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1. Introduction
It has been recognized for many years that gravity waves (GWs) play fundamental roles in a wide range of 
atmospheric processes from the surface to very high altitudes (Fritts & Alexander, 2003). Understanding these 
processes and their influences requires more complete quantification of the mechanisms by which GWs are 
generated, together with their characteristics, distributions, and responses in a wide range of environments. Of 
the recognized GW sources, secondary GWs (GWs) are important because they extend the vertical range of GW 
influences into the thermosphere and can do so quickly because of their often-large scales and vertical group 
velocities. Importantly, however, their generation mechanisms are the least rigorously studied and understood to 
date. This is because their sources are challenging to quantify observationally, and their associated dynamics are 
intrinsically nonlinear.

Our focus in this paper is on GWs excited by Kelvin-Helmholtz instabilities (KHI), which have been less stud-
ied to date. Theory and modeling have suggested that GWs are excited by two types of instabilities. First, GW 
“self-acceleration” (SA) instability dynamics due to localized and transient GW/mean-flow interactions excite 
GWs having spatial scales dictated by the geometry and timescale of the local induced body forcing (Dong 
et al., 2020, 2021, 2022; Fritts et al., 2020). Importantly, this mechanism can lead to GW generation prior to, 
and perhaps in the absence of, primary GW instabilities. Second, where KHI arise in an unstable shear due in 
part to inertia gravity waves (IGWs), they can radiate smaller-scale and higher-frequency GWs. As examples, 
previous studies have suggested that GWs can be emitted from small-scale KHI, localized KHI “packets,” and 
turbulent wakes (e.g., Abdilghanie & Diamessis, 2013; Bühler et al., 1999; Chimonas & Grant, 1984a, 1984b; 

Abstract Fritts, Wang, Lund, and Thorpe (2022, https://doi.org/10.1017/jfm.2021.1085) and Fritts, 
Wang, Thorpe, and Lund (2022, https://doi.org/10.1017/jfm.2021.1086) described a 3-dimensional direct 
numerical simulation of interacting Kelvin-Helmholtz instability (KHI) billows and resulting tube and knot 
(T&K) dynamics that arise at a stratified shear layer defined by an idealized, large-amplitude inertia-gravity 
wave. Using similar initial conditions, we performed a high-resolution compressible simulation to explore the 
emission of GWs by these dynamics. The simulation confirms that such shear can induce strong KHI with 
large horizontal scales and billow depths that readily emit GWs having high frequencies, small horizontal 
wavelengths, and large vertical group velocities. The density-weighted amplitudes of GWs reveal “fishbone” 
structures in vertical cross sections above and below the KHI source. Our results reveal that KHI, and their 
associated T&K dynamics, may be an important additional source of high-frequency, small-scale GWs at higher 
altitudes.

Plain Language Summary A high-resolution compressible atmosphere model is applied to explore 
gravity wave emissions from a shear with Kelvin-Helmholtz Instability initiated by a three-dimensional, 
small-amplitude initial noise field in velocity, such as must always occur in the atmosphere. Simulations reveal 
that a wind shear with an amplitude of 65 m/s and a half-width of 0.8 km can induce strong Kelvin-Helmholtz 
Instability dynamics, which can further emit gravity waves having periods of ∼10–20 min and horizontal 
wavelengths of ∼20 km. These gravity waves have high frequencies and small horizontal scales. The 
density-weighted amplitudes of gravity waves created a “fishbone” structure in z-t plots due to upward- 
and downward-propagating gravity waves arising at the layer of Kelvin-Helmholtz Instability. Our results 
demonstrate that Kelvin-Helmholtz Instability and the resulting instability dynamics may be a prevalent source 
of gravity waves impacting higher altitudes.
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Fritts, 1982, 1984). Relative to the more widely recognized GW sources, such KHI sources have been recognized 
for many years, but remain one of the least quantified GW sources.

KHI has been observed in polar mesospheric clouds and in airglow layers in the mesosphere (Fritts et al., 2019; 
Hecht et al., 2021; Kjellstrand et al., 2022). They often arise where vertical gradients of horizontal winds are 
enhanced due to high-frequency GWs with periods of several minutes and IGWs attaining enhanced local shears 
at large amplitudes. IGWs having frequencies near the inertial frequency can lead to self-induced KHI (Lelong 
& Dunkerton,  1998; Thorpe,  1999). The subharmonic interaction of KH modes (Davis & Peltier,  1979) and 
“envelope” radiation (Fritts, , 1984; Scinocca & Ford, 2000) are believed to be essentially GW excitation by 
the packet-scale motions accompanying coherent KH billows evolving in an unstable shear layer. Importantly, 
however, these early studies were limited to quasi-linear theory or modeling with very limited resolution.

Despite the considerable evidence for these expected GW sources, no simulations resolving these dynamics have 
been reported to date, perhaps due to the large domains and computational resources required to explore their 
responses at the high Re and moderate Ri required. To our knowledge, this paper is the first to describe GWs emit-
ted by an approximate, large-amplitude unstable shear layer using a high-resolution nonlinear atmospheric model. 
A brief description of Complex Geometry Compressible Atmosphere Model (CGCAM) and its initial conditions 
is provided in Section 2. Section 3 describes results for the KHI-radiated GWs. Our discussion is provided in 
Section 4, and Section 5 presents our summary and conclusions.

2. Modal Configuration
2.1. Compressible Equations

The CGCAM solves the 3-D nonlinear and compressible Navier-Stokes equations written in strong conservation 
law (flux) form as follows:

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+
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where σij and qj are the viscous stress and thermal conduction, respectively, defined as
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 (4)

𝑞𝑞𝑗𝑗 = −𝜅𝜅
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝑗𝑗
 (5)

and where μ is the dynamic viscosity, κ is the thermal conductivity, δij is the Kronecker delta, ρ is density, and g 
is the gravitational acceleration. μ and κ depend on the temperature through Sutherland's Law (White, 1974). For 
the high frequency motions considered here, the Coriolis force can be ignored.

The solution variables are ρ, the momentum per unit volume, ρui or (ρu, ρv, ρw), and the total energy 
𝐴𝐴 𝐴𝐴 = 𝑒𝑒 + 𝑢𝑢𝑘𝑘𝑢𝑢𝑘𝑘∕2 = 𝑐𝑐𝑣𝑣𝑇𝑇 + 𝑢𝑢𝑘𝑘𝑢𝑢𝑘𝑘∕2 , with velocity components 𝐴𝐴 (𝑢𝑢𝑖𝑖, 𝑢𝑢𝑗𝑗 , 𝑢𝑢𝑘𝑘) along (x, y, z), e is the potential energy. 

Also cv = R/γ−1 is the specific heat at constant volume and T is the temperature. The compressible equation 
set is discretized using a second-order finite-volume scheme identical to the method discussed by Felten and 
Lund (2006). Time advancement is achieved via a third-order accurate Runge-Kutta scheme. Additional details 
for CGCAM are provided by Dong et al. (2020) and Lund et al. (2020).

2.2. Initial and Boundary Conditions

We specify initial background conditions approximating a large-amplitude shear with a vertical wavelength of 
∼15 km accounting for the horizontal velocity and temperature profiles. The initial conditions are similar to those 

Writing – original draft: Wenjun Dong, 
David C. Fritts
Writing – review & editing: David C. 
Fritts, Alan Z. Liu, Thomas S. Lund, 
Han-Li Liu

 19448007, 2023, 8, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022G

L
102674 by E

m
bry-R

iddle A
eronautical U

niv, W
iley O

nline L
ibrary on [05/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Geophysical Research Letters

DONG ET AL.

10.1029/2022GL102674

3 of 9

in Fritts, Wang, Lund, and Thorpe (2022) and Fritts, Wang, Thorpe, and Lund (2022), who employed a direct 
numerical simulation to explore the dynamics and energetics of KHI “tube and knot” (T&K) dynamics that arise 
where KH billows are mis-aligned along their axes. We use the same initial condition forms to allow similar 
responses as the source of GWs in this study, specified as

𝑈𝑈 (𝑧𝑧) = 𝑈𝑈0 cos

[

𝜋𝜋(𝑧𝑧 − 𝑧𝑧0)

15 km

]

tanℎ

(

𝑧𝑧 − 𝑧𝑧0

ℎ

)

 (6)

𝑁𝑁2(𝑧𝑧) = 𝑁𝑁2

0
+
(

𝑁𝑁2
𝑚𝑚 −𝑁𝑁2

0

)

secℎ2
(

𝑧𝑧 − 𝑧𝑧0

ℎ

)

 (7)

In this application, z0 = 75 km is the center of shear source, h = 800 m is the half depth of the shear layer implying 
an expected KHI horizontal scale λh ∼ 4πh ∼ 10 km, and the shear amplitude is U0 = ∼65 m/s. We also assume 
Re = U0h/υ = 2,000 in order to constrain the required resolution and resolve the KHI and turbulence dynam-
ics described via the CGCAM large-eddy simulation scheme. This results in a turbulent kinematic viscosity of 

𝐴𝐴 𝐴𝐴 = 𝑈𝑈0ℎ∕2, 000 ∼ 10m2∕s . We also assume 𝐴𝐴 𝐴𝐴2

0
= 0.0001 s −2 and 𝐴𝐴 𝐴𝐴2

𝑚𝑚 = 0.0008 s −2, given that KHI inevitably 
arise where GWs yield enhanced shears at peaks in the local stratification. The initial profiles are shown in 
Figure 1 and incorporated into the mean state. The background has a shear of 130 m/s over 5 km, which results 
in a Richardson number of 0.15. This value is in the domain of KHI (0 < Ri < 0.25) and supports our claim that 
the selected wave case falls within the known criteria for KHI production.

The simulation was performed in a computational domain having dimensions 100 × 100 × 140 km (x, y, and z) 
with isotropic resolution of 50 m at the shear source altitude, and exponential mesh stretching near the upper and 
lower boundaries to reduce computational demands. Periodic boundary conditions are used at the lateral bounda-
ries. An isothermal no-stress wall condition is used at the lower boundary, and a characteristic radiation condition 
is used at the upper boundary. The vertical boundary conditions are supplemented with sponge layers of 20-km 
depths to absorb outgoing GWs and Acoustic Waves.

3. Results
Perturbation u′, w′, and T′/T0 (top to bottom) are shown with x-z cross sections of the 3-D simulation fields at 
y = 0 and at 18, 25, 38, 50, and 62 min after initiation in Figure 2. The KHI arise in the shear centered at the 
minimum Ri at z = 75 km (see Figure 1b). The strong initial shear yields deep KH billows at expected ∼10 km 
horizontal scales. By 25 min, the KH billows exhibit initial instabilities, breaking via secondary convective insta-
bilities, and initial GW radiation to higher and lower altitudes. By 38 min, the KH billows have largely broken 
down and radiating GWs are more prominent. These have primary alignments toward negative (positive) x above 
(below) the initial shear layer due to the positive (negative) U above (below) the source shear at earlier times. 
GWs having opposite propagation directions also emerge as the breaking KHI expand vertically. The initial 
KHI perturbations largely disappear by 50 min, and the dominant KHI-driven GW generation almost ceases by 
∼62 min, but the GWs excited by the initial, smaller-scale KHI dynamics achieve large amplitudes that can have 
significant influences at higher altitudes thereafter. Importantly, these GWs have horizontal scales of ∼30–50 km 
and vertical scales of ∼10–25 km above ∼90 km, so also have relatively high intrinsic frequencies, due to the 

Figure 1. Initial fields in T(z) and U(z), and the resulting N 2(z) and Ri(z).
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transient KHI evolution and breakdown. This implies large corresponding energy and momentum fluxes that can 
induce potentially significant influences at higher altitudes and perhaps be competitive with GWs responses from 
other sources.

Spectra are useful to identify the onset of nonlinear transfers across a broad range of scales. Spectra of u′w′ 
computed over 70 km ≤ z ≤ 80 and 90 km ≤ z ≤ 120 km at t = 25, 38, 50, and 62 min are displayed in the right 
panels of Figure 3. Considering first the spectra of 70 km ≤ z ≤ 80 km, at 25 min (blue lines), the onset of strong 
KHI and the dynamics accounting for their breakdown yield strong peaks at the KHI wavelength and its harmon-
ics, and spectral slopes at larger k approaching −5/3 at resolved scales. This apparent inertial range also extends 
to larger amplitudes and somewhat smaller scales at later times. Spectral amplitudes fall sharply above wavenum-
bers of ∼20 rad/km and exhibit much steeper slopes of −7 within the viscous range. These spectra suggest that the 
KHI and their instability dynamics accounting for GW radiation are sufficiently resolved for our purposes here.

Referring to the spectra from 90 km ≤ z ≤ 120 km, we see that 𝐴𝐴 ⟨𝑢𝑢′𝑤𝑤′(𝑘𝑘)⟩ has a peak value at ∼38 min and largely 
reflects the radiated GW wavenumber dependence in k with the major peak at the GW λx = 2π/k = ∼20 km. At 
38 min, initial GWs appear above 90 km, the GW amplitudes and their corresponding spectral densities increase 
with time, and these spectral features are consistent with GW emissions from KHI at lower altitudes. Compared 
to the spectral at altitudes of 70 km ≤ z ≤ 80 km, the −5/3 slope at altitudes of 90 km ≤ z ≤ 120 km begins at a 
larger k and has a narrower k range where it converges. The kinematic viscosity plays a key role in energy trans-
fer, and it increases with decreasing density. Large kinematic viscosity at altitude increases the wavelength of the 
transition point between −5/3 and −7 slopes, that is, larger eddies are being dissipated through viscosity as the 
altitude and kinematic viscosity increases.

Figure 4 (top) shows scaled horizontal wind perturbations 𝐴𝐴
√

𝜌𝜌(𝑧𝑧)∕𝜌𝜌(𝑧𝑧 = 0)𝑢𝑢′ in x-z cross sections at 18, 25, 38, 50, 
and 62 min. Note that the contour scales at altitudes of 70–80 km are reduced by factors of 40 in order to clearly 
reveal the GWs emitted from the KHI. Figure 4 also shows z-t plots of 𝐴𝐴

√

𝜌𝜌(𝑧𝑧)∕𝜌𝜌(𝑧𝑧 = 0)𝑢𝑢′ , 𝐴𝐴
√

𝜌𝜌(𝑧𝑧)∕𝜌𝜌(𝑧𝑧 = 0)𝑤𝑤′ , and 

𝐴𝐴
√

𝜌𝜌(𝑧𝑧)∕𝜌𝜌(𝑧𝑧 = 0) 𝑇𝑇 ′∕𝑇𝑇  . The density-weighted GW amplitudes exhibit a “fishbone” structure in z-t plots due to 

Figure 2. x-z cross sections of (top to bottom) u′(m/s), w′(m/s), and 𝐴𝐴 𝐴𝐴 ′∕𝐴𝐴  at 18, 25, 38, 50, and 62 min (left to right).
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upward- and downward-propagating GWs arising from the KHI source. Specifically, GWs with downward phase 
progression are seen above the KHI source, and GWs with upward phase progression are seen below the KHI 
source.

The GW parameters are quantified via a 2-D Fourier transform of 𝐴𝐴
√

𝜌𝜌(𝑧𝑧)∕𝜌𝜌(𝑧𝑧 = 0)𝑢𝑢′ below and above the KHI 
source region and are shown in the first row in Figure 5. The downward propagating GWs have a strong peak at 
τ = 10 min and 𝐴𝐴 |𝜆𝜆𝑧𝑧| = 20 km and a weaker peak at τ = 20 min and 𝐴𝐴 |𝜆𝜆𝑧𝑧| = 20 km . The upward propagating GWs 
also have two peaks, with the strong peak at τ = 20 min and 𝐴𝐴 |𝜆𝜆𝑧𝑧| = 20 km . The differences between upward- and 
downward-propagating GWs might be due to the variations in N, thus the various filtering effects for various GW 
components.

To verify this, a case is initiated in an isothermal background. Apart from the background temperature profile, 
other configurations are the same as in Case 1 (the first case we performed). The 2-D Fourier transform for 

𝐴𝐴
√

𝜌𝜌(𝑧𝑧)∕𝜌𝜌(𝑧𝑧 = 0)𝑢𝑢′ at z-t slice at 20 km < z < 60 and 90 km < z < 130 km is shown in the bottom panel of Figure 5. 
As we expected, the upward-propagating and downward-propagating GWs have almost same characteristics. The 
horizontal and vertical scales (∼10 km) of GWs have the same value as the KHI scale (∼10 km). The vertical 
scale of GWs has been shown in the bottom panel in Figure 5, the horizontal scale of GWs can be derived accord-
ing to GW dispersion relationship (Equation 23 from Fritts and Alexander (2003)). This case shows the generated 
upward- and downward-propagating GWs exhibit near-perfect symmetry around the KHI axis, and those GWs 
have horizontal and vertical scales comparable to that of KHI.

4. Discussion
Our results demonstrate that KHI and resulting turbulence dynamics can play a key role in GWs arising in 
a shear environment. It is suggested that KHI may naturally constitute an important widespread source of 
high-frequency small-scale GWs. Specifically, intense, large-scale KHI dynamics at lower altitudes likely act 
as sources of small-scale GWs reaching the mesosphere, thermosphere, and ionosphere (MTI), and as potential 
seeds of plasma instabilities at higher altitudes, as demonstrated by Hysell et al. (2018). Our findings indicate 
that shear-induced KHI may be a potential contributing factor to the high-frequency gravity waves (GWs) with 

Figure 3. x-z (left) and x-y (middle) subdomain cross sections of u′(m/s) at 18, 25, 38, 50, and 62 min (top to bottom). (right) Spectra of u′w′ computed over 
|x| ≤ 50 km, and 70 km ≤ z ≤ 80 km (top) and 90 km ≤ z ≤ 120 km (bottom). Times of 25, 38, 50, and 62 min are shown in black, blue, green, and red. Slopes of −5/3 
and −7 are shown as dashed black lines at upper right in each panel. The Nyquist frequency is shown as gray solid line in each spectral plot.
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Figure 4. (top row) x-z cross sections of 𝐴𝐴
√

𝜌𝜌(𝑧𝑧)∕𝜌𝜌(𝑧𝑧 = 0)𝑢𝑢′ at 25, 38, 50, and 62 min (left to right), (second row) vertical-temporal slices of 𝐴𝐴
√

𝜌𝜌(𝑧𝑧)∕𝜌𝜌(𝑧𝑧 = 0)𝑢𝑢′ , 
𝐴𝐴

√

𝜌𝜌(𝑧𝑧)∕𝜌𝜌(𝑧𝑧 = 0)𝑤𝑤′ , and 𝐴𝐴
√

𝜌𝜌(𝑧𝑧)∕𝜌𝜌(𝑧𝑧 = 0) 𝑇𝑇 ′∕𝑇𝑇  (left to right) at x = 0 km, and (third and fourth rows) zonal-temporal slice at z = 50 and 100 km (left and right). The 
green lines denote 25, 38, and 50 min. Note that the contour scales at altitudes of 70–80 km in the top two rows are reduced by factors of 40 in order to clearly reveal the 
GWs emitted from the Kelvin-Helmholtz instabilities.
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Figure 5. The first row is the 2-D Fourier transform of 𝐴𝐴
√

𝜌𝜌(𝑧𝑧)∕𝜌𝜌(𝑧𝑧 = 0)𝑢𝑢′ at a z-t slice at 20 km < z < 60 and 90 km < z  
< 130 km (left and right). The second row is the 2-D Fourier transform of 𝐴𝐴

√

𝜌𝜌(𝑧𝑧)∕𝜌𝜌(𝑧𝑧 = 0)𝑢𝑢′ at x-t slice at z = 50 and 
100 km (left and right). The third row is same as row 1, but for a case with isothermal background (T(z) = 300 K). The 
power spectral densities have been normalized to vary from 0 to 1. White dashed lines in the second row indicate lines of 
constant horizontal phase speed.
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short wavelengths ranging between 15 and 25 km that have been observed in the mesosphere (Ejiri et al., 2003; 
Medeiros et al., 2007; Narayanan & Gurubaran, 2013). Given these new insights, multi-scale modeling efforts 
are needed to explore their potential to drive small-scale GWs and plasma turbulence extending to high altitudes 
in the MTI for a diverse range of environments.

This paper provides only preliminary results of GWs generated in the shear environments. Questions remain as to 
what mechanism is responsible for the GWs characteristics. The underlying physics becomes more complicated 
because the GW emissions are linked to different coherent vortical structures of the multi-scale KHI and succes-
sive turbulence dynamics. The mechanism likely depends on complex multi-scale dynamics, and will surely 
exhibit strong dependence of shear and KHI properties, including Re, viscosity, the degree of spatial localization 
of the shear, and their spectral domain. Despite the valuable insights provided by this study on KHI-radiated 
GWs, a number of critical aspects of these underlying physics have not yet been addressed. Further analyses will 
be needed to determine the roles of the various governing parameters in determining the GW characteristics, 
likely including the following:

1.  The dependence on shear parameters, such as the forms of shear, environments, and localization that accom-
pany weaker and smaller-scale superposed GWs, will define the characteristics, scales, and propagation of the 
GWs. Measurements of shears have been described in previous studies, such as Larsen (2002) and England 
et  al.  (2022), with shears in laminar flow possibly resulting from GWs propagating through a tidal back-
ground, where shears combine for a given phase of the respective waves.

2.  Dependence on the Re and Ri that characterize the initial wind shears, as these will surely influences the 
scales and character of the GW responses but have not been explored to date.

3.  The dependence of GW generation on the characteristics and scales of KHI interactions leading to tube and 
knot (T&K) dynamics. Recent studies by Fritts, Wang, Lund, and Thorpe (2022) and Fritts, Wang, Thorpe, 
and Lund  (2022) have shown that T&K comprise strong and complex vortex interactions that accompany 
misaligned KH billows and accelerate the transition to turbulence compared to secondary instabilities of indi-
vidual KH billows. These T&K dynamics are important processes in KHI evolution, and their impact on the 
excitation of GWs is not yet fully understood.

5. Summary and Conclusions
We described an initial high-resolution simulation of GW radiation accompanying KHI in an idealized shear 
environment. Our results indicate that the strong KHI and turbulence dynamics induced by shear can lead to 
significant generation of small-scale, high-frequency GWs. Our specific findings include the following:

1.  The strong KHI and turbulence dynamics induced by shear can emit GWs having periods of ∼10–20 min and 
horizontal wavelengths of ∼10–20 km.

2.  The density-weighted GW amplitudes created a “fishbone” structure in z-t plots arising where upward- and 
downward-propagating GWs arise at a central source, that is, the shear layer.

3.  KHI may naturally constitute an important source of high-frequency, smaller-scale GWs potentially propagat-
ing to much higher altitudes.

As discussed above, there are many aspects of these dynamics that are beyond the scope of this paper that 
need to be explored further in order to assess their importance in coupling into the mesosphere and lower 
thermosphere.

Data Availability Statement
The data needed to reproduce each figure is available at https://doi.org/10.6084/m9.figshare.20387187.v1. If 
you require complete simulation data for your study, please reach out to Wenjun Dong at dongw1@erau.edu 
for assistance. Simulation data is provided in a vtk file format and can be opened by the open source soft-
ware ParaView version 5.10 (Ahrens et al., 2005; Ayachit, 2015), which is available under the BSD license at 
https://www.paraview.org/download/. The ParaView Guide can be downloaded from http://www.paraview.org/
download/.
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