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Abstract 

Researcher: Andrew W. North 
Title: Modeling, Control, and Hardware Development of a Thrust-Vector Coaxial UAV 

Institution: Embry-Riddle Aeronautical University 
Degree: Master of Science in Mechanical Engineering 
Year: 2023 

 This thesis introduces a unique thrust vector coaxial unmanned aerial vehicle 

(UAV) configuration and presents a comprehensive investigation encompassing 

dynamics modeling, hardware design, and controller development. Using the Newton-

Euler method, a dynamic model for the UAV is derived to gain in-depth insights into its 

fundamental flight characteristics. A simple thrust model is formulated and modified by 

comparing it with data obtained from vehicle testing. The feasibility of manufacturing 

such a vehicle is assessed through the development of a hardware prototype. Finally, a 

linear state feedback controller is designed and evaluated using the non-linear dynamics 

model. The results demonstrate successful validation of the hardware through flight tests. 

The initial thrust model is enhanced by two methods, incorporating correction factors 

derived from a regression line, and employing the system identification method based on 

the test stand data. Implementation of the linear state feedback controller effectively 

maintains attitude authority over a non-linear simulation of the vehicle. The limits of the 

controller are explored, and simulation highlights that the controller's authority fails if the 

operating states deviate from the linearized region of attraction. Beyond the specific 

thrust vector coaxial UAV configuration, this research holds implications for enhancing 

UAV dynamics modeling, analysis, and control in broader applications. 
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1 Introduction 

1.1 Thesis Statement 

The purpose of this thesis is to demonstrate the ability of a full-state feedback 

controller to reject disturbances on a coaxial thrust vectored unmanned aerial vehicle 

(UAV). 

1.2 Background 

Interest in UAVs has been steadily increasing in recent years due to their 

expanding capabilities and advances in electronics [1]. To accomplish a variety of tasks, 

different UAV configurations have emerged. For instance, using fixed wing UAVs flying 

at low altitudes and at high speeds, large scale aerial photography can be conducted 

rapidly and at low cost. Fixed wing aerial photography in the visible and infrared (IR) 

spectrum can be used for surveying hard to reach areas, non-destructive vegetation 

imaging, flood and forest fire tracking, and crop field monitoring [2]. Lightweight UAVs 

such as balloons and kite planes are commonly used in meteorological and atmospheric 

research [3] [4]. Vertical Take-Off and Landing (VTOL) and rotorcraft UAVs are more 

maneuverable and prove useful for inspecting and maintaining power lines and pipelines 

while keeping surveyors away from dangerous environments [5] [6]. The military has 

replaced many traditional piloted vehicles with UAVs due to their lower costs and 

complete risk reduction to pilots [7]. Most hobby and commercial UAVs today take fixed 

wing, coaxial helicopter, or quadcopter configurations. Despite the impressive 

capabilities of these UAVs, other configurations show promise of improved performance 

in specialized applications [8]. The benefits of different configurations are exemplified by 

the variety of piloted rotorcraft, including the coaxial Kamov, tandem counter-rotating 

Chinook, and intermeshing-rotor Kaman. 
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Figure 1.1: Coaxial Kamov [9], Counter-Rotating Chinook [10], and 

Intermeshing-Rotor Kaman [11] Helicopters 

One unique configuration is that of the thrust-vector coaxial UAV, which 

incorporates the stability of the coaxial form without the mechanical complexity of a 

swashplate [12] [13] [14]. The coaxial dual rotor design offers several advantages over 

the traditional single main rotor design of a helicopter. Firstly, it provides greater lift 

while reducing the rotor diameter. Additionally, the coaxial configuration effectively 

cancels out the net gyroscopic forces generated by the spinning blades [15]. This 

cancellation and the balanced torques result in improved stability and reduced sensitivity 

to disturbances [12] [13] [16]. Figure 1.2 shows the forces and torques associated with a 

coaxial UAV and a typical helicopter. 

Figure 1.2: Force and Torque Diagram for a Coaxial UAV vs Helicopter 

The coaxial vehicle offers several advantages over quadcopters as well, one of 

which is its smaller and more compact form factor [17]. This is a result of the two rotors 

stacked in line with the rest of the body, rather than being spread out horizontally. This 

compact form factor has multiple benefits including a more robust frame, easier to 
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transport, decreased aerodynamic drag and increased efficiency [17] [18]. A quadcopters 

components are splayed out between the 4 rotors, and the direction of force is always 

perpendicular to that area. The coaxial configuration reduces aerodynamic drag by 

presenting a smaller surface area in the direction of motion. Yet another interesting 

benefit of the compact cylindrical form is the potential to be launched from a tube 

cannon. This capability could send the vehicle a long distance before it starts using its 

internal energy, thus increasing the mission range [8]. 

This study is focused on a specific configuration of thrust vector coaxial UAV 

referred to as the CoaxUAV in this paper. The CoaxUAV uses two planar mounted 

motors, each with a pinion gear driving contra-rotating ring gears attached to each of the 

two rotors. This configuration increases output torque through motor gearing and 

provides a hollow center shaft through which power and communication can be run 

through the propulsion section. This has the advantage of allowing payloads to be 

mounted above or below the propulsion section, useful for global positioning system 

(GPS), cameras, or other sensors. This thesis develops a theoretical dynamic and thrust 

model for the CoaxUAV from first principals. A hardware prototype is designed, 

manufactured, and tested to improve upon the theoretical thrust model. Using system 

identification, a transfer function relating rotor speed and thrust is created. Finally, a state 

feedback controller is developed and tested using the non-linear dynamics model.  

Results demonstrate the controller’s capacity to effectively maintain stability when 

confronted with external disturbances. 
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2 Review of the Relevant Literature 

2.1 Relevant Literature Overview 

The following section is a review of the relevant literature, covering the 

fundamental topics needed to understand this work. The following topics are reviewed: 

UAV configurations, mathematical modeling of dynamic systems, linearization, stability, 

linear state feedback control, disc actuator theory and system identification. 

2.2 UAV Configurations  

One of the most common UAV configurations in literature today is the 

quadcopter, featuring four equally sized propellers with constant blade pitch. The 

quadcopter has four rotors in a cross configuration, where the opposing blade pairs spin 

clockwise, while the other pair spin counterclockwise, effectively balancing the overall 

torque. This orientation results in a relatively simple dynamic model at the expense of 

controller complexity due to the coupled dynamics and underactuated configuration [19]. 

Figure 2.1: Quadcopter Configuration [20] 

In contrast, a helicopter has two propellers of vastly different sizes, one with 

variable pitch, rotating orthogonal to each other, resulting in more complex dynamics. 

Typically, rotorcraft use a swashplate mechanism to turn operator inputs into collective 

and cyclic rotor blade control [21], allowing the vehicle to translate and pitch in all 

directions. This mechanism is composed of a complex arrangement of bearings, ball 

joints, and linkages. A simpler structure would be advantageous, and even required in 

specific applications due to technical limitations. One example is in UAV 
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miniaturization, where the mechanical swashplate cannot be achieved due to size 

constraints [22]. A feasible alternative method of control is thrust vectoring or center of 

gravity steering. Thrust vectoring is a method of control where the thrust angle can be 

changed relative to the vehicle, introducing a horizonal component of thrust. It is a 

common control technique used on missiles and rockets as well as some military aircraft, 

such as the F-22 and F-35, providing capabilities such as vertical takeoff and landing, and 

super maneuverability. [23]. The CoaxUAV vehicle employs thrust vector control, 

replacing the swashplate with two servo motors and a two axis gimble. Coaxial contra-

rotating rotors of constant pitch are used for propulsion and to balance torque. This pair 

of rotors controls the vehicles vertical y-axis translational motion and yaw motion around 

the y-axis. See Figure 3.1. Tilting the rotors at an angle to the body results in a horizontal 

component of thrust force, and translational motion.  

Figure 2.2: Coaxial Thrust Vector UAV [8] 

2.3 Mathematical Modeling of Dynamic Systems 

The motion of a dynamic system, such as a UAV, is first understood by analyzing 

the degrees of freedom (DOF) of the vehicle. DOF is a measure of all the independent 

motions a system can take, such as a linear translation or rotation about an axis. 

Constraints inhibit motion and reduce the DOF for the system [24]. Looking at a system’s 

DOF is useful for analyzing how the system can and will behave given certain inputs. 
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Analyzing the DOF of a fixed pitch rotorcraft, the spinning blade generates a thrust 

vector to push or pull the vehicle, as well as generating a torque which can induce 

rotation around the thrust vector axis. However, it lacks the ability to perform lateral 

translation or rotation about any other axis, unless additional actuators are added. The 

vehicle configuration establishes the DOF and the constraints for the system and allows 

for a mathematical model to be constructed. 

Figure 2.3: DOF Illustration [25] 

There are a variety of structures that can be used for modeling the system plant, 

each with benefits and drawbacks. These structures include non-linear and linear 

differential equations, transfer functions, and state-space representations. The transfer 

function gives a more intuitive system representation but has a single-input single-output 

(SISO) structure, where state-space benefits from allowing multiple-inputs multiple-

outputs (MIMO). A system will generally be represented in the form of differential 

equations, or block diagrams [26]. The approaches to finding this model can be divided 

into two general categories, first principles modeling and data driven modeling. Data 

driven modeling is explored in the system identification section. First principles 

modeling typically involves using Newtons second law F = ma or the Lagrangian 
energy method 𝐿𝐿  =  T𝑙𝑙  − V𝑙𝑙  to solve for the non-linear equations of motion (EOM). 

Using either of these methods should result in the same equations, though typically one 

method requires less complex computation depending on the system [24]. 
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Two common approaches to modeling the system are developing state-space 

models and transfer functions. To fit the system into these models, the system must be 

represented in a linear form [26]. The process of taking non-linear differential equations 

and finding their linear approximations is called linearization [27]. This process can now 

be accomplished quickly using tools in MATLAB and Simulink which will numerically 

find the linear approximations quickly. The underlying mathematics behind this process 

equates the non-linear trigonometry functions into their Taylor Series representation. The 

leading term of this series can be used as an approximation for the entire series. Plugging 

in a value for the variable will result in a linear approximation at that specific point. The 

chosen point is decided based on where the vehicle is stable, or where the vehicle tends to 

stay within a given state. These points are called fixed points and are where the EOM are 

linearized around. Typically, it is useful to linearize the equations of motion around fixed 

points, such as hover, as this is where the control system tries to stabilize the system [27]. 

Figure 2.4: Linearization of cosine and sine functions at x=0 

Figure 2.4 shows the graphical representation of linearization. Mathematically, 

linearization involves taking the partial derivative of each equation with respect to each 

of the states of the system, then plugging in the operating state values into the new 

matrix. The consolidated process is called the Jacobian matrix, shown in Equations 2.3 

and 2.4, which is used to linearize the system about this operating state. It also represents 

the first term in the Taylor series expansion. This process of linearizing systems is critical 

for developing the modern approach to system modeling, called the state-space 
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representation. The state-space representation of a linear system can be written in the 

following form: 

�̇̅�𝑥 = 𝐴𝐴�̅�𝑥 + 𝐵𝐵𝑢𝑢� 2.1 

𝑦𝑦� = 𝐶𝐶�̅�𝑥 + 𝐷𝐷𝑢𝑢� 2.2 

where �̅�𝑥 is a vector of the system states, �̇̅�𝑥 is the state derivatives with respect to time, 𝑢𝑢� 

are the system inputs, and A, B, C and D are constant matrices. A and B relate the system 

states and inputs to the state derivative, while C and D relate the system states and inputs 

to the system outputs [26]. In order to find the A and B system matrices, the non-linear 

equations of motion must be linearized using the Jacobian matrix: 

𝐴𝐴 =
𝜕𝜕𝑓𝑓
𝜕𝜕𝑋𝑋

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝜕𝑓𝑓1
𝜕𝜕𝑥𝑥1

𝜕𝜕𝑓𝑓1
𝜕𝜕𝑥𝑥2

𝜕𝜕𝑓𝑓1
𝜕𝜕𝑥𝑥3

𝜕𝜕𝑓𝑓1
𝜕𝜕𝑥𝑥4

𝜕𝜕𝑓𝑓1
𝜕𝜕𝑥𝑥5

𝜕𝜕𝑓𝑓1
𝜕𝜕𝑥𝑥6

𝜕𝜕𝑓𝑓2
𝜕𝜕𝑥𝑥1

𝜕𝜕𝑓𝑓2
𝜕𝜕𝑥𝑥2

𝜕𝜕𝑓𝑓2
𝜕𝜕𝑥𝑥3

𝜕𝜕𝑓𝑓2
𝜕𝜕𝑥𝑥4

𝜕𝜕𝑓𝑓2
𝜕𝜕𝑥𝑥5

𝜕𝜕𝑓𝑓2
𝜕𝜕𝑥𝑥6

𝜕𝜕𝑓𝑓3
𝜕𝜕𝑥𝑥1

𝜕𝜕𝑓𝑓3
𝜕𝜕𝑥𝑥2

𝜕𝜕𝑓𝑓3
𝜕𝜕𝑥𝑥3

𝜕𝜕𝑓𝑓3
𝜕𝜕𝑥𝑥4

𝜕𝜕𝑓𝑓3
𝜕𝜕𝑥𝑥5

𝜕𝜕𝑓𝑓3
𝜕𝜕𝑥𝑥6

𝜕𝜕𝑓𝑓4
𝜕𝜕𝑥𝑥1

𝜕𝜕𝑓𝑓4
𝜕𝜕𝑥𝑥2

𝜕𝜕𝑓𝑓4
𝜕𝜕𝑥𝑥3

𝜕𝜕𝑓𝑓4
𝜕𝜕𝑥𝑥4

𝜕𝜕𝑓𝑓4
𝜕𝜕𝑥𝑥5

𝜕𝜕𝑓𝑓4
𝜕𝜕𝑥𝑥6

𝜕𝜕𝑓𝑓5
𝜕𝜕𝑥𝑥1

𝜕𝜕𝑓𝑓5
𝜕𝜕𝑥𝑥2

𝜕𝜕𝑓𝑓5
𝜕𝜕𝑥𝑥3

𝜕𝜕𝑓𝑓5
𝜕𝜕𝑥𝑥4

𝜕𝜕𝑓𝑓5
𝜕𝜕𝑥𝑥5

𝜕𝜕𝑓𝑓5
𝜕𝜕𝑥𝑥6

𝜕𝜕𝑓𝑓6
𝜕𝜕𝑥𝑥1

𝜕𝜕𝑓𝑓6
𝜕𝜕𝑥𝑥2

𝜕𝜕𝑓𝑓6
𝜕𝜕𝑥𝑥3

𝜕𝜕𝑓𝑓6
𝜕𝜕𝑥𝑥4

𝜕𝜕𝑓𝑓6
𝜕𝜕𝑥𝑥5

𝜕𝜕𝑓𝑓6
𝜕𝜕𝑥𝑥6⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

  2.3 

𝐵𝐵 =
𝜕𝜕𝑓𝑓
𝜕𝜕𝑢𝑢

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝜕𝑓𝑓1
𝜕𝜕𝑢𝑢1

𝜕𝜕𝑓𝑓1
𝜕𝜕𝑢𝑢2

𝜕𝜕𝑓𝑓2
𝜕𝜕𝑢𝑢1

𝜕𝜕𝑓𝑓2
𝜕𝜕𝑢𝑢2

𝜕𝜕𝑓𝑓3
𝜕𝜕𝑢𝑢1

𝜕𝜕𝑓𝑓3
𝜕𝜕𝑢𝑢2

𝜕𝜕𝑓𝑓4
𝜕𝜕𝑢𝑢1

𝜕𝜕𝑓𝑓4
𝜕𝜕𝑢𝑢2

𝜕𝜕𝑓𝑓5
𝜕𝜕𝑢𝑢1

𝜕𝜕𝑓𝑓5
𝜕𝜕𝑢𝑢2

𝜕𝜕𝑓𝑓6
𝜕𝜕𝑢𝑢1

𝜕𝜕𝑓𝑓6
𝜕𝜕𝑢𝑢2⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 2.4 
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State-space modeling is a MIMO method which leverages all the mathematical power of 

matrices and linear algebra. Real systems are typically non-linear in nature but must be 

linearized to perform state-space analysis. 

To find the transfer function of the system, first the EOM must undergo the 

Laplace transform, which is a mathematical technique where the time-domain function 

can be converted into the complex plane. This has the benefit of turning differential 

equations into variables with coefficients, allowing algebraic manipulation of the 

equations, rather than calculus relationships [26]. The Laplace transform allows us to 

develop the transfer function model of a differential equation, where we have an input to 

the system, and we can model the output. This can also be thought of as a block model 

[26]. These manipulations can be done on any system modeled as a differential equation, 

including physical or electrical systems. The transfer function is a SISO system, which 

forces the designer to carefully consider which variables are of importance. If multiple 

variable relationships are necessary, multiple SISO transfer functions can be constructed. 

In Figure 2.5 the subsystems can be replaced with a transfer function. 

 

 
Figure 2.5: Block Diagram [26] 

 

2.4 Control Theory 

For each configuration of UAV, a controller must be developed to maintain and 

restore the desired vehicle attitude even while experiencing a range of external 

disturbances. In most cases the UAV will require an embedded system to continually 

collect sensor data and output commands to the control surfaces, actuators, and motors. 

To develop a controller, the use of a system or plant model is extremely helpful. The 

modeling approach allows for analysis for the system dynamics as well as optimizing 

controller parameters [28]. 

PID (proportional, integral, derivative) controllers are ubiquitous in many 

engineering applications, including UAV flight [29]. A PID controller works by 
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measuring a variable in the system called the process variable (PV) and comparing it to 

the desired value for that variable called the setpoint (SP). The difference between the PV 

and SP is the error, and the controller’s goal is to minimize that error value [29]. The 

error is manipulated in three ways, proportionally, by taking its integral over time, and by 

taking its derivative over time. Each of these three manipulations is multiplied by a 

constant coefficient term, called the gain. The sum of these three terms is the output of 

the controller, and the input to the system. Finding these three parameters is called 

tuning, and can be done by trial and error, but this typically does not result in the best 

possible controller. By using a system model, performance-specific PID turning can be 

accomplished, and the optimal controller can be found [29]. 

State feedback controllers are an effective method of control that requires the 

system’s state values, or approximations, to be measured. After finding a linearized 

model for the system in state-space form, the system should be checked for controllability 

and observability. Controllability is a method of checking if the system can be controlled, 

while observability is a method to check if all the necessary states of the system can be 

measured. One can check the controllability by constructing the controllability matrix, P, 

using the A and B matrices found in Equations 2.3 and 2.4. If the controllability matrix is 

full rank, the system is controllable.  

𝑃𝑃 = [𝐵𝐵  𝐴𝐴𝐵𝐵  𝐴𝐴2𝐵𝐵 𝐴𝐴3𝐵𝐵] 2.5 

One can check observability by constructing the observability matrix, Q, and checking if 

it is full rank. 

𝑄𝑄 = �

𝐶𝐶
𝐶𝐶𝐴𝐴
𝐶𝐶𝐴𝐴2
𝐶𝐶𝐴𝐴3

� 2.6 

The stability of the open-loop system can also be investigated by taking the 

eigenvalues of the system’s A matrix. Eigenvalue analysis involves setting up the classic 

eigenvalue problem, 2.7, then solving for the eigenvalues, 𝜆𝜆, that satisfy the equation.  

𝐴𝐴�̅�𝑣 = 𝜆𝜆�̅�𝑣        (𝐴𝐴 − 𝐼𝐼𝜆𝜆)�̅�𝑣 = 0        𝑑𝑑𝑁𝑁𝑁𝑁(𝐴𝐴 − 𝐼𝐼𝜆𝜆) = 0 2.7 
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were 𝐴𝐴 is the linearized system, �̅�𝑣 is the eigenvector associated with the system, 𝜆𝜆 is the 

eigenvalue associated with the eigenvector, and 𝐼𝐼 is the identity matrix. Negative 

eigenvalues indicate an asymptotically stable system, while positive eigenvalues indicate 

an unstable system. Eigenvalues of zero represent a neutrally stable, or Lyapunov stable 

system that will oscillate about the fixed point while never reaching it. Any positive 

eigenvalues will make the entire system unstable, as that one value could grow toward 

infinity. Due to the exponential nature of eigenvalues, the farther they are from zero, the 

faster the system’s response will be.  

To stabilize a system and manipulate how it behaves, a closed-loop controller is 

typically introduced. The state feedback controller is developed by setting the inputs of 

the system, 𝒖𝒖�, equal to a controller gain, 𝐾𝐾, multiplied by the current states of the system, 

𝒙𝒙�, as follows: 

𝑢𝑢� = −𝐾𝐾�̅�𝑥 2.8 

Substituting Equation 2.8 into Equation 2.1 results in an equation for the closed-loop 

system: 

�̇̅�𝑥 = (𝐴𝐴 − 𝐵𝐵𝐾𝐾)�̅�𝑥 2.9 

It can be seen in Equation 2.9 that the system’s A matrix, which cannot be changed, has 

been replaced with 𝐴𝐴 − 𝐵𝐵𝐾𝐾, which can be influenced by choosing values for K. The 

method of finding a controller gain matrix, K, that provides desired closed-loop 

eigenvalues, is called the pole placement technique. By making all the closed-loop 

eigenvalues negative, an unstable system can be stabilized [27]. A controller gain, K, will 

next be found using the eigenvalue method, giving the closed-loop system the desired 

eigenvalues. First the coefficient vector, 𝛷𝛷𝚤𝚤� , is solved for using Equation 2.10: 

[𝜆𝜆𝑑𝑑𝑖𝑖𝐼𝐼 − 𝐴𝐴 𝐵𝐵]𝛷𝛷𝚤𝚤� = 0� 2.10 

Breaking 𝛷𝛷𝚤𝚤�  into its components, the eigenvector, 𝜓𝜓�, and the controller gain multiplied by 

the eigenvector, 𝐾𝐾𝜓𝜓�: 
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𝛷𝛷𝚤𝚤� = � 𝜓𝜓
�
𝐾𝐾𝜓𝜓�

� 2.11 

The controller gain, K, can then be solved for via the following: 

𝐾𝐾 =  [𝐾𝐾𝜓𝜓�][𝜓𝜓�]−1 2.12 

 Finally, the new gain controller, K, is checked by finding the eigenvalues of the 

closed-loop system and confirming they are the desired, stable eigenvalues. This method 

of control will stabilize the system around the determined fixed points but could become 

unstable if the system states move out of the linearized region. 

 

2.5 Disc Actuator Theory 

Disc Actuator Theory is a simple rotor theory that treats rotating propellers as an 

infinitely thin disc that creates an instantaneous pressure delta across itself. Additional 

assumptions of this theory include [30]: 

• The thrust is uniformly distributed over the disc  

• No rotational motion is imparted into the flow by the actuator disc  

• The pressure far ahead and far behind the disc are equal to ambient pressure 

Figure 2.6 shows the control volume of the streamtube encompassing the actuator disc, 

where 𝑉𝑉0 is the fluids freestream velocity, 𝑉𝑉1 is the fluids velocity passing through the 

actuator disc, and 𝑉𝑉2 is the exit velocity. 

 

 
Figure 2.6: Disc Actuator Diagram 
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 The propeller pitch, 𝑠𝑠, is a specific characteristic of a propeller design and is 

defined as the theoretical distance the propeller will move forward during one complete 

rotation in a viscous fluid. The thrust generated by the propeller 𝐹𝐹1, can be calculated 

using the change in pressure across the actuator disc, ∆𝑃𝑃, and its circular area, 𝐴𝐴𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑: 

F1 =  ∆𝑃𝑃 ∗ 𝐴𝐴𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 2.13 

Bernoulli’s energy equation for fluid combines the static pressure, 𝑃𝑃, dynamic pressure, 
1
2
𝜌𝜌𝑉𝑉2, and potential energies, 𝜌𝜌𝑘𝑘ℎ before and after an event, where 𝜌𝜌 is fluid density, 𝑉𝑉 

is the fluid velocity, 𝑘𝑘 is the gravitational constant, and ℎ is the fluid height: 

𝑃𝑃0 +
1
2
𝜌𝜌𝑉𝑉02 + 𝜌𝜌𝑘𝑘ℎ0 = 𝑃𝑃2 +

1
2
𝜌𝜌𝑉𝑉22 + 𝜌𝜌𝑘𝑘ℎ2 2.14 

The volume before and after the disc are open to the atmosphere and therefore have equal 

static pressures, 𝑃𝑃0 = 𝑃𝑃2. As a simplifying assumption, the disc is assumed to have no 

thickness, so the potential energy terms will be ignored, ℎ0 = ℎ2. With these 

simplifications, Bernoulli’s equation becomes: 

1
2
𝜌𝜌𝑉𝑉02 =

1
2
𝜌𝜌𝑉𝑉22 2.15 

The propeller disc will add energy to the fluid in the form of a pressure differential across 

the disc, ∆𝑃𝑃. With this added energy, the Bernoulli energy equation becomes: 

1
2
𝜌𝜌𝑉𝑉02 + ∆𝑃𝑃 =

1
2
𝜌𝜌𝑉𝑉22 2.16 

Solving for the disc actuator’s added energy, Equation 2.16 becomes: 

∆𝑃𝑃 =
1
2
𝜌𝜌�𝑉𝑉22 − 𝑉𝑉02� 2.17 

Substituting Equation 2.17 into Equation 2.13, we get: 

𝐹𝐹1 =  
1
2
𝐴𝐴𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝜌𝜌�𝑉𝑉22 − 𝑉𝑉02� =

1
2
𝐴𝐴𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝜌𝜌(𝑉𝑉2 − 𝑉𝑉0)(𝑉𝑉2 + 𝑉𝑉0) 2.18 

The velocity of air across the actuator disc is the average of the upstream and 

downstream air velocities: 
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𝑉𝑉1 =
1
2

(𝑉𝑉0 + 𝑉𝑉2) 2.19 

Solving for 𝑉𝑉0: 

𝑉𝑉0 = (2𝑉𝑉1 − 𝑉𝑉2) 2.20 

Plugging Equations 2.19 and 2.20 into Equation 2.18, the equation becomes: 

F1 =  2𝜌𝜌𝐴𝐴disc,1𝑉𝑉12 2.21 

The velocity of the air passing through the disc is assumed to be equal and opposite the 

velocity of the disc moving through the air. The air velocity, 𝑉𝑉1, can be calculated using 

the propeller pitch, 𝑠𝑠, in meters and the angular speed of the propeller, 𝜔𝜔, in revolutions 

per minute (rpm) 

𝑉𝑉1 = 𝜔𝜔 ∙
1

60
∙ 𝑠𝑠 2.22 

Plugging Equation 2.22 into 2.21 results in an expression for the thrust force generated by 

the propeller. With the assumption that the air density is constant, this equation relates the 

propellers rotational speed, 𝜔𝜔, to the generated force F1. 

F1 =  2𝜌𝜌𝐴𝐴𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,1 �ω ∙
1

60
∙ s�

2

=  
2

3600
𝜌𝜌𝐴𝐴𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,1s2ω2 2.23 

 

2.6 System Identification 

System identification is a data-driven modeling approach that utilizes collected 

data from a system to construct a model representing its behavior. It goes beyond simple 

curve fitting, which aims to find an equation that best matches a specific set of data. 

Instead, system identification focuses on developing a model, often in the form of a 

differential equation, which establishes the relationship between the system's inputs and 

outputs [31]. To create this system model, a suitable framework is initially chosen. This 

framework can take various forms, but a transfer function or a state-space model are 

typical. The model's parameters are then optimized by iteratively adjusting them and 

evaluating how closely the model output matches the actual estimation output data. This 

process continues until the best fit between the model and the estimation data is achieved 
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[31]. This procedure would be extremely tedious if done by hand yet is well suited for a 

computer. The optimization stage introduces the concept of a cost function, which 

increases as the model deviates further from the reference data. Therefore, the computer's 

objective is to minimize this cost function. System identification software uses numerical 

methods within software tools that cycle through and adjust all the parameters until the 

cost function is minimized [31]. The real test of the model is when you compare it with 

different data from the same system, this is called validation. [31]. Estimation data is 

used for creating the best fit model, and validation data is used for evaluating the model 

to see how accurate it is. Continually increasing the number of model parameters, or 

system order, can result in overfitting. This is where the fit to the estimation data will 

keep increasing, but the fit to the validation data will start getting worse, as shown in 

Figure 2.7. This thesis presents a transfer function created using the MATLAB System 

ID toolbox [31]. 

 

 
Figure 2.7: Overfitting Estimation Data 

 

 In practice, system data is collected by inputting sine sweeps, doublets, or other 

signals into the system, then recording the output signals. Sine sweeps cover a large range 

of frequencies, exciting more of the systems dynamics, and resulting in a better model. 

Time-domain data collected from the system should be sampled at uniformly spaced time 

intervals. Both the input and output signals must be recorded and used for the system 

identification algorithm [32]. 
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Figure 2.8: Example Input and Output Data 

 

 Once the system data is collected in the time-domain, it is transformed into the 

complex domain by using the Fourier transform.  

𝑌𝑌(𝑖𝑖𝜔𝜔) = � 𝑦𝑦(𝑁𝑁)𝑁𝑁−𝑑𝑑𝑖𝑖𝑖𝑖𝑑𝑑𝑁𝑁
∞

−∞
  

𝑈𝑈(𝑖𝑖𝜔𝜔) = � 𝑢𝑢(𝑁𝑁)𝑁𝑁−𝑑𝑑𝑖𝑖𝑖𝑖𝑑𝑑𝑁𝑁
∞

−∞
 

2.24 

Here Y represents the system’s output data, and U represents the system’s input data, 

both of which are represented as column vectors of data. Next the model structure needs 

to be specified. For example, the transfer function structure can be used, with a given 

number of poles and zeros [32]. The transfer function structure is a ratio of polynomials 

and is defined as follows: 

H(s) =
(A0 + A1s + A2s2 + ⋯ )
(B0 + B1s + B2s2 + ⋯ )

 2.25 

For example, a spring mass damper system with no zeros and two poles, the transfer 

function is given by: 

H(s) =
1

(ms2 + cs + k)  2.26 

 MATLAB’s System ID toolbox uses an autoregressive-moving average with 

exogenous (ARMAX) function to estimate model parameters. The ARMAX function is 

an iterative solver that continually refines model parameters until predefined criteria are 
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met [33]. Once the best fit model is found, a different order model is typically developed 

using the same process. For a transfer function, the number of zeros and poles are 

sequentially increased until the fit tapers off and begins to decrease. Next different order 

transfer functions are tested with validation data. The new validation input data is 

converted into the complex domain via the Laplace transform. The inputs are fed through 

each transfer function producing an array of output data for each function. That data is 

converted back into the time-domain by use of the inverse Laplace transform. All the 

different transfer function model’s outputs are then compared to the actual system 

validation output. The transfer function with an output best fitting the validation data is 

chosen. If the model is a good predictor of how the system will respond to inputs, then 

both the model’s output data and validation output data should be strongly correlated 

[32]. This process is depicted in Figure 2.9. 

 
Figure 2.9: System Identification Process [32] 
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3 Methodology 

 

The objective of this research is to demonstrate the ability of a full-state feedback 

controller to reject disturbances on a coaxial thrust vectored UAV. To achieve this a 

theoretical dynamics model for the vehicle is established, then used to develop a state 

feedback controller to study maneuverability and stability. A hardware prototype is 

constructed to demonstrate manufacturability and provide testing data. A simplified 

thrust model is established then improved using a regression line and system 

identification with data from the vehicle prototype. The controller results are 

demonstrated through simulations. 

 

The primary research questions addressed in this study are as follows: 

1. How can a theoretical thrust model be improved by gathering prototype test data?  

2. Can a state feedback controller be developed to stabilize a thrust vectored coaxial 

UAV model when confronted with external disturbances? 

3. How can a state feedback controller’s gains be characterized and compared? 

 

3.1 Dynamic System Modeling 

 This section discusses the simplifying assumptions made while analyzing this 

dynamic system. The CoaxUAV is cylindrical with approximately identical servo control 

in the x and z coordinates. This inherent symmetry allows for system analysis to be 

conducted in 2D, as the model can then be equally applied to both the x-y and z-y 

directions. From here forward analysis will be conducted in the x-y plane. On a coaxial 

vehicle the propellers are contra rotating and the sum of their angular speeds is 

approximately zero, so their combined gyroscopic effect is also negligible. Due to this 

characteristic of coaxial rotors, the gyroscopic forces will be neglected from this model. 

 

The consolidated simplifying assumptions are: 

1. System dynamics are modeled in 2D, on an x-y plane. 

2. The gyroscopic forces are neglected. 
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Figure 3.1: Coaxial UAV Coordinate System 

Creating a model of the Coaxial UAV involves deriving the non-linear equations 

of motion for the vehicle. The first step is defining the reference frames. The thrust frame 

is attached to the top portion of the UAV, called mass 1 or M1, while the body frame is 

attached to the lower portion of the UAV, called mass 2 or M2. The body frame is where 

the flight computer inertial measurement unit (IMU) will be located, and thus where all 

the vehicle state information will be gathered. The inertial frame, or Newtonian frame, is 

attached to the ground and does not move with respect to the observer. 

𝑇𝑇ℎ𝑟𝑟𝑢𝑢𝑠𝑠𝑁𝑁 𝐹𝐹𝑟𝑟𝑃𝑃𝑚𝑚𝑁𝑁:  𝑁𝑁 = �𝑁𝑁1𝑁𝑁2� 
3.1 

𝐵𝐵𝑁𝑁𝑑𝑑𝑦𝑦 𝐹𝐹𝑟𝑟𝑃𝑃𝑚𝑚𝑁𝑁:  𝑏𝑏 = �𝑏𝑏1
𝑏𝑏2� 

3.2 

𝐼𝐼𝑁𝑁𝑁𝑁𝑟𝑟𝑁𝑁𝑖𝑖𝑃𝑃𝐼𝐼 𝐹𝐹𝑟𝑟𝑃𝑃𝑚𝑚𝑁𝑁:  𝑁𝑁 = �𝑁𝑁1
𝑁𝑁2� 

3.3 

The system has two inputs, a thrust force, 𝐹𝐹𝑁𝑁, and a servo angle 𝛹𝛹.  
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Figure 3.2: Coaxial UAV free body diagram 

 

Analyzing the system, it can be seen that the thrust force only acts in the t2 direction. The 

thrust force, 𝐹𝐹𝑖𝑖, in the thrust frame can be written: 

𝐹𝐹𝑖𝑖�
𝑖𝑖 =  � 0 ∙ 𝑁𝑁1

𝐹𝐹𝑖𝑖ℎ𝑟𝑟𝑟𝑟𝑑𝑑𝑖𝑖 ∙ 𝑁𝑁2
� = �0

𝐹𝐹𝑖𝑖
� 3.4 

Rotation matrices will be used to relate reference frame orientations based on their angle 

difference. The thrust force can be written in terms of the body frame where the servo 

angle relates the two frame orientations. 

𝐹𝐹𝑖𝑖�
𝑏𝑏 = �

𝐹𝐹𝑖𝑖1
𝑏𝑏

𝐹𝐹𝑖𝑖2
𝑏𝑏� = �

cos (𝛹𝛹) sin (𝛹𝛹)
−sin (𝛹𝛹) cos (𝛹𝛹)� �

0
𝐹𝐹𝑖𝑖
� = �

𝐹𝐹𝑖𝑖sin (𝛹𝛹)
𝐹𝐹𝑖𝑖cos (𝛹𝛹)� 

3.5 

The body frame can then be related to the inertial frame by again using a rotation matrix 

and the body frames inertial rotation angle 𝜃𝜃, measured by the IMU. Here the thrust force 

is written in the inertial frame: 

 

𝐹𝐹𝑖𝑖�
𝑛𝑛 = �

𝐹𝐹𝑖𝑖1
𝑛𝑛

𝐹𝐹𝑖𝑖2
𝑛𝑛� = � cos (𝜃𝜃) sin (𝜃𝜃)

−sin (𝜃𝜃) cos (𝜃𝜃)� �
𝐹𝐹𝑖𝑖sin (𝛹𝛹)
𝐹𝐹𝑖𝑖cos (𝛹𝛹)� = � 𝐹𝐹𝑖𝑖 sin(𝛹𝛹) cos(𝜃𝜃) + 𝐹𝐹𝑖𝑖cos (𝛹𝛹)sin (𝜃𝜃)

−𝐹𝐹𝑖𝑖sin (𝛹𝛹)sin (𝜃𝜃) + 𝐹𝐹𝑖𝑖cos (𝛹𝛹)cos (𝜃𝜃)� 3.6 
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Additional forces acting on the vehicle are drag, 𝐹𝐹𝐷𝐷, and gravity, g. The drag force is a 

result of air resistance and is modeled as: 

𝐹𝐹𝐷𝐷 =
1
2𝜌𝜌𝑣𝑣

2𝐶𝐶𝐷𝐷𝐴𝐴 3.7 

The following definitions and assumptions are used: Density of air: 𝜌𝜌 = 1.2 𝑘𝑘𝑘𝑘/𝑚𝑚3, 

coefficient of drag: 𝐶𝐶𝐷𝐷 = 1, Cross sectional area: 𝐴𝐴 = 0.018𝑚𝑚3. From Equation 3.17  

𝐹𝐹𝐷𝐷 ≈ 0.01𝑣𝑣2 3.8 

The gravitational force, 𝐹𝐹𝑔𝑔𝑟𝑟𝑔𝑔𝑔𝑔𝑑𝑑𝑖𝑖𝑔𝑔,  only acts in the inertial i2 direction and is defined as: 

𝐹𝐹𝑔𝑔𝑟𝑟𝑔𝑔𝑔𝑔𝑑𝑑𝑖𝑖𝑔𝑔 = 𝑚𝑚𝑘𝑘 = 𝑚𝑚9.81 

Newtons second law, ∑𝐹𝐹 = 𝑚𝑚𝑃𝑃, can now be applied to derive the translational equations 

of motion in the inertial frame. 

�𝐹𝐹 = 𝑚𝑚��̈�𝑥�̈�𝑦� = �
𝐹𝐹𝑁𝑁 sin(𝛹𝛹) cos(𝜃𝜃) + 𝐹𝐹𝑁𝑁cos (𝛹𝛹)sin (𝜃𝜃)
−𝐹𝐹𝑁𝑁sin (𝛹𝛹)sin (𝜃𝜃) + 𝐹𝐹𝑁𝑁cos (𝛹𝛹)cos (𝜃𝜃)� − �0.01�̇�𝑥2

0.01�̇�𝑦2� − � 0
𝑚𝑚𝑘𝑘� 

A similar process can be applied to solving the rotational equation of motion in the 

inertial frame. The thrust force acts along the t2 axis, and as a result, torque is not 

generated in that reference frame. Rotation matrices are used to relate the thrust force in 

perpendicular force in the body frame: 

�
cos (𝛹𝛹) sin (𝛹𝛹)
−sin (𝛹𝛹) cos (𝛹𝛹)� �

0
𝐹𝐹𝑖𝑖
� 

Using Newtons law for rotational motion and applied torque, 𝜏𝜏: 

�𝜏𝜏 = 𝐼𝐼�̈�𝜃 = [𝑑𝑑 0] �
cos (𝛹𝛹) sin (𝛹𝛹)
−sin (𝛹𝛹) cos (𝛹𝛹)� �

0
𝐹𝐹𝑁𝑁
� = [𝑑𝑑 0] �

𝐹𝐹𝑁𝑁sin (𝛹𝛹)
𝐹𝐹𝑁𝑁cos (𝛹𝛹)� = 𝐹𝐹𝑁𝑁sin (𝛹𝛹)𝑑𝑑 

𝐼𝐼�̈�𝜃 = 𝐹𝐹𝑖𝑖sin (𝛹𝛹)𝑑𝑑 

Where 𝑑𝑑 = 0.15𝑚𝑚 and is the distance from the perpendicular force to the center of mass. 

Combining the translational and rotational equations, the complete equations of motion 

are 
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𝑚𝑚�̈�𝑥 = 𝐹𝐹𝑖𝑖 sin(𝛹𝛹) cos(𝜃𝜃) + 𝐹𝐹𝑖𝑖cos (𝛹𝛹)sin (𝜃𝜃) − 0.01�̇�𝑥2 

𝑚𝑚�̈�𝑦 = −𝐹𝐹𝑖𝑖 sin(𝛹𝛹) sin(𝜃𝜃) + 𝐹𝐹𝑖𝑖 cos(𝛹𝛹) cos(𝜃𝜃) − 0.01�̇�𝑦2 − 𝑚𝑚𝑘𝑘 

𝐼𝐼�̈�𝜃 = 𝐹𝐹𝑖𝑖sin (𝛹𝛹)𝑑𝑑 

3.9 

Defining the states and inputs: 

𝑆𝑆𝑁𝑁𝑃𝑃𝑁𝑁𝑁𝑁𝑠𝑠 = 𝑋𝑋 =

⎩
⎪
⎨

⎪
⎧
𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
𝑥𝑥4
𝑥𝑥5
𝑥𝑥6⎭
⎪
⎬

⎪
⎫

=

⎩
⎪
⎨

⎪
⎧
𝑥𝑥
�̇�𝑥
𝑦𝑦
�̇�𝑦
𝜃𝜃
�̇�𝜃⎭
⎪
⎬

⎪
⎫

 

𝐼𝐼𝑁𝑁𝑟𝑟𝑢𝑢𝑁𝑁𝑠𝑠 = 𝑢𝑢 = �
𝑢𝑢1
𝑢𝑢2� = �𝐹𝐹𝑖𝑖𝛹𝛹�  

3.10 

Where 𝐹𝐹𝑖𝑖 is the thrust input in Newtons, and 𝛹𝛹 is the servo angle in degrees. Converting 

Equation 3.9 into state-space form: 

𝑁𝑁𝑒𝑒𝑁𝑁1 = 𝑥𝑥1̇ = 𝑥𝑥2 

𝑁𝑁𝑒𝑒𝑁𝑁2 = 𝑥𝑥2̇ =
1
𝑚𝑚

(𝐹𝐹𝑖𝑖 sin(𝛹𝛹) cos(𝑥𝑥5) + 𝐹𝐹𝑖𝑖cos(𝛹𝛹) sin(𝑥𝑥5) − 0.01𝑥𝑥22) 

𝑁𝑁𝑒𝑒𝑁𝑁3 = 𝑥𝑥3̇ = 𝑥𝑥4 

𝑁𝑁𝑒𝑒𝑁𝑁4 = 𝑥𝑥4̇ = − 1
𝑚𝑚

(𝐹𝐹𝑖𝑖 sin(𝛹𝛹) sin(𝑥𝑥5) + 𝐹𝐹𝑖𝑖 cos(𝛹𝛹) cos(𝑥𝑥5) − 0.01𝑥𝑥42 − 𝑚𝑚𝑘𝑘) 

𝑁𝑁𝑒𝑒𝑁𝑁5 = 𝑥𝑥5̇ = 𝑥𝑥6 

𝑁𝑁𝑒𝑒𝑁𝑁6 = 𝑥𝑥6̇ =
1
𝐼𝐼

(𝐹𝐹𝑖𝑖sin(𝛹𝛹)𝑑𝑑) 

3.11 

These non-linear equations of motion can be solved using a numerical solver such as 

Simulink or MATLAB ode45. Figure 3.3 shows these equations Simulink. 
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Figure 3.3: Coaxial UAV Simulink Non-Linear EOM 

 There are many benefits to working with linear differential equations, including 

the ability to use the state-space representation and create a linear state feedback 

controller. The following section outlines the steps to linearize the non-linear Equations 

3.11. The systems equilibrium points are found by setting the state derivatives equal to 

zero, 𝑓𝑓𝑖𝑖 = 0. The equilibrium points are found to be 𝑥𝑥2 = 𝑥𝑥4 = 𝑥𝑥5 = 𝑥𝑥6 = 𝛹𝛹 = 0,  𝑇𝑇 =

𝑚𝑚𝑘𝑘. The free variables are 𝑥𝑥1, and 𝑥𝑥3. This operating state corresponds to the coaxial 

UAV in hover at any x-y-z location with zero pitch angle, and zero translational and 

rotational velocities. The Jacobian matrix, Equations 2.3 and 2.4, are used to linearize 

Equations 3.11 at the equilibrium points: 

𝐴𝐴 =
𝐷𝐷𝑓𝑓
𝑑𝑑𝑋𝑋

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0 1 0 0 0 0

0 0 0 0
𝐹𝐹𝑖𝑖

𝑚𝑚1 + 𝑚𝑚2
0

0 0 0 1 0 0

0 0 0 0 −
𝐹𝐹𝑖𝑖(𝜋𝜋 − 𝛹𝛹)
𝑚𝑚1 + 𝑚𝑚2

0

0 0 0 0 0 1
0 0 0 0 0 0

 

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 3.12 
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𝐵𝐵 =
𝐷𝐷𝑓𝑓
𝑑𝑑𝑢𝑢

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0 0
(𝜋𝜋 − 𝛹𝛹 + 𝑥𝑥5)
𝑚𝑚1 + 𝑚𝑚2

−
𝐹𝐹𝑖𝑖

𝑚𝑚1 + 𝑚𝑚2
0 0

(−𝜋𝜋𝑥𝑥5 + 𝛹𝛹𝑥𝑥5 + 1)
𝑚𝑚1 + 𝑚𝑚2

𝐹𝐹𝑖𝑖𝑥𝑥5
𝑚𝑚1 + 𝑚𝑚2

0 0
𝜋𝜋 − 𝛹𝛹
𝐼𝐼

𝑑𝑑 −
𝐹𝐹𝑖𝑖
𝐼𝐼
𝑑𝑑 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

Plugging in the equilibrium points, the A and B matrices are found. As noted above, it is 

assumed that all state variables can be measured, resulting in an identity C matrix and 

zero D matrix. The C matrix used here is more complex than the identity, showing that 

not all states need to be measured directly. The coaxial UAV can now be represented by 

the linear state-space form 2.1 and 2.2. 

𝑋𝑋�̇ =

⎣
⎢
⎢
⎢
⎢
⎡
𝑥𝑥1̇
𝑥𝑥2̇
𝑥𝑥3̇
𝑥𝑥4̇
𝑥𝑥5̇
𝑥𝑥6̇⎦
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡
�̇�𝑥
�̈�𝑥
�̇�𝑦
�̈�𝑦
�̇�𝜃
�̈�𝜃⎦
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡
0 1 0 0 0 0
0 0 0 0 𝑘𝑘 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0

 

⎦
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎡
𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
𝑥𝑥4
𝑥𝑥5
𝑥𝑥6⎦
⎥
⎥
⎥
⎥
⎤

+

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0 0
0 −𝑘𝑘
0 0
1
𝑚𝑚

0

0 0

0 −
𝑚𝑚𝑘𝑘𝑑𝑑
𝐼𝐼 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

�𝐹𝐹𝑖𝑖𝛹𝛹� 
3.13 

𝑦𝑦� = �
𝑦𝑦1
𝑦𝑦2� = �1 0 0 0 1 0

0 0 1 0 0 0 �

⎣
⎢
⎢
⎢
⎢
⎡
𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
𝑥𝑥4
𝑥𝑥5
𝑥𝑥6⎦
⎥
⎥
⎥
⎥
⎤

+ �0 0
0 0� �

𝐹𝐹𝑖𝑖
𝛹𝛹� 

3.14 

An approximation for the moment of inertia was calculated for initial system modeling. 

Using a uniform density cylinder with and an axis of rotation crossing the end diameter, 

Figure 3.4. 

𝐼𝐼 =
1
4
𝑚𝑚𝑟𝑟2 +

1
3
𝑚𝑚ℎ2 3.15 

Where the mass = 1 kg, r = 10 cm, h = 150 cm, the moment of inertia is approximately 

𝐼𝐼 = 0.0075 𝑘𝑘𝑘𝑘 ∙ 𝑚𝑚2. The hardware prototype’s moment of inertia will be measured and 

compared to this theoretical value in the results section. 
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Figure 3.4: Moment of Inertia for a Cylinder  

 

 Initial testing of this new dynamic model involved using a universal serial bus 

(USB) game controller to manually fly the model through the simulation. This was done 

by mapping the controller inputs to the vehicles thrust and servo angle, allowing these 

values to be changed in real time and observing the vehicle response. The next steps 

involve removing the human in the loop and developing an automatic feedback 

controller. 

 

3.2 Controller Development 

 This section covers the development of a state feedback controller and state 

visualization simulation based on the systems dynamic model. By introducing a 

controller gain, K, the closed-loop system eigenvalues can be moved into the negative 

real plane, creating an asymptotically stable system. Using the pole placement technique, 

described in section 2.4, a controller gain K can be designed to give the system specific 

eigenvalues, and thus desired stability characteristics. In situations where all the system 

states cannot be accurately measured, it is necessary to develop an observer to estimate 

the system states. The objective of the observer gain is to drive the error between the 

actual and estimated states to zero. Similar pole placement techniques are used for 

designing the observer gain L.   
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 The first steps in developing a state feedback controller are checking if the system 

is controllable and observable. The open loop stability will then be analyzed, then the 

state controller will be developed. 

 One can check the controllability by constructing the controllability matrix P, 

using Equation 2.5. The controllability matrix P is full rank, 𝑟𝑟𝑃𝑃𝑁𝑁𝑘𝑘(𝑃𝑃) = 6, so the system 

is controllable. 

𝑃𝑃 =

⎣
⎢
⎢
⎢
⎢
⎡
0 0
0 0
0 0
0 0
1 0
0 1

 

0 −9.8
0 0

1.25 0
0 0
0 −785 
0 0

0 0
0 −7.7
0 0
0 0
0 0
0 0

0 −7.7
0 0
0 0
0 0
0 0
0 0 ⎦

⎥
⎥
⎥
⎥
⎤

 3.16 

One can check the observability by constructing the observability matrix Q, shown by 

Equation 3.17. The observability matrix Q is full rank, 𝑟𝑟𝑃𝑃𝑁𝑁𝑘𝑘(𝑄𝑄) = 6, so the system is 

observable. 

𝑄𝑄 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1 0 0 0 1 0
0 0 1 0 0 0
0 1 0 0 0 1
0 0 0 1 0 0
0 0 0 0 𝑘𝑘 0
0 0 0 0 0 0
0 0 0 0 0 𝑘𝑘
0 0 0 0 0 0 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 3.17 

Eigenvalue analysis of the A matrix can be conducted to determine stability of the open 

loop system. Using Equation 2.7, all eigenvalues of the open loop system are found to be 

zero, meaning the system is neutrally stable. 𝜆𝜆1,2,3,4,5,6 = 0. The system will oscillate 

around the equilibrium point indefinitely, not converging, because the damping effects of 

air resistance have been removed during linearization. A state feedback controller is then 

developed using the pole placement technique, to move the systems closed-loop 

eigenvalues into the stable left half plane. The desired eigenvalues for the system are first 

chosen to be negative and close to zero. Negative values are stable, and close to zero will 

make the controller less aggressive. The controller is developed, then the desired 
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eigenvalues are slowly moved more negatively, until the desired controller response is 

achieved. The process was followed until the following eigenvalues were found: 

𝜆𝜆𝑑𝑑1 = −1.5, 𝜆𝜆𝑑𝑑2 = −1.6, 𝜆𝜆𝑑𝑑3 = −1.7, 𝜆𝜆𝑑𝑑4 = −1.8, 𝜆𝜆𝑑𝑑5 = −1.9, 𝜆𝜆𝑑𝑑6 = −2.0 

Using the analytical pole placement method and Equations 2.10 and 2.11, 𝜓𝜓� and 𝐾𝐾𝜓𝜓� are 

found. The controller gain K is then found using Equation 2.12: 

𝐾𝐾 = � −2.11 −3.71 2.593 3.061 −21.088 −3.851
−0.007 −0.016 0 0 −0.13 −0.048� 

3.18 

Checking the new gain controller K by finding the eigenvalues of the closed-loop system: 

𝑁𝑁𝑖𝑖𝑘𝑘(𝐴𝐴 − 𝐵𝐵𝐾𝐾). This analytical pole placement method can be rapidly achieved by using 

the MATLAB place() command, by which a variety controller gains can be easily tested. 

The closed-loop controller is then implemented into Simulink by multiplying the state 

vector by the controller gain and feeding it back to the system inputs. See Figure 3.5. 

 

 
Figure 3.5: State Feedback Controller 

 

 Further constraints were then added to the controller model to better represent the 

CoaxUAV system. Based on testing data from the physical prototype, the thrust input 

was restricted to a maximum value of 18 Newtons, Table 4.3, while the gimble angle was 

restricted to 14 degrees, Table 3.1. 



 

28 
 

 The controller was tested by giving it setpoints and observing the vehicle’s 

response characteristics such as the settling time, overshoot, and ability to reach the 

desired states. External disturbances, such as simulated wind, were also introduced to the 

system to push the controller to its limits. These external forces included constant and 

impulse forces in both the x and y directions and applied rotational torque. 

 

 
Figure 3.6: State Feedback Controller with Input Limitations and Wind Disturbances 

 

 The simulated vehicle and controller were subjected to a variety of simulated 

disturbance forces in the x-direction to test the limits of the controller’s ability to recover 

the vehicle. For these tests, if the vehicles Y altitude stayed above 0m, it was considered 

a successful recovery. The applied disturbance can be defined by two variables, the 

magnitude of applied force in Newtons and the amount of time it was applied. These 

parameters were varied systematically and the limit values where the controller could 

recover stability were recorded and plotted.  

The vehicle was also subjected to torsional disturbance forces, and the responses 

were analyzed. As before, the applied torque can be defined by two variables, the 
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magnitude in Nm and the amount of time it was applied. Again, these parameters were 

varied, and the limit of successful recoveries were recorded and plotted.  

To better visualize the vehicles response to the controller, an animation was 

developed. Simulink’s V-Realm Builder 2.0 was used to create a simulated representation 

of the CoaxUAV vehicle out of primitive shapes. The Simulink EOM model states were 

then mapped to the simulations associated with DOF. A USB gaming controller was then 

used to manually change system inputs and observe the simulations response over time. 

 

 
Figure 3.7: CoaxUAV Simulation 
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Figure 3.8: State Feedback Controller Model with V-Realm Model 

 

 

3.3 Thrust Model 

 A simple theoretical thrust model was first developed as a starting point, then 

improved upon by gathering testing data. A transfer function model is also developed 

using the same thrust test data.  

The simple model uses the disc actuator theory, where the propeller is replaced by 

an infinitely thin disc. This disc adds energy to the fluid in the form of a pressure 

differential. Using Equation 2.23, the output force, F, can be calculated as a function of 

the propellers rotational speed.  

𝐹𝐹1 =  2(1.204)(0.1078) �𝜔𝜔 ∙
1

60
∙ 0.1397 �

2

= (1.407𝐸𝐸 − 6)𝜔𝜔2 3.19 

For the CoaxUAV the disc area is an annulus, found by subtracting the smaller circular 

area from the larger circular area, where 𝐴𝐴1 = 𝐴𝐴𝑔𝑔𝑛𝑛𝑛𝑛𝑟𝑟𝑙𝑙𝑟𝑟𝑑𝑑 = 0.1078 𝑚𝑚2. The air density is 

assumed to be a constant 𝜌𝜌𝑔𝑔𝑑𝑑𝑟𝑟 = 1.2 𝑘𝑘𝑘𝑘 𝑚𝑚3⁄ , and blade pitch s = 0.14 m. The overall 
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thrust of the coaxial UAV can be obtained by summing the thrust generated by each 

propeller: 

𝐹𝐹𝑖𝑖𝑡𝑡𝑖𝑖𝑔𝑔𝑙𝑙 = 𝐹𝐹𝑝𝑝𝑟𝑟𝑡𝑡𝑝𝑝𝑝𝑝𝑙𝑙𝑙𝑙𝑝𝑝𝑟𝑟 1 + 𝐹𝐹𝑝𝑝𝑟𝑟𝑡𝑡𝑝𝑝𝑝𝑝𝑙𝑙𝑙𝑙𝑝𝑝𝑟𝑟 2 3.20 

Combining 3.19 and 3.20, assuming both propellers generate the same thrust: 

𝐹𝐹𝑖𝑖𝑡𝑡𝑖𝑖𝑔𝑔𝑙𝑙 = (2.814𝐸𝐸 − 6)𝜔𝜔2 3.21 

The model was then compared and plotted with thrust data from the hardware prototype, 

shown in Figure 3.9. 

 

 
Figure 3.9: Rotor Speed vs. Thrust Data 

 

Using Microsoft Excel’s regression tool, a quadratic regression The majority of analysis 

done line is found for the thrust data, representing the actual thrust versus rotor speed 

relationship for this vehicle.  

𝐹𝐹𝑟𝑟𝑝𝑝𝑔𝑔𝑟𝑟𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡𝑛𝑛 = (1𝐸𝐸 − 6)𝜔𝜔2 3.22 

In order to adjust the model to fit this curve, a correction factor 𝐶𝐶 and additional term 𝐷𝐷ω 

are added to the thrust Equation 2.23.  

F1 =  𝐶𝐶
2

3600
𝜌𝜌𝐴𝐴1s2ω2 + 𝐷𝐷ω 3.23 
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The correction values are solved so the theoretical model, 3.21 matches the regression 

line, 3.22. 

𝐶𝐶(2.814𝐸𝐸 − 6)𝜔𝜔2 = (1𝐸𝐸 − 6)𝜔𝜔2 

𝐶𝐶 =
1𝐸𝐸 − 6

2.814𝐸𝐸 − 6
= 0.3554 

3.24 

The updated model with the correction factor 

F1 = (0.35)
2

3600
𝜌𝜌𝐴𝐴1s2ω2 − 0.0002ω 3.25 

A transfer function thrust model is next developed using MATLABs System 

Identification toolbox and testing data from the CoaxUAV. First thrust testing is 

conducted on the CoaxUAV hardware system, where rotor speed and total thrust 

generated are both recorded. Multiple tests are conducted to gather model estimation and 

validation datasets. This input and output data is then uploaded into the MATLAB 

workspace. Both the model estimation data and validation data are uploaded into the 

system ID toolbox, shown in Figure 3.10. 

 

 
Figure 3.10: System ID I/O Estimation and Validation Data 
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The system inputs, u1 are rotor speed values in RPM, where the system outputs, 

y1 is the total thrust generated in Newtons. The model estimation data is in blue and the 

validation data in green. 

 The transfer function model is selected, Equation 2.25, and starting with one pole 

and no zeros, transfer function models are generated repeatedly while increasing the 

number of poles and zeros. This process continues until the model fit levels off and 

begins to decrease. The validation data is now selected, and the validation rotor speed 

input data is fed through each of the developed transfer function models. Each model’s 

output is then compared to the actual validation thrust output data. The model providing 

the best fit is considered the most accurate model. Figure 3.11 shows the system ID 

toolbox interface. 

 

 
Figure 3.11: System ID Toolbox 

 

3.4 Hardware Prototype Development  

 Hardware development and testing was an iterative process where the design 

informed the test, and the test informed subsequent re-designs. Due to this feedback 

cycle, the report will follow a chronological approach, rather than attempt to isolate 

hardware design and data collection. There were two purposes of developing a hardware 
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prototype, the first was to prove that the design concept was feasible and provide a path 

for developing such a vehicle. The second was to gather testing data from the system for 

improving the thrust model. The design requirements for the hardware prototype are as 

follows: 

1. Hardware configuration is a constant pitch coaxial thrust vector UAV. 

2. Ability to provide enough thrust to lift twice the vehicles weight to provide 

control and flight authority. 

3. Can be manufactured using a low-cost hobby level 3D printer. 

4. 3D printed thrust vector and propulsion components able to withstand flight 

conditions. 

5. Use of low-cost off-the-shelf components. 

 

3.4.1 Test Stand 

The test stand was developed for measuring the test vehicles thrust and torque. 

The stand encompassed two load cells measuring vertical thrust and rotational torque. 

Data was recorded using an Arduino Uno. The structure was designed in CAD 

(Computer-Aided Design) and then 3D printed in polylactic acid (PLA)+ thermoplastic. 

 
Figure 3.12: Test Stand with 1 kg Calibration Weight 
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 The stand was calibrated using a one kilogram weight for vertical thrust, and a 

200 gram weight for torque. Lift force was measured as a positive value, so the 

calibration weight shows a negative force. 

 

  
Figure 3.13: 1 kg Calibration Weight Being Removed from Stand 

 

3.4.2 Hardware Design and Testing 

Multiple design iterations were conducted before arriving at a functional 

prototype capable of meeting all design goals. SolidWorks was used as the CAD 

software, Ultimaker Cura was used as the slicer software, and Creality’s Ender 3 3D 

printer used for rapid prototyping. The CAD software contains the digital model, and the 

slicer converts the digital model into G-code printing instructions that can be read by the 

3D printer [34]. All the printer settings are established in the slicer software, including 

layer thickness, infill density, extrusion speed, temperature and much more. The 

propulsion section’s design was initially inspired by the opensource Tdrone design [35]. 

This incorporated an enclosure with two planer aligned brushless direct current (DC) 

motors driving two coaxial propellers located above and below the motor enclosure. This 

configuration has a hollow center tube, allowing for power and communication wires to 

be run above and below the propulsion section. 
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Figure 3.14: CoaxUAV Version 1 Propulsion Section 

 

 Testing was conducted by first attaching the vehicle to the top of the test stand. 

Next calibration weights were used to calibrate the load cells and remove the vehicles 

weight from the measurements. A plexiglass safety shield was installed between the 

vehicle and operators, and an ethernet data cable was run around the shield to the 

operation computer. The method of thrust control evolved from using a simple 

potentiometer, to using both a radio control (RC) controller and the ArduPilot user 

interface (UI). 

 

 
Figure 3.15: CoaxUAV Version 1 Thrust Test 

 

 Initially both the pinion and spur gears were designed in SolidWorks then 3D 

printed. Testing resulted in catastrophic gear failure due to friction and overheating. This 

failure can be seen in the thrust and torque data as sudden drops in thrust and an 
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increased torque. Friction between the gears created excessive heat, melting the pinion 

gear. The spur gear stayed intact due to its larger circumference allowing more time for 

cooling. 

 

  
Figure 3.16: CoaxUAV Version 1 Gear Melt 

 

Initial testing resulted in a peak thrust of 8.1 Newtons before the gear melted. 
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Figure 3.17: CoaxUAV Version 1 Gear Melt Data 

 

 The pinion was replaced with a metal gear, and the meshing of metal and PLA 

plastic gears was tested. The vehicle experienced a high degree of vibration, observed 

visually and audibly, and the plastic spur gear experienced deformation. Both results 

were mostly likely due to imperfect gear meshing, which points to inefficiencies and a 

loss of potential thrust. 

  
Figure 3.18: CoaxUAV Version 1 Gear Meshing 
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 Due to the high vibrations during testing one of the rotor blades failed, the motor 

housing began to fail, and the motor housing and gimbal bolts started to loosen. A stress 

analysis was conducted and found the rotor failure point had experience approximately 

0.45 Mpa of static stress. The material datasheet for PLA gives an ultimate tensile 

strength of around 26 Mpa, but due to the nature of being 3D printed, this value is 

unreliable. It is concluded that the vibrations drastically increased the momentary stress 

on the failure point. For calculations, see Appendix B. Loctite was used on future 

assemblies to stop bolts from loosening.  

 

  
Figure 3.19: Rotor Failure Point 

 

 Following results from initial testing, an updated and improved version of the 

vehicle was developed, called CoaxUAV Version 2. The metal pinion gears were kept, 

but the spur gears were changed to off-the-shelf acetal plastic gears, designed with the 

same gear pitch as the metal pinion gears. These spur gears did require some machining 

to allow the bearings and center shaft to fit. The motor housing was re-designed to add 

rigidity, eliminating the more fragile components. Ease of installing the motors was also 

considered. The new motor housing design reduced the number of parts from 18 to 12, as 

well as increasing the internal conduit diameter from 8mm to 13mm to allow for easier 

wire installation. The motors and electronic speed controllers (ESCs) were changed for 

more modern and higher performance models. The maximum motor amperage rating was 

upgraded from 11.5A to 43A and the ESC current rating was changed from 20A to 35A. 
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The propellers were also changed from flexible plastic to carbon fiber with a slightly 

larger pitch. A magnetic encoder was also introduced to the motor housing to record rotor 

speed onboard the vehicle. 

 

  
Figure 3.20: Updated Motor Mount with Rotor Speed Encoder 

 

 

  
Figure 3.21: CoaxUAV Version 2 CAD and on Test Stand 

 

 The CoaxUAV Version 2 testing included gathering total thrust, torque and rotor 

speed data using an Arduino Uno. The RC input signals, power consumption, amperage 
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draw, and voltage of the battery were all recorded using the onboard Navigator flight 

controller running ArduPilot. This data was then used to develop accurate transfer 

functions relating these system variables. 

 

 
Figure 3.22: Thrust and Rotor Speed Model Estimation Data  

 

 
Figure 3.23: Thrust and Rotor Speed Model Validation Data  

 

 The physical measurements were taken from the final CoaxUAV prototype for 

input into the mathematical dynamics model. Measurements are summed up in Table 3.1. 
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Figure 3.24: CoaxUAV Version 2 Servo Angle and Center of Mass Distance, d 

 

Table 3.1 

CoaxUAV v2 Physical Measurements 

Description Value 

Total Mass 0.902 kg 

Mass Moment of Inertia 0.00856 kg m^2 

Physical Dimensions Height = 0.355m    d = 0.14m 

Max Servo Angle 14 degrees 

Propellers Diameter: 15.5”   Pitch: 5.5” 

 

 The mass moment of inertia was measured experimentally using the pendulum 

method. This involves suspending the vehicle from two lines and inducing a gentle 

oscillation. By measuring the oscillation period, the moment of inertia can be found. [36] 

Flight testing was conducted, confirming the vehicle’s ability to provide the 

required thrust for flight. These tests also verified the hardware was robust enough to 

survive ascent, descent, and hovering conditions. During testing the vehicle was 

constrained to a single DOF along the z axis. This was accomplished by attaching a 40lb 
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rated nylon line to the table, running it through the center of the vehicle, and securing it 

to the ceiling. The line constrained translational motion, while the RJ45 data cable 

provided enough resistance to constrain minimal rotational motion around the z-axis.   

 

 
Figure 3.25: CoaxUAV v2 Flight Test 

 

 Altitude data was recorded using the HC-SR04 ultrasonic range sensor connected 

to an Arduino.  

 

3.4.3 Data Collection Devices 

Two instruments were used for measuring rotor speeds. The AS5600 magnetic 

rotary position sensor and a handheld laser tachometer. The laser tachometer was used 

initially as a calibration reference. The AS5600 was mounted to the vehicle, so was used 

more extensively.  
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Figure 3.26: AS5600 Rotor Encoder and Laser Tachometer 

 

The constant signal error in the AS5600 sensor was analyzed and compared to the 

laser tachometer reading. During constant rotor speed, the encoder produced a range of 

values between 654 and 775 RPM, with an average speed of 713 RPM. The laser 

tachometer measured a constant 685 RPM. This is a 28 RPM discrepancy, or 

approximately 4% error. At higher rotor speeds, the discrepancy between the two sensors 

was similar, which resulted in lowering the error to around 1% at 2500 RPM. 

 

 
Figure 3.27: Rotor Speed Encoder and Laser Tachometer Data 

 

Unlike the laser tachometer, the AS5600 allowed for data logging over time. 

While logging rotor speed, aliasing occurs in the data at speeds above 3000 RPM. This is 

a result of the sampling speed reaching the Nyquist frequency limit. At 3000 RPM, there 
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is approximately 20 ms per revolution. The Arduino’s serial output was at 420Hz (2.4 

ms/data point). Because the 2.4 ms serial output is well below 20 ms revolution time, the 

aliasing mostly likely was occurring between the sensor and the Arduino. 

 

 

 
Figure 3.28: RPM Data Aliasing 

 

 The thrust test stand was composed of two load cells, attached to conversion 

modules. One measuring thrust and one measuring torque, with max weight capacities of 

10kg and 500g respectively.  

 

 
Figure 3.29: Strain Gauge Load Cell 



 

46 
 

4 Results and Analysis 

 

4.1 Controller Results 

 The CoaxUAV dynamics model was first tested by manually flying it in a 

simulation using a USB gaming controller. This involved mapping the input signals to the 

correct outputs. Next the state feedback controller was implemented. The following 

controller is used throughout these results: 

𝐾𝐾 = � −2.11 −3.71 2.593 3.061 −21.088 −3.851
−0.007 −0.016 0 0 −0.13 −0.048� 

4.1 

with system eigenvalues of: 

�̅�𝜆 = [−1.5 −1.6 −1.7 −1.8 −1.9 −2.0] 4.2 

The final states of the vehicle were set to 8 meters to the right, 7 meters up. 

𝑋𝑋�𝑓𝑓𝑑𝑑𝑛𝑛𝑔𝑔𝑙𝑙 =

⎩
⎪
⎨

⎪
⎧
𝑥𝑥
�̇�𝑥
𝑦𝑦
�̇�𝑦
𝜃𝜃
�̇�𝜃⎭
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⎬

⎪
⎫

=

⎩
⎪
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⎪
⎧

8
0
7
0
0
0⎭
⎪
⎬

⎪
⎫

 4.3 

The results show the vehicle adjusting the thrust and vector angle and moving to the 

desired final states: 

 

 
Figure 4.1: State Response of Vehicle in Simulation 
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Visualizing the physical vehicle over time: 

Figure 4.2: Vehicle Simulation at 1sec, 3sec, and 7sec 

Translational and rotational disturbance forces were used to test the controller’s 

response. Figure 4.3 shows the vehicle subjected to a constant wind force of 0.9 Newtons 

and two wind gusts of 14 Newtons. The first gust is angled 45 degrees up and to the left, 

the second gust is angled 45 degrees down and to the left. The final desired states are x = 

8m and y = 7m. 

Figure 4.3: State Response of Vehicle with Wind Force 
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Visualizing the vehicle responding to wind gusts: 

   
Figure 4.4: Vehicle Simulation at 10sec, 13sec and 23sec 

 

 The limits of the controller was determined by applying an x-direction force of 

varying magnitude and duration. The edge of the controller’s ability to stabilize the 

vehicle was recorded and the parameters were plotted. Figure 4.7 can be repeated for 

different controller gains and used to qualify the best controller for certain applications. 

The curve resembles a reciprocal function, where the allowable applied force is very 

large for very sort times periods. Some examples of this force are gusts of wind or 

applied energy from physical impacts. 

 

 
Figure 4.5: Vehicle Successful Recovery from 74 N x-direction Force for 0.5 seconds 
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Figure 4.6: Vehicle Unsuccessful Recovery from 75 N x-direction Force for 0.5 seconds 

 

 
Figure 4.7: Controllers Recovery Limit to an Applied Force in the x-direction 

 

 The vehicle simulation was also subjected to torsional disturbance forces and the 

results were analyzed. The parameters in this case were the torque magnitude in Nm and 

the amount of time it was applied. The limits of the controller’s ability to stabilize the 

vehicle were plotted, Figure 4.10. This curve also resembles a reciprocal function and for 

short time periods the controller can handle a large, applied torque. A real application of 

this force could include circular wind gusts, or the reaction to onboard servos such as 

gimbaling a camera. 
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Figure 4.8: Vehicle Successful Recovery from 0.015Nm Torque for 0.3seconds 

 

 

 
Figure 4.9: Vehicle Unsuccessful Recovery from 0.016Nm Torque for 0.3seconds 
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Figure 4.10: Controllers Recovery Limit to an Applied Torque 

 

 
Figure 4.11: System Thrust and Servo Inputs during Successful Recovery from Torque 

Disturbance 

 

 The majority of analysis done in this research was conducted using a single 

feedback controller gain matrix, Equation 4.1. The matrix had reasonable response 

characteristics but could be further optimized, depending on the UAV’s use case. If 
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smooth flight is required for optical sensors, or videography, the translational 

acceleration would need to be minimized, while maximizing the controller’s ability to 

stabilize from disturbances. The hardware design could be incorporated into this 

optimization cycle as well, where increased thrust capability, adding extra weight, would 

be considered while designing the controller to achieve rejection of expected 

disturbances. Further work could use the above methodology to measure the responses to 

external forces and torques for many different controllers. Plotting these controller gains 

on the same plot, such as in Figure 4.7 and Figure 4.10, would allow for a specific 

controller to be selected based on desirable response traits such as stability with high 

amplitude vs. long duration disturbance. 
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4.2 Thrust Model and Data 

The results from comparing the theoretical disc actuator thrust model and data from 

hardware testing are shown in Figure 4.12. The single and coaxial propeller models come 

from Equations 3.19 and 3.21. 

 

 
Figure 4.12: Theoretical and Actual Thrust Curves 

 

With the new thrust model, Equation 3.25, the average residual dropped to 0.02 Newtons. 

Figure 4.13 shows the updated model plotted with the actual thrust data. 

 

 
Figure 4.13: Updated Thrust Model and Test Data 
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The system identification approach is used to find a transfer function that best 

describes the relationship between rotor speed and thrust, as given by testing data. Both 

the model estimate data and the validation data are uploaded into the MATLAB System 

ID toolbox, shown in Figure 3.10. 

Figure 4.14 compares the transfer functions outputs, in color, to the model 

estimate data output in black. 

 

 

 
Figure 4.14: Transfer Functions Fit Compared to Model Estimate Data 
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Comparing these same transfer function outputs to the validation data: 

 

 
Figure 4.15: Transfer Functions Fit Compared to Validation Data 

 

The transfer function models fits are shown in Table 4.1. 

 

Table 4.1 

System Identification Transfer Function Fit 

Transfer Function Estimate Fit Validation Fit 

1 pole 0 zero 59.0 % 27.6 % 

1 pole 1 zero 38.2 % 21.0 % 

2 pole 2 zero 68.7 % 55.7 % 

3 pole 2 zero 84.8 % 47.0 % 

3 pole 3 zero 86.8 % 38.1 % 

4 pole 4 zero 87.9 % 50.2 % 

5 pole 4 zero 81.0 % 84.1 % 

5 pole 5 zero 88.3 % 80.3 % 

6 pole 6 zero 86.4 % 58.2 % 

7 pole 7 zero 62.3 % 68.5 % 
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The best fit transfer function has 5 poles and 4 zeros: 

𝐻𝐻(𝑠𝑠) =
3.668𝐸𝐸 − 4𝑠𝑠4 + 6.495𝐸𝐸 − 6𝑠𝑠3 + 4.147𝐸𝐸 − 8𝑠𝑠2 + 4.3𝐸𝐸 − 10𝑠𝑠 + 1.7𝐸𝐸 − 12
𝑠𝑠5 + 0.2031𝑠𝑠4 + 0.0034𝑠𝑠3 + 2.753𝐸𝐸 − 5𝑠𝑠2 + 1.176𝐸𝐸 − 7𝑠𝑠 + 7.15𝐸𝐸 − 10

 4.4 

The poles and zeros plot for the best fit transfer function: 

 
Figure 4.16: Best Fit Transfer Function Poles and Zeros Plot 

 

Isolating the best fit transfer function response on validation data: 

 
Figure 4.17: Best Fit Transfer Function on Validation Data 
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4.3 Hardware Design and Testing 

A hardware prototype was designed and manufactured using rapid prototyping 

technology. Fused deposition modeling (FDM) 3D printing was chosen due to its low 

cost and ease of accessibility. The total cost for the final prototype’s hardware 

components, not including development cost, was $958. This figure could be drastically 

decreased if moving toward a production unit. Two versions of the CoaxUAV were 

designed and constructed. Version 2 resulted in a 221% increase in thrust and decreases 

in vibrations and sound. During testing the vehicle produced a peak of 18.2 Newtons, 

slightly over twice the force of gravity acting on the vehicle. Comparisons between the 

CoaxUAV Version 1 and Version 2 are made in Table 4.2 and Table 4.3 

Figure 4.18: CoaxUAV Version 1 and Version 2 
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Table 4.2 

CoaxUAV Version 1 and Version 2 Hardware 

Description Version 1 Version 2 

(2) Brushless DC Motors Hobbymate 2204-2300KV Emax ECOII 2207-2400KV 

(2) ESCs Favourite Little Bee 20A AIKON AK32 35A 

(1) Flight Controller Navigator by Blue Robotics Navigator by Blue Robotics 

(1) Battery Tattu 1300 mAh 3S Tattu 1300 mAh 3S 

(2) Servos SG90 Micro Servos EMAX ES08MA II 

(1) Radio Receiver Frsky X4R FrSky XM+ 

(4) Propellers Plastic, unknown Carbon Fiber, 5.5 in pitch  

 

Table 4.3 

CoaxUAV Version 1 and Version 2 Performance 

Category Version 1 Version 2 

Max Thrust 8.2 Newtons 18.1 Newtons 

Weight 770 grams 902 grams 

Thrust to Weight 1.08 2.04 

Flight Test No Yes 

 

 Using the simple cylinder model, the moment of inertia was estimated to be 

𝐼𝐼𝑚𝑚𝑡𝑡𝑑𝑑𝑝𝑝𝑙𝑙 = 0.0075 𝑘𝑘𝑘𝑘 ∙ 𝑚𝑚2. The measured moment of inertia for the vehicle was 𝐼𝐼𝑔𝑔𝑑𝑑𝑖𝑖𝑟𝑟𝑔𝑔𝑙𝑙 =

0.00856 𝑘𝑘𝑘𝑘 ∙ 𝑚𝑚2. The accuracy of the model was surprising, considering its simplicity. 

Flight test altitude data was recorded using an ultrasonic range sensor. Error is introduced 

into the data due to the sensors wide field of view, encompassing the bottom of the 

vehicle, the propellers. and the ceiling. A clear trajectory can be seen in the data, 

representing the bottom of the vehicle’s altitude over time. 
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Figure 4.19: Flight Test Altitude Data 

 

 
Figure 4.20: CoaxUAV Thrust Testing Data 
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At peak thrust, the vehicle was consuming 471 watts of energy, 44 Amps at 

approximately 10.7 Volts. 

 
Figure 4.21: CoaxUAV Version 2 Power Consumption 

 

 At peak power, the ESC temperatures were in danger of melting the thermoplastic 

motor housing. To help alleviate this problem, large aluminum heat sinks were attached 

to the top of each ESC. 

 
Figure 4.22: ESC Heat Sink 
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5 Conclusions and Recommendations 

 

5.1 Dynamics Model and Controller 

The initial dynamics modeling revealed that the application of a servo torque 

induces distinct rotation angles in both the upper and lower bodies. To establish their 

relationship, a rotation matrix was required. This difference in angles arises from the 

vertical alignment of the two mass centers due to gravity, and the difference in physical 

geometry of the two bodies. The sign of related angels also had to be considered 

carefully, especially for controller implementation, as a clockwise servo angle resulted in 

a counterclockwise gyroscope angle. The non-linear EOM were solved using both 

MATLAB and Simulink, but Simulink was ultimately chosen so the controllers block 

diagrams could be visualized.  

Initial testing of the CoaxUAV dynamics model was done by manually 

controlling the simulation with a USB gaming controller. This was extremely helpful in 

troubleshooting issues with the model, as the system inputs were then known, and the 

simulation physics could be observed, as well as giving a better understanding of the 

system as a whole. This process revealed the lack of a ground normal force in the original 

model, as gravity would pull the vehicle below the inertial reference plane. It also 

clarified the need to limit the input values to the simulated system. The CoaxUAV has a 

max thrust of 18N and servo tilt angle of 14 degrees, so the model was constrained to fit 

these parameters. Future work should adjust these constraints to match the hardware. 

Testing of the state feedback controller first involved providing desired setpoints in 

2D space and observing the vehicle response. Later the limits of the controller were 

tested by adding translational and rotational disturbance forces. With no disturbances the 

controller responded exceptionally well, adjusting the thrust and servo angle to guide the 

vehicle to the desired final states. With the forces introduced, limits to the controller’s 

authority were found. In hover, a purely horizontal or rotational force was imparted on 

the vehicle and the state response was recorded. In this study, successful controller 

authority meant the vehicle didn’t touch the ground. This result was dependent on 

multiple factors, including the vehicles parameters, controller gain K, the magnitude and 

duration of the force, and the hover altitude. By holding most of these parameters 
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constant, the magnitude and duration of the forces were plotted for a single controller 

gain, shown in Figure 4.7 and Figure 4.10. These plots are a valuable result, as they show 

the maximum disturbance forces that the current controller gain can compensate for. This 

research could be further expanded upon by running the same tests on other controller 

gains and comparing. This could be taken even further by relating the system’s response 

to changing specific eigenvalues of the system.  

This research could hold implications in stabilizing drones in windy environments, 

or during physical bombardments, such as rain. By mapping out responses for different 

controller gains, an environment specific controller can be quickly selected and 

implemented. 

 

5.2 Thrust Model 

Reviewing the thrust model and data, the actual vehicle thrust values fall below 

both the single and coaxial theoretical model values. This was an expected outcome as 

the model had idealized performance assumptions that fall short of reality. Bernoulli’s 

energy Equation, 2.4, doesn’t account for the energy loss due to turbulence, and assumes 

there is no interaction across the streamline boundary. While in fact the coaxial system 

generates substantial fluid turbulence, especially regarding rotor interaction and wingtip 

vortices. Equation 3.21 assumes both propellers generate the same amount of thrust, 

which would require more testing to validate. Finally, Equation 2.5 assumes the fluids 

free stream and exit densities are equal. With these assumptions stacking up, it’s not 

surprising that the actual thrust performance is substantially lower than the idealized 

model. 

The revised model accurately predicts thrust within the rotor speed range of 0 to 

4000 rpm. According to the model's predictions, the vehicle's maximum thrust of 18 

Newtons aligns with a rotor speed of nearly 4400 rpm, although due to encoder data 

aliasing the actual rotor speed could not be accurately recorded above 3000 rpm. This 

indicates that approximately 90% of the model's operational range has been validated, 

including hover scenarios at approximately 3000 rpm. Future analysis of this updated 

model could include testing higher rotor speeds, as well as realizing the effects of varying 
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model parameters. Comparisons should be made between the updated model and 

hardware testing data while changing the disc area, blade pitch, and fluid density values. 

While using the system identification approach, Figure 4.14 and Figure 4.15 show 

the importance of using validation data in finding the most accurate system 

representation. Figure 4.14 shows that five of the transfer function outputs fit the model 

estimate data within 80%. When comparing their outputs to the validation data in Figure 

4.15,  only two of these models were above an 80% fit. This result is due to overfitting of 

certain models to the estimate data. 

The best transfer function resulted in 84.12% fit. This is an impressive result, 

considering the aliasing noise in the rotor speed data. At rotor speeds above 3000 rpm, 

the data recording rate fell below the Nyquist limit, resulting in inaccurate and sporadic 

data, see Figure 3.23: . Future improvements in this model would involve taking new 

thrust data at a sampling frequency that will avoid aliasing. 

Figure 4.16 shows the poles and zeros plot for this transfer function. All the poles 

are negative, meaning the system is stable. The makes sense, because there are no input 

rotor speeds which will result in the thrust values increasing unbounded. 

Using this method of system identification, many relationships within this system 

can be modeled using a transfer function. Other potentially useful models that can be 

developed using this technique include RC input signal to thrust output, and rotor speed 

to power draw. With a flying prototype, flight acceleration data could be recorded, and 

system identification could be used to develop transfer functions relating controller 

signals to vehicle motion in each DOF. This approach reduces the complexity of motion 

analysis as each DOF is considered an independent SISO system. These models could be 

used to increase the accuracy of the theoretical EOM that were previously developed. 

With better models, the controller could also be improved. 

 

5.3 Hardware Prototype 

The hardware prototype was successfully flown, while constraining it to just 

vertical motion. This result proved that this coaxial UAV design could be manufactured 

using mostly 3D printed material and provide the required thrust for flight. The next large 

milestone for the hardware prototype would be unconstrained, controlled flight. Steps to 
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this goal would involve using the ArduCopter coaxial flight software to attempt RC and 

waypoint flight. The state controller developed in this paper could also be validated by 

writing it in C++ and implementing directly onto the flight controller hardware for 

autonomous flight testing. 
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Appendix A 
Simulink Models 

 

 
Coaxial UAV Simulink Non-Linear EOM 

State Feedback Controller with Input Limitations and Wind Disturbances 
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Appendix B 
Rotor Failure Stress Analysis 

 
The rotor conditions at failure: 
Rotor speed = 2,500 rpm, velocity = 12 m/s 
Mass of the tip plus blade = 4 grams (0.004 kg) 
Calculating the centripetal force: 

𝐹𝐹𝑑𝑑𝑝𝑝𝑛𝑛𝑖𝑖𝑟𝑟𝑑𝑑𝑝𝑝𝑑𝑑𝑖𝑖𝑔𝑔𝑙𝑙 =
𝑚𝑚𝑣𝑣2

𝑟𝑟 =
(0.004 𝑘𝑘𝑘𝑘)(12 𝑚𝑚/𝑠𝑠)2

0.046 𝑚𝑚 = 12.5 𝑁𝑁 
 
The cross-sectional area that failed:  

𝐴𝐴𝑑𝑑𝑟𝑟𝑡𝑡𝑑𝑑𝑑𝑑−𝑑𝑑𝑝𝑝𝑑𝑑𝑖𝑖𝑑𝑑𝑡𝑡𝑛𝑛 = 2.8E− 5 𝑚𝑚2 
The failure stress is then calculated: 

𝜎𝜎𝑓𝑓𝑔𝑔𝑑𝑑𝑙𝑙𝑟𝑟𝑟𝑟𝑝𝑝 =
𝐹𝐹
𝐴𝐴 =

12.5 𝑁𝑁
2.8𝑥𝑥10−5 𝑚𝑚2

= 446 𝑘𝑘𝑃𝑃𝑃𝑃 = 0.45 𝑀𝑀𝑃𝑃𝑃𝑃 
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Appendix C 
MATLAB Script 

 
Simulink Model MATLAB Script 
m1 = 0.3; % upper mass (kg) 
m2 = 0.6; % lower mass (kg) 
L1 = 0.05; % (m) 
L3 = 0.1; % (m) 
g = 9.81; % gravitational constant 
m = m1 + m2; 
d = 0.14; % Torque distance. Distance from center of mass to thrust torque. 
radius = 0.03; 
height = 0.32; % drone height in meters 
d1 = (m2/m)*(L1+L3); % distance from m1 to drone center of mass 
d2 = (m1/m)*(L1+L3); % distance from m2 to drone center of mass 
di = radius*2; % drone diameter in meters 
I = 0.00856; % Mass Moment of Inertia - Experimental Data 
Fg1 = m1*g; % upper mass gravitational force (N) 
Fg2 = m2*g; % lower mass gravitational force (N) 
 
A = [0 1 0 0 0 0; 
    0 0 0 0 g 0; 
    0 0 0 1 0 0; 
    0 0 0 0 0 0; 
    0 0 0 0 0 1; 
    0 0 0 0 0 0]; 
B = [0 0; 
    0 -g; 
    0 0; 
    1/m 0; 
    0 0; 
    0 -(g*m*d)/I]; 
C = eye(6); 
D = [0 0; 
    0 0; 
    0 0; 
    0 0; 
    0 0; 
    0 0]; 
 
eig(A); 
rank(ctrb(A,B)) 
 
eigVals = [-1.5 -1.6 -1.7 -1.8 -1.9 -2.0]; 
K_place = place(A,B,eigVals); 
xf = [-8; 0; 7; 0; 0; 0]; % desired end conditions 
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