of facets of symmetric edge
polytopes in the service of finding information about triangulations and normalized
volume.

Copyright© Kaitlin Elizabeth Bruegge, 2023.
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Chapter 2 Facets of Symmetric Edge Polytopes for Graphs with Few
Edges

In this chapter, we focus on the study the number of facets of PG (hereafter denoted
by N(PG) or N(G)) for connected graphs, with an emphasis on those graphs having
few edges. This chapter is based on joint work with Benjamin Braun. A pre-print is
available here [2].

Our study is motivated by the following questions: for a fixed number of vertices
and edges, what properties of connected graphs lead to symmetric edge polytopes with
either a large or small number of facets? This leads us to the following definition.

Definition 2.0.1. For n ≥ 2 and m ≥ n− 1, define maxf(n,m) to be the maximum
number of facets of a symmetric edge polytope for a connected graph having n vertices
and m edges, and similarly define minf(n,m) to be the minimum number of facets.
For n ≥ 2, we define Maxf(n) to be the maximum number of facets of a symmetric
edge polytope for a connected graph having n vertices, and similarly define Minf(n)
to be the minimum number.

The first few values of maxf(n,m), reserved as sequence A360408 in OEIS [17],
are given in Table 2.1. The first few values of minf(n,m), reserved as sequence
A360409 in OEIS [17], are given in Table 2.2. The sequence Maxf(n) is given by

2, 6, 14, 36, 84, 216, 504, 1296 . . . ,

while the sequence Minf(n) is given by

2, 4, 6, 10, 14, 22, 30, 46, . . . .

The problem of determining maxf(n,m) and minf(n,m) is challenging, in part due
to the complicated combinatorial structures that describe the facets of PG. Experi-
mental data suggest that facet maximizing graphs can be obtained as a wedge product
of odd cycles; how broadly this holds for general n and m beyond relatively sparse
graphs is not clear. Computational evidence obtained with SageMath [29] leads to the
following conjecture regarding the sequences Maxf(n) and Minf(n) (all undefined
terms below are defined in subsequent sections).

Note that the conjectured sequence for Minf(n) is entry A027383 in OEIS [16].

Conjecture 2.0.2. Let n ≥ 3.

1. For n = 2k + 1, Maxf(n) = 6k, which is attained by a wedge of k cycles of
length three.

2. For n = 2k, Maxf(n) = 14 ·6k−1, which is attained by a wedge of K4 with k−1
cycles of length three.

3. For n = 2k + 1, Minf(n) = 3 · 2k − 2, which is attained by Kk,k+1.
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Table 2.1: maxf(n,m).

n, m− n + 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13
2 2
3 4 6
4 8 12 12 14
5 16 30 36 28 28 28 30
6 32 60 72 72 84 68 68 60 60 60 62
7 64 140 180 216 168 168 196 180 148 148 132 132 124 124

Table 2.2: minf(n,m).

n, m− n + 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2 2
3 4 6
4 8 6 12 14
5 16 12 10 22 26 28 30
6 32 20 18 16 14 42 54 56 58 60 62
7 64 40 32 28 26 24 22 78 102 106 116 118 120 122 124 126

4. For n = 2k, Minf(n) = 2k+1 − 2, which is attained by Kk,k.

Note that Kn denotes the complete graph with n vertices, and Ka,b denotes the
complete bipartite graph with shores of having a and b vertices, as shown in Figure 2.1.

Figure 2.1: Above are the complete graph K4 (left), and the complete bipartite graph
K3,2 (right).

In this work, we investigate the sequences maxf(n, n) and maxf(n, n + 1). We
provide an exact result for maxf(n, n) and provide partial progress toward a con-
jectured value of maxf(n, n + 1). The use of combinatorial tools for this analysis
produces independently interesting integer sequences defined by sums of products of
binomial coefficients.

2.1 Useful Tools and Known Results

It is known that the symmetric edge polytope for any tree on n vertices is combi-
natorially a cross polytope (meaning their face lattices are isomorphic) and thus has
2n−1 facets. Hence maxf(n, n− 1) = 2n−1. More generally, the number of facets for
symmetric edge polytopes can be derived using combinatorial tools. Specifically, a
combinatorial description of the facet-defining hyperplanes of PG was given by Hi-
gashitani, Jochemko, and Micha lek [15]. Further, Chen, Davis, and Korchevskaia [6]

11



give a combinatorial description of the faces of PG that utilizes special subgraphs of
G.

Theorem 2.1.1 (Higashitani, Jochemko, Micha lek [15]). Let G = (V,E) be a finite
simple connected graph. Then f : V → Z is facet-defining if and only if both of the
following hold.

(i) For any edge e = uv we have |f(u) − f(v)| ≤ 1.

(ii) The subset of edges Ef = {e = uv ∈ E : |f(u) − f(v)| = 1} forms a spanning
connected subgraph of G.

As symmetric edge polytopes are contained in the hyperplane orthogonal to the
span of the vector of all ones, two facet-defining functions are identified if they differ
by a common constant.

In other words, the facets of PG are in bijection with these functions, which can be
thought of as a special class of integer labelings of the vertices of G. Though counting
these labelings is not particularly straightforward, this gives us our first significant
tool.

The spanning connected subgraphs with edge sets Ef arising in Theorem 2.1.1,
called facet subgraphs, also have further structure.

Lemma 2.1.2 (Chen, Davis, Korchevskaia [6]). Let G be a connected graph. A
subgraph H of G is a facet subgraph of G if and only if it is a maximal connected
spanning bipartite subgraph of G.

Lemma 2.1.2 provides a strategy for identifying the facets of PG combinatori-
ally: first identify the maximal connected spanning bipartite subgraphs of G, then
determine the valid integer labelings of the vertices.

For a graph G that is constructed by identifying two graphs at a single vertex,
there is a relationship between the facets of PG and the facets of the subgraphs.

Definition 2.1.3. For graphs G and H, let G ∨ H denote a graph obtained by
identifying a vertex in G with a vertex in H. We call G ∨H a wedge or join.

Note that we do not specify a choice of identification points when defining G∨H,
as by the following proposition any such choice yields a symmetric edge polytope with
the same number of facets.

Proposition 2.1.4. For connected graphs G and H,

N(PG∨H) = N(PG) ·N(PH).

Proof. This follows from the fact that PG∨H is the free sum PG ⊕ PH [24, Proposi-
tion 4.2] (also called the direct sum) and the number of facets is multiplicative for
free sums [14].
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Figure 2.2: C(7, 5)

Proposition 2.1.4 is particularly powerful when the graph we care about decom-
poses as a wedge of graphs for which facet counts of the symmetric edge polytopes
are known. One known class of particular interest to us is cycles. Let Cn denote the
cycle with n edges and let Pn denote the path with n edges.

Lemma 2.1.5. For any m,

N(PCm) =

{ (
m

m/2

)
m even

m
(

m−1
(m−1)/2

)
m odd

Proof. For even m, the facets of PCm are identified and counted in [7, Proposition 12],
and for odd m in [22, Remark 4.3].

Though the two-cycle, C2, is a multigraph (and thus, its symmetric edge poly-
tope is not defined), its facet-defining functions would be exactly the facet-defining
functions of a graph on two vertices with a single edge. This is consistent with the
formula in Lemma 2.1.5.

2.2 Graphs With Few Edges and Disjoint Cycles

We consider the symmetric edge polytopes for classes of connected graphs where
the number of edges is small relative to the number of vertices. We’ve previously
stated that any tree T on n vertices has N(T ) = 2n−1 as PT is combinatorially a
cross polytope. With Proposition 2.1.4, we can see this another way. Any tree T
can be constructed as a wedge of n − 1 single edges with an appropriate choice of
identification points, again giving maxf(n, n− 1) = 2n−1.

2.2.1 Graphs with n vertices and n edges

Considering next the sequence maxf(n, n), any connected graph with an equal num-
ber of vertices and edges has a unique cycle, and hence can be constructed as a wedge
of that cycle with trees. Therefore, we can count the facets of PG for any such graph
G and determine maxf(n, n) for any n.

Definition 2.2.1. Let C(n,m) denote a graph on n vertices obtained by joining an
m-cycle with a path graph on n−m edges.
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Theorem 2.2.2. For any connected graph G with n vertices and n edges, the number
of facets of PG is less than or equal to the number of facets of PG for G = C(n, n)
when n is odd and G = C(n, n− 1) when n is even. Thus, for odd n

maxf(n, n) = n

(
n− 1

(n− 1)/2

)
,

and for even n

maxf(n, n) = 2(n− 1)

(
n− 2

(n− 2)/2

)
.

Proof. A connected graph on n vertices and n edges has a unique cycle, C, of length
m for some 3 ≤ m ≤ n. Thus, G is the join of an m-cycle and n − m edges. By
Proposition 2.1.4, we have N(G) = N(C(n,m)). For k ≥ 2, we claim

N(C(n, 2k)) < N(C(n, 2k − 1)) < N(C(n, 2k + 1)) . (2.1)

In other words, if m is even, N(C(n,m− 1)) is greater than N(C(n,m)). Also, if m
is odd and m ≤ n − 2, the graph C(n,m + 2) exists, and N(C(n,m + 2)) is greater
than N(C(n,m)). With these two statements, we see that N(G) is maximized when
G contains the largest odd cycle possible in a graph with n vertices.

To prove the inequality, let

M =
2n−(2k+1)(2k − 1)!

(k!)2
.

Then, by Lemma 2.1.5 and Proposition 2.1.4,

N(C(n, 2k)) = N(C2k) · 2n−2k =

(
2k

k

)
· 2n−2k = 4kM,

N(C(n, 2k − 1)) = N(C2k−1) · 2n−(2k−1) = (2k − 1)

(
2k − 2

k − 1

)
· 2n−(2k−1) = 4k2M,

N(C(n, 2k + 1)) = N(C2k+1) · 2n−(2k+1) = (2k + 1)

(
2k

k

)
· 2n−(2k+1) = (4k2 + 2k)M,

and the claim holds.

2.2.2 Graphs with n vertices and n + 1 edges

We next consider the sequence maxf(n, n+1), which is substantially more challenging
than the previous cases. Any connected, simple graph with n vertices and n+1 edges
can be constructed from a tree on n vertices by adding two edges. Each of these
additions induces a cycle in the graph. For such graphs, we make the following
definition and conjecture.
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Figure 2.3: A graph with N(G) = M(7)

Definition 2.2.3. For n ≥ 3, let M(n) be the number of facets of PG where

G :=


Ck+1 ∨ Ck−1 n = 2k − 1, k even

Ck ∨ Ck n = 2k − 1, k odd

Ck+1 ∨ Ck−1 ∨ e n = 2k, k even

Ck ∨ Ck ∨ e n = 2k, k odd

Conjecture 2.2.4. For all n ≥ 3, maxf(n, n + 1) is equal to M(n).

Graphs with n vertices and n+1 edges fall into two categories: graphs with exactly
2 edge-disjoint cycles, such as those defined in Definition 2.2.6 below, and graphs
where the cycles share one or more edges, such as those defined in Definition 2.3.2
below. In this section, we show that Conjecture 2.2.4 is true for the first category.

Theorem 2.2.5. For any connected graph H with n vertices and n + 1 edges where
H contains two edge-disjoint cycles, we have N(H) ≤ M(n).

Note that Theorem 2.2.5 states that, among connected graphs with n vertices and
n + 1 edges containing disjoint cycles, a facet-maximizing family arises by creating a
graph that as closely as possible resembles the wedge of two equal-length odd cycles.
The proof relies on the following definition and lemmas.

Definition 2.2.6. Let G(n, i, j) denote the graph Ci ∨ Cj ∨ Pn+1−(i+j). Note that
G(n, i, j) has n vertices and n + 1 edges.

Lemma 2.2.7. If i is even, then

N(G(n, i, j)) < N(G(n, i− 1, j)).

Proof. Note that N(G(n, i, j)) = N(C(n+ 1− j, i)∨Cj). Because i is even, applying
the inequalities (2.1) and Proposition 2.1.4 yields

N(C(n + 1 − j, i) ∨ Cj) < N(C(n + 1 − j, i− 1) ∨ Cj) = N(G(n, i− 1, j)) ,

which completes the proof.

Lemma 2.2.8. For i, j,m, ℓ odd with m < i ≤ j < ℓ and i + j = m + ℓ,

N(Cm ∨ Cℓ) < N(Ci ∨ Cj).
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Proof. We show this holds for m = i− 2 and ℓ = j + 2, then the argument follows by
induction. By Lemma 2.1.5 and Proposition 2.1.4

N(Ci ∨ Cj) = ij

(
i− 1
i−1
2

)(
j − 1
j−1
2

)
,

N(Ci−2 ∨ Cj+2) = (i− 2)(j + 2)

(
i− 3
i−3
2

)(
j + 1
j+1
2

)
.

Letting M = (i− 2)j

(
i− 3
i−3
2

)(
j − 1
j−1
2

)
, we see

N(Ci−2 ∨ Cj+2) = 4M · j + 2

j + 1
< 4M · i

i− 1
= N(Ci ∨ Cj).

We also make use of the following theorem.

Theorem 2.2.9. For all n

2 ·M(n) ≤ M(n + 1).

Proof. By Lemma 2.1.5 and Proposition 2.1.4,

M(n) =


(k + 1)(k − 1)

(
k
k
2

)(
k−2
k−2
2

)
n = 2k − 1, k even

k2
(
k−1
k−1
2

)2
n = 2k − 1, k odd

2 ·M(n− 1) n = 2k.

When n is odd, 2 ·M(n) = M(n+ 1), and we are done. When n is even, we consider
two cases.
Case 1: If n = 2k with k even, n+1 = 2(k+1)−1 with k+1 odd. Therefore, letting

K = (k + 1)

(
k
k
2

)
, we have

M(n) = 2 ·M(2k − 1) = 2(k + 1)(k − 1)

(
k
k
2

)(
k − 2
k−2
2

)
= 2(k − 1)

(
k − 2
k−2
2

)
· K,

and

M(n + 1) = (k + 1)2
(
k
k
2

)2

= K2 .

Since

K = (k + 1)

(
k
k
2

)
=

(k + 1)k(
k
2

)2 · (k − 1) ·
(
k − 2
k−2
2

)
=

4(k + 1)

k
· (k − 1) ·

(
k − 2
k−2
2

)
≥ 4 · (k − 1) ·

(
k − 2
k−2
2

)
,
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we see

2 ·M(n) = 4(k − 1)

(
k − 2
k−2
2

)
· K ≤ K2 = M(n + 1) .

Case 2: If n = 2k with k odd, n+1 = 2(k+1)−1 with k+1 even. Therefore, letting
K = k

(
k−1
k−1
2

)
, we have

M(n) = 2 ·M(2k − 1) = 2k2

(
k − 1
k−1
2

)2

= 2K2

and

M(n + 1) = (k + 2)k

(
k + 1
k+1
2

)(
k − 1
k−1
2

)
= (k + 2)

(
k + 1
k+1
2

)
· K .

Since

(k + 2)

(
k + 1
k+1
2

)
=

(k + 2)(k + 1)(
k+1
2

)2 · k ·
(
k − 1
k−1
2

)
=

4(k + 2)

(k + 1)
· K ≥ 4K, ,

we see

2 ·M(n) = 4K2 ≤ (k + 2)

(
k + 1
k+1
2

)
· K = M(n + 1) .

With these in place, we have Theorem 2.2.5.

Proof of Theorem 2.2.5. By Proposition 2.1.4, any such graph H containing exactly
two edge-disjoint cycles of length i and j satisfies N(H) = N(G(n, i, j)). Thus, it is
sufficient to restrict our attention to G(n, i, j). By Lemmas 2.2.7 and 2.2.8, we can
consider only G(n, i, j) for i, j odd and as close to i+j

2
as possible. Without loss of

generality, suppose i ≤ j.
Case 1: n = 2k − 1, k even. Note that, since i and j are both odd, i ≤ k − 1 and
j ≤ k + 1. Also, by Lemma 2.1.5 and Proposition 2.1.4,

N(G(n, i, j)) = 2n−(i+j)+1ij

(
i− 1
i−1
2

)(
j − 1
j−1
2

)
= 22k−(i+j) · i!j!(

i−1
2

!
)2 ( j−1

2
!
)2 .
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Similarly,

M(n) = (k + 1)(k − 1)

(
k
k
2

)(
k − 2
k−2
2

)
=

(k + 1)!(
k
2
!
)2 · (k − 1)!(

k−2
2

!
)2

=
j!(

j−1
2

!
)2 ·

 k∏
ℓ=j+1
ℓ even

(ℓ + 1)ℓ(
ℓ
2

)2
 · i!(

i−1
2

!
)2 ·

 k−2∏
m=i+1
m even

(m + 1)m(
m
2

)2


= 22k−(i+j) · i!j!(
i−1
2

!
)2 ( j−1

2
!
)2 ·

 k∏
ℓ=j+1
ℓ even

ℓ + 1

ℓ

 ·

 k−2∏
m=i+1
m even

m + 1

m


≥ N(G(n, i, j)).

Case 2: n = 2k − 1, k odd. Note that, by assumption, i ≤ k and j ≤ k. Also, by
Lemma 2.1.5 and Proposition 2.1.4,

N(G(n, i, j)) = 2n−(i+j)+1ij

(
i− 1
i−1
2

)(
j − 1
j−1
2

)
= 22k−(i+j) · i!j!(

i−1
2

!
)2 ( j−1

2
!
)2 .

Similarly,

M(n) = k2

(
k − 1
k−1
2

)2

=
j!(

j−1
2

!
)2 ·

 k−1∏
ℓ=j+1
ℓ even

(ℓ + 1)ℓ(
ℓ
2

)2
 · i!(

i−1
2

!
)2 ·

 k−1∏
m=i+1
m even

(m + 1)m(
m
2

)2


= 22k−(i+j) · i!j!(
i−1
2

!
)2 ( j−1

2
!
)2
 k−1∏

ℓ=j+1
ℓ even

ℓ + 1

ℓ

 ·

 k−1∏
m=i+1
m even

m + 1

m


≥ N(G(n, i, j)).

Case 3: n = 2k. By Lemma 2.1.5 and Proposition 2.1.4,

N(G(n, i, j)) = 2n−(i+j)+1ij

(
i− 1
i−1
2

)(
j − 1
j−1
2

)
= 2 ·N(G(n− 1, i, j)) .

Also, by Theorem 2.2.9 and the previous cases,

M(n) ≥ 2 ·M(n− 1)

≥ 2 ·N(G(n− 1, i, j))

= N(G(n, i, j)).

Thus, in every case, N(G(n, i, j)) ≤ M(n).

So we are able to verify that Conjecture 2.2.4 holds in cases when the cycles in
our graph do not share edges. Section 2.3 discusses what happens when they do.
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2.3 Graphs with Few Edges and Overlapping Cycles

We next consider the family of graphs on n vertices and n + 1 edges that have two
cycles intersecting in at least one edge. Theorem 2.2.9 allows us to reduce Conjec-
ture 2.2.4 to the case where G has no vertices of degree one, as follows.

Corollary 2.3.1. If Conjecture 2.2.4 is true for graphs on n vertices, then it is true
for graphs on n + 1 vertices that have at least one leaf.

Proof. Let G be a graph on n+1 vertices and n+2 edges that has a leaf e. Then G\{e}
is a graph with n vertices and n + 1 edges, and by assumption N(G \ {e}) ≤ M(n).
By Proposition 2.1.4 and Theorem 2.2.9,

N(G) = 2 ·N(G \ {e}) ≤ 2 ·M(n) ≤ M(n + 1).

Corollary 2.3.1 allows us to restrict our attention to graphs with no leaves. Any
graph on n vertices and n + 1 edges with no leaves that contains cycles sharing one
or more edges can be interpreted as three internally disjoint paths connected at their
endpoints. We consider these as a special case of a more general construction.

Definition 2.3.2. For a vector m ∈ Nt, let CB(m) denote the graph made of t
internally disjoint paths of lengths m1,m2, . . . ,mt connecting two endpoints.

Note that when t = 3, we obtain the leafless connected graphs with n vertices and
n + 1 edges. Also, the graphs CB(m) for which all entries of m are the same m ∈ N
are sometimes called theta graphs, denoted by θm,t [11].

Proposition 2.3.3. For m ∈ Nt, we may permute the entries so that without loss
of generality we have m1 ≥ m2 ≥ · · · ≥ mt. If all the mi’s have the same parity,
N(CB(m)) is given by

F (m) =
mt∑
j=0

(
mt

j

)[t−1∏
k=1

(
mk

1
2
(mk −mt) + j

)]
.

Proof. Consider CB(m) as consisting of paths P1, P2, . . . , Pt having m1 ≥ · · · ≥ mt

edges respectively, as shown in Figure 2.4. Since all mi are the same parity, CB(m)
is bipartite. By [9, Lem. 4.5], for every facet-defining function f : V → Z, we have
|f(u) − f(v)| = 1 for every edge uv in CB(m). If we consider the paths as oriented
away from the top vertex toward the bottom vertex, we can view each edge u → v as
ascending (f(v) − f(u) = 1), and label it 1, or descending (f(v) − f(u) = −1), and
label it −1.

We count facets by finding valid labelings of the edges of CB(m) with ±1, that
is labelings such that the sum of the labels on every path is the same. For a labeling
of a shortest path with length mt using j −1s and mt − j 1s, the sum of the edge
labels is mt − 2j. There are

(
mt

j

)
labelings of this path with this sum.
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P1 P2 Pt· · ·

Figure 2.4: CB(m) for m = (m1, . . . ,mt)

To produce a valid labeling of the entire graph with each path sum equal to
mt− 2j, the number of −1s, say y, on a path of length mk must satisfy the equation:

(+1)(mk − y) + (−1)y = mt − 2j

y =
1

2
(mk −mt) + j.

Thus there are

(
mk

1
2
(mk −mt) + j

)
labelings of a path of length mk with label sum

mt − 2j. Applying this argument to mk for k = 1, . . . , t− 1 gives(
mt

j

) t−1∏
k=1

(
mk

1
2
(mk −mt) + j

)
valid labelings of CB(m) with j −1s on the shortest path. The result follows by
taking the sum over all j = 0, . . . ,mt.

Note that there is a combinatorial interpretation for F , where we consider the
arithmetical triangle of binomial coefficients vertically centered at the central terms.
What F does is select the mt-th row of the arithmetical triangle, multiply each entry
by the vertically-aligned entries in rows m1 through mt−1, and sum the resulting
products.

For CB(m) = θm,t where all the paths are the same length, this formula simplifies.

Corollary 2.3.4. For t ∈ N,

N(θm,t) =
m∑
j=0

(
m

j

)t

.

If the vector m has both even and odd entries, counting the facets of CB(m)
becomes more complicated, but still involves F .
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Proposition 2.3.5. For m ∈ Nt, permute the entries so that m = (e1, . . . , ek, o1, . . . , oℓ)
with e1 ≥ e2 ≥ · · · ≥ ek even and o1 ≥ o2 ≥ · · · ≥ oℓ odd and k, ℓ ≥ 1, k + ℓ = t.
Also, let me be the vector obtained by subtracting 1 from every even entry of m, and
mo the vector obtained by subtracting 1 from every odd entry of m.

(i) If all entries of m are at least 2,

N(CB(m)) =

(
k∏

j=1

ej

)
F (me) +

(
ℓ∏

j=1

oj

)
F (mo).

(ii) If op+1 = · · · = oℓ = 1 (and op > 1),

N(CB(m)) =

(
k∏

j=1

ej

)
F (me) +

(
ℓ∏

j=1

oj

)
N
((
∨k

j=1Cej

)
∨
(
∨p

j=1Coj−1

))
.

Proof. Consider CB(m) as in Figure 2.4. As in the proof of Proposition 2.3.3, we will
count facets of PCB(m) by counting valid labelings of the facets subgraphs of CB(m).
These subgraphs are those in which

1. one edge of every even length path has been removed, or

2. one edge of every odd length path has been removed.

We can view these as labelings of CB(m) where the sum of labels on each Pi is equal,
and all edges must be labeled with ±1 except

1. one edge on each even path is labeled 0, or

2. one edge on each odd path is labeled 0.

In (1), there are
k∏

j=1

ej ways to choose the edges to label 0. Having the edge uv labeled

0 indicates that f(u) = f(v) in the corresponding facet-defining function f : V → Z.
Thus, we can view this edge as having been contracted since its endpoints have
the same value. Then the reduced graph with these edges contracted is CB(me),
constructed of paths that all have odd length. So, by Proposition 2.3.3, the number
of valid labelings of CB(m) where each even path has a 0 edge is(

k∏
j=1

ej

)
F (me).

In (2), there are
ℓ∏

j=1

oj ways to choose the edges to label 0. If every entry of m is

at least 2, the graph produced by contracting these 0 edges is CB(mo), constructed
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of paths that all have even length. As above, the number of valid labelings of CB(m)
of this type is (

ℓ∏
j=1

oj

)
F (mo).

Thus, in case (i),

N(CB(m)) =

(
k∏

j=1

ej

)
F (me) +

(
ℓ∏

j=1

oj

)
F (mo).

To complete case (ii), note that if we contract any edge on a path of length 1, the
endpoints of the remaining paths are identified, and the reduced graph is a wedge
of cycles. In particular, if op+1 = · · · = oℓ = 1 and op > 1, the reduced graph is(
∨k

j=1Cej

)
∨
(
∨p

j=1Coj−1

)
. So the number of valid labelings of CB(m) of this type is

N
((
∨k

j=1Cej

)
∨
(
∨p

j=1Coj−1

))
.

Therefore, in case (ii),

N(CB(m)) =

(
k∏

j=1

ej

)
F (me) +

(
ℓ∏

j=1

oj

)
N
((
∨k

j=1Cej

)
∨
(
∨p

j=1Coj−1

))
.

Returning to the special case of leafless connected graphs on n vertices with n+ 1
edges, specializing to t = 3 provides facet counts for our graphs of interest.

Corollary 2.3.6. The number of facets of the symmetric edge polytope for CB(x1, x2, x3)
is computed as follows.

(i) For x1, x2, x3 either all even or all odd,

N(CB(x1, x2, x3)) = F (x1, x2, x3) .

(ii) For o1, o2 odd, e1 even, and all at least 2,

N(CB(o1, o2, e1)) = e1F (o1, o2, e1 − 1) + o1o2F (o1 − 1, o2 − 1, e1) .

For e1, e2 even, o1 odd, and all at least 2,

N(CB(e1, e2, o1)) = o1F (e1, e2, o1 − 1) + e1e2F (e1 − 1, e2 − 1, o1) .

(iii) For e1, e2 even, and o1 = 1,

N(CB(e1, e2, 1)) = e1e2F (e1 − 1, e2 − 1, 1) + N(Ce1 ∨ Ce2)
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Figure 2.5: Some of the facet-defining functions of CB(4, 2, 2) when j = 0
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Figure 2.6: Some of the facet-defining functions of CB(4, 2, 2) when j = 1
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Figure 2.7: Some of the facet-defining functions of CB(4, 2, 2) when j = 2

(iv) For e1 even, o1 ≥ 3 odd,

N(CB(e1, o1, 1)) = e1F (e1 − 1, o1, 1) + o1N(Co1−1 ∨ Ce1)

(v) For e1 even,
N(CB(e1, 1, 1)) = e1F (e1 − 1, 1, 1) + N(Ce1)

Example 2.3.7. Figures 2.5, 2.6, and 2.7 illustrate some of the facet-defining func-
tions for the symmetric edge polytope of CB(4, 2, 2). The vertices are labeled with
their function values, and the edges are labeled “ + ” if they’re ascending and “ − ”
if they’re descending.

Using these results, we can make partial progress toward Conjecture 2.2.4 in two
special cases, given below in Theorem 2.3.8 and Proposition 2.3.10.
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Theorem 2.3.8. For all n ≥ 4, if x1 ≥ x2 ≥ x3 ≥ 1, all xi’s have the same parity,
and x1 + x2 + x3 = n + 1, then

F (x1, x2, x3) ≤ M(n).

Thus, if x1, x2, x3 are all of the same parity, then Conjecture 2.2.4 is true.

Remark 2.3.9. The proof of Theorem 2.3.8 makes use of the Stirling bounds on n!
given in [26]. Namely,

√
2π nn+ 1

2 e−ne
1

12n+1 ≤ n! ≤
√

2π nn+ 1
2 e−ne

1
12n .

Proof of Theorem 2.3.8. In each of the following cases, we show that the desired
inequality holds for large enough n. For all smaller values of n we have verified that
the theorem holds using SageMath [29]. Throughout the proof, we use the notation
!

≤ to indicate an unproven inequality we wish to show.
Case 1 (n = 2k − 1): In this case, x1 + x2 + x3 = 2k, and all xi’s are even by
assumption. Then we have:

F (x1, x2, x3) =

x3∑
j=0

(
x3

j

)(
x2

1
2

(x2 − x3) + j

)(
x1

1
2

(x1 − x3) + j

)
≤ (x3 + 1)

(
x3
x3

2

)(
x2
x2

2

)(
x1
x1

2

)
Subcase 1(a): If k is even,

M(n) = M(2k − 1) = (k + 1)(k − 1)

(
k
k
2

)(
k − 2
k−2
2

)
.

In this case, to show F (x1, x2, x3) ≤ M(n), it suffices to show

(x3 + 1)x3!x2!x1!

(
k

2
!

)2(
k − 2

2
!

)2
!

≤ (k + 1)(k − 1)k!(k − 2)!
(x3

2
!
)2 (x2

2
!
)2 (x1

2
!
)2

(2.2)

By the Stirling bounds on n!, it suffices to show



(x3 + 1)x
x3+

1
2

3 x
x2+

1
2

2 x
x1+

1
2

1

·
(
k
2

)k+1 (k−2
2

)k−1

·e−(x1+x2+x3+2k)+2

·e
1

12x3
+ 1

12x2
+ 1

12x1
+ 1

3k
+ 1

3(k−2)


!

≤



√
2π
(
x3

2

)x3+1 (x2

2

)x2+1 (x1

2

)x1+1

·(k + 1)(k − 1)kk+ 1
2 (k − 2)k−

3
2

·e−(x1+x2+x3+2k)+2

·e
1

12k+1
+ 1

12k−23
+ 2

6x3+1
+ 2

6x2+1
+ 2

6x1+1
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or equivalently,
(x3 + 1)

·kk+1(k − 2)k−1

·e
1

12x3
+ 1

12x2
+ 1

12x1
+ 1

3k
+ 1

3(k−2)

 !

≤



√
2π
8

√
x1x2x3

·(k + 1)(k − 1)kk+ 1
2 (k − 2)k−

3
2

·e
1

12k+1
+ 1

12k−23
+ 2

6x3+1
+ 2

6x2+1
+ 2

6x1+1 .


Since 1

12k+1
+ 1

12k−23
> 0 for k ≥ 2,

e
1

12k+1
+ 1

12k−23 > 1.

Also,

−1 ≤ 1

12x
− 2

6x + 1
≤ 0

for all x ≥ 1 and so

0 ≤ e
1

12x3
− 2

6x3+1
+ 1

12x2
− 2

6x2+1
+ 1

12x1
− 2

6x1+1 ≤ 1

for all x1, x2, x3. Therefore, to show inequality (2.2), it suffices to show

(x3 + 1)kk+1(k − 2)k−1e
1
3k

+ 1
3(k−2)

!

≤
√

2π

8
(k + 1)(k − 1)kk+ 1

2 (k − 2)k−
3
2
√
x1x2x3

or rather,

(x3 + 1)
√

k(k − 2)e
1
3k

+ 1
3(k−2)

!

≤
√

2π

8
(k + 1)(k − 1)

√
x1x2x3

Finally, we note the following:

• By assumption, x3 + 1 ≤ 2k

3
+ 1 ≤ k + 1, and so

x3 + 1

k + 1
≤ 1.

•
√

k(k − 2)

k − 1
≤ 1.

• 0 < e
1
3k

+ 1
3(k−2) < e for k ≥ 3.

• By assumption, x1 ≥
2k

3
, and x2, x3 ≥ 2, implying x1x2x3 ≥

8k

3
.

With this, it suffices to show

e ≤
√

2π

8

√
8k

3

or

k ≥ 12e2

π
≈ 28.224.
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This inequality and the desired inequality hold for all even k ≥ 30.
Subcase 1(b): If k is odd,

M(n) = M(2k − 1) = k2

(
k − 1
k−1
2

)
.

To show F (x1, x2, x3) ≤ M(n), it suffices to show

(x3 + 1) x3!x2!x1!

(
k − 1

2
!

)4
!

≤ (k!)2
(x3

2
!
)2 (x2

2
!
)2 (x1

2
!
)2

. (2.3)

By the Stirling bounds on n!, it suffices to show

(x3 + 1)x
x3+

1
2

3 x
x2+

1
2

2 x
x1+

1
2

1

·
(
k−1
2

)2k
·e−(x1+x2+x3+2k)+2

·e
1

12x3
+ 1

12x2
+ 1

12x1
+ 2

3(k−1)


!

≤



√
2π
(
x3

2

)x3+1 (x2

2

)x2+1 (x1

2

)x1+1

·k2k+1

·e−(x1+x2+x3+2k)

·e
2

12k+1
+ 2

6x3+1
+ 2

6x2+1
+ 2

6x1+1 .


Using the same kinds of computations as the previous case, we see it suffices to show

e2(x3 + 1)(k − 1)2ke
2

3(k−1)
!

≤
√

2π

8
k2k+1√x1x2x3

Now note that:

• x3 + 1 ≤ 2k

3
+ 1 ≤ k for k ≥ 3, and so x3+1

k
≤ 1.

• e2
(
k − 1

k

)2k

≤ 1 for k ≥ 3.

• 1 ≤ e
2

3(k−1) ≤ e for k ≥ 2.

So, it suffices to show

e
!

≤
√

2π

8

√
x1x2x3,

which, as before, holds for

k ≥ 12e2

π
≈ 28.224

or all odd k ≥ 29.
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Case 2 (n = 2k): In this case, x1 + x2 + x3 = 2k + 1, and all xi’s are odd by
assumption. Then,

F (x1, x2, x3) =

x3∑
j=0

(
x3

j

)(
x2

1
2

(x2 − x3) + j

)(
x1

1
2

(x1 − x3) + j

)
≤ (x3 + 1)

(
x3

x3−1
2

)(
x2

x2−1
2

)(
x1

x1−1
2

)
Subcase 2(a): If k is even,

M(n) = M(2k) = 2(k + 1)(k − 1)

(
k
k
2

)(
k − 2
k−2
2

)
.

To show F (x1, x2, x3) ≤ M(n), it suffices to show

(x3 + 1) x3!x2!x1!

(
k

2
!

)2(
k − 2

2
!

)2
!

≤

2(k + 1)(k − 1)k!(k − 2)!

(
x3 − 1

2
!

)(
x3 + 1

2
!

)(
x2 − 1

2
!

)(
x2 + 1

2
!

)(
x1 − 1

2
!

)(
x1 + 1

2
!

)
.

(2.4)

Equivalently,

(x3 + 1) x3!x2!x1!

(
k

2
!

)2(
k − 2

2
!

)2
!

≤

2(k + 1)(k − 1)k!(k − 2)!

(
x3 + 1

2
!

)2(
x2 + 1

2
!

)2(
x1 + 1

2
!

)2(
8

(x3 + 1)(x2 + 1)(x1 + 1)

)
,

or

(x3 + 1) (x3 + 1)!(x2 + 1)!(x1 + 1)!

(
k

2
!

)2(
k − 2

2
!

)2
!

≤

16(k + 1)(k − 1)k!(k − 2)!

(
x3 + 1

2
!

)2(
x2 + 1

2
!

)2(
x1 + 1

2
!

)2

.
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By the Stirling bounds, it suffices to show

(x3 + 1)(x3 + 1)x3+
3
2 (x2 + 1)x2+

3
2 (x1 + 1)x1+

3
2

·
(
k
2

)k+1 (k−2
2

)k−1

·e−(x3+x2+x1+2k+1)

·e
1

12(x3+1)
+ 1

12(x2+1)
+ 1

12(x1+1)
+ 1

3k
+ 1

3(k−2)


!

≤



16
√

2π
(
x3+1
2

)x3+2 (x2+1
2

)x2+2 (x1+1
2

)x1+2

·(k + 1)(k − 1)kk+ 1
2 (k − 1)k−

3
2

·e−(x3+x2+x1+2k+1)

·e
1

12k+1
+ 1

12(k−2)+1
+ 2

6(x3+1)+1
+ 2

6(x2+1)+1
+ 2

6(x1+1)+1


After computations similar to those in Case 1, we see it suffices to show

(x3 + 1)
√

k(k − 2)e
!

≤
√

2π

8
(k + 1)(k − 1)

√
(x1 + 1)(x2 + 1)(x3 + 1)

where x1 + 1 ≥ 2k+4
3

, x2 + 1 ≥ 2, x3 + 1 ≥ 2. It suffices to have

e
!

≤
√

2π

8

√
4

(
2k + 4

3

)
or

k ≥ 12e2

π
− 2 ≈ 26.224.

So the desired inequality holds for even k ≥ 28.
Subcase 2(b): If k is odd,

M(n) = M(2k) = 2k2

(
k − 1
k−1
2

)2

To show F (x1, x2, x3) ≤ M(n) it suffices to show

(x3 + 1)x3!x2!x1!

(
k − 1

2
!

)4
!

≤

2(k!)2
(
x3 − 1

2
!

)(
x3 + 1

2
!

)(
x2 − 1

2
!

)(
x2 + 1

2
!

)(
x1 − 1

2
!

)(
x1 + 1

2
!

)
.

(2.5)

Equivalently,
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(x3 + 1) x3!x2!x1!

(
k − 1

2
!

)4
!

≤

2(k!)2
(
x3 + 1

2
!

)2(
x2 + 1

2
!

)2(
x1 + 1

2
!

)2(
8

(x3 + 1)(x2 + 1)(x1 + 1)

)
,

or

(x3 + 1)(x3 + 1)!(x2 + 1)!(x1 + 1)!

(
k − 1

2
!

)4
!

≤

16(k!)2
(
x3 + 1

2
!

)2(
x2 + 1

2
!

)2(
x1 + 1

2
!

)2

By the Stirling bounds, it suffices to show

(x3 + 1)(x3 + 1)x3+
3
2 (x2 + 1)x2+

3
2 (x1 + 1)x1+

3
2

·
(
k−1
2

)2k
·e−(x3+x2+x1+2k+1)

·e
1

12(x3+1)
+ 1

12(x2+1)
+ 1

12(x1+1)
+ 2

3(k−1)


!

≤



16
√

2π
(
x3+1
2

)x3+2 (x2+1
2

)x2+2 (x1+1
2

)x1+2

·k2k+1

·e−(x3+x2+x1+2k+3)

·e
2

12k+1
+ 2

6(x3+1)+1
+ 2

6(x2+1)+1
+ 2

6(x1+1)+1


After computations similar to those in previous cases, we see it suffices to show

e2(x3 + 1)(k − 1)2ke
2

3(k−1)
!

≤
√

2π

8
k2k+1

√
(x1 + 1)(x2 + 1)(x3 + 1) .

As in Case 1(b), it suffices to show

e
!

≤
√

2π

8

√
(x1 + 1)(x2 + 1)(x3 + 1)

with x1 + 1 ≥ 2k+4
3

, x2 + 1 ≥ 2, x3 + 1 ≥ 2. The desired inequality holds for

k ≥ 12e2

π
− 2 ≈ 26.224

or all odd k ≥ 27.
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Our second special case concerns a certain family of CB graphs with an even
number of vertices where the two cycles share exactly one edge.

Proposition 2.3.10. Let n = 2k ≥ 10.

(i) If k is even,
N(CB(k, k, 1)) ≤ M(2k).

(ii) If k is odd,
N(CB(k + 1, k − 1, 1)) ≤ M(2k).

The proof uses the following observations, all of which follow from straightforward
computations after expanding the right hand sides.
If k is even,

M(2k) =

(
k + 2

2

)(
k

2

)
F (k + 1, k − 1, 1). (2.6)

If k is odd,

M(2k) =

(
k + 1

2

)2

F (k, k, 1). (2.7)

For even k

M(2k − 2) =
k

2(k + 1)
M(2k − 1). (2.8)

For odd k

M(2k − 2) =
k − 1

2k
M(2k − 1). (2.9)

For all k

M(2k − 1) =
1

2
M(2k). (2.10)

Finally, if k is even,

N(Ck) =
4

k
N(Ck−1) (2.11)

Proof of Proposition 2.3.10. For even k, we have

N(CB(k, k, 1)) = N(Ck ∨ Ck) + k2F (k − 1, k − 1, 1)

(2.11),(2.7)
=

16

k2
N(Ck−1 ∨ Ck−1) +

4k2

k2
M(2k − 2)

Def 2.2.3
=

16

k2
M(2k − 3) + 4M(2k − 2)

(2.10),(2.8)
=

2

k(k + 1)
M(2k) +

k − 1

k
M(2k)

=
k2 + 1

k2 + k
M(2k) ≤ M(2k).
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For odd k,

N(CB(k + 1, k − 1, 1)) = N(Ck+1 ∨ Ck−1) + k2F (k − 1, k − 1, 1)

(2.11), (2.6)
=

16

(k + 1)(k − 1)
N(Ck ∨ Ck−2) +

4(k + 1)(k − 1)

(k + 1)(k − 1)
M(2k − 2)

Def 2.2.3
=

16

(k + 1)(k − 1)
M(2k − 3) + 4M(2k − 2)

(2.10),(2.9)
=

2

k(k + 1)
M(2k) +

k

k + 1
M(2k)

=
k2 + 2

k2 + k
M(2k) ≤ M(2k).

2.4 Further Conjectures and Open Problems

Through the course of this study, we observed several patterns that remain as conjec-
tures and open questions. First, computational evidence suggests interesting struc-
ture for the function F (x1, x2, x3) beyond Theorem 2.3.8. We formally record our ob-
servations as the following conjecture, which has been confirmed with SageMath [29]
for all n less than or equal to 399.

Conjecture 2.4.1. For n = 2k and k ≥ 2 with x1 + x2 + x3 = n + 1, F (x1, x2, x3)
is maximized at F (n− 1, 1, 1). For n = 2k − 1 and k ≥ 3 with x1 + x2 + x3 = n + 1,
F (x1, x2, x3) is maximized at F (n − 3, 2, 2). Further, for any x1 ≥ x2 ≥ x3 ≥ 3 all
even or all odd positive integers,

F (x1, x2, x3) ≤ F (x1 + 2, x2, x3 − 2)

and
F (x1, x2, x3) ≤ F (x1 + 2, x2 − 2, x3) ,

when the subtraction by 2 will maintain the inequalities on the xi’s.

For example, the first inequality in Conjecture 2.4.1 asserts that for x1 ≥ x2 ≥
x3 ≥ 5 all of the same parity,

x3∑
j=0

(
x3

j

)(
x2

1
2

(x2 − x3) + j

)(
x1

1
2

(x1 − x3) + j

)

≤
x3−2∑
j=0

(
x3 − 2

j

)(
x2

1
2

(x2 − x3 + 2) + j

)(
x1 + 2

1
2

(x1 − x3) + j

)
.

If proven, Conjecture 2.4.1, would strengthen Theorem 2.3.8. For a fixed n, not
only would we know that any value of F (x1, x2, x3) was bounded above by M(n), but
also we would get a partial ordering on triples (x1, x2, x3) satisfying the conditions of
the conjecture that is induced by the inequalities on F .

Second, the remaining case for Conjecture 2.2.4 is the following.
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Conjecture 2.4.2. If x1, x2, and x3 have different parities, then N(CB(x1, x2, x3)) ≤
M(n).

Using the recursion given by Corollary 2.3.6 part (ii) and the inequality xi ≤ n,
it is straightforward to deduce that N(CB(x1, x2, x3)) ≤ 6n2M(n). It is not clear
to the authors how to obtain a stronger bound in this case. One direction toward
proving Conjecture 2.4.2 is the following.

Conjecture 2.4.3. For n ≥ 10, N(CB(x1, x2, x3)) with x1 + x2 + x3 = n + 1 is
maximized by 

CB(k − 1, k − 1, 2) n = 2k − 1, k even

CB(k, k − 2, 2) n = 2k − 1, k odd

CB(k, k, 1) n = 2k, k even

CB(k + 1, k − 1, 1) n = 2k, k odd

.

Using SageMath [29], we have computed N(CB(x1, x2, x3)) for all tuples with
x1 + x2 + x3 = n + 1 ≤ 535. All of these values are less than or equal to the number
of facets of our conjectured maximizer for the corresponding n, providing significant
support for Conjecture 2.4.3.

Third, when n is even, Proposition 2.3.10 gives that the number of facets given
by these conjectured maximizing graphs remains less than M(n). Currently, for odd
n we do not know of an equality or a bound strong enough to accomplish what
Equations (2.6) and (2.7) give for even n. Therefore, a similar result for odd n
remains unproven. We have verified that such a result holds for all odd n less than
100,000 via computations with SageMath [29].

Fourth, throughout our investigations we sought examples of graphs having a
high number of symmetric edge polytope facets. Conjecture 2.0.2 asserts that graphs
appearing as global facet-maximizers for connected graphs on n vertices can be con-
structed from minimally intersecting odd cycles, but it is unclear how to prove this.
A related problem would be to prove that the graphs appearing as global facet max-
imizers in Conjecture 2.0.2 are facet maximizers among connected graphs having a
fixed number of edges. We explore this idea a bit further in the special case of the
following graphs, which are the conjectured global facet maximizers for connected
graphs on an odd number of vertices.

Definition 2.4.4. Let WM(n, r) denote the windmill graph on n vertices consisting
of r copies of the cycle C3 and n− 1− 2r edges all wedged at a single vertex. We say
a windmill is full if n is odd and r = n−1

2
. In other words, a full windmill is a wedge

of n−1
2

triangles at a single vertex. Denote by WM(n) the full windmill on n vertices.

Proposition 2.4.5. For all odd n,

N(WM(n)) = 6
n−1
2
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WM(7, 2) WM(8, 2)

Figure 2.8: Two windmill graphs which are not full.
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Figure 2.9: For each odd n between 5 and 17, the plot shows the log of the number
of facets of PG for samples of graphs G with n vertices and 3(n− 1)/2 edges with a

target sample size of 200 graphs for each n. The line is y = log(6)
2

(x − 1), indicating
N(WM(n)) for each n.

Proof. The windmill WM(n) is a join of n−1
2

3-cycles. By Lemma 2.1.5 and Propo-
sition 2.1.4,

N(WM(n)) = (N(C3))
n−1
2 = 6

n−1
2 .

Conjecture 2.4.6. Among graphs with n vertices and 3(n− 1)/2 edges (for odd n),
WM(n) is a facet maximizer.

To support this conjecture, we used SageMath [29] to sample the space of con-
nected graphs with n vertices and 3(n − 1)/2 edges using a Markov Chain Monte
Carlo (MCMC) technique similar to what is described in Section 2 of [12]. Then we
computed N(PG) for each graph G in our sample. More detailed descriptions of this
sampling process and its implementation are given in Section 3.2.

We generated sample families of graphs for all odd n between 5 and 17. The
results of our sampling, shown in Figures 2.9 and 2.10, support Conjecture 2.4.6 for
these values of n.
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Figure 2.10: For n = 13, the histogram shows the distribution of N(PG) for our
sample graphs. Not only does the maximum number of facets in our sample occur
at 66 = N(WM(13)), but there is a significant gap between our maximizer and all
other facet counts in our sample.

Finally, it would be interesting to see if the framework of “facet-defining functions”
for symmetric edge polytopes that was established by Higashitani, Jochemko, and
Micha lek in [15] could be applied to find a combinatorial description of faces of other
dimensions. For example, given a symmetric edge polytope with dimension d, on
could explore whether the functions that define two facets that intersect in a face of
dimension d − 2 have a predictable relationship in terms of the graph. If something
like this is possible, we would have a more complete picture of the face lattices for
these polytopes.

Overall, the complexity of understanding facets and determining which graphs are
facet-maximizers in a case as small as graphs with n vertices and n + 1 edges was
unexpected. It indicates that there are many factors at play, and that other techniques
and approaches may be necessary in the study of symmetric edge polytopes.

Copyright© Kaitlin Elizabeth Bruegge, 2023.
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Chapter 3 Facets of Random Symmetric Edge Polytopes, Degree
Sequences and Clustering

As evidenced in Chapter 2, understanding the facets of symmetric edge polytopes
is not straightforward, even when the structure of the underlying graph is very re-
stricted. Therefore, changing the perspective from which we viewed the structure
of the graphs in the hope of gaining new insights became a task of interest. Our
goal in the work presented in this chapter was to study the facet structure of PG for
various random graph models. The hope was that, through this investigation, we
could determine what sorts of restrictions produce families of graphs for which we
could possibly prove results in the future. This chapter is based on joint work with
Benjamin Braun and Matthew Kahle. A pre-print is available here [3].

First, we investigate properties of the facets of PG when G is an Erdős-Renyi
random graph, establishing a threshold probability for which PG and PKn share facet-
supporting hyperplanes. Second, we present the results of empirical investigations
regarding the relationship between clustering metrics on G and N(G). The graph
metric of interest in this work is the average local clustering coefficient of G, also
called the Watts-Strogatz clustering coefficient. For each vertex v of G, define the local
clustering coefficient CWS(v) to be the number of edges connecting two neighbors of
v divided by the number of possible edges between neighbors of v. The average local
clustering coefficient is then defined as

CWS =
1

|V (G)|
∑

v∈V (G)

CWS(v) .

This value is a measure of graph transitivity introduced by Watts and Strogatz [31]
in the context of network science.

Example 3.0.1. For any odd n, the full windmill WM(n) has CWS = 1. Any graph
containing no cycles of length 3 has CWS = 0.

Figure 3.1 contains a plot of average local clustering against number of facets for
all 11, 117 connected graphs on 8 vertices. There are some apparent patterns in this
data. For example, we have that N(K8) = 254 and there are many graphs with
N(G) ≈ 254 having a wide range of clustering values. Further, there is a general
trend that the number of facets increases with the clustering; the slope of the fit line
for this data is approximately 148.46.

Given the rapid rate at which the number of connected graphs on n vertices grows,
and the computational expense of computing the facets of a polytope given its ver-
tices [27], it is not productive to attempt to compute facet data for all connected
graphs on n vertices in general. However, in this paper we extend our observa-
tions for the n = 8 data by considering experimental evidence for various families of
graphs with a fixed graph invariant. These experiments involve generating ensem-
bles of graphs via well-known Markov Chain Monte Carlo techniques. Specifically,
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Figure 3.1: Average local clustering against number of facets for every connected
graph G with 8 vertices. The line of best fit for this data is also included.

we present experimental evidence that for connected graphs with a fixed degree se-
quence, higher average local clustering tends to produce symmetric edge polytopes
with a larger number of facets than those with lower clustering. All computations
in this work were done with SageMath [29] (for graph generation/sampling and clus-
tering metrics) and Normaliz [4, 5] (for facet computations). Because it is compu-
tationally expensive to compute the number of facets for a polytope, we limit our
empirical studies to ensembles of graphs with less than 20 vertices; this corresponds
to polytopes of dimension at most 19.

In this chapter, Section 3.1 contains an investigation of the number of facets for
random graphs using the Erdős-Renyi model. We provide empirical data and we
prove asymptotic results regarding the existence of certain facets for random graphs.
In Section 3.2, we use Markov Chain Monte Carlo sampling techniques to generate
random ensembles of graphs with either a fixed number of edges or a fixed degree
sequence, and consider the relationship between average local clustering and facet
numbers. Finally, in Section 3.3, we provide a toy example of a theoretical study
regarding facet-maximizing graphs with a fixed degree sequence, and we conclude
with a general discussion of our results and data.

3.1 The Erdős-Renyi Model

A standard model for empirically sampling graphs is the Erdős-Renyi model, denoted
G(n, p), for n a positive integer and 0 < p < 1. In G(n, p), each edge occurs indepen-
dently with probability p. Thus, any fixed graph on n vertices having m edges occurs

with probability pm(1−p)(
n
2)−m, and the probability of a graph sampled from G(n, p)

having exactly m edges is

((n
2

)
m

)
pm(1−p)(

n
2)−m. Note that for G = (V,E) ∼ G(n, p),

meaning a random graph sampled from G(n, p), the expected value of CWS is p.
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3.1.1 Facets of G(n, p)

There are many well-known limitations to the model G(n, p), most notably that the
expected degree distribution, average shortest path length, and various clustering
metrics often do not match observations in real-world networks [21]. However, one
of the major advantages of working with G(n, p) is that it is defined in a way that
often allows theoretical results to be obtained. For example, see [10] for the use of the
G(n, p) model in the study of Ehrhart theory for symmetric edge polytopes. In this
subsection, we prove that for certain values of p, the typical G(n, p) will have facets of
a prescribed form. To do this, we again make use of Theorem 2.1.1 and Lemma 2.1.2,
which were discussed in Section 2.1. Here we study the expected structure of induced
bipartite subgraphs of G(n, p) across various bipartitions of the vertex set, as these
are the candidates for facet subgraphs.

Definition 3.1.1. For any bipartition (A, V \ A) of the vertex set V of a graph G,
we denote by B(A,G) the induced bipartite subgraph for the bipartition (A, V \A).

Note that given any bipartition (A, V \A) of the vertex set of G, if B(A,G) is con-
nected then there are at least two facets of PG having Gf = B(A,G), specifically the
two {0, 1}-labelings of the shores of the bipartition. When G = Kn, any bipartition
produces a facet subgraph and these {0, 1}-labelings are the only facet-supporting
functions.

Thus, we are interested in understanding when B(A,G) is connected for an typical
G. For the following theorem, recall that a sequence of events An for n = 1, 2, . . .
occurs with high probability (abbreviated w.h.p.) if limn→∞ Prob(An) = 1.

Theorem 3.1.2. Let G = (V,E) ∼ G(n, p).

• If p < 1/2 is fixed, then w.h.p. there exists an ⌊n/2⌋-subset A of V such that
B(A,G) is not connected.

• If p > 1/2 is fixed, then w.h.p. for every subset A ⊂ V , B(A,G) consists of a
single connected component unioned with isolated vertices.

• Further, if p = 1/2 + ϵ is fixed, then w.h.p. for every subset A ⊂ V with
||A| − n/2| < ϵ(1/2 − ϵ)n we have that B(A,G) is connected and spans V .

The proof of Theorem 3.1.2 will require the following well-known lemma.

Lemma 3.1.3. Let p ∈ (0, 1) be fixed, and G ∼ G(n, p). Then w.h.p. every vertex in
G has degree ≈ pn. That is, for every fixed ϵ > 0, w.h.p. every vertex v has degree
(1 − ϵ)pn < deg(v) < (1 + ϵ)pn.

Using this lemma, we’ll prove Theorem 3.1.2 by showing that w.h.p. an induced
biparitite subgraph of G ∼ G(n, p) does have a component of a certain size when
p < 1/2 and does not have any components of certain sizes when p > 1/2. At this
time, we have not explored what occurs when p = 1/2.
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Proof of Theorem 3.1.2. For the case where p < 1/2, note that w.h.p. every vertex
has degree close to its mean pn. Since p < 1/2, a typical vertex v is connected to
fewer than half of the other vertices. Thus, there is some ⌊n/2⌋-subset A of V con-
taining the entire neighborhood of v, and the corresponding B(A,G) is not connected.

Next, let p = 1/2 + ϵ for fixed ϵ > 0. First, we show that for any subset A ⊂ V ,
there exists a constant α ∈ R>0 depending only on ϵ such that B(A,G) has no
connected component of order i for 2 ≤ i ≤ ⌊αn⌋. Let δ = δ(G) denote the minimum

degree of a vertex in G. By Lemma 3.1.3, w.h.p. δ ≥ (1−ϵ)(1/2+ϵ)n =
(1 + ϵ)

2
n−ϵ2n.

For the bipartition (A, V \ A), one of A and V \ A has order less than or equal to
n/2. Without loss of generality, suppose |A| ≤ n/2. If S ⊂ V spans a connected
component of B(A,G) and |S| ≥ 2, then there exists a vertex v of S such that v ∈ A.

Then w.h.p. deg(v) ≥ (1+ϵ)
2

n−ϵ2n and the number of neighbors of v that are in V \A
must be at least

δ − |A| ≥ (1 + ϵ)

2
n− ϵ2n− n/2

=
ϵn

2
− ϵ2n

= ϵ(1/2 − ϵ)n.

Setting α = ϵ
2
(1/2 − ϵ), we see that w.h.p. the order of S is strictly greater than αn,

a contradiction.
Next we rule out connected components of order i for ⌈αn⌉ ≤ i ≤ ⌊2n/3⌋. We do

this by bounding the probability that a given subset of i vertices spans a connected
component for some bipartition (A, V \ A). Suppose toward a contradiction that
S ⊂ V with |S| = i spans a connected component of B(A,G), and let a = |S ∩ A|
and b = |S ∩ (V \ A)|. Any edge between S ∩ A and (V \ A) \ S is forbidden. If
there was such an edge, S would not span its connected component, contradicting
our assumption. The same holds for edges between A \ S and S ∩ (V \ A). So the
number of forbidden edges is a(n− b) + b(n−a) = (a+ b)n−2ab, and the probability
that S spans its component in the given bipartition is at most

(1 − p)(a+b)n−2ab.

Since a+ b = i, ab is maximized when a = ⌊i/2⌋ and b = ⌈i/2⌉. Thus, the number of
forbidden edges is at least

in− 2(i/2)2 = i(n− i/2) ≥ (αn)(n− n/3) =
2α

3
n2.

So the probability that a fixed subset S spans a connected component for a fixed
bipartition (A, V \ A) is bounded above by

(1 − p)
2α
3
n2

.

38



Applying a union bound, the probability that there exists an i-element subset that
spans a connected component for a fixed bipartition is bounded above by

⌊2n/3⌋∑
i=⌈αn⌉

(
n

i

)
(1 − p)

2α
3
n2

.

Applying a union bound again to consider all bipartitions, the probability that there
is any connected component of size ⌈αn⌉ ≤ i ≤ ⌊2n

3
⌋ in any bipartition is bounded

above by
n−1∑
k=1

(
n

k

) ⌊2n/3⌋∑
i=⌈αn⌉

(
n

i

)
(1 − p)

2α
3
n2 ≤ 2n · 2n(1 − p)

2α
3
n2 → 0

as n → ∞ since p ∈ (0, 1) is fixed. So w.h.p. B(A,G) consists of a single large
component of order at least 2n/3 unioned with isolated vertices.

Now we show that if ||A|−n/2| < ϵ(1/2−ϵ)n, then w.h.p. B(A,G) has no isolated

vertices. We know that for p = 1/2 + ϵ we have δ ≥ (1+ϵ)
2

n − ϵ2n. For a bipartition
(A, V \ A), one of the shores has size greater than n/2; we have already seen that if
|A| < n/2, w.h.p. there are no isolated vertices in B(A,G) contained in A (they each
have a neighbor in V \ A). Thus, we can assume that |A| > n/2 and assume further
that |A| − n/2 < ϵ(1/2 − ϵ)n. It follows that

|A| < (1 + ϵ)

2
n− ϵ2n = δ

and thus δ− |A| > 0. Hence, w.h.p. every vertex in A must have a neighbor in V \A
and thus there are no isolated vertices in B(A,G).

Theorem 3.1.2 establishes a large family of facet subgraphs Gf for G ∼ G(n, p)
that exist with high probability when p > 1/2. Observe that every facet subgraph
must support the two facet-defining functions taking values in {0, 1}, namely those
two 0/1-functions that are constant on the shores of the bipartition induced by Gf .
Further, note that any 0/1-function on the vertices of G is a facet-defining function for
the symmetric edge polytope of the complete graph on those vertices because every
bipartition of the vertices of a complete graph induces a connected bipartite sub-
graph. Thus, Theorem 3.1.2 shows that when p > 1/2 and n is large, there are many
symmetric pairs of facet-supporting hyperplanes that are identical for G ∼ G(n, p)
and Kn. The corresponding facets might not have the same polyhedral structure
in the two symmetric edge polytopes, but the facet-supporting hyperplanes are the
same. This leads to the following corollary.

Corollary 3.1.4. Let G = (V,E) ∼ G(n, p). For fixed p = 1/2 + ϵ, let t(n, p) denote
the number of subsets A ⊂ V satisfying ||A| − n/2| < ϵ(1/2 − ϵ)n. Then w.h.p. we
have that the number of facets of PG is at least t(n, p).
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Example 3.1.5. Figure 3.2 shows two graphs, a path with 3 vertices and a complete
graph with 3 vertices, and their symmetric edge polytopes. The bold pairs of facets
are supported by the same pair of hyperplanes, in particular, the hyperplanes xv = 1
and xu + xw = 1, arising from the partition ({u,w}, {v}) of the vertices. Since
the path graph does not contain the edge uw, it is not necessary that the facet-
defining functions be constant on the shores of this partition. Therefore, this same
partition also determines the other pair of facets for the path graph, supported by
the hyperplanes xu−xw = 1 and xw −xu = 1, which are not support hyperplanes for
K3.

u v w

xu

xv

xw

u v

w

xu

xv

xw

Figure 3.2: A path graph P3 (top) and the complete graph K3 (bottom) with their
symmetric edge polytopes. Facets arising from the same pair of support hyperplanes
are bold.

The next corollary shows that with high probability, there is at least one Gf in
G ∼ G(n, 1/2 + ϵ) that supports for PG only the facet-supporting hyperplanes that
the same bipartition supports for PKn .

Corollary 3.1.6. Let Gn = (Vn, E) ∼ G(n, p). If p = 1/2 + ϵ is fixed, then for a
sequence of subsets An ⊂ Vn with ||An| − n/2| < ϵ(1/2 − ϵ)n, w.h.p. there are only
two facet functions f of PGn with Gf = B(An, G), namely the functions f with values
in {0, 1}.

Proof. First note that as n → ∞, w.h.p. the induced subgraph of G on a given subset
of vertices A with |A| > ((1+ϵ)/2−ϵ2)n is connected. To see this, note that since ϵ is
fixed, we have ((1+ϵ)/2−ϵ2)n goes to infinity and thus p = 1/2+ϵ > log(((1+ϵ)/2−
ϵ2)n)/((1+ϵ)/2−ϵ2)n. Thus, the induced subgraph is G(((1+ϵ)/2−ϵ2)n, p) and, by a
well-known theorem of Erdős and Renyi, w.h.p. this is connected. Since both B(A,G)
and B(V \ A,G) are connected w.h.p. for any A with ||A| − n/2| < ϵ(1/2 − ϵ)n, it
follows from Theorem 2.1.1 that any f with Gf = B(A,G) is constant on both A and
V \ A.

Example 3.1.7. The graph G in Figure 3.3 is the subgraph of the complete graph K4

obtained by removing the edge vw. The bipartition ({t, v}, {u, w}) of the vertices
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of G produces the facet subgraph Gf . Since the edges tv and uw are present in
the original graph G, Theorem 2.1.1 gives that any facet-defining function must be
constant on the shores of this bipartition. In particular, the only facet-supporting
hyperplanes of PG that arise from this partition are xt + xv = 1 and xu + xw = 1,
which are exactly the facet-supporting hyperplanes for PK4 associated with the same
partition.

t

u

v

w

G

t

u

v

w

Gf

Figure 3.3: The graph G is formed by removing the edge vw from the complete
graph K4. The graph Gf is the facet subgraph of G associated to the partition
({t, v}, {u, w}) of the vertices.

3.1.2 Data and Observations

While Theorem 3.1.2 establishes the existence of many facet subgraphs in certain
large random graphs, this does not provide much insight into our consideration of
average local clustering. When we direct our attention to empirical data for G(n, p),
no apparent correlation between average local clustering and N(G) is observed, as
demonstrated in Figure 3.4 for an ensemble sampled from G(14, 0.45). This is in
stark contrast to the data for all connected graphs on eight vertices shown in Fig-
ure 3.1. One caveat is that there are 29, 003, 487, 462, 848, 061 connected graphs on
14 vertices [17, A001349], of which we sample only 4975. Figure 3.5 provides further
evidence that sampling from G(n, p) does not yield a consistent trend. This figure
contains a table of plots providing data for ensembles of graphs with n = 11, 14, 17
and p = 0.2, 0.4, 0.6, 0.8.
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Figure 3.4: Data from an ensemble of 4975 connected graphs from G(14, 0.45).
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In Figure 3.5, the number of vertices increases across rows while the value of p
increases down columns. As expected, the mean value of sampled CWS values is
approximately p. Further, reading down each column as p increases, we observe the
range of values of N(G) in our sample becomes smaller. Specifically, these values are
getting closer to N(Kn) = 2n− 2, where this formula is a straightforward application
of Theorem 2.1.1. This makes sense, as higher values of p leads to greater edge
density, and thus the typical sampled graph is closer in structure to Kn.

What we do not see consistently in these samples from G(n, p) is a positive cor-
relation between average local clustering and number of facets that is observed in
Figure 3.1. In fact, some samples exhibited a negative correlation. For p = 0.2, the
first row in Figure 3.5, we do observe a positive trend. We also observe that when
p = 0.2, there is significantly more variation in the number of facets that arise; note
that for n = 17, the range of the vertical axis when p = 0.2 is from less than 100, 000
to over 400, 000. However, for n = 17 and p = 0.8, the range is from around 131, 000
to around 131, 400. Note that N(K17) = 131, 070.

What we will see in Section 3.2 is that when we sample graphs on n vertices in a
more restrictive fashion, fixing also the number of edges or (more strongly) the degree
sequence, we do observe a positive correlation between average local clustering and
number of facets.

3.2 Graph Ensembles via Markov Chain Monte Carlo Sampling

While our samples from G(n, p) for fixed p do not display the relationship between
average local clustering and N(G) that was observed in the complete enumeration for
small n (as in Figure 3.1), we do see correlations when we use other random graph
models that differently restrict the space of graphs we consider. This portion of our
study uses Markov Chain Monte Carlo (MCMC) techniques to generate ensembles of
connected graphs having either a fixed number of edges or a fixed degree sequence.
These techniques arise in the study of configuration models for random graphs with
a fixed degree sequence, see the survey [12] and the references given there for more
details.

3.2.1 MCMC Sampling Methods

Sampling from graph spaces via Markov chain traversal is a common technique [12].
For a Markov chain having a certain stationary distribution, sample graphs taken
at sufficiently spaced intervals can be treated as independent, and an ensemble of
such graphs can be expected to follow the stationary distribution. In the case of
our study, we employ Markov chains for which the stationary distribution is uniform
arising from processes to produce new graphs from old by local, reversible operations.
With this, we can picture the sample space as a graph of graphs G, where each node
represents a graph in the space, and there is a directed edge from the graph G to
the graph G′ if performing an instance of the transition operation on G produces G′.
In general, each edge has a weight signifying the probability of that transition. In
our study, all instances of the transition operation are equally likely. That is, from a
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(a) n = 11, p = 0.2
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(b) n = 14, p = 0.2
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(c) n = 17, p = 0.2
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(d) n = 11, p = 0.4
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(e) n = 14, p = 0.4
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(f) n = 17, p = 0.4
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(g) n = 11, p = 0.6
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(h) n = 14, p = 0.6
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(i) n = 17, p = 0.6
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(j) n = 11, p = 0.8
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(k) n = 14, p = 0.8
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(l) n = 17, p = 0.8

Figure 3.5: Data from ensembles drawn from G(n, p).The target sample size in each
ensemble was 500 connected graphs and disconnected graphs were rejected during
sampling. Note that for smaller values of p, the range of the vertical axis is signifi-
cantly larger than for large values of p.

state, G, in the Markov chain, the probability of transitioning to any adjacent state
is equal. So we can view edges in the graph of graphs for our spaces as unweighted.

Fixed Number of Edges

To sample from the space of connected graphs with n vertices and m edges, we em-
ploy a single-edge replacement MCMC technique similar to what is described in [12,
Section 2] (in the case of trees, this technique is known as branch exchange). Define
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the graph of graphs G(n,m) to be the directed graph with vertex set all connected
graphs with n vertices and m edges. A connected graph G has an arrow in G(n,m)
to a connected graph G′ if G′ is obtained from G by deleting an edge in G and adding
an edge in G′ from the complement of G. This process is demonstrated in Figure 3.6.
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Figure 3.6: An example of a walk through G(7, 8) demonstrating a sequence of two
possible single-edge replacements, first replacing ab with bg, then replacing ad with
cd.

Thus, note that every arrow in G(n,m) is reversible. Further, for an edge e ∈ G
and f in the complement of G, if the edge set (E(G) \ {e}) ∪ {f} does not form
a connected graph, define G(n,m) to have a loop at G. It is straightforward to
show that the directed graph G(n,m) is regular, strongly connected, and aperiodic,
hence we can conclude that ensembles generated by this method asymptotically obey
a uniform distribution [12]. Further details of the implementation of our sampling
method are given in Subsection 4.2.2.

Fixed Degree Sequence

To sample from the space of simple connected graphs on n vertices with a fixed
degree sequence, we employ a double-edge swap MCMC technique as described in [12,
Section 2]. Define the graph of graphs G(d) to be the directed graph with vertex set
all connected graphs with degree sequence d. A connected graph G has an arrow to
G′ in G(d) if G′ is obtained from G via a double-edge swap, i.e., if there exist edges
uv and xy in G such that replacing these edges with ux and vy produces G′. An
example is shown in Figure 3.7.

If performing a particular double-edge swap on G would produce a graph that is
outside the space (i.e. the new graph has a loop or multiedge or is disconnected),
that swap will correspond to a loop on the vertex G in G(d). It is shown in [12]
that G(d) is regular, strongly connected, and aperiodic. Thus, as before, the samples
asymptotically obey a uniform distribution. Further details of the implementation of
our sampling method are given in Subsection 4.2.2.

3.2.2 Data and Observations

In each of our experiments, we generated an ensemble of graphs with specified invari-
ants: number of vertices and either number of edges or degree sequence. For each
of our samples, we computed the average local clustering and the number of facets
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Figure 3.7: An example of a walk through G({3, 3, 2, 2, 2, 2, 2}) demonstrating a se-
quence of two possible double edge swaps, first swapping the endpoints of ab and ef ,
then swapping the endpoints of ac and fg.

for PG, and we generated a plot displaying the results. We discuss these experiments
and results in this subsection.

Fixed Number of Edges

We first used single-edge replacement MCMC methods to generate ensembles of
graphs with a fixed number of vertices and edges. We computed CWS(G) and N(PG)
for each graph in our ensemble, and plotted the resulting ordered pairs. In each
of these plots, the number of facets appears to generally increase as CWS increases.
Additionally, we observe that these plots often exhibit heteroscedasticity, i.e., the
variance of the data changes as CWS increases. Figure 3.8 shows two representatives
of the types of plots we observe.
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(a) 1001 graphs with 11 vertices and 25 edges.
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Figure 3.8: Fixed edge data for 11 and 15 vertices

Figure 3.9 contains plots for connected graphs on 11 vertices with various fixed
numbers of edges. These plots suggest that the heteroscedasticity phenomenon, where
the variance in the number of facets increases as average local clustering increases,
arises across multiple fixed edge counts. It is important to note that in the data
plots for Figure 3.9, all the axes change scale. Thus, for example, the plot for 11
vertices and 20 edges has average local clustering range from near 0 to 0.8, and facet
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numbers range from under 2000 to over 4000. However, the plot with 35 edges has
a significantly restricted range for both the horizontal and vertical axis. This is the
same phenomenon that appeared in Figure 3.5, where higher edge density yields less
variation for both average local clustering and facet numbers. Nevertheless, even at
different scales, a positive correlation is observed.
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(a) 11 vertices, 20 edges
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(b) 11 vertices, 25 edges
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(c) 11 vertices, 30 edges
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(d) 11 vertices, 35 edges

Figure 3.9: Data for graphs on 11 vertices with varying edge numbers

Graphs with Hubs

Our next experiments used double-edge swap MCMC methods to generate connected
graphs with a fixed degree sequence. In real-world graphs, it is common for there to be
a large number of lower-degree vertices and a small number of higher-degree vertices;
the latter are often referred to as hubs. This has led to the development of various
random graph models that exhibit scale-free degree distributions [21]. Because we
are limited in the dimensions of PG for which we can effectively compute the number
of facets, the magnitude of hubs that we can study are not as great as often found
in large real-world networks. However, Figures 3.10 and 3.11 are representative of
the data we have observed in ensembles of graphs on less than 20 vertices where the
degree sequence has a small number of high-degree vertices. In all of the experiments
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we have conducted for graphs with hubs, a correlation between CWS and N(G) is
observed.
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Figure 3.10: Data from an ensem-
ble of 370 connected graphs hav-
ing 18 vertices and degree sequence
[3, 3, 4, 4, . . . , 4, 4, 5, 5, 16, 16] obtained by
MCMC with double-edge swaps.
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Figure 3.11: Data from an ensem-
ble of 192 connected graphs with
17 vertices and degree sequence
[3, 3, 3, 4, . . . , 4, 5, 5, 5, 5, 15] obtained
by MCMC with double-edge swaps.

k-Regular Graphs

A classic family of graphs with a fixed degree sequence are k-regular graphs, i.e.,
graphs where every vertex has degree k. The number of connected regular graphs on
n vertices is a well-studied integer sequence [17, A005177]. Based on our previous
observations, for larger values of k the average local clustering should be higher, due
to higher edge density. What is less clear is what to expect from the number of facets
of the symmetric edge polytope as k varies, especially for small k.

Figure 3.12 provides a plot of average local clustering and number of facets for 3390
connected regular graphs on 12 vertices (that there are 18979 such graphs), sampled
using double-edge MCMC for each k. Note that for small values of k, there is a trend
that N(G) increases as CWS increases. When k is small, the average local clustering
is generally less than 0.4 and the number of facets varies widely. As k increases,
the average local clustering varies less, and the number of facets concentrates near
the value of N(K12) = 4094. In general, it is reasonable to expect that as the edge
density of a k-regular graph G increases, and thus as the graph becomes closer to a
complete graph, there will be many connected spanning bipartite subgraphs where
the induced subgraph of G on each shore of the bipartition is connected.

Additional data plots from ensembles of k-regular graphs on 18 vertices for k = 3, 7
are given in Figures 3.13 and 3.14. Both of these plots further illustrate the phe-
nomenon shown in Figure 3.12, where k-regular graphs for smaller k have significantly
larger variance in the number of facets (as seen in the range of the vertical axes), and
have lower average local clustering.
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Figure 3.12: Data from a sample of 3390 connected k-regular graphs on 12 vertices
obtained by MCMC with double-edge swaps, for k = 3, 4, 5, 6, 7, 8, 9, 10. Each value
of k corresponds to a different color in the plot, with lower k having smaller CWS

values. Note that for larger k, the number of facets is approximately N(K12).
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Figure 3.13: Data from an ensemble of
397 connected 3-regular graphs on 18 ver-
tices obtained by MCMC using double-
edge swaps. Note the large range of the
vertical axis.
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Figure 3.14: Data from an ensemble of
399 connected 7-regular graphs on 18 ver-
tices obtained by MCMC using double-
edge swaps. Note the narrow range on
the vertical axis.

3.3 Discussion

It is extremely challenging to understand the facet structure of PG for a random graph
generated by any of the models we have considered in this work. We will discuss an
example of a toy theoretical result in this direction prior to our final discussion.

3.3.1 Case: n Vertices, n Edges, Fixed Degree Sequence

When the number of vertices is equal to the number of edges, we can compute N(PG)
for any connected graph with a fixed degree sequence. Further, we can describe a
graph with that degree sequence that attains the maximum number of facets. This is
possible because, in this case, N(PG) depends only on the length of the unique cycle
in G. To get this facet information for a given degree sequence, we need only know

48



what lengths of cycle are attainable with that sequence.

Proposition 3.3.1. Let G be a simple graph with n vertices and n edges with degree
sequence d = {di}ni=1 (di ≥ di+1). Let mG denote the minimum possible length of a
cycle in G, and let MG denote the maximum possible length of a cycle in G.

(i) If di = 2 for all i, mG = MG = n.

(ii) If dk ≥ 2 and di = 1 for i > k with k < n, mG = 3 and MG = k.

Proof. To show (i), note that the only simple connected graph with this degree se-
quence is the n cycle. So mG = MG = n.

To show (ii), we construct a simple, connected graph G with a cycle of length m
for 3 ≤ m ≤ k with the following procedure.

1. Construct a cycle, C, on vertices 1, . . . ,m.

2. If m = k, skip to (4). Otherwise, construct a path, P , on vertices m + 1, . . . , k
with k − (m + 1) ≥ 0 edges.

3. Now, d1 ≥ 3 and dm+1 ≥ 2, so vertex 1 is incident to at least one edge not on
C and vertex m + 1 is incident to at least one edge not on P . So we connect 1
and m + 1.

4. The remaining edges are incident to leaves. There are n− k leaves and

n− (number of edges of C) − (number of edges of P ) − 1

= n−m− (k −m− 1) − 1

= n− k

edges that must be added. So there are exactly enough open half-edges on the
vertices 1, . . . , k to be filled by the leaves.

Example 3.3.2. Consider the degree sequence {3, 3, 2, 2, 1, 1} for a graph on 6 ver-
tices with 6 edges. Following the steps in Proposition 3.3.1, we construct a graph
with this degree sequence containing a 3-cycle (m = 3) as follows. An illustration of
this construction is given in Figure 3.15.

1. Construct the 3-cycle C on the vertices 1, 2, 3 each of which have degree at least
2. The vertex 3 now has the desired degree.

2. Since m = 3 < 4 = k, we construct the path P containing only the vertex 4 (a
path with one vertex and no edges).

3. Since the degree of vertex 1 is 3, and it is incident to only two edges on C, we
can add an edge between vertices 1 and 4 to connect the cycle to the path. The
vertex 1 now has the desired degree.
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Figure 3.15: Construction of a graph with degree sequence {3, 3, 2, 2, 1, 1} containing
a 3-cycle via the algorithm in Proposition 3.3.1. The degree of each vertex is given
in blue above the vertex.

4. Now, we must add one edge incident to each of the vertices 2 and 4. We have
exactly enough leaves to add these necessary edges. Adding the edges {2, 5}
and {4, 6} gives the desired degree for vertices 2, 4, 5, and 6.

Given Proposition 3.3.1, we can apply [2, Theorem 3.2] to a class of graphs with
n vertices and n edges that have a specific degree sequence to identify the facet-
maximizing graphs for that degree sequence. As in [2], we use the notation G∨H to
denote a graph obtained by identifying graphs G and H at a single vertex.

Corollary 3.3.3. Let G be a simple graph with n vertices and n edges with degree
sequence {di}ni=1 (di ≥ di+1). Let N(G) denote the number of facets of the symmetric
edge polytope PG.

(i) If dn = 2,
N(G) = N(Cn).

(ii) If dk > 1 and dk+1 = 1 for some k < n, and ℓ is the largest odd number
satisfying ℓ ≤ k,

N(G) ≤ N(Cℓ ∨ Pn−ℓ)

Here, Cm denotes a cycle with m edges, and Pm denotes a path with m edges.

Even further than this, the proof of [2, Theorem 3.2] describes how N(G) changes
as the cycle length varies. For any degree sequence that allows a cycle of length at
least 5, a graph G that maximizes N(G) has CWS(G) = 0. In fact, the only graphs
on n vertices and n edges that have nonzero average local clustering are those that
have a single 3-cycle. Even these graphs have CWS approaching 0 as n increases.
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A precise theoretical result was attainable in this case because the small number of
edges relative to number of vertices significantly restricts the structure of the graphs
we consider.

3.3.2 Final Discussion

The goal of this branch of investigation of symmetric edge polytopes was to study
relationships between graph structure and facet structure, with a focus on both the-
oretical and empirical results for various random graph models. For Erdös-Renyi
random graphs G ∼ G(n, p), we observed empirically that as p increases, the num-
ber of facets of PG tends toward 2n − 2, the number of facets of PKn . We also
established a threshold of p > 1/2 such that, with high probability, any sufficiently
even bipartition (A, V \ A) (i.e. having ||A| − n/2| < ϵ(1/2 − ϵ)n) of the vertices of
G ∼ G(n, p) induces a facet subgraph of G. Thus, with high probability, the number
of such bipartitions gives a lower bound on N(PG) for Erdös-Renyi graphs. Further-
more, with high probability, G has a facet subgraph that supports exactly the facet
hyperplanes supported by the same bipartition on the complete graph.

While the trends seen when we sample from G(n, p) have no apparent connection
to the average local clustering coefficient, which is p, correlations are observed when
we consider different approaches to sampling graphs. An exhaustive computation for
all connected graphs on eight vertices shows a positive correlation between average
local clustering and number of facets. Using Markov Chain Monte Carlo methods
to sample from the space of connected graphs with a fixed number of vertices and
edges, we see that graphs with higher CWS tend to produce polytopes with more
facets. Additionally, data from these ensembles indicates that the variance in facet
counts tends to increase as CWS increases. When we further restrict to the space
of connected graphs with fixed degree sequence (in particular graphs with hubs and
k-regular graphs), this correlation remains and we observe less change in variance.

Copyright© Kaitlin Elizabeth Bruegge, 2023.
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Chapter 4 Descriptions of Computational Experiments

In general, it is difficult to determine the number of facets of a polytope [27], particu-
larly as dimension increases. The combinatorial description of facet-defining functions
for symmetric edge polytopes given in [15, Theorem 3.1] is a useful theoretical starting
point for counting facets. The work of Chen, Davis, and Korchevskaia [6] in describ-
ing facet subgraphs also offers a helpful starting point for computations. However,
these descriptions do not offer any particular insight into how graph structure affects
facet counts. Therefore, an aim of our experimentation was to generate ensembles of
examples and look for patterns and relationships between graph structure and facet
structure. Even with the aid of computational tools, in general, it is difficult and
costly to determine the number of facets of a polytope [27], particularly as dimension
increases. For this reason, we chose to narrow our focus to polytopes of dimension at
most 19 arising from graphs with at most 20 vertices.

Throughout this work, data collected from computational experiments has been
invaluable for generating examples as well as forming and supporting conjectures. All
computations for these experiments were performed using SageMath [29], a language
built on Python [30] that has some additional functionality for mathematics applica-
tions. For our purposes, SageMath is well-suited to generating graphs, sampling from
graph spaces, and computing clustering metrics. For facet computations, we relied
on Normaliz [4], an open source tool designed for the study of polyhedral geometry.

4.1 Complete Enumerations

Within SageMath, the package nauty [20] computes automorphism groups for graphs.
Contained in nauty are generators for many classes of graphs up to isomorphism.

Throughout this work with symmetric edge polytopes, we used nauty to gen-
erate all non-isomorphic, connected graphs with a fixed number of vertices. Con-
structing the symmetric edge polytopes for these graphs and computing their facets
with Normaliz gave significant evidence toward Conjectures 2.2.4 and 2.0.2 regarding
the structures of graphs with extremal numbers of facets. Generating all connected
graphs with a fixed number of vertices also allowed us to create plots like that in
Figure 3.1, which motivated the investigation of average local clustering in relation
to facet counts.

4.2 Sampling from Random Graph Models

Motivated by the correlation seen in our complete enumerations for small numbers of
vertices, we explored ensembles of connected graphs generated by three different ran-
dom graph models that each restricted the types of graphs we considered in different
ways.
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4.2.1 Erdös-Renyi Model (G(n, p))

The Erdös-Renyi model is widely used and well-understood. It served as a good
starting point as it gave hope for some theoretical results, and its implementation
in SageMath already existed. As discussed in Section 3.1, a relationship between
number of facets and average local clustering was not apparent in the samples taken
from G(n, p). Therefore we set aside some of the desire for theoretical results to
employ other models that could restrict the space differently.

4.2.2 Sampling via Markov Chain Monte Carlo Techniques

The visualization of a Markov chain traversal as taking a random walk through a
graph of graphs was discussed in Section 3.2. To implement this process in SageMath,
we needed to determine a starting point for each ensemble as well as a frequency at
which we would sample (i.e., how many steps would we take on the walk before
“picking up” the next graph).

Our sampling method for G(n.m) began by generating a random element G from
G(n, p). Thus the number of edges m for the graphs in the sample was determined
by the size of the edge set of G. We then successively randomly choose an edge
e ∈ E(G) and a non-edge f ∈ E(G)C to generate the next step in a random walk
on the graph of graphs. We use subsampling, typically taking every 11-th graph, in
an attempt to generate an ensemble of graphs with more diverse structures, though,
due to computational constraints, our sample sizes are not particularly large. Note
that the subsampling frequency was not chosen based on any information about the
target distribution or mixing time.

Our sampling method for G(d was similar. We began by generating a connected
graph with degree sequence d via the Havel-Hakimi algorithm [13] and randomly per-
forming double-edge swaps. Again, we employed subsampling, typically taking every
5-th or 11-th graph depending on the number of vertices. As before, our subsam-
pling frequency was not based on any information regarding the target distribution
or mixing time.

4.3 An Exploration of Connected B(A,G)

In service of counting or bounding the number of facets of symmetric edge polytopes,
it would be useful to understand how many and which induced bipartite subgraphs
are facet subgraphs for a given G, particularly in the case where G is connected and
sparse. Toward this end, we can consider plots such as Figure 4.1, which shows the
results of an experiment identifying facet subgraphs of some 11-regular graphs on
5000 vertices. To create this plot, we generated ten 11-regular connected graphs on
5000 vertices using double-edge swap MCMC, sampling after every 100001 swaps. For
each graph G, a sequence of 5000 random subsets (A1, . . . , A5000) of the vertex set V
was generated. For each 0 < 10j ≤ 5000, we compute the fraction b10j of the subsets
in (A1, . . . , A10j) which induce connected bipartite subgraphs B(Ai, G) and plot the
point (10j, b10j). This process yields a sequence plot for each sampled graph. As can
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Figure 4.1: A collection of sequence plots for a sample of ten 11-regular connected
graphs G on 5000 vertices showing how the fraction of sampled subsets Ai inducing a
connected B(Ai, G) changes over time and appears to stabilize near a value between
0.98 and 1.

be seen in this figure, as j increases, for each graph the fraction of subsets inducing
a connected bipartite subgraph appears to stabilize near a value between 0.98 and 1.
Note that this is an extremely small sample of the 25000 subsets of the vertex set, and
a small sample of 11-regular graphs. Nonetheless, these results are surprising given
that these graphs, though large, are sparse with only 27, 500 of 12, 497, 500 possible
edges, or approximately 0.22%. An open question of interest is to determine, for a
fixed k, asymptotic estimates for the expected number of induced bipartite subgraphs
that are facet subgraphs for a k-regular graph on n vertices.

Copyright© Kaitlin Elizabeth Bruegge, 2023.

54



Bibliography

[1] M. Beck and S. Robins. Computing the continuous discretely. Undergraduate
Texts in Mathematics. Springer, New York, second edition, 2015. Integer-point
enumeration in polyhedra, With illustrations by David Austin.

[2] B. Braun and K. Bruegge. Facets of symmetric edge polytopes for graphs with
few edges, 2022. preprint at https://arxiv.org/abs/2201.13303.

[3] B. Braun, K. Bruegge, and M. Kahle. Facets of random symmetric edge poly-
topes, degree sequences, and clustering, 2022.

[4] W. Bruns, C. S. B. Ichim, and U. von der Ohe. Normaliz. algorithms for rational
cones and affine monoids. Available at https://normaliz.uos.de.
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