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Abstract 
The construction of gene regulatory networks (GRNs) is vital for understanding the 

regulation of metabolic pathways, biological processes, and complex traits during plant 

growth and responses to environmental cues and stresses. The increasing availability of 

public databases has facilitated the development of numerous methods for inferring gene 

regulatory relationships between transcription factors and their targets. However, there is 

limited research on supervised learning techniques that utilize available regulatory 

relationships of plant species in public databases. 

This study investigates the potential of machine learning (ML), deep learning (DL), 

and hybrid approaches for constructing GRNs in plant species, specifically Arabidopsis 

thaliana, poplar, and maize. Challenges arise due to limited training data for gene 

regulatory pairs, especially in less-studied species such as poplar and maize. Nonetheless, 

our results demonstrate that hybrid models integrating ML and artificial neural network 

(ANN) techniques significantly outperformed traditional methods in predicting gene 

regulatory relationships. The best-performing hybrid models achieved over 95% accuracy 

on holdout test datasets, surpassing traditional ML and ANN models and also showed good 

accuracy on lignin biosynthesis pathway analysis. 

Employing transfer learning techniques, this study has also successfully transferred 

the known knowledge of gene regulation from one species to another, substantially 

improving performance and manifesting the viability of cross-species learning using deep 

learning-based approaches. This study contributes to the methodology for growing body of 

knowledge in GRN prediction and construction for plant species, highlighting the value of 



x 

adopting hybrid models and transfer learning techniques. This study and the results will 

help to pave a way for future research on how to learn from known to unknown and will 

be conductive to the advance of modern genomics and bioinformatics.  
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1 Introduction 
A gene regulatory network (GRN) is a bipartite directional graph which depicts 

connections between regulators and their target genes. “Regulators” generally refers to 

components such as transcription factors (TFs) that regulate gene expression. “Target 

genes” generally refers to genes with non-regulatory functions, like structural genes, 

pathway genes, and signaling genes, as well as genes with regulatory functions such as 

TFs. A connection in a GRN, also known as an edge, represents the regulatory relationship 

between a regulator and a target gene. Regulators play important roles because their target 

genes may be involved in many metabolic pathways and biological processes that are the 

basis for the growth and development of organisms. A GRN is directional since regulators 

control target genes, but not the other way around. 

In plants, GRNs are built to understand how different metabolic pathways, biological 

processes, and complex traits are regulated during growth and their role in responses to 

various environmental cues. Though GRNs can be constructed through conventional 

experimental approaches, including DNA electrophoretic mobility shift assay (EMSA) 

(Hellman and Fried 2007), a yeast one hybrid assay(Wilson et al. 1991), chromatin 

immunoprecipitation (ChIP) and DNA-sequencing (ChIP-seq) (Robertson et al. 2007), and 

DNA affinity purification and sequencing (DAP-seq) (Bartlett et al. 2017), these 

approaches are labor intensive and time consuming. As a result, the regulatory relationships 

inferred by such approaches are limited to a small number of genes. In contrast, techniques 

such as microarray and RNA-seq can generate terabytes of transcriptomic data for inferring 

gene networks. To leverage such readily available open-source gene transcriptome data, 

various algorithms and data analysis tools have been developed to construct GRNs. 
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2 Related Work 
The approach to analyzing transcriptomic data depends on the nature of the data and 

the method used to generate it. Initially, transcriptomic data was generated mainly from 

single-celled organisms such as yeast or bacteria. These small organisms allowed 

researchers to produce time-course data in closely spaced intervals. This temporal data 

allowed for the effective use of dynamic algorithms such as finite state(Ruklisa, Brazma, 

and Viksna 2005) and dynamic Bayesian networks (Dojer et al. 2006), which require time-

series data with small intervals to be able to successfully predict gene regulatory 

relationships. In contrast, it is complicated and difficult to generate time-course 

transcriptomic data (especially with small time intervals) from multicellular organisms 

such as plants and animals due to the time-consuming harvesting processes involved. As a 

result, most transcriptomic data from plants and animals is static data, produced from either 

a small-scale treatment versus control design or a time-series design with large time 

intervals (on the scale of days). A number of algorithms have been developed for the 

analysis of static data that do not rely on any temporal variables to simulate gene regulatory 

relationships. These static algorithms include Algorithm for the Reconstruction of 

Accurate Cellular Networks (ARACNE)(Margolin et al. 2006) and mutual information-

based algorithms (Butte and Kohane 2000), (Luo, Hankenson, and Woolf 2008). 

In the recent years, many algorithms have been developed and used for the 

construction of the hierarchical gene regulatory networks, such as backward elimination 

and Random Forest (BWERF) algorithm (Deng et al. 2017), Bottom-up Gaussian graphic 

Model (GGM) algorithm (Deng et al. 2017). Moreover, the algorithms that can be used to 

identify biological pathway regulators have been developed, such as TGMI (Gunasekara 
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et al. 2018) and Huber-Berhu-partial least squares (HB-PLS).  Furthermore, there are 

several methods which is capable of constructing multiple GRNs using the data from 

multiple tissues or conditions, such as JRmGRN (Deng et al. 2018) and joint graphical 

lasso using ADMM (Danaher, Wang, and Witten 2014).  

Machine Learning (ML) algorithms which learn from the available data are also used 

in modern biology and have advanced GRN predictions. A tree-based ML algorithm, 

GENIE3 (Huynh-Thu et al. 2010), has been widely used in recent GRN inference research 

and is applicable to both static and dynamic transcriptomic data. GENIE3 (Huynh-Thu et 

al. 2010) has been utilized with a number of publicly available datasets consisting of RNA-

Seq data from various parts of the plant, including leaf, shoot, seed, etc. Supervised 

machine learning methods involve learning from labeled data to make predictions or 

classifications. These methods have not been extensively explored for gene expression data 

in plant species, primarily focusing on single-cell organisms and animal species. For 

instance, supervised learning techniques, such as multiple linear regression, Support 

Vector Machine (SVM), and Decision Trees, have been employed to reconstruct the 

budding yeast cell cycle network (Jochen Supper 2007). 

Ensemble techniques, which combine multiple ML algorithms to enhance prediction 

performance, have also been used in related areas. For example, Ensemble methods for 

Gene Regulatory Networks using Topological features (EnGRNT) is an ensemble learning 

technique applied to drug design (B. Khojasteh 2021). However, research on supervised 

learning approaches for predicting GRNs using gene expression data specifically in plant 

species remains limited. 
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3 Multiple OMICS Data Collection 
Transcriptomic data from three plant species, Arabidopsis thaliana, poplar, and maize, 

were collected from the Sequence Read Archive (SRA) database, National Center for 

Biotechnology Information (NCBI). The database includes numerous species and gene 

information, including expression data, sequencing data of all the genes in the genome of 

the particular species. 

The data for Arabidopsis (Compendium Data Set 1) includes 22,093 genes and 1,253 

biological samples. The samples were collected in different RNA-seq experiments 

conducted by different data submitters. The samples were collected from multiple tissues 

such as stems, shoots, roots, leaves, etc. The transcriptome data sets of maize and poplar 

were collected in a similar way. The poplar transcriptome data (Compendium Data Set 2) 

consists of 34,699 genes and 743 biological samples. The maize transcriptome data 

(Compendium Data Set 3) consists of 39,756 genes and 1,626 biological samples. 

Table 3.1: The RNA-Seq data sets of Arabidopsis (Compendium Data Set 1), poplar 
(Compendium Data Set 2), and maize (Compendium Data Set 3) which were downloaded 

from Sequence Read Archive(SRA), NCBI ( https://www.ncbi.nlm.nih.gov/sra). 

  Arabidopsis  
(Compendium Data Set 1) 

Poplar  
(Compendium Data Set 2) 

Maize  
(Compendium Data Set 3) 

Number of 
Genes 22,093 34,699 39,756 

Expression 
Samples 1,253 743 1,626 
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3.1 Arabidopsis training data and testing data 
The following section explains the process of extracting training data for Arabidopsis 

and the collection of the Transcriptomic Test Data Sets. The first part discusses the 

training data, and the second part discusses the testing data. 

3.1.1 Arabidopsis training data 
The 1,253 Arabidopsis RNA-seq transcriptomic data sets were downloaded from the 

Sequence Read Archive (SRA), NCBI database (Compendium Data Set 1) and processed 

as follows: Adaptor sequences and low-quality bases of raw reads were trimmed by 

Trimmomatic (version 0.38) (Bolger, Lohse, and Usadel 2014), a software developed for 

removing adapter sequences and also for filtering low quality reads. After trimming the 

sequence based on the sliding window, the cleaned reads are more effective for further 

analysis. Trimmed reads were aligned to the Arabidopsis TAIR10 reference genome using 

STAR (2.7.3a) (Dobin et al. 2013). Uniquely mapped reads were used for counting reads 

per gene.  

Raw counts were normalized with the weighted trimmed mean of M-values (TMM) 

algorithm contained in edgeR (Robinson, McCarthy, and Smyth 2010). After the 

preprocessing described above, Compendium Data Set 1 consisted of 1,253 samples, as 

shown in Table 3.1. To obtain the training data set from Compendium Data Set 1, the 1,231 

pairs of positive regulatory relationships proven by experimental validation were extracted 

from the regulatory relationships curated in the Arabidopsis Gene Regulatory Information 

Server (AGRIS) database (Yilmaz et al. 2011). In addition, 1,231 pairs of putative negative 

gene pairs were obtained by randomly combining the TFs from the positive regulatory 
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relationships with other genes in the genome. If a combination was coincidently a positive 

pair, it was discarded until a total of 1,231 pairs of negative regulatory relationships of 

genes were obtained. Combinations of positive and negative pairs and their expression 

values across 1,253 samples in Compendium Data Set 1 resulted in a data matrix with 2,462 

rows × 2,511 columns. In this data matrix, five columns are related to the TF gene id and 

target gene id along with the true label for the data, and the other columns denote the RNA-

seq data for a sample; each row denotes the transcriptomic data of 1,253 samples of TF and 

target genes. The TFs and targets are juxtaposed in the data set; therefore, the first half of 

the columns denotes the TF and the other half denotes the target genes. 

Table 3.2: Arabidopsis training data set. The positive regulatory relationships of the 
1,231 pairs shown in this table were downloaded from the Arabidopsis Gene Regulatory 

Information Server (AGRIS) database (Yilmaz et al. 2011). The negative regulatory 
relationships of the 1,231 pairs shown in this table were a random combination of genes 
that are not shown as positive regulatory relationships in AGRIS. The gene expression 
data (RNA-seq) used was from 1,253 multi-tissue samples of Arabidopsis downloaded 
from the Sequence Read Archive (SRA), NCBI database (referred to as Compendium 

Data Set 1 in this Report). 
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In Table 3.2, the overall layout of the training data with positive and negative 

relationships is evident. When the genes in this training data set are examined, there are 

432 unique TF genes in the data, 1,833 unique target genes, and 79 of the genes are both 

TFs as well as target genes. These complex relationships can be visualized as shown in 

Figure 3.1, where green nodes denote target genes, red nodes denote TF genes, and blue 

nodes are TFs that are also regulated by other TFs. The network is largely a scale-free gene 

regulatory network (GRN) that has been observed in many species (Dewey GT 2000-

2013). 
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Figure 3.1: Gene regulatory network (GRN) that represents the Arabidopsis training data, 
also referred to as Transcriptomic Training Data Set 1. Green nodes denote the target 
genes, red nodes denote the regulators, and blue nodes are transcription factors (TFs) that 
are regulated by other TFs. Note that only positive regulatory relationships are shown. 

3.1.2 Arabidopsis testing data 
In this report, two testing data for Arabidopsis species were used.  Arabidopsis 

Transcriptomic Test Data Set 1, Arabidopsis Transcriptomic Test Data Set 2.  

Arabidopsis Transcriptomic Test Data Set 1 consists of genes associated with the 

lignin biosynthesis pathway (LBP) (Boerjan, Ralph, and Baucher 2003), a metabolic 

pathway involved in plant growth and development through the production of lignin, a 

major component of the cell wall. LBP genes include a few dozen genes whose proteins 

function as enzymes to catalyze a series of biochemical reactions that lead to the synthesis 

of three monolignols, p-coumaryl alcohol, coniferyl alcohol, and sinapyl alcohol, which 

are then polymerized by laccases. LBP genes include phenylalanine ammonia-lyase (PAL), 

cinnamate 4-hydroxylase (C4H), coumaroyl-CoA ligase (4CL), 

hydroxycinnamoyltransferase (HCT), caffeoyl-CoA O-methyltransferase (CCoAOMT), p-

coumarate 3-hydroxylase (C3H), ferulate 5-hydroxylase (F5H), caffeic acid O-
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methyltransferase (COMT), cinnamyl alcohol dehydrogenase(CAD), laccase (LAC), 

cinnamoyl-CoA reductase (CCR), and peroxidase (POD). To identify potential regulatory 

genes of LBP, 1,415 unique TFs were collected from the AGRIS (Yilmaz et al. 2011). The 

TFs are paired with 20 target genes from the lignin pathway which resulted in 28,300 pairs 

for Arabidopsis Transcriptomic Test Data Set 1. The expression data of 28,300 pairs were 

extracted from Compendium Data Set 1 with 1,253 samples. 

Arabidopsis Transcriptomic Test Data Set 2 incorporates data from Taylor-Teeples's 

Supplementary Table 2  (Taylor-Teeples et al. 2015). This data set comprises 199 

transcription factors (TFs) and 35 target genes, with 582 regulatory pairs which are 

considered as true regulatory relationships because they were validated by using Yeast One 

Hybrid System (Bulyk et al. 1999). These relationships were confirmed through functional 

enrichment analysis and comparison with existing literature. Furthermore, a negative 

testing data set was generated by randomly pairing genes that were not identified as 

positive regulatory pairs in the AGRIS (Yilmaz et al. 2011). The 582 positive regulatory 

pairs were combined with 582 randomly generated negative pairs, resulting in a total of 

1,164 regulatory pairs in Arabidopsis Transcriptomic Test Data Set 2. Expression data for 

these 1,164 pairs were extracted from Compendium Data Set 1, which contains 1,253 

samples. 

3.2 Poplar training data and testing data 
The following section explains the process of extracting training data for the poplar 

species and the collection of the Transcriptomic Test Data Sets. The first part discusses 

the training data, and the second part discusses the testing data. 



10 

3.2.1 Poplar training data 
The RNA-seq transcriptomic data sets from 743 samples were downloaded from the 

Sequence Read Archive (SRA), NCBI database  and processed as described for 

Arabidopsis. Trimmed reads were aligned to the poplar reference genome using STAR 

(2.7.3a). Uniquely mapped reads were used for counting reads per gene. 

The raw counts were normalized with weighted trimmed mean of M-values (TMM) 

algorithm contained in edgeR (Robinson, McCarthy, and Smyth 2010). After above 

preprocessing, I eventually obtained a compendium data set, referred to as Compendium 

Data Set 2, which contains 743 samples, as shown in Table 3.1.  The 2,107 pairs of TFs 

and their putative targeted gene in poplar obtained by homologous mapping of Arabidopsis 

experimented verified regulatory gene pairs from the AGRIS (Yilmaz et al. 2011) 2011) 

were used as the positive training data set. Meanwhile, the 2,107 pairs of putative negative 

gene pairs were obtained by a random combination of the TFs from the positive regulatory 

to the other genes in the genome. If a combination is coincidently a positive pair, discard 

the pair until a total of 2,107 pairs of negative regulatory relationships of genes are 

obtained. Combination of positive and negative pairs and their expression values across 

743 samples in Compendium Data Set 2 result in a data matrix with 4,214 rows × 1,491 

columns. In this data matrix, 5 columns are related to the TF gene id and target gene id 

along with the true label for the data and the other columns denotes an RNA-seq data of a 

sample, and each row denotes the transcriptomic data of 743 samples of TF and Target 

genes. The TFs and targets are juxtaposed in the data set; therefore, the first half columns 

denote the TF and next half denotes the target genes. 
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Table 3.3: Poplar training data set. The positive regulatory relationships of 2,107 pairs 
shown in this table were obtained by homologous mapping of Arabidopsis regulatory 
pairs shown in Arabidopsis training data. The negative regulatory relationships of the 
2,107 pairs shown in this table were a random combination of genes not shown in the 

positive relationships. The gene expression data used was RNA-Seq data from 743 
samples downloaded from the SRA, NCBI database (Compendium Data Set 2). 

 

 
In this poplar training data set, there are 962 unique genes of which 204 genes are TFs 

and 47 genes are both TFs as well as target genes. These complex relations can be 

visualized with the help of the graph in Figure 3.2, in which green nodes denote target 

genes, red nodes denote TF genes. The blue are the common genes which are TFs, but they 

need to be regulated by other TFs. This will make them a target for the other TFs. 

Therefore, there are complex relations in the gene regulatory networks in which the chain 

of regulation is extended several levels. 
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Figure 3.2: Gene regulatory network that represents the poplar training data. Green nodes 
denote the target genes, red nodes denote the regulators, and blue nodes are transcription 
factors (TFs) that are regulated by other TFs. Only positive regulations are shown. 

3.2.2 Poplar testing data 
The poplar Transcriptomic Test Data Set was prepared using genes related to the LBP. 

A total of 25 target genes for poplar species were identified through homologous mapping 

of Arabidopsis lignin pathway target genes, and 1,717 unique TFs were also found through 

homologous mapping of Arabidopsis TFs to poplar. Pairing 25 target genes with 1,717 

unique TFs  resulted in a total of 42,925 regulatory pairs in the poplar Transcriptomic Test 

Data Set. The gene expression data for 743 samples for the poplar Transcriptomic Test 

Data Set were extracted from the SRA database, NCBI (Compendium Data Set 2). 

3.3 Maize training and testing data 
The following section explains the process of extracting training data for the maize 

species and the collection of the Transcriptomic Test Data Sets. The first part discusses the 

training data, and the second part discusses the testing data. 

3.3.1 Maize training data 
The maize training data consists of 1,626 B73 maize paired-end RNA-Seq data from 

diverse tissues and treatments that were collected from the NCBI Sequence Read Archive 
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(SRA) database. The software Trimmomatic (version 0.38) (Bolger, Lohse, and Usadel 

2014) was used to trim the adaptor sequences and low-quality bases of raw reads. 

Remaining paired-end reads were aligned to the B73 maize reference genome (B73Ref4) 

(Jiao et al. 2017) using STAR (version 2.6.0) (Dobin et al. 2013). Raw read counts per gene 

were calculated by STAR and then normalized by the library sizes of RNA-Seq samples to 

represent gene expression, resulting in a compendium data set, hereafter referred to as 

Compendium Data Set 3.  8,450 pairs of TFs and their putative target genes in maize were 

obtained by homologous mapping of experimentally verified Arabidopsis regulatory gene 

pairs from the AGRIS (Yilmaz et al. 2011) and were used as the positive training data set 

for deep learning. 

Meanwhile, 8,450 pairs of putative negative gene pairs were obtained by randomly 

combining TFs from the positive regulatory relationships with other genes in the genome. 

If a combination was coincidently a positive pair, this pair was discarded until a total of 

8,450 pairs of negative regulatory relationships of genes were obtained. The combination 

of positive and negative pairs and their expression values across 1,626 samples in 

Compendium Data Set 3 resulted in a data matrix with 16,900 rows × 3,257 columns. In 

this data matrix, five columns are related to the TF gene id and target gene id along with 

the true label for the data and the other columns denote the RNA-seq data for a sample; 

each row denotes the transcriptomic data of 1,626 samples of TFs and target genes. TFs 

and target genes are juxtaposed in the data set; therefore, the first half of the columns 

denotes the TFs and the other half denotes the target genes. 

Table 3.4: Maize training data set. The positive regulatory relationships of 8,450 pairs 
shown in this table were obtained by homologous mapping of Arabidopsis regulatory 
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pairs shown in Arabidopsis training data. The negative regulatory relationships of the 
8,450 pairs shown in this table were a random combination of genes not found in the 
positive relationships. The gene expression data was compendium data from 1,626 

samples of B73 cultivar paired-end RNA-Seq data downloaded from the SRA, NCBI 
database (Compendium Data Set 3). 

 
In this maize training data set, there are 1598 unique genes in which 501 genes are TFs 

and 115 genes are both TFs as well as target genes. These complex relations can be 

visualized as in the graph in Figure 3.3, in which green nodes denote target genes, red 

nodes denote TF genes. The blue are the common genes which are TFs, but they need to 

be regulated by other TF. As in poplar and Arabidopsis, there are complex relations in 

GRNs in which the chain of regulation is extended to several levels.  
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Figure 3.3: Gene regulatory network that represents the maize training data. Green nodes 
denote the target genes, red nodes denote the regulators, and blue nodes are transcription 
factors (TFs) that are regulated by other TFs. Only positive regulations are shown. 

3.3.2 Maize testing data 
The maize Transcriptomic Test Data Set was prepared with genes related to the LBP. 

Homologous mapping of the Arabidopsis lignin pathway target genes in maize resulted in 

a total of 38 target genes for the maize species. Pairing these 38 target genes with 2,555 

unique TFs resulted in a total of 97,090 regulatory pairs in the maize Transcriptomic Test 

Data Set. The gene expression data of 1,626 samples for the maize Transcriptomic Test 

Data Set was extracted from Compendium Data Set 3. 

3.4 Summary of all training and testing data  
After above data collection and preprocessing,  three distinct training datasets 

corresponding to the species Arabidopsis, poplar, and maize are presented in Table 3.5. 

The testing datasets for these species can be found in Table 3.6. Table 3.5 outlines total 

data points per species, the quantity of expression samples for each gene, and the counts of 
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both positive and negative pairs for every species. In Table 3.6, the testing data is displayed, 

along with the overall number of rows and the expression samples per gene.  

Table 3.5: Distribution of Arabidopsis, poplar, and maize training data. Arabidopsis, 
poplar, and maize training data sets were extracted from Compendium Data Set 1 

(Arabidopsis), Compendium Data Set 2 (poplar), and Compendium Data Set 3 (maize) as 
shown in Table 3.1.  

Species Total 
Rows 

Expression 
Samples Positive Pairs Negative 

Pairs 
Arabidopsis Training data 2,462 1,253 1,231 1,231 
Poplar Training data 4,214 743 2,107 2,107 
Maize Training data 16,900 1,626 8,450 8,450 

 

Table 3.6: Distribution of Arabidopsis, poplar, and maize Transcriptomic Test Data Sets. 
The Transcriptomic Test Data Sets were extracted from Compendium Data Set 1 

(Arabidopsis), Compendium Data Set 2 (poplar), and Compendium Data Set 3 (maize) as 
shown in Table 3.1. 

Species Total Rows Expression 
Samples 

Arabidopsis Transcriptomic Test Data Set 1 28,300 1,253 
Arabidopsis Transcriptomic Test Data Set 2 1,164 1,253 
Poplar Transcriptomic Test Data Set 42,925 743 
Maize Transcriptomic Test Data Set 97,090 1,626 

 
3.5 Data Cleaning and Transformation 

After the data was collected, it was cleaned and transformed. Data cleaning is an 

important step in data preprocessing. The first step of data cleaning was removing 

additional columns such as gene IDs and true labels. Each data set downloaded from 

different sources had associated metadata. This metadata was removed, preserving only TF 

and target gene names and regulation information. Furthermore, the data had some missing 

values (e.g., NaN). NaN values were filled using various techniques such as Mean of the 

columns or Median of the columns. The gene data, however, was not related to the other 

rows and was truly independent of its neighbors; the NaN values in the gene expression 



17 

data were filled with 0 with the pandas fillna() function in Python. In addition, some of the 

data had redundant rows, which were removed from the data sets using the 

drop_duplicates() function from the pandas library. After the data was cleaned, it was 

normalized using the Z-score normalization technique with the help of standard scaler from 

the sklearn library. This technique transformed the data such that the mean value was 0 and 

the standard deviation of the data was 1. The same cleaning and transformation methods 

were applied to the test data sets for Arabidopsis, poplar, and maize.  

Finally, the original training data was split into two different data sets: training data 

(80%) and validation data (20%). To ensure that both training, validation, and testing data 

had equal ratios of positive and negative relationships, stratified splitting was used along 

with data shuffling. 
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4 Methods 
In this section, the methods of machine learning (ML) and deep learning that were 

employed to analyze the above gene expression data for predicting gene regulatory 

relationships and GRNs are recapitulated.  

4.1 Machine Learning Models 
 

ML models are algorithms that allow computer systems to learn and enhance their 

performance automatically by utilizing prior experience or existing data without explicit 

programming. These algorithms learn from the data on hand, recognize patterns, and make 

decisions without external input. Generally, ML models are trained on extensive data sets.  

Supervised ML models, a category of ML techniques, require each data point to have 

a specific label. In binary classification problems, the label is either true or false. 

Supervised ML models, such as Support Vector Machines, Decision Trees, Logistic 

Regression, and K-Nearest Neighbors have demonstrated strong performance in inferring 

gene regulatory network (Jochen Supper 2007; Parry et al. 2010; Gillani et al. 2014; Choi 

et al. 2017). Support Vector Machines (Cortes 1995) are robust ML algorithms that identify 

hyperplanes to separate classes, maximizing the margin between points and the hyperplane. 

Decision Trees (Wu et al. 2008) employ a tree structure in which nodes represent attributes 

and leaves represent classes. The algorithm learns which attributes and values to use for 

splitting. Logistic Regression (McCullagh 1989) is a statistical model commonly utilized 

for classification problems. It produces an output ranging between 0 and 1, representing 

the probability of a particular class. The K-Nearest Neighbor (KNN) algorithm (Wu et al. 
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2008), one of the simplest ML methods, stores all data points, and when given a new point, 

assigns it to the class of its most similar neighbors. 

Ensemble learning methods are supervised learning techniques which combine 

predictions from multiple base models, have also shown promising results in gene 

regulatory network prediction (Sergio Peignier 2021). Several ensemble techniques were 

implemented, including Random Forests, Extremely Randomized Trees, AdaBoost 

Models, Gradient Boosting, and Bagging. Random Forest classifier (Ho 1995) combines 

multiple Decision Trees, and its output is the class chosen by the majority of trees. It can 

also be used for regression problems, providing the mean of the Decision Trees. Extremely 

Randomized Trees (Geurts, Ernst, and Wehenkel 2006) which are also referred to as Extra 

Trees  are a variation of Random Forest classifiers, where Decision Tree construction 

differs by randomly splitting features, increasing the model's variance and improving 

performance on unseen data. AdaBoost, short for Adaptive Booting (Wu et al. 2008) 

iteratively learns from misclassifications in previous iterations, using Decision Trees as its 

base model and assigning weights to samples based on classification accuracy. The 

Gradient Boosting algorithm (Friedman 2001) is akin to AdaBoost, employing iterative 

learning but training on mis-predicted samples. Lastly, the Bagging Classifier (Breiman 

1996) is an ensemble technique in which individual models are trained on random subsets 

of the data, and their predictions are aggregated to produce the final prediction 

4.2 Neural Networks 
Neural networks, also known as artificial neural networks (ANNs), are a category of 

ML algorithms inspired by biological neurons. The fundamental element in an ANN is a 
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single neuron that receives input, performs computations, and passes the output to the next 

neuron. ANNs consist of several layers arranged sequentially, with each layer containing 

multiple neurons. Various types of ANNs exist, such as fully connected networks (FCNs), 

convolutional neural networks (CNNs), and recurrent neural networks (RNNs).  Neural 

networks have demonstrated promising results in classifying cancer using gene expression 

data (Rukhsar et al. 2022) and capturing gene expression relationships (Eetemadi and 

Tagkopoulos 2019). Additionally, CNN models have been employed to analyze microarray 

gene expression data (Tabares-Soto et al. 2020). 

ANNs are trained using supervised learning with labeled inputs. Back propagation 

(Kelley 1960) optimizes weights and biases by minimizing prediction error using loss 

functions. Loss functions are crucial for building neural networks as they measure model 

performance on specific tasks by quantifying the error between predictions and actual 

outputs. Common loss functions include binary cross-entropy (BCE), hinge loss, mean 

squared error (MSE), mean squared logarithmic error (MSLE), mean absolute error 

(MAE), Poisson loss, Huber loss, and LogCosh loss depending on the type of problem. 

BCE is primarily used for classification tasks with binary target values. Hinge loss, an 

alternative to BCE, is employed in Support Vector Machine algorithms and works with 

output labels in the set of -1 and 1. MSE calculates the average squared difference between 

predictions and true labels, while MSLE first calculates the natural logarithm of the 

predicted values and then calculates the average of squared difference. MAE computes the 

average absolute difference between predictions and targets. Poisson loss, based on the 

Poisson distribution, calculates the negative log-likelihood, and can replace BCE loss in 

classification problems. Huber loss, which is dependent on MAE, provides a smooth 
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approximation and is more robust to outliers. LogCosh loss, though similar to MSE, is 

more robust to outliers. In this study, various loss functions are utilized in neural networks, 

and their predictions are analyzed. 

4.2.1 Fully Connected Neural Networks 
Fully connected networks are versatile and can be applied to a variety of problems. 

FCNs consist of input, hidden, and output layers. The hidden layers in the network consist 

of neurons which compute the weighted sum of previous inputs and apply an activation 

function, such as rectified linear unit (ReLU), hyperbolic tangent (tanh), or sigmoid 

activations. These functions introduce non-linearity, capturing complex relationships in 

data. Additional hidden layers, such as batch normalization and dropout, stabilize 

activations and prevent overfitting. Batch normalization layers normalize previous layer 

outputs in batches, stabilizing activations and reducing variance. Dropout layers prevent 

overfitting by setting a percentage of input neurons to zero during training, simulating 

various architectures. ReLU and sigmoid activations are used in dense and final layers, 

respectively, with sigmoid being ideal for binary classification problems. Figure 4.1 

illustrates the general architecture of fully connected networks. 
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Figure 4.1: General architecture of fully connected neural networks. Blue nodes represent 
the input layer of fully connected neural networks, orange nodes denote the neurons in 
the hidden layers, and the green node is the output layer of the neural network. 

4.2.2 Convolutional Neural Networks 
CNNs are deep learning algorithms primarily used for image classification tasks. 

CNNs are adept at detecting spatial patterns in data, making them well-suited for gene 

expression analysis. They learn the significance of various features in an image using 

weights and biases. Convolution operations in CNNs reduce image size without losing 

essential characteristics, capturing temporal and spatial dependencies through relevant 

filters. Convolution mainly relies on kernel size, a fixed-size matrix that applies dot 

products sequentially over the image. 

 

Figure 4.2: Example of convolution operation on a 6 x 6 matrix using a 3 x 3 kernel. This 
kernel is applied to the input matrix sequentially and the dot products are computed.  

In Figure 4.2, the convolution operation is applied on a 6 x 6 square matrix using a 3 

x 3 kernel. The output of a CNN layer, called a feature map, results from multiple 

convolutional layers applied sequentially. Another crucial operation in CNNs is pooling, 

which reduces feature map size without losing important data. A CNN comprises a set of 

convolutional layers followed by max pooling layers. After convolution, the data is 

flattened and fed into a regular neural network for classification. For the current study, the 

ReLU activation function and he-uniform kernel initialization were used (Sun 2015). 



23 

 

Figure 4.3: General architecture of Convolutional Neural Networks. The input layer is 
followed by a series of convolutional layers and max pooling layers. The output from the 
convolutional layers is flattened and fed as an input to the dense layers for classification. 
The output layer gives the probabilities of the classification. 

In addition to the general CNNs I have also applied deep CNNs which involve skip 

connections such as ResNet Model (He et al. 2015), Mobile Net Model (Howard et al. 

2017) and trained on the Arabidopsis data, poplar data and maize data. 

4.3 Hybrid Architecture 
Hybrid architecture combines neural networks and ML algorithms, leveraging the 

strengths of both approaches for effective gene expression data classification (Kong and 

Yu 2018). Our hybrid architecture consists of two steps: the feature extractor, also known 

as the convolutional encoder, and the classification model.   

Hybrid architecture, Step 1: Convolutional encoder 

The convolutional encoder plays a critical role in the hybrid architecture. As shown in 

Figure 4.4, input data is first passed through a series of convolutional and max-pooling 

layers, followed by dense layers for training and classification. Convolutional layers serve 

as feature extractors, while dense layers function as classification models. Outputs from 
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the convolutional layers are flattened to be fed into the dense layers. After successful 

training, the model is stored along with the learned weights.  

Hybrid architecture, Step 2: Classification Model 

In this step, outputs from the convolutional encoder/feature extractor are used to train 

ML models. Supervised ML Models such as Logistic Regression, Support Vector Machine, 

Decision Tree, K-Nearest Neighbors, as well as ensemble techniques like Random Forest, 

Extremely Randomized Trees, AdaBoost, Gradient Boosting, and Bagging are trained with 

the newly extracted features. CNN models excel in reducing data size while capturing 

essential information. Consequently, the CNN feature extractor is combined with 

traditional ML models to enhance gene regulatory network prediction accuracy. 
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Figure 4.4: Architecture of the Hybrid Model.Step 1 includes training of the 
convolutional neural networks (CNN) using back propagation. 

After the model is trained, the CNN model is stored with the trained weights. In Step 

2, the trained CNN model (Encoder) is used to transform the plain input data to new 

encoded input data. This new input is used to train the machine learning models to 

generate the final predictions.
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5 Performance metrics 
This section discusses about the performance metrics that are considered to compare 

the performances of the models on the test data. These metrics include accuracy, precision, 

recall, specificity, F1-Score and Receiver Operating Characteristic (ROC) curve. 

5.1 Confusion matrix 
A confusion matrix is a square matrix which shows the true positive, true negative, 

false positive and false negative of a classification. In binary classification problems, true 

positives and true negatives are the instances which are correctly predicted by the algorithm 

as positive and negative, respectively. In contrast, false positives are instances which are 

predicted as true by the algorithm but are actually false, and the false negatives are 

instances which are predicted as false but are actually true. 

True Labels 

 Positive Negative 

Positive True Positive (TP) False Positive (FP) 

Negative False Negative (FN) True Negative (TN) 

 

Various performance metrics can be calculated using the confusion matrix. These 

metrics include accuracy, precision, recall, specificity, and F1-score. The accuracy metric 

gives the percentage of correct predictions made by the model in relation to the total 

number of predictions made. 

 

Predicted 
Values 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦	 = 	
𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑐𝑜𝑟𝑟𝑒𝑐𝑡	𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
𝑇𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 =

𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒	(𝑇𝑃) 	+ 	𝑇𝑟𝑢𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠	(𝑇𝑁)
𝑇𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑠𝑎𝑚𝑝𝑙𝑒𝑠  

Precision is the ratio of the true positive predictions made by the algorithm out of all 

the positive predictions. A high precision value tells us that the algorithm has generated 

very few false positives.  

Precision = !"#$	&'()*)+$	(!&)
!"#$	&'()*)+$	(!&)	.	/01($	&'()*)+$	(/&)

 

Recall is the ratio of the true positive predictions to the total correct cases. Correct 

cases include the true positive and also the false negative predictions. Recall is also known 

as sensitivity. 

Recall = !"#$	&'()*)+$	(!&)
!"#$	&'()*)+$	(!&)	.	/01($	2$30*)+$	(/2)

 

Specificity is a measurement which tells us how many of the negative predictions are 

correctly made. Specificity is the ratio of the true negative predictions to the total number 

of negative instances in the data set. 

Specificity =  !"#$	2$30*)+$	(!2)
!"#$	2$30*)+$(	(!2)	.	/01($	&'()*)+$((/&)

 

The F1-Score is the harmonic mean of the precision and recall values; it ranges from 

0 and 1 where a higher F1-scores means that the model has good precision and recall 

values. If the F1 score is close to 0, the model is performing poorly with imbalance in the 

precision and the recall values. 

F1 Score = 2	 ∗ 	 &"$4)()'5	∗	7$4011
&"$4)()'5	.	7$4011
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5.2 Receiver Operating Characteristic curve 
Receiver Operating Characteristic (ROC) curve is a performance measurement curve 

for the classification problems. The ROC curve is plotted as True positive rate (TPR; y-

axis) vs. False positive rate (FPR; x-axis), where FPR is 1 - specificity and TPR is also 

known as recall/sensitivity. The points on the ROC curve are plotted at different threshold 

levels based on the probabilities of the prediction. The Area Under the Curve (AUC) can 

also be calculated for the ROC curve and indicates how well the model predicted true 

values as true and false values as false. 
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6 Results 
Several ML GRN prediction models with distinct architectures were assessed, 

including four supervised learning models (Logistic Regression, Support Vector Machine, 

Decision Tree, K-Nearest Neighbors) and five ensemble learning models (Random Forests, 

Extremely Randomized Trees, AdaBoost Models, Gradient Boosting, Bagging Classifier). 

Additionally, neural network approaches including FCNs and CNNs with various loss 

functions and architectures were examined. Hybrid models, which combine machine 

learning and CNN models, were also implemented, and evaluated. The data employed was 

compendium transcriptomic data gathered and pooled from public repositories, and the 

training data sets consisted of known regulatory gene pairs (a regulator and a target gene) 

and their transcript values extracted from the compendium transcriptomic data, as detailed 

in Section 3: Multiple OMICS Data Collection. 

The following section presents the results of the training procedure and the evaluation 

of the various models using distinct test data sets. Initially, the outcomes of hyperparameter 

tuning for ML models are discussed, followed by an examination of cross-validation scores 

and an examination of the accuracy of ML models on holdout test data, which was 20% of 

the training data that was retained for validation or testing. These models were trained 

separately for different species and evaluated using their respective holdout test data sets. 

Moreover, a brief overview of the training and tuning for FCNs, CNNs, and hybrid 

models is provided, including their accuracies on holdout test data, which was 10-20% of 

the training data that was retained for validation or testing. In addition to using holdout test 

data, the models were also assessed using real test data sets: Arabidopsis Transcriptomic 
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Test Data Set 1, Arabidopsis Transcriptomic Test Data Set 2, the poplar Transcriptomic 

Test Data Set, and the maize Transcriptomic Test Data Set 

6.1 Hyperparameter Tuning and Testing Machine 
Learning Models 

In this study, all ML models were implemented using the scikit-learn library 

(Pedregosa et al. 2011) in the Python programming language. Hyperparameter tuning is a 

crucial step in constructing effective ML models since each model has specific adjustable 

parameters that depend on the data type and distribution. The grid search technique was 

employed to select hyperparameters by testing various combinations on the models. In this 

study, Arabidopsis training data was used for hyperparameter tuning with the grid search 

technique. The Table 6.1 presents the various hyperparameters learned for different ML 

models using the Arabidopsis training data. 

Table 6.1: Learned hyperparameters and description for different models using 
Arabidopsis training data 

Model Parameter tuned Description 

Logistic 
Regression 

penalty: l2, C: 1, 
solver: saga, max 
iterations: 500 

Penalty is a regularization parameter, C is the 
inverse of regularization strength, solver is the 
optimization algorithm, max iterations define the 
number of iterations the algorithm performs on 
data 

Support 
Vector 
Machine 

C: 0.5, kernel: 
linear, gamma: 
scale, degree: 4 

C is the regularization parameter, kernel function is 
used to map data to higher dimensions, gamma 
controls the shape of the decision boundary, degree 
defines degree of the polynomial 

Decision 
Tree 

criterion: gini, min 
samples leaf: 5, 
min samples split: 
5 

Criterion is used to measure the quality of the split, 
min samples required to be a leaf node and min 
samples required to split a node in tree 

K-Nearest 
Neighbors 

metric: 
Manhattan, n 
neighbors: 6 

metric is used to calculate the distance between 
datapoints, n neighbors define the number of 
neighbors considered for prediction 
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Random 
Forest 

maximum depth: 
20, min samples 
leaf: 5, min 
samples split: 2, 
estimators: 50 

maximum depth is the depth of each Decision 
Tree, min samples required to be a leaf node and 
min samples required to split a node in tree, 
estimators is the number of Decision Trees 
constructed 

Extremely 
Randomized 
Trees 

maximum depth: 
20, min samples 
leaf: 1,  min 
samples split: 2, 
estimators: 50 

maximum depth is the depth of each Decision 
Tree, min samples required to be a leaf node and 
min samples required to split a node in tree, 
estimators is the number of Decision Trees 
constructed 

AdaBoost estimators: 100, 
learning rate: 0.1 

estimators value is the number of Decision Trees 
constructed, learning rate controls the contribution 
of the weak classifier in final ensemble 

Gradient 
Boosting 

estimators: 100, 
learning rate: 0.1 
 

estimators value is the number of Decision Trees 
constructed, learning rate controls the contribution 
of the weak classifier in final ensemble 

Bagging 
Classifier 

estimators: 100, 
max samples: 10, 
max features: 1 

estimators value is the number of Decision Trees 
constructed, max samples define the maximum 
samples to use for each copy, max features define 
the maximum features to use for each copy of the 
model 

 

The tuned hyperparameters were applied to the ML models for further training and 

prediction.  

After tuning the hyperparameters, 10-fold cross validation was applied to the ML 

models to compare the performance of the models in different species: Arabidopsis, poplar, 

maize. Figure 6.1 displays the boxplots of the accuracies of the Logistic Regression, K-

Nearest Neighbors (KNN), Support Vector Machine also referred as Support Vector 

Classifier (SVC), Decision Tree and several ensemble models including Random Forest, 

Extremely Randomized Trees, the AdaBoost Model, the Gradient Boosting Model, and the 

Bagging Model. Figure 6.1 A-C presents the accuracies of these models using Arabidopsis, 

poplar, and maize training data, respectively.  
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Figure 6.1: Boxplot depicting the accuracies of 10-fold cross-validation on machine 
learning models. These models include Logistic Regression, K-Nearest Neighbors 
(KNN), Support Vector Classifier (SVC), Decision Tree, and ensemble models like 
Random Forest, Extremely Randomized Trees, AdaBoost, Gradient Boosting, and 
Bagging. A. Accuracies for Arabidopsis training data; B. Accuracies for poplar training 
data; C. Accuracies for maize training data. 

The boxplots in Figure 6.1 show the first quartile, median, and third quartile of the 

accuracy values. Based on the median accuracy score, the ensemble models Random 

Forests, Gradient Boosting, and Bagging performed better than the other methods. 

Next, ML models were trained on 80% of Arabidopsis, poplar, and maize data, 

reserving 20% as the holdout test set. Table 6.2 displays the accuracies of these models for 

each species. 

Table 6.2: Accuracies of different machine learning models on holdout test data. The 
models encompass Logistic Regression (LR), Support Vector Machine (SVM), Decision 
Tree, K-Nearest Neighbors (KNN), and several ensemble models like Random Forest, 

Extremely Randomized Trees, AdaBoost, Gradient Boosting, and Bagging. These models 
were assessed on a holdout test set, comprising 20% of the Arabidopsis, poplar, and 

maize training data that was not utilized during the training phase. 

Species LR SVM Decision 
Tree KNN 

Random 
Forest 
classifier 

Extra 
Tree 
classifier 

AdaBoost 
Classifier 

Gradient 
Boosting 

Bagging 
Classifier 

Arabidopsis 80.32 78.29 84.58 82.96 90.67 89.86 90.67 90.67 80.32 
Poplar 79.82 77.03 89.72 88.96 96.32 97.72 95.56 93.78 79.82 
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Maize 76.79 78.61 90.5 83.43 97.37 94.53 84.26 84.88 78.6 
Average 
Scores 78.98 77.98 88.27 85.12 94.79 94.04 90.16 89.78 79.58 

 

At approximately 78%, the linear Logistic Regression and Support Vector Machine 

models had lower average accuracies with gene expression data in plant species than other 

models. While the K-Nearest Neighbor Model was more accurate than the linear models, 

ensemble techniques (Random Forest, Extremely Randomized Trees, AdaBoost classifier, 

and Gradient Boosting) outperformed all the other techniques on the gene expression data. 

AdaBoost and Gradient Boosting had average accuracies of approximately 90%. Random 

Forest and Extremely Randomized Trees had the best performance with an average 

accuracy of more than 94% on the holdout test data. 

6.2 Hyperparameter Tuning and Testing Neural 
Networks 

In this study, neural networks were implemented using the Keras library from 

TensorFlow (Abadi et al. 2016) in the Python programming language. The construction of 

a customized FCN for gene expression data requires the selection of multiple hidden layers, 

each with its own set of hyperparameters. Key hyperparameters to take into account are the 

learning rate, neuron count, activation function, and batch size. Research has demonstrated 

that employing multiple layers with a dropout structure in FCN can enhance performance 

(Chen et al. 2016). In this study, neural networks consisting of two dense layers with 256 

and 128 neurons were utilized, each followed by a 10% dropout in the hidden layers of the 

FCN. An optimized learning rate of 0.00003 was determined through experimentation and 
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applied to the FCN, CNN, and Hybrid models. Training was conducted using a batch size 

of 100 and the RMSprop optimizer. 

The FCNs were trained using 80% of the training data of Arabidopsis, poplar, and 

maize with different loss functions, including BCE, hinge loss, MSE, MSLE, MAE, 

Poisson loss, Huber loss, and LogCosh loss, and were tested separately on the 20% holdout 

test data. This 20% data was not used in the training process. The results are shown in 

Table 6.3.  

Table 6.3: Accuracies of fully connected networks (FCN) with different loss functions. 
Loss functions include binary cross entropy (BCE), hinge loss, mean squared error 

(MSE), mean squared logarithmic error (MSLE), mean absolute error (MAE), Poisson 
loss, Huber loss, and LogCosh loss which were evaluated on the holdout test set. This test 

set consists of 20% of the Arabidopsis, poplar, and maize training data, which was not 
used during the training phase. 

Species FCN 
BCE 

FCN 
HINGE 

FCN 
MSE 

FCN 
MSLE 

FCN 
MAE 

FCN 
POISSON 

FCN 
HUBER 

FCN 
LOGCOSH 

Arabidopsis 
 87.42 84.58 87.02 85.4 89.25 87.62 87.42 87.42 

Poplar 95.28 91.85 91.11 92.44 92.92 92.8 92.25 91.37 
Maize 
 89.05 88.82 89.79 89.5 89.05 90.8 90.95 90.71 

Average 
Scores 90.58 88.42 89.31 89.11 90.41 90.41 90.21 89.83 

 

The FCNs with the binary cross entropy (BCE) loss had an average accuracy of 

90.58%, a good performance on holdout test data of Arabidopsis, poplar, and maize 

training data. The other loss functions showed approximately the same performance as 

BCE, with mean absolute error (MAE), Poisson loss, and Huber loss being the closest. 

The subsequent step involved conducting hyperparameter tuning on the CNN to 

identify optimal parameters for training the CNN on the gene expression data. It is essential 
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to choose the appropriate number of layers and kernels to construct a customized CNN 

model. To assess which kernel combinations were suitable for the gene expression data, 

two stacked convolutional layers were used and different numbers of kernels (8, 16, 32, 

64, 128, 256) were sequentially applied with a kernel size of 3x3. BCE was utilized as the 

loss function to train and evaluate these models. Figure 6.2 displays the heatmaps of the 

accuracy values. As a result, multiple kernel numbers were tested for the three species 

under investigation. 

 

Figure 6.2: Heatmaps of accuracy values of convolutional neural networks (CNN) with 
different numbers of kernels in the first and second layers of the CNN. The y-axis 
dimension is the number of kernels in the first layer of the CNN while the x-axis is the 
number of kernels in the second layer of the CNN. Binary cross-entropy was used as the 
loss function for the CNN and evaluated on 20% (also referred to as holdout test data) of 
the Arabidopsis, poplar, and maize training data. The scale bars represent a series of 
accuracy values. A. the accuracy values of the CNN on Arabidopsis training data. B. the 
accuracy values of the CNN on poplar training data. C. the accuracy values of the CNN 
on maize training data. Note that these 20% holdout test data sets were not used in the 
training process. 

Figure 6.2 reveals that CNN performance with BCE loss improved on Arabidopsis 

data when increasing kernel numbers in first and second layers. However, this 

enhancement was not seen in poplar and maize species, with 256 kernels in Arabidopsis 

yielding 90% accuracy, while only 74% in poplar. Thus, a higher kernel count doesn’t 
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guarantee increased accuracy for all species. Previous research has indicated that stacking 

multiple convolutional layers followed by max pooling layers can improve gene expression 

data prediction performance (Lyudmyla Yasinska-Damri 2022). In this study, multiple 

convolutional layers were stacked along with max pooling layers, as depicted in Figure 4.3. 

Further experiments were conducted to alter the number of neurons in the dense layers and 

using different dropout structures. A dropout value of 0.1 with 256 neurons followed by 

128 neurons in the dense layers was ultimately chosen. Various optimizers and learning 

rate configurations were also explored. The final CNN model employed the RMSprop 

optimizer with a learning rate of 0.00003.  

The CNNs were trained on the 80% training data of Arabidopsis, poplar, and maize 

with different loss functions. In addition to custom-built CNNs, deep convolutional neural 

networks such as ResNet and MobileNet were also used to predict gene regulatory 

networks. Table 6.4 shows the accuracies of the CNNs on the 20% holdout test data of the 

three species.  

Table 6.4: Accuracies of Convolutional Neural Networks (CNN) on the holdout test data. 
Multiple loss functions such as binary cross entropy (BCE), hinge loss, mean squared 
error (MSE), mean squared logarithmic error (MSLE), mean absolute error (MAE), 

Poisson loss, Huber loss, and LogCosh loss were utilized in the custom built CNNs. Deep 
CNNs such as ResNet 50 and MobileNet were also evaluated on the holdout test data. 

Note that these 20% holdout test data sets in the three species were not used in the 
training process. 

Species CNN 
BCE 

CNN 
HINGE 

CNN 
MSLE 

CNN 
MSE 

CNN 
MAE 

CNN 
POISSON 

CNN 
HUBER 

CNN 
LOGCOSH 

ResNet 
50 

Mobile 
Net 

Arabidopsis 
 93.5 91.48 92.29 91.48 91.88 92.69 91.47 92.08 81.93 74.03 

Poplar 97.59 98.1 97.59 97.21 98.35 97.85 97.72 96.32 88.67 85.47 

Maize 
 94.86 95.34 90.48 94.08 95.4 88.51 95.65 94.9 85.89 83.07 
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Average 
Scores 95.32 94.97 93.45 94.26 95.21 93.02 94.95 94.43 85.5 80.86 
 

Based on the accuracy results for the holdout test data presented in Table 6.4, the CNN 

model with the BCE loss function was 95.32% accurate and outperformed other models. 

Other loss functions, such as MAE, Hinge Loss,  and Huber loss, displayed similar 

performance, with average accuracy values of 95.21%, 94.97% and 94.95%, respectively, 

across the three species. Deep CNNs, including ResNet and MobileNet, did not perform as 

well as custom-built CNNs with fewer convolutional layers. One potential reason is that 

these deep neural networks with skip connections require vast amounts of training data, 

which was not available for any of the species we evaluated. Each of our training data sets 

was relatively small. 

6.3 Training and Testing Hybrid Models 
The hybrid architecture training occurs in two stages: training the convolutional 

encoder model and training the ML model using the output from the convolutional encoder. 

The convolutional encoder models were trained separately on Arabidopsis, poplar, and 

maize data sets for 100 epochs using the BCE loss function. Figures 6.3 and 6.4 display 

the accuracy and loss curves of the CNNs. Figure 6.3A-C represents the accuracies of 

Arabidopsis, poplar, maize training data, respectively. Figure 6.4A-C denotes the loss 

values for the Arabidopsis, poplar and maize training data. 
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Figure 6.3: Training and validation accuracy curves for CNNs in step 1 of building the 
hybrid architecture. A. Accuracy of the Arabidopsis training data; B. Accuracy of the 
poplar training data; C. Accuracy of the maize training data. Training accuracy was based 
on 80% of the overall data, and validation accuracy on 20% of the overall data for 
Arabidopsis (A), poplar (Wilson et al.), and maize (Robertson et al.) training data. The 
20% validation data was not used in the training process. 

 

Figure 6.4: Training and validation loss curves for CNNs in the step 1 of building the 
hybrid architecture. A. Loss values of the Arabidopsis training data; B. Loss values of the 
poplar training data; C. Loss values of the maize training data. Training loss was based 
on 80% of the overall data, and validation loss on 20% of the overall data for Arabidopsis 
(A), poplar (B) and maize (C) training data. The 20% validation data was not used in the 
training process. 

In comparing the training and validation curves for each of the three species, it is 

evident that there is no significant gap between them in terms of accuracy, suggesting that 

the models do not suffer from overfitting. Similarly, the loss curves also followed a 

consistent pattern. These observations indicate that the models were neither overfitting nor 

underfitting the data but were effectively generalizing to new data. 
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The hybrid models were trained on Arabidopsis, poplar, and maize species training 

data. Table 6.5 presents the accuracies of the ML models on the holdout test set based on 

each species. The holdout test set consists of 20% of the original training data, which was 

not used for training the models. 

Table 6.5: Accuracies of various hybrid models on holdout test data. These models are 
based on the hybrid architecture and include Logistic Regression (LR), Support Vector 
Machine (SVM), Decision Tree, K-Nearest Neighbors (KNN), and ensemble models 
such as Random Forest, Extremely Randomized Trees, AdaBoost, Gradient Boosting, 

and Bagging. They were evaluated using one holdout test set, each containing 20% of the 
Arabidopsis, poplar, or maize training data that was not used during the training process. 

Species LR SVM Decision 
Tree  KNN 

Random 
Forest 
classifier 

Extra 
Tree 
classifier 

AdaBoost 
Classifier 

Gradient 
Boosting 

Bagging 
Classifier 

Arabidopsis 90.67 86.61 85.8 85.19 93.1 91.28 90.65 91.07 90.86 

Poplar 97.47 95.94 92.01 88.45 97.97 97.72 98.1 95.94 95.18 

Maize 95.31 86.45 95.08 87.73 98.87 97.25 99.13 95.4 86.51 
Average 
Scores 94.48 89.67 90.96 87.12 96.65 95.42 95.96 94.14 90.85 

 

Table 6.5 presents the accuracy results for the hybrid architecture models on the 

holdout test data. Of the ensemble techniques, Random Forest, Extremely Randomized 

Trees, and AdaBoost Models exceled, achieving average accuracy scores of 96.65%, 

95.42%, and 95.96%, respectively, in the three species. Furthermore, the Logistic 

Regression Model from the hybrid architecture demonstrates strong performance 

compared to other methods such as Support Vector Machine, Decision Tree, K-Nearest 

Neighbors, and Bagging classifier, based on the average accuracies of the three species. 

The holdout test results reveal that the Random Forest Model was the top-performer 

in both regular and hybrid approaches, followed by Extremely Randomized Trees and 
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AdaBoost models in the hybrid architecture. In the neural networks, BCE loss exhibited 

better performance on the holdout test data compared to the other loss functions. To further 

evaluate these models, real test data consisting of the genes involved in the LBP were 

utilized. 

6.4 In-silico validation of selected methods 
 

The top-performing hybrid architecture methods on the hold-out validation datasets 

include Random Forest, Extremely Randomized Trees, and AdaBoost Models. These 

models utilize input from the CNN encoder in the hybrid architecture. To evaluate the 

hybrid architecture's performance against standard ML models, Random Forest, Extremely 

Randomized Trees, and AdaBoost Models which were trained directly on the input without 

any encoding. This comparison allows for an assessment of hybrid architecture 

performance relative to conventional ML methods. The models were trained on 80% 

training data sets for Arabidopsis, poplar, and maize separately. Subsequently, the trained 

models were tested on Transcriptomic Test Data Sets. 

Spearman's rank correlation coefficient is often used as a benchmark method in 

addition to supervised ML models. This statistical measure quantifies the strength of the 

relationship between two variables and is frequently employed in gene expression analysis 

to identify associations between genes (Kumari et al. 2012). In this study, Spearman’s rank 

correlation coefficient was used as a benchmark for lignin pathway analysis. To minimize 

false discoveries in large data sets, the Benjamini-Hochberg procedure (Benjamini and 
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Hochberg 1995) was employed to apply False Discovery Rate (FDR) correction after 

calculating the correlation coefficient. 

6.4.1 Test results with Arabidopsis Transcriptomic Test Data Set 
1 

Arabidopsis Transcriptomic Test Data Set 1 consists of genes associated with the 

lignin biosynthesis pathway (LBP), which plays a role in plant growth and development 

through the production of lignin, a major component of the cell wall. As detailed in Section 

3: Multiple OMICS Data Collection, this transcriptomic data set consists of 28,300 

regulatory pairs and the expression data was extracted from the Compendium Data Set 1 

with 1,253 samples. 

The Hybrid Random Forest and plain Random Forest Models were both fine-tuned 

and trained using Arabidopsis training data. In the hybrid model, a CNN encoder processes 

the training data and passes it to the ML model, while the plain ML model utilizes 

unencoded data.  Transcriptomic Test Data Set 1 serves as the testing data for LBP analysis 

in Arabidopsis. Probability values for the positive regulation class were extracted and 

sorted in descending order, leading to the selection of the top 1000 positively regulated 

gene pairs (TFs and target genes) from the Transcriptomic Test Data Set 1. The unique TFs 

within the top 1000 pairs were tallied, with each TF assigned a frequency value. This value 

was then used to identify the top 50 TFs that positively regulate target genes. Similar 

training and testing experiments were conducted using Hybrid Extremely Randomized 

Trees, plain Extremely Randomized Trees, Hybrid AdaBoost Model, and plain AdaBoost 

Model. Table 6.6 presents the top 50 TFs for both the Hybrid Random Forest and plain 

Random Forest Models. 
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Table 6.6: Comparison of the top 50 transcription factors (TFs) predicted to regulate the 
lignin biosynthesis pathway by the Hybrid Random Forest and the Plain Random Forest 

Models on Arabidopsis Transcriptomic Test Data Set 1. The frequency of each TF within 
the top 1000 predicted regulatory relationships was calculated to represent how many 
pathway genes it might have inferred. TFs highlighted in red represent true regulators 

according to current literature, with the corresponding references provided. 

         

Table 6.6 provides the frequency values of each TF within the top 1000 predictions 

for both the hybrid and plain Random Forest Models. TFs highlighted in red are identified 

as true regulators in the current literature with relevant references provided. 

AT3G08500_MYB83 and AT5G12870_MYB46 are recognized as master regulators in 

secondary cell wall (SCW) biosynthesis in Arabidopsis thaliana (Zhong and Ye 2012). 

Another study identified AT2G46770_NST1 and AT1G32770_SND1/NST3 as key 

regulators in SCW biosynthesis (Mitsuda et al. 2007). The Hybrid Random Forest Model 

Rank Transcription Factor Freq. Reference
1 AT3G08500_MYB83 20  (Zhong and Ye, 2012)
2 AT1G71930_VND7 20 (Yamaguchi et al., 2011)
3 AT4G36920_AP2 20 -
4 AT2G20180_AtbHLH15 20 -
5 AT5G11260_HY5 20 -
6 AT5G16560_KAN 20 -
7 AT1G24260_SEPALLATA3 20 -
8 AT1G32770_SND1/NST3 19 (Mitsuda et al., 2007)
9 AT1G14350_FLP 19 -
10 AT5G12870_MYB46 18  (Zhong and Ye, 2012)
11 AT2G02820_AtMYB88 18 -
12 AT4G23810_AtWRKY53 16 -
13 AT3G27920_GL1 14 -
14 AT5G62380_VND6 10 (Ohashi-Ito, Oda, and Fukuda, 2010)
15 AT1G24625_ZFP7 10 -
16 AT1G74930_ORA47 9 -
17 AT2G43010_AtbHLH9 8 -
18 AT5G13790_AGL15 7 -
19 AT3G24650_ABI3 6 -
20 AT4G18960_AG 6 -
21 AT3G02310_AGL4 6 -
22 AT1G69120_AP1 6 -
23 AT1G26310_CAL 6 -
24 AT2G44730 6 -
25 AT3G54340_AP3 5 -
26 AT1G69180_CRC 5 -
27 AT5G10120_EIL4 5 -
28 AT1G23420_INO 5 -
29 AT1G01060_LHY 5 -
30 AT5G57520_ZFP2 5 -
31 AT2G40220_ABI4 4 -
32 AT5G15800_AGL2 4 -
33 AT2G45650_AGL6 4 -
34 AT2G16910_AMS 4 -
35 AT1G25340_AtMYB116 4 -
36 AT1G12610_DDF1 4 -
37 AT1G47870_E2FC 4 -
38 AT3G13960_GRF5 4 -
39 AT2G33880_HB3 4 -
40 AT5G62020_HSF6 4 -
41 AT1G67100_LOB40 4 -
42 AT2G46770_NST1 4 (Mitsuda et al., 2007)
43 AT5G20240_PI 4 -
44 AT4G27330_SPL 4 -
45 AT2G44745_WRKY12 4 (Wang et al., 2010)
46 AT1G10480_ZFP5 4 -
47 AT2G45420_LBD18 3 -
48 AT3G13890_MYB26 3 (Yang et al., 2007)
49 AT5G57620_MYB36 3  (Kamiya et al., 2015)
50 AT2G18060_VND1 3 (Zhou, Zhong, and Ye, 2014)

Hybrid Random Forest Model
Rank Transcription Factor Freq. Reference
1 AT4G36920_AP2 20 -
2 AT5G16560_KAN 20 -
3 AT2G20180_AtbHLH15 20 -
4 AT5G11260_HY5 20 -
5 AT2G44730 20 -
6 AT1G71930_VND7 17 (Yamaguchi et al., 2011)
7 AT3G08500_MYB83 17 (Zhong and Ye, 2012)
8 AT5G12870_MYB46 16 (Zhong and Ye, 2012)
9 AT1G66140_ZFP4 14 -
10 AT1G24260_SEPALLATA3 12 -
11 AT3G13890_MYB26 12 (Caiyun Yang, 2007)
12 AT2G02820_AtMYB88 11 -
13 AT1G14350_FLP 11 -
14 AT1G32770_SND1/NST3 10 (Mitsuda et al., 2007)
15 AT5G17300 8 -
16 AT2G32370 6 -
17 AT1G25340_AtMYB116 6 -
18 AT1G25330_AtbHLH75 6 -
19 AT4G27330 6 -
20 AT2G18060 6 -
21 AT2G40220_ABI4 6 -
22 AT1G23420_INO 6 -
23 AT4G35700 6 -
24 AT5G18450 6 -
25 AT2G44745 6 -
26 AT4G00220_LBD30 6 -
27 AT3G27920_GL1 6 -
28 AT1G09540_MYB61 6 -
29 AT2G44745_WRKY12 6 (Wang et al., 2010)
30 AT4G00220 6 -
31 AT2G18060_VND1 6 (Zhou, Zhong, and Ye, 2014)
32 AT1G09540 6 -
33 AT1G12610 6 -
34 AT5G62380_VND6 6 (Ohashi-Ito, Oda, and Fukuda, 2010)
35 AT3G06120_AtbHLH45 6 -
36 AT4G09960_STK 5 -
37 AT3G30530 5 -
38 AT3G01530 5 -
39 AT1G61110 5 -
40 AT2G42830_SHP2 5 -
41 AT5G03790_LMI1 5 -
42 AT1G15360_SHINE1 5 -
43 AT1G66380_AtMYB114 5 -
44 AT1G35490 5 -
45 AT5G23260_AGL32 5 -
46 AT2G46770_NST1 5 (Mitsuda et al., 2007)
47 AT5G15800_AGL2 5 -
48 AT1G26310_CAULIFLOWER 5 -
49 AT4G18960_AG 5 -
50 AT5G53210_AtbHLH98 5 -

Plain Random Forest Model
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successfully detected these crucial TFs involved in LBP. Additionally, it identified 

AT2G18060_VND1 (Zhou, Zhong, and Ye 2014), AT5G62380_VND6 (Ohashi-Ito, Oda, 

and Fukuda 2010), AT1G71930_VND7 (Yamaguchi et al. 2011), AT3G13890_MYB26 

(Yang et al. 2007), AT5G57620_MYB36 (Kamiya et al. 2015) and 

AT2G44745_WRKY12 (Wang et al. 2010), all of which are known to be authentic 

regulators in Arabidopsis thaliana. The Hybrid Random Forest Model detected 10 real TFs, 

while the plain Random Forest Model identified nine true positives. This demonstrates that 

the Hybrid Random Forest Model outperformed the plain Random Forest Model. 

The Extremely Randomized Tree Model was also applied in both hybrid and plain 

architectures. The results are presented in Table 6.7. 

Table 6.7: Comparison of the top 50 transcription factors (TFs) predicted to regulate the 
lignin biosynthesis pathway by the Hybrid Extremely Randomized Trees and the Plain 
Extremely Randomized Trees Models on Arabidopsis Transcriptomic Test Data Set 1. 
The frequency of each TF within the top 1000 predicted regulatory relationships was 

calculated to represent how many pathway genes it might have inferred. TFs highlighted 
in red represent true regulators according to current literature, with the corresponding 

references provided. 
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Table 6.7 displays the frequency values of each TF within the top 1000 predictions for 

both the hybrid and plain Extremely Randomized Tree Models. TFs highlighted in red are 

acknowledged as true regulators in the current literature, with corresponding references 

provided. In addition to AT3G08500_MYB83, AT5G12870_MYB46, and 

AT1G32770_SND1/NST3, which are known master regulators in SCW biosynthesis, the 

Hybrid Extra Tree Model identified AT4G37260_AtMYB73 (Kumar, Campbell, and 

Turner 2016), AT4G22680_MYB85 (Geng et al. 2020), and AT4G12350_MYB42 (Geng 

et al. 2020), which were not detected by the Random Forest Models. Similar to the Hybrid 

Random Forest Model, the Hybrid Extra Tree Model detected AT2G18060_VND1 (Zhou, 

Zhong, and Ye 2014), AT5G62380_VND6 (Ohashi-Ito, Oda, and Fukuda 2010), and 

Rank Transcription Factor Freq. Reference
1 AT3G08500_MYB83 20 (Zhong and Ye, 2012)
2 AT1G71930_VND7 20 (Yamaguchi et al., 2011)
3 AT4G36920_AP2 20 -
4 AT5G05410_DREB2A 20 -
5 AT2G20180_AtbHLH15 20 -
6 AT5G16560_KAN 20 -
7 AT1G14350_FLP 20 -
8 AT1G24625_ZFP7 20 -
9 AT2G02820_AtMYB88 20 -
10 AT4G23810_AtWRKY53 20 -
11 AT5G11260_HY5 20 -
12 AT1G32770_SND1/NST3 19 (Mitsuda et al., 2007)
13 AT1G24260_SEPALLATA3 19 -
14 AT2G44730 17 -
15 AT1G74930 17 -
16 AT5G12870_MYB46 15 (Zhong and Ye, 2012)
17 AT1G21910 13 -
18 AT5G62380_VND6 11 -
19 AT1G47870_E2FC 10 (Ohashi-Ito, Oda, and Fukuda, 2010)
20 AT2G43010_AtbHLH9 10 -
21 AT4G23980_ARF9 9 -
22 AT1G12610 8 -
23 AT3G59060_AtbHLH65 8 -
24 AT5G13790_AGL15 7 -
25 AT1G01060_LHY 7 -
26 AT4G37260_AtMYB73 7 (Manoj Kumar, 2015)
27 AT5G20240_PI 6 -
28 AT2G40470_LBD15 6 -
29 AT2G40470 6 -
30 AT2G46830_CCA1 6 -
31 AT3G54340_AP3 6 -
32 AT5G54680 6 -
33 AT4G22680 6 -
34 AT4G22680_MYB85 6 (Geng et al., 2020) 
35 AT2G16910 5 -
36 AT4G18960_AG 5 -
37 AT5G62020_HSF6 5 -
38 AT1G61730 5 -
39 AT5G10510_AIL6 5 -
40 AT1G69120_AP1 5 -
41 AT1G77450 5 -
42 AT2G22840_AtGRF1 5 -
43 AT3G02310_AGL4 5 -
44 AT5G17800_AtMYB56 5 -
45 AT4G12350_MYB42 4 (Geng et al., 2020) 
46 AT1G09540 4 -
47 AT2G18060_VND1 4 (Zhou, Zhong, and Ye, 2014)
48 AT2G18060 4 -
49 AT2G45420 4 -
50 AT4G00220_LBD30 4 -

Hybrid Extremely Randomized Trees Model
Rank Transcription Factor Freq. Reference
1 AT4G36920_AP2 20 -

2 AT2G02820_AtMYB88 20 -

3 AT1G14350_FLP 20 -

4 AT1G24625_ZFP7 20 -

5 AT5G11260_HY5 20 -

6 AT5G16560_KAN 20 -

7 AT2G20180_AtbHLH15 20 -

8 AT1G74930 18 -

9 AT5G05410_DREB2A 18 -

10 AT2G44730 15 -

11 AT1G71930_VND7 14 (Yamaguchi et al., 2011)

12 AT1G24260_SEPALLATA3 14 -

13 AT5G12870_MYB46 13 (Zhong and Ye, 2012)

14 AT3G08500_MYB83 13 (Zhong and Ye, 2012)

15 AT2G40470 12 -

16 AT2G40470_LBD15 12 -

17 AT3G51910_HSFA7A 12 -

18 AT2G45420_LBD18 12 -

19 AT2G18060_VND1 12 -

20 AT1G21910 12 -

21 AT2G45420 12 -

22 AT2G18060 12 -

23 AT4G23810_AtWRKY53 12 -

24 AT1G47870_E2FC 11 -

25 AT5G62380_VND6 10 (Ohashi-Ito, Oda, and Fukuda, 2010)

26 AT1G12260 10 -

27 AT1G12260_VND4 10 (Zhou, Zhong, and Ye, 2014)

28 AT1G12610 10 -

29 AT1G32770_SND1/ NST3 9 (Mitsuda et al., 2007)

30 AT3G61850_DAG1 BBFa 9 -

31 AT1G09540_MYB61 8 -

32 AT1G09540 8 -

33 AT2G22840_AtGRF1 8 -

34 AT5G15840 7 -

35 AT3G27010_TCP20 7 -

36 AT5G54680 7 -

37 AT1G01060_LHY 7 -

38 AT5G10510_AIL6 7 -

39 AT5G62020_HSF6 7 -

40 AT4G17490_AtERF6 7 -

41 AT1G77450_At1g77450 6 -

42 AT2G46830_CCA1 6 -

43 AT3G06120_AtbHLH45 6 -

44 AT5G13790_AGL15 6 -

45 AT3G02310_AGL4 6 -

46 AT4G00220 6 -

47 AT2G47890_COL13 6 -

48 AT4G00220_LBD30 6 -

49 AT2G46770_NST1 5 (Mitsuda et al., 2007)

50 AT5G25830_GATA-12 5 -

Plain Extremely Randomized Trees Model
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AT1G71930_VND7 (Yamaguchi et al. 2011). It is noteworthy that the plain Extra Tree 

Model identified VND4 (Zhou, Zhong, and Ye 2014), which was not detected by other 

models. In total, the Hybrid Extremely Randomized Tree Model identified nine TFs, 

whereas the plain model detected only seven. Consequently, the hybrid model performed 

better than the plain model. 

The AdaBoost model was also applied to both hybrid and plain architectures, with 

results presented in Table 6.8. 

Table 6.8: Comparison of the top 50 transcription factors (TFs) predicted to regulate the 
lignin biosynthesis pathway by the Hybrid AdaBoost and the Plain AdaBoost Models on 

Arabidopsis Transcriptomic Test Data Set 1. The frequency of each TF within the top 
1000 predicted regulatory relationships was calculated to represent how many pathway 

genes it might have inferred. TFs highlighted in red represent true regulators according to 
current literature, with the corresponding references provided. 
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Table 6.8 displays the frequency value of each TF within the top 1000 predictions for 

both Hybrid and Plain AdaBoost Models. TFs highlighted in red are recognized as true 

regulators based on current literature, with corresponding references provided. Like other 

supervised models, the Hybrid AdaBoost Model successfully detected 

AT3G08500_MYB83, AT5G12870_MYB46, AT1G32770_SND1/NST3, 

AT1G71930_VND7, AT5G62380_VND6, AT4G22680_MYB85, and 

AT2G18060_VND1 as true regulators. In contrast, the Plain AdaBoost Model identified 

only three TFs: AT3G08500_MYB83, AT1G32770_SND1/NST3, AT1G71930_VND7, 

and AT4G22680_MYB85. The Hybrid AdaBoost Model not only predicted more TFs than 

Rank Transcription Factor Freq. Reference
1 AT1G32770_SND1/NST3 20 (Mitsuda et al., 2007)
2 AT3G08500_MYB83 20 (Zhong and Ye, 2012)
3 AT1G71930_VND7 20 (Yamaguchi et al., 2011)
4 AT5G12870_MYB46 20 (Zhong and Ye, 2012)
5 AT4G36920_AP2 20 -
6 AT5G11260_HY5 20 -
7 AT5G16560_KAN 20 -
8 AT1G24260_SEPALLATA3 20 -
9 AT1G14350_FLP 20 -
10 AT2G02820_AtMYB88 20 -
11 AT4G23810_AtWRKY53 20 -
12 AT2G20180_AtbHLH15 20 -
13 AT1G74930 19 -
14 AT1G01060_LHY 18 -
15 AT3G27920_GL1 16 -
16 AT1G24625_ZFP7 16 -
17 AT3G02310_AGL4 12 -
18 AT2G44730 12 -
19 AT3G59060_AtbHLH65 10 -
20 AT1G69120_AP1 10 -
21 AT4G18960_AG 10 -
22 AT5G20240_PI 8 -
23 AT3G51910_HSFA7A 8 -
24 AT5G62380_VND6 8 (Ohashi-Ito, Oda, and Fukuda, 2010)
25 AT2G46830_CCA1 7 -
26 AT2G43010_AtbHLH9 7 -
27 AT5G13790_AGL15 6 -
28 AT4G22680 6 -
29 AT2G45420 6 -
30 AT4G22680_MYB85 6 (Geng et al., 2020) 
31 AT3G54340_AP3 5 -
32 AT2G16910 5 -
33 AT2G40470_LBD15 4 -
34 AT4G00870_AtbHLH14 4 -
35 AT1G25330_AtbHLH75 4 -
36 AT3G13960 4 -
37 AT5G05410_DREB2A 4 -
38 AT4G00220_LBD30 4 -
39 AT2G40220_ABI4 4 -
40 AT2G40470 4 -
41 AT4G00220 4 -
42 AT2G33880 4 -
43 AT1G09540 4 -
44 AT2G18060 4 -
45 AT3G58190 4 -
46 AT1G09540_MYB61 4 -
47 AT1G15360_SHINE1 4 -
48 AT5G15800_AGL2 4 -
49 AT2G45420_LBD18 4 -
50 AT2G18060_VND1 4 (Zhou, Zhong, and Ye, 2014)

Hybrid AdaBoost Model
Rank Transcription Factor Freq. Reference
1 AT1G56650_MYB75 38 -

2 AT4G36920_AP2 19 -

3 AT5G16560_KAN 16 -

4 AT2G20180_AtbHLH15 15 -

5 AT5G11260_HY5 14 -

6 AT4G25990 13 -

7 AT2G46680_ATHB-7 12 -

8 AT5G62470_AtMYB96 11 -

9 AT5G43840_HSFA6A 11 -

10 AT2G41940_ZFP8 9 -

11 AT3G61890_Athb-12 8 -

12 AT1G66390_AtMYB90 8 -

13 AT5G56620_anac099 7 -

14 AT2G02820_AtMYB88 7 -

15 AT3G27920_GL1 7 -

16 AT2G36080 7 -

17 AT1G05230 7 -

18 AT5G56860_GNC 7 -

19 AT3G08500_MYB83 7 (Zhong and Ye, 2012)

20 AT3G24140 7 -

21 AT1G71930_VND7 7 (Yamaguchi et al., 2011)

22 AT5G17300 6 -

23 AT1G14440 6 -

24 AT4G22680_MYB85 6 (Geng et al., 2020) 

25 AT4G22680 6 -

26 AT1G32770_SND1/NST3 5 (Mitsuda et al., 2007)

27 AT5G46830 5 -

28 AT5G65320 5 -

29 AT1G02340_AtbHLH26 5 -

30 AT1G75520 5 -

31 AT4G32280_IAA29 5 -

32 AT1G52890_ANAC019 5 -

33 AT5G53420 5 -

34 AT2G39250_SNZ 5 -

35 AT2G26580_YABBY5 5 -

36 AT4G31615 5 -

37 AT1G14350_FLP 5 -

38 AT3G58190 5 -

39 AT3G58070 5 -

40 AT1G18750 5 -

41 AT5G26930_GATA-23 5 -

42 AT1G13960_AtWRKY4 5 -

43 AT3G02380_COL2 5 -

44 AT1G75240_Athb-33 5 -

45 AT5G67180 5 -

46 AT1G74500 5 -

47 AT1G77920 5 -

48 AT3G15500_AtNAC3 5 -

49 AT5G62430 5 -

50 AT1G71030_ATMYBL2 5 -

Plain AdaBoost Model
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the plain model, but also ranked the TFs higher with greater frequency. As a result, the 

hybrid model outperformed the traditional AdaBoost model. 

To compare the performance of the models with a baseline model, Spearman's rank 

correlation coefficient is commonly used as a benchmark method alongside supervised ML 

models. This statistical measure assesses the strength of the relationship between two 

variables and is frequently used in gene expression analysis to identify associations 

between genes. To reduce false discoveries in large datasets, the Benjamini-Hochberg 

procedure (Benjamini and Hochberg 1995) was applied to implement a False Discovery 

Rate (FDR) correction after calculating the correlation coefficient. Gene regulatory pairs 

were sorted in ascending order based on the corrected p-value, ranging from the most to 

least significant relationship, and the top 1000 regulatory pairs were selected from the list. 

The unique TFs within the top 1000 pairs were counted, and each TF was assigned a 

frequency value. This value was then used to identify the top 50 TFs that positively regulate 

target genes. Table 6.9 displays the top 50 TFs as well as their corresponding ranks. 

Table 6.9: Top 50 transcription factors (TFs) that regulate lignin biosynthesis pathway 
based on the corrected Spearman correlation coefficient on Arabidopsis Transcriptomic 

Test Data Set 1. The frequency of each TFs within the top 1000 predicted regulatory 
relationships was calculated to represent how many pathway genes it might have inferred. 

TFs highlighted in red represent true regulators according to current literature, with the 
corresponding references provided. 
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From Table 6.9, it was evident that the Spearman correlation coefficient method 

identified only two TFs, namely AT2G16720_MYB7 and AT1G12260_VND4. Hybrid 

models have not only outperformed traditional ML models but have also demonstrated 

significantly better performance than the benchmark Spearman correlation coefficient 

method, a proven, highly efficacious method for identifying pathway regulators (Kumari 

et al. 2012). 

Finally, a GRN was built using the best-performing hybrid ML model, the Hybrid 

Random Forest model, on the Arabidopsis Transcriptomic Test Data 1. In the Figure 6.5, 

the target genes of the LBP are represented by green nodes, while the top 50 TFs with the 

Rank Transcription Factor Freq. Reference
1 AT5G60100 6 -
2 AT4G13640 6 -
3 AT3G50700 6 -
4 AT1G64530 6 -
5 AT1G20693 6 -
6 AT1G04250 6 -
7 AT5G37020_ARF8 5 -
8 AT4G31060 5 -
9 AT3G58680_ATMBF1B 5 -
10 AT3G23210 5 -
11 AT3G21175 5 -
12 AT2G34710_AtHB-14 5 -
13 AT2G01650 5 -
14 AT1G71692 5 -
15 AT1G67970 5 -
16 AT1G49720_ABF1 5 -
17 AT1G19270 5 -
18 AT5G63280 4 -
19 AT5G53200_TRY 4 -
20 AT5G46910 4 -
21 AT5G41920_AtGRAS-28 4 -
22 AT5G13080 4 -
23 AT4G34610 4 -
24 AT4G17900 4 -
25 AT4G00050_AtbHLH16 4 -
26 AT3G54620 4 -
27 AT3G17609 4 -
28 AT3G16280 4 -
29 AT3G02830_ZFN1 4 -
30 AT2G43000 4 -
31 AT2G40740_AtWRKY55 4 -
32 AT2G37630_AtMYB91 4 -
33 AT2G16720_MYB7 4 (Wang et al., 2010)
34 AT1G70000 4 -
35 AT1G22070 4 -
36 AT1G17460_TRFL3 4 -
37 AT1G12260_VND4 4 (Zhou, Zhong, and Ye, 2014)
38 AT1G04550 4 -
39 AT5G67480 3 -
40 AT5G66630 3 -
41 AT5G65410_Athb-25 3 -
42 AT5G63080 3 -
43 AT5G61380_TOC1 3 -
44 AT5G60120 3 -
45 AT5G58010 3 -
46 AT5G57620 3 -
47 AT5G56860_GNC 3 -
48 AT5G54230 3 -
49 AT4G00180_YAB3 3 -
50 AT1G10200_WLIM1 3 -

Spearman Correlation Coefficient
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highest connectivity are depicted by the other nodes based on the frequency count. The 

light coral nodes specifically denote the true transcription factors involved in the LBP. 

 

Figure 6.5: Regulatory network generated by the Hybrid Random Forest model on 
Arabidopsis Transcriptomic Test Data Set 1. The green nodes denote the target genes, all 
the other nodes are the top 50 transcription factors based on the frequency count.  The 
light coral nodes represent the true TFs which involve in the lignin biosynthesis pathway. 

6.4.2 Test results with Arabidopsis Transcriptomic Test Data Set 
2 

Arabidopsis Transcriptomic Test Data Set 2 was adopted from Taylor-Teeples's 

Supplementary Table 2 (Taylor-Teeples et al. 2015). As detailed in Section 3: Multiple 

OMICS Data Collection, this transcriptomic data set consists of 1,164 regulatory pairs out 

of which 582 are considered to be positive regulatory pairs as they were validated by using 

Yeast One Hybrid System (Bulyk et al. 1999) and the remaining 582 regulatory pairs are 

generated by random sampling of the TFs with other targets which are not shown as 

positive in the AGRIS (Yilmaz et al. 2011). The expression data was extracted from the 
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Compendium Data Set 1 which has 1,253 samples. Random Forest, Extremely 

Randomized Trees, and AdaBoost Models from both hybrid architecture and conventional 

ML methods were employed for the predictions. The Table 6.10 shows the accuracy, 

precision, recall, specificity, f1-score, area under curve (AUC) score. 

Table 6.10: Accuracy, precision, recall, specificity, F1-score, and Area under curve 
(AUC) score for Arabidopsis Transcriptomic Test Data Set 2. The data set contains 1,164 

regulatory pairs, with 582 positive regulatory pairs and 582 negative regulatory pairs. 
No. Model Accuracy Precision Recall Specificity F1-

Score 
AUC 
score 

1 Random Forest 
Classifier Hybrid 

83.26 83.33 83.26 85.59 83.25 93.00 

2 Random Forest 
Classifier Plain 

84.55 86.19 84.54 95.20 84.37 89.80 

3 Extra Trees 
Classifier Hybrid 

85.15 85.38 85.15 89.19 85.12 93.31 

4 Extra Trees 
Classifier Plain 

84.03 85.60 84.03 94.51 83.85 88.05 

5 AdaBoost 
Classifier Hybrid 

81.20 81.33 81.20 84.39 81.18 91.84 

6 AdaBoost 
Classifier Plain 

84.98 85.23 84.97 89.19 84.95 89.38 

 

The results in the Table 6.10 reveal that tree-based models, including Random Forest 

and Extremely Randomized Trees, demonstrate strong performance in the hybrid 

architecture with area under the curve (AUC) scores of 93.00% and 93.31%, respectively. 

Moreover, hybrid models consistently outperformed their plain ML counterparts. Figure 

6.6 illustrates the ROC curve for Random Forest, Extremely Randomized Trees (Extra 

Trees), and AdaBoost, using both hybrid architecture and plain methods. 
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Figure 6.6: The Receiver Operating Characteristic (ROC) curves using multiple models 
on the Arabidopsis Transcriptomic Test Data Set 2. The figure displays the predictions 
for Random Forest, Extremely Randomized Trees (Extra Trees), and AdaBoost using 
both hybrid architecture and plain methods. The true positive rate and false positive rate 
were calculated based on the 1,164 regulatory pairs found in Arabidopsis Transcriptomic 
Test Data Set 2. 

The ROC curve was drawn using the true positive rate and the false positive rate and 

primarily used to compare different models. The predictions made by the Hybrid Random 

Forest Model, based on Taylor-Teeples's Supplementary Table 2 data (Taylor-Teeples et 

al. 2015) are shown in Figure 6.7. Out of 582 positive regulatory pairs, the Hybrid Random 

Forest Model identified 471 pairs with true relationships. In contrast, the Hybrid Extremely 

Randomized Trees and Hybrid AdaBoost Models detected 443 and 425 pairs, respectively. 

The Plain Random Forest Model predicted 420 positive regulatory pairs, while the 

plain Extremely Randomized Trees and plain AdaBoost Models identified 435 and 464 

regulatory pairs, respectively. As a result, the Hybrid Random Forest Model outperformed 

other methods and achieved a higher AUC ROC score. Although the Extra Tree Model and 
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Random Forest Model from the hybrid architecture displayed similar AUC scores, the 

Random Forest Model detected true relationships more accurately. The heatmap in Figure 

6.7 demonstrates the Hybrid Random Forest Model probabilities ranging from 0.5 to 1. 

Columns correspond to various TFs, and rows represent different target genes. 

 

 

Figure 6.7: Heatmap of the prediction probabilities of the Hybrid Random Forest Model 
on Arabidopsis Transcriptomic Test Data Set 2. In the heatmap, only the predictions of 
positive regulatory pairs with probability values greater than 0.5 were considered. The 
data set comprises 1,164 regulatory pairs, with 582 positive regulatory pairs and 582 
negative regulatory pairs. Columns represent various transcription factors, while rows 
indicate different target genes. 

Upon examining Transcriptomic Test Data Sets 1 and 2, it was evident that the hybrid 

models consistently outperformed their traditional counterparts in terms of accuracy and 

predictive power. The Hybrid Random Forest, Extremely Randomized Trees, and 

AdaBoost Models demonstrated superior results when compared to traditional ML models. 

For example, in Arabidopsis Transcriptomic Test Data Set 1, the Hybrid Random Forest 

Model detected 10 true TFs, whereas the plain Random Forest Model identified only 9. 

Additionally, the Hybrid Extremely Randomized Trees Model identified 9 TFs, while the 
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plain model detected only seven. Similarly, the Hybrid AdaBoost Model detected seven 

true TFs, whereas the plain model identified only four true positives. 

In Arabidopsis Transcriptomic Test Data Set 2, the Hybrid Random Forest Model 

achieved an AUC ROC score of 93% and detected 471 out of 582 positive regulatory pairs, 

whereas the plain architecture model only predicted 420 positive pairs. Similarly, the 

Hybrid Extremely Randomized Trees Model achieved an AUC ROC score of 93.31% and 

identified 443 pairs, compared to the plain model's detection of 435 pairs. The Hybrid 

AdaBoost Model detected 425 pairs with an AUC ROC score of 91.84%, while the plain 

model identified 464 pairs with an AUC ROC score of 89.38%. 

The enhanced performance of hybrid models demonstrates their potential for more 

accurate and reliable predictions in gene regulatory network analysis in the Arabidopsis 

species. To further test the methods, poplar Transcriptomic Test Data Set and maize 

Transcriptomic Test Data Set was used 

6.4.3 Test results with Poplar Transcriptomic Test Data Set 
 

The poplar Transcriptomic Test Data Set focuses on genes related to the LBP. Through 

homologous mapping of Arabidopsis lignin pathway target genes to poplar, a total of 25 

target genes for poplar species were identified. These 25 target genes were paired with 

1,717 unique TFs, resulting in a total of 42,925 regulatory pairs in the poplar 

Transcriptomic Test Data Set. The gene expression data for the poplar Transcriptomic Test 

Data Set, consisting of 743 samples, were extracted from the NCBI SRA database 

(Compendium Data Set 2).  
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Following the approach used for Arabidopsis, both hybrid and plain Random Forest 

Models were fine-tuned and trained on poplar training data. The hybrid model uses 

encoded data from the CNN encoder for training ML models, while the plain model uses 

unencoded data to train ML models. The poplar Transcriptomic Test Data Set serves as the 

testing data. The top 2000 positive regulatory gene pairs were selected, and their unique 

TFs were tallied. This frequency value helps to identify the top 50 TFs positively regulating 

target genes. Similar training and testing experiments were conducted using hybrid and 

plain Extremely Randomized Trees as well as hybrid and plain AdaBoost Models. The top 

50 TFs of the Hybrid Random Forest Model and plain Random Forest Model are shown in 

Table 6.11. 

Table 6.11: Comparison of the Top 50 transcription factors (TFs) predicted to regulate 
the lignin biosynthesis pathway by Hybrid Random Forest and Plain Random Forest 

Models on poplar Transcriptomic Test Data Set. The frequency of each TF within the top 
2000 predicted regulatory relationships was calculated to represent how many pathway 

genes it might have inferred. TFs highlighted in red represent true regulators according to 
current literature, with the corresponding references provided. 
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Table 6.11 presents the frequency values of each TF within the top 2000 predictions 

for both hybrid and plain Random Forest Models. TFs highlighted in red were recognized 

as true regulators in the current literature, with pertinent references provided via 

homologous mapping. The Hybrid Random Forest Model effectively detected key TFs 

involved in lignin biosynthesis, such as Potri.009G061500_MYB83 and 

Potri.001G267300_MYB83, which are known as master regulators in SCW biosynthesis 

(Zhong and Ye 2012). Additionally, the model identified Potri.019G083600_VND7 and 

Potri.013G113100_VND7, which are also involved in the LBP (Yamaguchi et al. 2011). 

While both hybrid and plain Random Forest Models detected the same number of TFs, the 

hybrid model assigned higher rankings to positive TFs. In addition to these two models, 

Rank Transcription Factor Freq. Reference
1 Potri.009G061500_MYB83 24  (Zhong and Ye, 2012)
2 Potri.019G083600_VND7 24 (Yamaguchi et al., 2011)
3 Potri.001G267300_MYB83 24  (Zhong and Ye, 2012)
4 Potri.013G113100_VND7 24 (Yamaguchi et al., 2011)
5 Potri.002G252800_AtbHLH15 24 -
6 Potri.002G023400_E2FC 24 -
7 Potri.018G029500_HY5 24 -
8 Potri.001G088600_ARF9 24 -
9 Potri.013G153400_ATWRKY33 24 -
10 Potri.011G007800_AtWRKY42 24 -
11 Potri.006G105300_ATWRKY33 24 -
12 Potri.002G139500_At2g44730 24 -
13 Potri.010G093000_FLP 24 -
14 Potri.009G055700_AGL15 24 -
15 Potri.008G148400_FLP 24 -
16 Potri.004G064300_AG 24 -
17 Potri.002G164400_AtWRKY22 24 -
18 Potri.001G058400_SEPALLATA3 24 -
19 Potri.001G092900_AtWRKY53 24 -
20 Potri.012G031700_AtWRKY53 24 -
21 Potri.016G128300_ATWRKY33 24 -
22 Potri.014G090300_AtWRKY22 24 -
23 Potri.002G168700_AtWRKY53 24 -
24 Potri.006G251800_HY5 24 -
25 Potri.005G140700_AP2 24 -
26 Potri.007G046200_AP2 24 -
27 Potri.017G137600_KAN 24 -
28 Potri.003G138600_AtWRKY53 24 -
29 Potri.004G082400_KAN 24 -
30 Potri.003G169600_SEPALLATA3 24 -
31 Potri.011G075800_AG 24 -
32 Potri.014G096200_AtWRKY53 24 -
33 Potri.019G123500_ATWRKY33 23 -
34 Potri.001G154200_AtERF6 22 -
35 Potri.004G007500_AtWRKY42 22 -
36 Potri.001G327100_TCP20 21 -
37 Potri.002G172800_ARF9 21 -
38 Potri.017G068748_TCP20 21 -
39 Potri.016G083600_TTG2 21 -
40 Potri.014G051200_At2g44730 20 -
41 Potri.003G167900_TCP20 19 -
42 Potri.001G060000_TCP20 19 -
43 Potri.017G082900_Athb-34 19 -
44 Potri.003G080600_AtERF6 18 -
45 Potri.001G080900_At2g43000 18 -
46 Potri.015G075600_GL1 18 -
47 Potri.002G180800_LHY 17 -
48 Potri.001G044500_AtWRKY40 17 -
49 Potri.002G172101_AtbHLH13 16 -
50 Potri.002G055400_AtbHLH65 15 -

Hybrid Random Forest Model
Rank Transcription Factor Freq. Reference
1 Potri.002G252800_AtbHLH15 24 -

2 Potri.005G140700_AP2 24 -

3 Potri.006G251800_HY5 24 -

4 Potri.017G137600_KAN 24 -

5 Potri.007G046200_AP2 24 -

6 Potri.004G082400_KAN 24 -

7 Potri.002G172800_ARF9 24 -

8 Potri.018G029500_HY5 24 -

9 Potri.001G267300_MYB83 24  (Zhong and Ye, 2012)

10 Potri.014G096200_AtWRKY53 24 -

11 Potri.002G168700_AtWRKY53 24 -

12 Potri.003G138600_AtWRKY53 23 -

13 Potri.008G210900 20 -

14 Potri.008G148400_FLP 19 -

15 Potri.019G083600_VND7 18 (Yamaguchi et al., 2011)

16 Potri.013G113100_VND7 18 (Yamaguchi et al., 2011)

17 Potri.006G105300_ATWRKY33 17 -

18 Potri.013G153400_ATWRKY33 16 -

19 Potri.003G167900_TCP20 14 -

20 Potri.001G327100_TCP20 14 -

21 Potri.019G123500_ATWRKY33 13 -

22 Potri.002G164400_AtWRKY22 13 -

23 Potri.001G060000_TCP20 12 -

24 Potri.009G061500_MYB83 12  (Zhong and Ye, 2012)

25 Potri.017G068748_TCP20 11 -

26 Potri.006G221800_TT2 11 -

27 Potri.001G092900_AtWRKY53 10 -

28 Potri.012G031700_AtWRKY53 9 -

29 Potri.010G093000_FLP 9 -

30 Potri.004G007500_AtWRKY42 8 -

31 Potri.014G017300_AZF3 8 -

32 Potri.001G154200_AtERF6 8 -

33 Potri.012G138900_HSF6 7 -

34 Potri.006G263600_WRKY60 7 -

35 Potri.003G182200_AtWRKY40 7 -

36 Potri.001G079800_At5g51190 7 -

37 Potri.002G139500_At2g44730 7 -

38 Potri.015G075600_GL1 6 -

39 Potri.002G023400_E2FC 6 -

40 Potri.001G088600_ARF9 6 -

41 Potri.003G142100_ARF9 6 -

42 Potri.003G165000_At5g13220 6 -

43 Potri.016G083600_TTG2 6 -

44 Potri.002G119300_AZF3 6 -

45 Potri.016G128300_ATWRKY33 5 -

46 Potri.003G151000_At5g61590 5 -

47 Potri.009G141600 5 -

48 Potri.009G055700_AGL15 5 -

49 Potri.014G090300_AtWRKY22 5 -

50 Potri.011G075800_AG 4 -

Plain Random Forest Model
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Extremely Randomized Trees were employed in both hybrid and plain architectures. The 

top 50 TFs were extracted in a similar manner using frequency values. The results are 

shown in Table 6.12. 

Table 6.12: Comparison of the Top 50 transcription factors (TFs) predicted to regulate 
the lignin biosynthesis pathway by the Hybrid Extremely Randomized Trees and the 

Plain Extremely Randomized Trees Models on poplar Transcriptomic Test Data Set. The 
frequency of each TF within the top 2000 predicted regulatory relationships was 

calculated to represent how many pathway genes it might have inferred. TFs highlighted 
in red represent true regulators according to current literature, with the corresponding 

references provided. 

     

The hybrid and plain Extremely Randomized Tree Models detected 

Potri.009G061500_MYB83, Potri.001G267300_MYB83, Potri.019G083600_VND7, and 

Rank Transcription Factor Freq. Reference
1 Potri.007G046200_AP2 24 -
2 Potri.002G168700_AtWRKY53 24 -
3 Potri.001G088600_ARF9 24 -
4 Potri.002G139500_At2g44730 24 -
5 Potri.003G169600_SEPALLATA3 24 -
6 Potri.002G172800_ARF9 24 -
7 Potri.011G075800_AG 24 -
8 Potri.001G092900_AtWRKY53 24 -
9 Potri.005G140700_AP2 24 -
10 Potri.003G138600_AtWRKY53 24 -
11 Potri.017G137600_KAN 24 -
12 Potri.014G096200_AtWRKY53 24 -
13 Potri.004G082400_KAN 24 -
14 Potri.006G251800_HY5 24 -
15 Potri.002G252800_AtbHLH15 24 -
16 Potri.018G029500_HY5 24 -
17 Potri.001G058400_SEPALLATA3 24 -
18 Potri.001G267300_MYB83 23  (Zhong and Ye, 2012)
19 Potri.008G148400_FLP 23 -
20 Potri.009G055700_AGL15 23 -
21 Potri.002G164400_AtWRKY22 23 -
22 Potri.004G064300_AG 23 -
23 Potri.014G051200_At2g44730 22 -
24 Potri.013G153400_ATWRKY33 22 -
25 Potri.014G090300_AtWRKY22 22 -
26 Potri.002G023400_E2FC 21 -
27 Potri.017G082900_Athb-34 21 -
28 Potri.009G061500_MYB83 20  (Zhong and Ye, 2012)
29 Potri.010G093000_FLP 20 -
30 Potri.003G167900_TCP20 20 -
31 Potri.003G142100_ARF9 19 -
32 Potri.012G031700_AtWRKY53 18 -
33 Potri.011G132400 18 -
34 Potri.006G105300_ATWRKY33 18 -
35 Potri.004G007500_AtWRKY42 18 -
36 Potri.016G128300_ATWRKY33 17 -
37 Potri.013G113100_VND7 17 (Yamaguchi et al., 2011)
38 Potri.014G100100_ARF9 17 -
39 Potri.011G007800_AtWRKY42 16 -
40 Potri.008G113200 16 -
41 Potri.017G016700_SND2 16 (Hussey et al., 2011)
42 Potri.006G221800_TT2 15 -
43 Potri.019G083600_VND7 15 (Yamaguchi et al., 2011)
44 Potri.001G080900_At2g43000 14 -
45 Potri.015G075600_GL1 14 -
46 Potri.002G172101_AtbHLH13 14 -
47 Potri.014G066100_At3g60580 14 -
48 Potri.001G154200_AtERF6 14 -
49 Potri.007G135300_SND2 14 (Hussey et al., 2011)
50 Potri.003G080600_AtERF6 13 -

Hybrid Extremely Randomized Trees Model
Rank Transcription Factor Freq. Reference
1 Potri.002G252800_AtbHLH15 24 -
2 Potri.006G251800_HY5 24 -
3 Potri.005G140700_AP2 24 -
4 Potri.018G029500_HY5 23 -
5 Potri.008G210900 23 -
6 Potri.007G046200_AP2 22 -
7 Potri.017G137600_KAN 21 -
8 Potri.004G082400_KAN 21 -
9 Potri.002G172800_ARF9 21 -
10 Potri.002G168700_AtWRKY53 20 -
11 Potri.001G267300_MYB83 19  (Zhong and Ye, 2012)
12 Potri.017G107500 19 -
13 Potri.001G327100_TCP20 19 -
14 Potri.019G123500_ATWRKY33 18 -
15 Potri.004G108320 16 -
16 Potri.014G096200_AtWRKY53 16 -
17 Potri.008G148400_FLP 16 -
18 Potri.003G138600_AtWRKY53 15 -
19 Potri.006G221800_TT2 15 -
20 Potri.002G023400_E2FC 15 -
21 Potri.009G061500_MYB83 15  (Zhong and Ye, 2012)
22 Potri.013G153400_ATWRKY33 15 -
23 Potri.014G100100_ARF9 15 -
24 Potri.010G093000_FLP 14 -
25 Potri.002G139500_At2g44730 14 -
26 Potri.011G007800_AtWRKY42 14 -
27 Potri.014G090300_AtWRKY22 14 -
28 Potri.003G167900_TCP20 14 -
29 Potri.002G164400_AtWRKY22 13 -
30 Potri.012G031700_AtWRKY53 13 -
31 Potri.002G180800_LHY 13 -
32 Potri.014G051200_At2g44730 12 -
33 Potri.001G088600_ARF9 12 -
34 Potri.001G154200_AtERF6 12 -
35 Potri.017G068748_TCP20 12 -
36 Potri.016G083600_TTG2 12 -
37 Potri.004G007500_AtWRKY42 12 -
38 Potri.006G133200_TTG2 12 -
39 Potri.001G092900_AtWRKY53 12 -
40 Potri.019G083600_VND7 12 (Yamaguchi et al., 2011)
41 Potri.010G006800 12 -
42 Potri.011G132400 11 -
43 Potri.009G055700_AGL15 11 -
44 Potri.013G113100_VND7 11 (Yamaguchi et al., 2011)
45 Potri.002G055400_AtbHLH65 10 -
46 Potri.003G151000_At5g61590 9 -
47 Potri.001G079600_At5g61590 9 -
48 Potri.003G142100_ARF9 9 -
49 Potri.006G005500_At5g47640 9 -
50 Potri.012G138900_HSF6 9 -

Plain Extremely Randomized Trees Model
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Potri.013G113100_VND7, akin to the Random Forest Model. These models also identified 

SND2 genes, which are involved in SCW formation (Hussey et al. 2011). The Hybrid 

Extremely Randomized Trees detected both Potri.017G016700_SND2 and 

Potri.007G135300_SND2. As a result, the hybrid model outperformed the traditional 

model by identifying six TFs, while the plain model detected only four. In addition, the 

Hybrid Extremely Randomized Trees Model outperformed the Hybrid Random Forest 

Model in poplar. This indicates that the additional variance added by the Extremely 

Randomized Trees Model is useful for gene expression data in poplar species.  

Hybrid and plain AdaBoost Models were applied to the poplar Transcriptomic Test 

Data Set in a similar fashion, and the results are presented in Table 6.13. The hybrid 

AdaBoost Model was able to detect Potri.009G061500_MYB83 and 

Potri.019G083600_VND7, which were also detected by the other models. The hybrid 

AdaBoost Model also identified Potri.003G022800_XND1, an important regulator in the 

LBP (Zhao et al. 2008); this TF was not identified by the other models in poplar species. 

In contrast, the plain AdaBoost Model detected only one  in the top 50 TFs which is 

Potri.019G083600_VND7, indicating that using the CNN encoder to encode the gene 

expression data has clear advantages for inferring gene regulatory relationships.  

Table 6.13: Comparison of the top 50 transcription factors (TFs) predicted to regulate the 
lignin biosynthesis pathway by the Hybrid AdaBoost Model and the Plain AdaBoost 

Model on the poplar Transcriptomic Test Data Set. The frequency of each TF within the 
top 2000 predicted regulatory relationships was calculated to represent how many 

pathway genes it might have inferred. TFs highlighted in red represent true regulators 
according to current literature, with the corresponding references provided. 
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To compare the performance of the models with a baseline model, Spearman's rank 

correlation coefficient was applied on the poplar transcriptomic test data, similar to the 

Arabidopsis species. The Benjamini-Hochberg procedure (Benjamini and Hochberg 1995) 

was applied to implement a False Discovery Rate (FDR) correction after calculating the 

correlation coefficient. Gene regulatory pairs were sorted in ascending order based on the 

corrected p-value, ranging from the most to least significant relationship, and the top 2000 

regulatory pairs were selected from the list. The unique TFs within the top 2000 pairs were 

counted, and each TF was assigned a frequency value. This value was then used to identify 

Rank Transcription Factor Freq. Reference
1 Potri.007G046200_AP2 24 -
2 Potri.018G029500_HY5 24 -
3 Potri.002G252800_AtbHLH15 24 -
4 Potri.017G137600_KAN 23 -
5 Potri.003G169600_SEPALLATA3 22 -
6 Potri.019G083600_VND7 21 (Yamaguchi et al., 2011)
7 Potri.014G096200_AtWRKY53 21 -
8 Potri.011G075800_AG 20 -
9 Potri.002G023400_E2FC 16 -
10 Potri.014G106800_LHY 14 -
11 Potri.010G093000_FLP 11 -
12 Potri.014G051200_At2g44730 11 -
13 Potri.014G058600_GATA-4 11 -
14 Potri.017G068748_TCP20 11 -
15 Potri.015G075800_GL1 10 -
16 Potri.005G176000_At1g21910 10 -
17 Potri.014G100100_ARF9 10 -
18 Potri.015G141100_HSF6 9 -
19 Potri.010G036400 8 -
20 Potri.003G080600_AtERF6 8 -
21 Potri.004G115500_AGL2 8 -
22 Potri.016G094800_At2g37000 8 -
23 Potri.018G049600_TT2 8 -
24 Potri.008G166200_ERF1 8 -
25 Potri.003G022800_XND1 7 (Zhao et al., 2008)
26 Potri.015G009632_SDG34 7 -
27 Potri.003G022800_At5g64530 7 -
28 Potri.003G000400 7 -
29 Potri.002G157600_AtMYB17 7 -
30 Potri.009G055700_AGL15 7 -
31 Potri.001G159200_At1g31040 7 -
32 Potri.007G066800 7 -
33 Potri.005G149100_At5g65590 7 -
34 Potri.014G094500_At2g46310 7 -
35 Potri.018G044900_GATA-12 7 -
36 Potri.013G081200 7 -
37 Potri.004G082400_KAN 7 -
38 Potri.010G119900 7 -
39 Potri.011G103100 7 -
40 Potri.006G054500 7 -
41 Potri.019G040900 7 -
42 Potri.007G044600_AtbHLH88 7 -
43 Potri.005G118000_AP3 7 -
44 Potri.010G184400 7 -
45 Potri.010G185700 7 -
46 Potri.008G142000 7 -
47 Potri.009G061500_MYB83 6  (Zhong and Ye, 2012)
48 Potri.007G053500_AtGRAS18 6 -
49 Potri.002G149000_LBD18 6 -
50 Potri.002G149000_At2g45420 6 -

Hybrid AdaBoost Model
Rank Transcription Factor Freq. Reference
1 Potri.007G046200_AP2 21 -

2 Potri.002G252800_AtbHLH15 19 -

3 Potri.018G029500_HY5 13 -

4 Potri.017G137600_KAN 12 -

5 Potri.003G036900_At1g55110 12 -

6 Potri.001G082700_AtGRF8 9 -

7 Potri.014G096200_AtWRKY53 8 -

8 Potri.014G075200_ANL2 8 -

9 Potri.001G255532_At3g51950 8 -

10 Potri.005G148400_ANT 8 -

11 Potri.003G169600_SEPALLATA3 8 -

12 Potri.008G148200_Athb-13 6 -

13 Potri.018G065400_At3g13960 6 -

14 Potri.014G106800_LHY 6 -

15 Potri.010G093000_FLP 6 -

16 Potri.006G143200_At3g13960 4 -

17 Potri.006G167700 4 -

18 Potri.001G238400_OBP2 4 -

19 Potri.016G121800 4 -

20 Potri.010G099200_At2g02070 4 -

21 Potri.004G082400_KAN 4 -

22 Potri.004G135100 4 -

23 Potri.014G007200_AtGRF2 4 -

24 Potri.006G057200_AtbHLH60 4 -

25 Potri.018G129800_YABBY5 4 -

26 Potri.003G219900 4 -

27 Potri.010G093400_Athb-13 4 -

28 Potri.003G096300_KAN2 4 -

29 Potri.018G008500_At2g24570 4 -

30 Potri.004G116100_TFPD 4 -

31 Potri.003G138600_AtWRKY53 4 -

32 Potri.018G091600 4 -

33 Potri.005G207200_AtbHLH65 4 -

34 Potri.012G104900_AtbHLH137 4 -

35 Potri.005G140700_AP2 4 -

36 Potri.002G035200_Athb-33 4 -

37 Potri.018G054700_ATH1 4 -

38 Potri.014G055700_At2g44940 4 -

39 Potri.019G083600_VND7 3 (Yamaguchi et al., 2011)

40 Potri.001G041400_At1g16070 3 -

41 Potri.008G210900 3 -

42 Potri.012G018300_SDG34 3 -

43 Potri.014G152000_At1g05230 3 -

44 Potri.007G109900 3 -

45 Potri.005G192000_At1g76890 3 -

46 Potri.016G128300_ATWRKY33 3 -

47 Potri.010G167500_AtMYB110 3 -

48 Potri.011G116800_SPL4 3 -

49 Potri.014G107200_At3g61970 3 -

50 Potri.004G060900_WRKY 3 -

Plain AdaBoost Model
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the top 50 TFs that positively regulate target genes. Table 6.14 displays the top 50 TFs as 

well as their corresponding ranks. 

Table 6.14: Top 50 transcription factors (TFs ) that regulate lignin biosynthesis pathway 
based on the corrected Spearman correlation coefficient on poplar Transcriptomic Test 

Data Set. The frequency of each TFs within the top 2000 predicted regulatory 
relationships was calculated to represent how many pathway genes it might have inferred. 

TFs highlighted in red represent true regulators according to current literature, with the 
corresponding references provided. 

 

In Table 6.14, it is evident that the Spearman metric identified 

Potri.017G016700_SND2 and Potri.007G135300_SND2, like the Hybrid Extremely 

Randomized Trees Model. Additionally, it detected Potri.017G119900_C3H14 and 

Potri.004G095100_C3H14, which play a vital role in the LBP (Chai et al. 2015). It also 

Rank Transcription Factor Freq. Reference
1 Potri.013G039100_At5g28300 14 -

2 Potri.018G129800_YABBY5 14 -

3 Potri.003G036900_At1g55110 13 -

4 Potri.001G137800_At5g46880 13 -

5 Potri.014G152000_At1g05230 13 -

6 Potri.004G020400 13 -

7 Potri.004G230800 13 -

8 Potri.019G045900 13 -

9 Potri.014G107200_At3g61970 12 -

10 Potri.011G083100 12 -

11 Potri.015G075600_GL1 12 -

12 Potri.014G099900_At1g01250 12 -

13 Potri.014G037200_KAN4 12 -

14 Potri.015G104200_AtbHLH137 12 -

15 Potri.015G022000_TRY 12 -

16 Potri.003G046700 12 -

17 Potri.013G054000_NAC 12 -

18 Potri.003G169100 12 -

19 Potri.012G104900_AtbHLH137 12 -

20 Potri.016G136500 11 -

21 Potri.005G205400_At2g43000 11 -

22 Potri.002G041700 11 -

23 Potri.005G246700 11 -

24 Potri.017G094800_TFPD 11 -

25 Potri.004G050150_ARF3 10 -

26 Potri.010G223300_GATA-8 10 -

27 Potri.007G014400_VND2 10 (Zhou, Zhong, and Ye, 2014)

28 Potri.006G152700 10 -

29 Potri.018G068700 10 -

30 Potri.017G016700_SND2 10 (Hussey et al., 2011)

31 Potri.002G141200_At2g44940 10 -

32 Potri.017G082000_At1g26870 10 -

33 Potri.004G159300_At2g16400 10 -

34 Potri.010G099100_At2g02070 10 -

35 Potri.007G135300_SND2 10 (Hussey et al., 2011)

36 Potri.017G119900_C3H14 10 (Chai et al., 2015)

37 Potri.012G126500 10 -

38 Potri.001G137600_KAN2 10 -

39 Potri.002G181600_At3g61970 10 -

40 Potri.014G066100_At3g60580 10 -

41 Potri.017G139500 10 -

42 Potri.008G106700 10 -

43 Potri.002G154700_ANL2 10 -

44 Potri.007G014400 10 -

45 Potri.001G112200_KNAT7 10 (Yu, 2019)

46 Potri.002G034600 10 -

47 Potri.004G095100_C3H14 9 (Chai et al., 2015)

48 Potri.017G137600_KAN 9 -

49 Potri.005G192000_At1g76890 9 -

50 Potri.014G080900 9 -

Spearman Correlation Coefficient
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identified Potri.001G112200_KNAT7, a regulator of SCW biosynthesis growth (Yu 2019). 

In poplar species, as in Arabidopsis, hybrid models consistently outperformed traditional 

ML models as seen in Tables 6.11 to 6.13. Although the Spearman metric exhibits 

comparable performance with the hybrid models, it has some downsides such as being 

sensitive to outliers and assuming monotonic relationships between variables. These 

limitations make hybrid models more effective in identifying key TFs in poplar species. 

Finally, a GRN was built using the best-performing hybrid ML model, the Hybrid 

Extremely Randomized Trees model, on the poplar Transcriptomic Test Data. In Figure 

6.8, the target genes of the LBP are represented by green nodes, while the top 50 TFs with 

the highest connectivity are depicted by the other nodes based on the frequency count. The 

light coral nodes specifically denote the true transcription factors involved in the LBP. 
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Figure 6.8: Regulatory network generated by the Hybrid Extremely Randomized Trees 
model on poplar Transcriptomic Test Data Set. The green nodes denote the target genes, 
all the other nodes are the top 50 transcription factors based on the frequency count.  The 
light coral nodes represent the true TFs which involve in the lignin biosynthesis pathway. 

6.4.4 Test results with Maize Transcriptomic Test Data Set 
The maize Transcriptomic Test Data Set was compiled with genes related to the LBP. 

Homologous mapping of Arabidopsis lignin pathway target genes to maize resulted in a 

total of 38 target genes for the maize species. These target genes were paired with 2,555 

unique TFs, yielding a total of 97,090 regulatory pairs in the maize Transcriptomic Test 
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Data Set. Gene expression data from 1,626 samples for the maize Transcriptomic Test Data 

Set were extracted from the NCBI SRA database (Compendium Data Set 3). 

Following the approach used for Arabidopsis and poplar species, both hybrid and plain 

Random Forest Models were fine-tuned and trained on maize training data. The hybrid 

model employs data encoded by the CNN encoder, while the plain model utilizes 

unencoded data. The maize Transcriptomic Test Data Set was used for testing. The top 

2000 positive regulatory gene pairs were chosen, and their unique TFs were counted. This 

frequency value assists in identifying the top 50 TFs positively influencing target genes. 

Comparable training and testing experiments were carried out using hybrid and plain 

Extremely Randomized Trees Models as well as hybrid and plain AdaBoost Models. Table 

6.15 displays the top 50 TFs for the Hybrid and plain Random Forest Models. 

Table 6.15: Comparison of the top 50 transcription factors (TFs) predicted to regulate the 
lignin biosynthesis pathway by the Hybrid Random Forest and the Plain Random Forest 
Models on maize Transcriptomic Test Data Set. The frequency of each TF within the top 
2000 predicted regulatory relationships was calculated to represent how many pathway 

genes it might have inferred. TFs highlighted in red represent true regulators according to 
current literature, with the corresponding references provided. 
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Table 6.15 displays the frequency values of each TF within the top 2000 predictions 

for both hybrid and plain Random Forest Models. TFs highlighted in red are acknowledged 

as true regulators in current literature, with relevant references provided through 

homologous mapping. The Hybrid Random Forest Model effectively identified vital TFs 

involved in lignin biosynthesis, such as Zm00001eb176840_VND7, 

Zm00001eb260000_VND7, and Zm00001eb076470_VND7, which play critical roles in 

the LBP (Yamaguchi et al. 2011). Furthermore, it also detected 

Zm00001eb093920_MYB46 and Zm00001eb410950_MYB46, known as master 

regulators in secondary cell wall (SCW) biosynthesis (Zhong and Ye 2012). In contrast, 

the plain Random Forest Model identified only two true positive TFs, 

Rank Transcription Factor Freq. Reference
1 Zm00001eb176840_VND7 34 (Yamaguchi et al., 2011)
2 Zm00001eb260000_VND7 34 (Yamaguchi et al., 2011)
3 Zm00001eb076470_VND7 34 (Yamaguchi et al., 2011)
4 Zm00001eb122740_HY5 34 -
5 Zm00001eb070520_AtbHLH15 34 -
6 Zm00001eb432100_AP2 34 -
7 Zm00001eb213550_AtbHLH9 34 -
8 Zm00001eb284010_AG 34 -
9 Zm00001eb338060_AG 34 -
10 Zm00001eb102450_SEPALLATA3 34 -
11 Zm00001eb098330_AtWRKY53 34 -
12 Zm00001eb317770_SEPALLATA3 34 -
13 Zm00001eb036590_SEPALLATA3 34 -
14 Zm00001eb004600_AtbHLH15 34 -
15 Zm00001eb400120_SEPALLATA3 34 -
16 Zm00001eb050790_AtbHLH15 34 -
17 Zm00001eb068520_AP2 34 -
18 Zm00001eb265610_AP2 34 -
19 Zm00001eb424050_HY5 34 -
20 Zm00001eb311960_KAN 34 -
21 Zm00001eb424040_HY5 34 -
22 Zm00001eb336820_HY5 34 -
23 Zm00001eb385610_HY5 34 -
24 Zm00001eb062460_AP2 34 -
25 Zm00001eb387280_AP2 34 -
26 Zm00001eb355240_AP2 34 -
27 Zm00001eb235510_HY5 34 -
28 Zm00001eb093920_MYB46 33 (Zhong and Ye, 2012)
29 Zm00001eb145460_AG 33 -
30 Zm00001eb327040_AP1 33 -
31 Zm00001eb312620_Athb-30 33 -
32 Zm00001eb410950_MYB46 32 (Zhong and Ye, 2012)
33 Zm00001eb406030_AtWRKY53 32 -
34 Zm00001eb120710_AG 30 -
35 Zm00001eb184340 28 -
36 Zm00001eb359470_AtWRKY53 27 -
37 Zm00001eb172450_LHY 27 -
38 Zm00001eb118120_AP1 26 -
39 Zm00001eb203940_AtWRKY22 26 -
40 Zm00001eb344160_AtWRKY53 26 -
41 Zm00001eb310270_AtWRKY53 24 -
42 Zm00001eb134890_ZFP7 24 -
43 Zm00001eb109820_FLP 23 -
44 Zm00001eb415760_LHY 22 -
45 Zm00001eb344810_AtWRKY22 22 -
46 Zm00001eb358680_AtWRKY22 21 -
47 Zm00001eb376400_AtWRKY53 21 -
48 Zm00001eb199110_At2g44730 20 -
49 Zm00001eb159410_AtWRKY22 19 -
50 Zm00001eb289170 19 -

Hybrid Random Forest Model
Rank Transcription Factor Freq. Reference
1 Zm00001eb122740_HY5 34 -
2 Zm00001eb387280_AP2 34 -
3 Zm00001eb068520_AP2 34 -
4 Zm00001eb312620_Athb-30 34 -
5 Zm00001eb134890_ZFP7 34 -
6 Zm00001eb284010_AG 34 -
7 Zm00001eb317770_SEPALLATA3 34 -
8 Zm00001eb327040_AP1 34 -
9 Zm00001eb036590_SEPALLATA3 34 -
10 Zm00001eb311960_KAN 34 -
11 Zm00001eb102450_SEPALLATA3 34 -
12 Zm00001eb338060_AG 34 -
13 Zm00001eb432100_AP2 34 -
14 Zm00001eb336820_HY5 34 -
15 Zm00001eb265610_AP2 34 -
16 Zm00001eb235510_HY5 34 -
17 Zm00001eb070520_AtbHLH15 34 -
18 Zm00001eb355240_AP2 34 -
19 Zm00001eb385610_HY5 34 -
20 Zm00001eb050790_AtbHLH15 34 -
21 Zm00001eb062460_AP2 34 -
22 Zm00001eb076470_VND7 33 (Yamaguchi et al., 2011)
23 Zm00001eb184340 33 -
24 Zm00001eb213550_AtbHLH9 33 -
25 Zm00001eb424040_HY5 31 -
26 Zm00001eb424050_HY5 31 -
27 Zm00001eb098330_AtWRKY53 29 -
28 Zm00001eb138380_SHP2 28 -
29 Zm00001eb322390_At5g60200 27 -
30 Zm00001eb400120_SEPALLATA3 27 -
31 Zm00001eb142960_TCP20 26 -
32 Zm00001eb310270_AtWRKY53 25 -
33 Zm00001eb411130_SHP2 24 -
34 Zm00001eb406030_AtWRKY53 24 -
35 Zm00001eb145460_AG 24 -
36 Zm00001eb199110_At2g44730 23 -
37 Zm00001eb319350_HSF6 23 -
38 Zm00001eb033570_At2g44730 22 -
39 Zm00001eb430640_AtERF4 22 -
40 Zm00001eb004600_AtbHLH15 21 -
41 Zm00001eb120710_AG 19 -
42 Zm00001eb023870_At2g44730 19 -
43 Zm00001eb109820_FLP 19 -
44 Zm00001eb008690_AGL4 19 -
45 Zm00001eb100610_At1g61730 18 -
46 Zm00001eb359470_AtWRKY53 18 -
47 Zm00001eb344160_AtWRKY53 17 -
48 Zm00001eb415760_LHY 17 -
49 Zm00001eb387370_AtMYB73 15 (Kumar, Campbell, and Turner, 2016)
50 Zm00001eb118120_AP1 15 -

Plain Random Forest Model
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Zm00001eb076470_VND7 and Zm00001eb387370_AtMYB73. Consequently, the 

Hybrid Random Forest Model demonstrated significantly better performance than the 

traditional ML model. 

The Extremely Randomized Trees Model was also utilized in both hybrid and plain 

architectures. The top 50 TFs were extracted in a similar fashion using frequency values. 

The results are presented in Table 6.16. 

Table 6.16: Comparison of the top 50 transcription factors (TFs) predicted that regulate 
lignin biosynthesis pathway by the Hybrid Extremely Randomized Trees and the Plain 

Extremely Randomized Trees Models on maize Transcriptomic Test Data Set. The 
frequency of each TFs within the top 2000 predicted regulatory relationships was counted 
to represents how many pathway genes it might have influenced. TFs highlighted in red 

represent true regulators according to current literature, with the corresponding references 
provided. 

      

Rank Transcription Factor Freq. Reference
1 Zm00001eb355240_AP2 34 -

2 Zm00001eb235510_HY5 34 -

3 Zm00001eb317770_SEPALLATA3 34 -

4 Zm00001eb036590_SEPALLATA3 34 -

5 Zm00001eb122740_HY5 34 -

6 Zm00001eb387280_AP2 34 -

7 Zm00001eb432100_AP2 34 -

8 Zm00001eb385610_HY5 34 -

9 Zm00001eb062460_AP2 34 -

10 Zm00001eb336820_HY5 34 -

11 Zm00001eb050790_AtbHLH15 34 -

12 Zm00001eb070520_AtbHLH15 34 -

13 Zm00001eb265610_AP2 34 -

14 Zm00001eb102450_SEPALLATA3 33 -

15 Zm00001eb068520_AP2 33 -

16 Zm00001eb400120_SEPALLATA3 33 -

17 Zm00001eb311960_KAN 32 -

18 Zm00001eb284010_AG 31 -

19 Zm00001eb076470_VND7 30 (Yamaguchi et al., 2011)

20 Zm00001eb338060_AG 28 -

21 Zm00001eb424040_HY5 28 -

22 Zm00001eb424050_HY5 28 -

23 Zm00001eb145460_AG 26 -

24 Zm00001eb327040_AP1 24 -

25 Zm00001eb213550_AtbHLH9 24 -

26 Zm00001eb120710_AG 23 -

27 Zm00001eb172450_LHY 23 -

28 Zm00001eb023870_At2g44730 23 -

29 Zm00001eb109820_FLP 23 -

30 Zm00001eb406030_AtWRKY53 22 -

31 Zm00001eb203940_AtWRKY22 21 -

32 Zm00001eb199110_At2g44730 21 -

33 Zm00001eb098330_AtWRKY53 21 -

34 Zm00001eb410950_MYB46 21 (Zhong and Ye, 2012)

35 Zm00001eb209480 21 -

36 Zm00001eb118120_AP1 21 -

37 Zm00001eb319350_HSF6 21 -

38 Zm00001eb134890_ZFP7 21 -

39 Zm00001eb310270_AtWRKY53 21 -

40 Zm00001eb312620_Athb-30 21 -

41 Zm00001eb184340 20 -

42 Zm00001eb387370_AtMYB73 20 (Kumar, Campbell, and Turner, 2016)

43 Zm00001eb415760_LHY 19 -

44 Zm00001eb176840_VND7 18 (Yamaguchi et al., 2011)

45 Zm00001eb416800 18 -

46 Zm00001eb229950 18 -

47 Zm00001eb118970_ARF9 18 -

48 Zm00001eb176440_At1g61730 18 -

49 Zm00001eb033570_At2g44730 18 -

50 Zm00001eb260000_VND7 17 (Yamaguchi et al., 2011)

Hybrid Extremely Randomized Trees Model
Rank Transcription Factor Freq. Reference
1 Zm00001eb355240_AP2 34 -

2 Zm00001eb265610_AP2 34 -

3 Zm00001eb068520_AP2 34 -

4 Zm00001eb062460_AP2 33 -

5 Zm00001eb050790_AtbHLH15 32 -

6 Zm00001eb122740_HY5 31 -

7 Zm00001eb235510_HY5 31 -

8 Zm00001eb336820_HY5 30 -

9 Zm00001eb070520_AtbHLH15 30 -

10 Zm00001eb432100_AP2 30 -

11 Zm00001eb387280_AP2 30 -

12 Zm00001eb327040_AP1 29 -

13 Zm00001eb385610_HY5 29 -

14 Zm00001eb036590_SEPALLATA3 29 -

15 Zm00001eb102450_SEPALLATA3 29 -

16 Zm00001eb317770_SEPALLATA3 29 -

17 Zm00001eb172450_LHY 29 -

18 Zm00001eb284010_AG 28 -

19 Zm00001eb400120_SEPALLATA3 28 -

20 Zm00001eb301590_At5g43700 28 -

21 Zm00001eb109820_FLP 27 -

22 Zm00001eb008690_AGL4 27 -

23 Zm00001eb338060_AG 27 -

24 Zm00001eb311960_KAN 27 -

25 Zm00001eb209480 27 -

26 Zm00001eb319350_HSF6 26 -

27 Zm00001eb023870_At2g44730 26 -

28 Zm00001eb430640_AtERF4 26 -

29 Zm00001eb416800 26 -

30 Zm00001eb310270_AtWRKY53 26 -

31 Zm00001eb118970_ARF9 26 -

32 Zm00001eb406030_AtWRKY53 26 -

33 Zm00001eb427580_GATA-5 25 -

34 Zm00001eb312620_Athb-30 25 -

35 Zm00001eb150840_At5g44210 25 -

36 Zm00001eb229950 25 -

37 Zm00001eb322390_At5g60200 25 -

38 Zm00001eb184340 24 -

39 Zm00001eb374110 24 -

40 Zm00001eb145460_AG 24 -

41 Zm00001eb387370_AtMYB73 24 (Kumar, Campbell, and Turner, 2016)

42 Zm00001eb120710_AG 24 -

43 Zm00001eb134890_ZFP7 24 -

44 Zm00001eb369560_At5g44210 24 -

45 Zm00001eb415770_LHY 24 -

46 Zm00001eb373300_AtbZIP38 24 -

47 Zm00001eb291730_AtERF4 24 -

48 Zm00001eb138380_SHP2 23 -

49 Zm00001eb415760_LHY 23 -

50 Zm00001eb213550_AtbHLH9 23 -

Plain Extremely Randomized Trees Model
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In the maize species, the Hybrid Extremely Randomized Trees Model identified TFs 

similar to the Hybrid Random Forest Model, including Zm00001eb076470_VND7, 

Zm00001eb176840_VND7, and Zm00001eb260000_VND7. Additionally, it detected 

Zm00001eb410950_MYB46, Zm00001eb387370_AtMYB73. However, the plain 

Extremely Randomized Trees Model only identified Zm00001eb387370_AtMYB73 in the 

maize species. 

Finally, both hybrid and plain AdaBoost Models were applied, with the results 

displayed in Table 6.17. 

Table 6.17:  Comparison of the top 50 transcription factors (TFs) predicted to regulate the 
lignin biosynthesis pathway by the Hybrid AdaBoost Model and the Plain AdaBoost 

Model on maize Transcriptomic Test Data Set. The frequency of each TF within the top 
2000 predicted regulatory relationships was calculated to represent how many pathway 

genes it might have inferred. TFs highlighted in red represent true regulators according to 
current literature, with the corresponding references provided. 
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Table 6.17 reveals that the Hybrid AdaBoost Model identified TFs similar to the 

Hybrid Random Forest Model, including Zm00001eb176840_VND7, 

Zm00001eb260000_VND7, Zm00001eb076470_VND7, Zm00001eb093920_MYB46, 

and Zm00001eb410950_MYB46, whereas the plain AdaBoost Model detected only two 

TFs which are Zm00001eb076470_VND7 and Zm00001eb139600_AtMYB73. To 

compare the performance of the models with a baseline model, Spearman's rank correlation 

coefficient was applied to the maize transcriptomic test data, similar to the Arabidopsis and 

poplar gene expression analysis. A False Discovery Rate (FDR) correction was applied, 

and the top 50 TFs were extracted. Table 6.18 displays the top 50 TFs as well as their 

corresponding ranks. 

Rank Transcription Factor Freq. Reference
1 Zm00001eb076470_VND7 34 (Yamaguchi et al., 2011)

2 Zm00001eb176840_VND7 34 (Yamaguchi et al., 2011)

3 Zm00001eb260000_VND7 34 (Yamaguchi et al., 2011)

4 Zm00001eb093920_MYB46 34 (Zhong and Ye, 2012)

5 Zm00001eb355240_AP2 34 -

6 Zm00001eb400120_SEPALLATA3 34 -

7 Zm00001eb070520_AtbHLH15 34 -

8 Zm00001eb311960_KAN 34 -

9 Zm00001eb102450_SEPALLATA3 34 -

10 Zm00001eb036590_SEPALLATA3 34 -

11 Zm00001eb317770_SEPALLATA3 34 -

12 Zm00001eb122740_HY5 34 -

13 Zm00001eb424050_HY5 34 -

14 Zm00001eb424040_HY5 34 -

15 Zm00001eb050790_AtbHLH15 34 -

16 Zm00001eb432100_AP2 34 -

17 Zm00001eb385610_HY5 34 -

18 Zm00001eb068520_AP2 34 -

19 Zm00001eb265610_AP2 34 -

20 Zm00001eb387280_AP2 34 -

21 Zm00001eb336820_HY5 34 -

22 Zm00001eb062460_AP2 34 -

23 Zm00001eb004600_AtbHLH15 34 -

24 Zm00001eb235510_HY5 34 -

25 Zm00001eb213550_AtbHLH9 33 -

26 Zm00001eb284010_AG 33 -

27 Zm00001eb098330_AtWRKY53 33 -

28 Zm00001eb338060_AG 33 -

29 Zm00001eb410950_MYB46 32 (Zhong and Ye, 2012)

30 Zm00001eb327040_AP1 31 -

31 Zm00001eb118120_AP1 30 -

32 Zm00001eb172450_LHY 30 -

33 Zm00001eb359470_AtWRKY53 30 -

34 Zm00001eb145460_AG 29 -

35 Zm00001eb310270_AtWRKY53 28 -

36 Zm00001eb406030_AtWRKY53 28 -

37 Zm00001eb344810_AtWRKY22 28 -

38 Zm00001eb376400_AtWRKY53 27 -

39 Zm00001eb159410_AtWRKY22 27 -

40 Zm00001eb184340 27 -

41 Zm00001eb120710_AG 26 -

42 Zm00001eb358680_AtWRKY22 26 -

43 Zm00001eb041650_AGL15 25 -

44 Zm00001eb344160_AtWRKY53 24 -

45 Zm00001eb203940_AtWRKY22 24 -

46 Zm00001eb134890_ZFP7 22 -

47 Zm00001eb193550_At1g21910 20 -

48 Zm00001eb202570 20 -

49 Zm00001eb312620_Athb-30 19 -

50 Zm00001eb348560 19 -

Hybrid AdaBoost Model
Rank Transcription Factor Freq. Reference
1 Zm00001eb355240_AP2 34 -

2 Zm00001eb068520_AP2 34 -

3 Zm00001eb265610_AP2 34 -

4 Zm00001eb062460_AP2 34 -

5 Zm00001eb387280_AP2 34 -

6 Zm00001eb050790_AtbHLH15 34 -

7 Zm00001eb122740_HY5 34 -

8 Zm00001eb231360_AtbZIP44 34 -

9 Zm00001eb070520_AtbHLH15 34 -

10 Zm00001eb432100_AP2 33 -

11 Zm00001eb336820_HY5 32 -

12 Zm00001eb235510_HY5 32 -

13 Zm00001eb417610_PIF3 31 -

14 Zm00001eb424050_HY5 31 -

15 Zm00001eb385610_HY5 31 -

16 Zm00001eb102450_SEPALLATA3 29 -

17 Zm00001eb175540_AtbHLH137 29 -

18 Zm00001eb072360 29 -

19 Zm00001eb189510_OBP4 29 -

20 Zm00001eb424040_HY5 29 -

21 Zm00001eb391230_COL4 29 -

22 Zm00001eb338060_AG 29 -

23 Zm00001eb152350 27 -

24 Zm00001eb194220_At1g78080 27 -

25 Zm00001eb023220_COL4 25 -

26 Zm00001eb427650_ATHB-7 24 -

27 Zm00001eb004600_AtbHLH15 24 -

28 Zm00001eb400130_CRC 24 -

29 Zm00001eb327040_AP1 24 -

30 Zm00001eb335690_At2g38090 24 -

31 Zm00001eb284010_AG 24 -

32 Zm00001eb008690_AGL4 24 -

33 Zm00001eb311960_KAN 24 -

34 Zm00001eb317770_SEPALLATA3 24 -

35 Zm00001eb006180 19 -

36 Zm00001eb036590_SEPALLATA3 19 -

37 Zm00001eb400120_SEPALLATA3 18 -

38 Zm00001eb348560 18 -

39 Zm00001eb076470_VND7 18 (Yamaguchi et al., 2011)

40 Zm00001eb209070_AtbZIP11 16 -

41 Zm00001eb327140_NF-YB3 16 -

42 Zm00001eb028820_AtMYB59 16 -

43 Zm00001eb138380_SHP2 15 -

44 Zm00001eb051380_At5g39660 15 -

45 Zm00001eb144340_GAI 15 -

46 Zm00001eb066100_At5g66940 15 -

47 Zm00001eb357220_At3g13810 12 -

48 Zm00001eb310270_AtWRKY53 11 -

49 Zm00001eb139600_AtMYB73 11 (Kumar, Campbell, and Turner, 2016)

50 Zm00001eb051900_At4g34610 11 -

Plain AdaBoost Model
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Table 6.18: Top 50 transcription factors (TFs) that regulate the lignin biosynthesis 
pathway based on the corrected Spearman correlation coefficient on maize 

Transcriptomic Test Data Set. The frequency of each TF within the top 2000 predicted 
regulatory relationships was calculated to represent how many pathway genes it might 

have inferred. TFs highlighted in red represent true regulators according to current 
literature, with the corresponding references provided. 

 

The Spearman correlation coefficient identified TFs such as 

Zm00001eb403720_KNAT7 and Zm00001eb001720_KNAT7, known to be regulators of 

the lignin pathway (Yu 2019). Additionally, it identified Zm00001eb157260_SND2, 

Zm00001eb260850_NST2, and Zm00001eb269810_NST2, which are involved in SCW 

formation (Hussey et al. 2011), (Mitsuda et al. 2007). Although the Spearman correlation 

coefficient and Hybrid Random Forest Models showed comparable performance, the 

hybrid models consistently outperformed traditional models in making inferences in the 

maize species. This highlights the effectiveness of hybrid models in identifying key TFs 

and pathways in complex biological systems. 

Rank Transcription Factor Freq. Reference
1 Zm00001eb112680_AtbHLH62 13 -
2 Zm00001eb055830_FIT1 12 -
3 Zm00001eb426670_AtMYB15 12 -
4 Zm00001eb077700_AtMYB15 12 -
5 Zm00001eb191940_GATA-12 11 -
6 Zm00001eb164490 11 -
7 Zm00001eb318060 11 -
8 Zm00001eb159340_AtWRKY28 10 -
9 Zm00001eb137920_WLIM1 10 -
10 Zm00001eb320470_At3g54390 10 -
11 Zm00001eb015120_AtMYB112 10 -
12 Zm00001eb044660_At5g60200 10 -
13 Zm00001eb154170_AtWRKY69 10 -
14 Zm00001eb350280_ATWRKY33 9 -
15 Zm00001eb388620_AtWRKY40 9 -
16 Zm00001eb294560_AtMYB86 9 -
17 Zm00001eb429870_AtERF1 9 -
18 Zm00001eb393460_At5g04340 9 -
19 Zm00001eb395580_AtMYB112 9 -
20 Zm00001eb223590_At1g74950 9 -
21 Zm00001eb327450_At1g74950 9 -
22 Zm00001eb195420_AtWRKY55 9 -
23 Zm00001eb213800 9 -
24 Zm00001eb286490_ATWRKY33 9 -
25 Zm00001eb273610 9 -
26 Zm00001eb403720_KNAT7 9  (Yu, 2019)
27 Zm00001eb169340_AtbHLH62 9 -
28 Zm00001eb155610 9 -
29 Zm00001eb001720_KNAT7 9  (Yu, 2019)
30 Zm00001eb006180 8 -
31 Zm00001eb153330_WRKY 8 -
32 Zm00001eb074930_AtERF1 8 -
33 Zm00001eb330910 8 -
34 Zm00001eb072200 8 -
35 Zm00001eb157260_SND2 8 (Hussey et al., 2011)
36 Zm00001eb125240_At1g68360 8 -
37 Zm00001eb260850_NST2 8 (Mitsuda et al., 2007)
38 Zm00001eb185160_AtMYB15 8 -
39 Zm00001eb342580_AtMYB55 8 -
40 Zm00001eb269810_NST2 8 (Mitsuda et al., 2007)
41 Zm00001eb417490_AtWRKY42 8 -
42 Zm00001eb335320_At1g68360 8 -
43 Zm00001eb068530 8 -
44 Zm00001eb210520 7 -
45 Zm00001eb326170_At3g49930 7 -
46 Zm00001eb030190_ZAT10 7 -
47 Zm00001eb290350_ATWRKY33 7 -
48 Zm00001eb195770 7 -
49 Zm00001eb154560_AtMYB87 7 -
50 Zm00001eb326170_At3g49930 7 -

Spearman Correlation Coefficient
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Finally, a GRN was built using the best-performing hybrid ML model, the Hybrid 

Random Forest model, on the maize Transcriptomic Test Data. In the Figure 6.9, the target 

genes of the LBP are represented by green nodes, while the top 50 TFs with the highest 

connectivity are depicted by the other nodes based on the frequency count. The light coral 

nodes specifically denote the true transcription factors involved in the LBP. 

 

Figure 6.9: Regulatory network generated by the Hybrid Random Forest model on maize 
Transcriptomic Test Data Set. The green nodes denote the target genes, all the other 
nodes are the top 50 transcription factors based on the frequency count.  The light coral 
nodes represent the true TFs which involve in the lignin biosynthesis pathway. 
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7 TF-binding motifs found in the proximal promoter 
regions of the target genes  
Genes are segments of deoxyribonucleic acid (DNA) that can be transcribed to 

produce message RNA species, which are then translated into proteins to regulate various 

biological processes, for example, replication, growth and development. The four 

nucleotides present in DNA are adenine (A), thymine (Wilson et al.), guanine (Hellman 

and Fried), and cytosine (Robertson et al.), and nucleotide pairings, A=T and C≡G (where 

each – represents a hydrogen bond), binds the double-stranded DNA (also referred to as 

sense and antisense DNA strands) together. A TF protein plays an important role in 

regulating gene expression through binding itself to the proximal promoter region of a 

target gene and activating or modulating its transcription. Pinpointing the binding site of a 

TF is a complex but important task in bioinformatics because it can link a TF and its target 

genes. For instance, this task can be likened to finding a pattern of n-letters, where n usually 

varies from 6 to 20 nucleotides long, in a large text corpus. The n-letter pattern is the 

binding site of a TF,  and the large text corpus can be the promoter regions of multiple 

target genes. 

The binding site of a TF, which is also referred to as DNA motifs, can be present in 

both DNA strands and can occur more than once in a strand. In this study, finding the TF-

binding site of a TF in candidate target genes would provide additional evidence that the 

TF may regulate a given target gene.  A binding site of a TF is usually represented by a 

position weight matrix (PWM) as shown in Figure 7.1.  
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Figure 7.1: A position weight matrix (PWM) of the transcription factor (TF) 
(AT1G63480).Each value in the matrix represents a probability of the nucleotide of  
adenine (A), thymine (T),  cytosine (C) and guanine (G) at a specific position at a DNA 
motif. This binding site is 10 nucleotides long and the first position has 41.91% 
probability to a T.  

A TF could have more than one motif matrices. A TF may still recognize a motif even 

if its nucleotides in some positions change, generating variant matrices. If a PWM for a TF 

is experimentally tested, it is usually referred to as a known PWM, while some PWMs are 

computationally inferred. These matrices show the probability of a given nucleotide at each 

position in the matrices. The higher the probability, the greater the likelihood that a 

particular nucleotide is present at that location in the pattern. These probabilities are used 

to find TF binding sites in target genes.  

7.1 Promoter Region 
A promoter is the upstream regulatory sequence of a gene. In the promoter region, the 

four nucleotides (ATCG) repeat in various pattern. The proximal promoter regions, usually 

2 kb nucleotides long upstream of the transcription start sites, of candidate target genes 

were gathered from the Phytozome Database (Goodstein et al. 2012). Each proximal 

promoter region was further processed to detect motif binding sites using the MotifLocator 

program (Thijs et al. 2002). This program uses motif matrix information and sequential 

data to find the exact locations of a motif of a given TF in the proximal promoter region of 

each candidate target gene. The program also provides information such as the number of 
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motifs found in each proximal promoter sequence, and whether the motif is located in the 

sense or antisense strand. 

 

Figure 7.2: An example proximal promoter sequence (2000 nucleotide long) in fasta file 
format from Arabidopsis.The proximal promoter is the upstream regulatory sequence of a 
gene. 

This motif locator program was applied on the Arabidopsis Transcriptome Test Data 

Set 2 which was adopted from Taylor-Teeples's Supplementary Table 2  (Taylor-Teeples 

et al. 2015). As detailed in Section 3: Multiple OMICS Data Collection, this transcriptomic 

data set consists of 582 regulatory pairs which are considered to be positive regulatory pairs 

as they were validated by using Yeast One Hybrid System (Bulyk et al. 1999). Out of the 

582 regulatory relationships examined, there are 199 distinct TFs and 44 unique target 

genes. Position weight matrix information is available for only 141 of these TFs. The top-

performing model, the Hybrid Random Forest algorithm, predicted 471 pairs as positive 

regulatory relationships. The motif locator program further substantiated the predictions 
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made by the Hybrid Random Forest model, successfully identifying motif locations for 200 

out of the 339 predicted pairs which have the position weight matrix information. 
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8 Transfer Learning 
Transfer learning is a ML strategy that leverages knowledge acquired in one domain 

to enhance performance in a related domain. For plant genomics and bioinformatics, 

transfer learning allows one to infer gene regulatory relationships in a species when there 

is no or very limited training data. For example, known gene regulatory relationships are 

scarce. However, by utilizing known gene regulatory relationships and large quantities of 

transcriptomic data in one well-studied species like Arabidopsis, we can infer gene 

regulatory relationships in another less-studied species such as a crop or tree species. 

Transfer learning with CNNs, in particular, can offer significant benefits as these models 

can automatically learn and extract features from the input data of one species. The learned 

models can be applied to training data available in another (or a second) species. Note that 

known gene regulatory relationships and transcriptomic data from the second species are 

still essential but can be limited. In this case, the learning models from the first species can 

help fine-tune the models obtained from the second species. 

Research has demonstrated the successful application of transfer learning in gene 

expression data analysis. For example, (Moore et al. 2020) used information from 

annotated gene expression data of Arabidopsis species to classify specialized and general 

metabolism in tomato plants. Their findings highlight the effectiveness of transfer learning 

for cross-species analysis. 

In this study, a transfer learning approach was implemented to apply knowledge 

transfer from Arabidopsis species to poplar and maize species. This method enabled the 

models to train on poplar and maize species with fewer training samples than for 

Arabidopsis. The architecture for the transfer learning approach using CNNs is illustrated 
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in Figure 8.1. Model 1, also known as the base CNN model, was trained on Arabidopsis 

training data. After successful training, the learned parameters for the convolutional layers 

were transferred to CNN Model 2. CNN Model 2 was trained separately on poplar and 

maize training data and was tested using their respective testing data.   

 

Figure 8.1: Architecture of the transfer learning technique using convolutional neural 
networks (CNN). Model 1 is trained using data set 1 from a well-studied species, and the 
learned parameters of the convolutional layers are transferred to model 2. Model 2 has a 
new dense layer for different tasks and is trained on training data set 2 from a less 
characterized species. Training data set 2 is usually smaller than Training data set 1. 

8.1 Training and Testing data for Transfer Learning: 
This section delves into the training and testing data utilized in the transfer learning 

methodology. The Arabidopsis training data, displayed in Table 3.5, includes 2,462 

regulatory pairs and 1,253 expression samples per gene; this data set was used to train CNN 

Model 1. To apply transfer learning in poplar species, 100 positive regulatory pairs were 

extracted from the poplar training data shown in Table 3.5, which was obtained through 

homologous mapping from the Arabidopsis species. Additionally, 100 negative regulatory 

pairs were created by randomly pairing the TFs and the target genes which were not present 
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in positive pairs. To evaluate the transfer learning method, 500 positive regulatory pair 

samples were similarly extracted from the poplar training data shown in Table 3.5, and a 

negative set was generated by random pairing of the TFs and target genes which were not 

present as positive pairs in the poplar training data. 

The maize training and testing data for transfer learning was also derived from the 

maize training data found in Table 3.5. For the maize species, 100 positive regulatory 

pairs  were used, which were obtained through homologous mapping from the Arabidopsis 

species. Likewise, 100 negative regulatory pairs were produced by randomly pairing the 

TFs and target genes. To assess the transfer learning technique, 500 positive regulatory 

gene pairs were taken into account, and a negative set was generated in the same way. 

8.2 Evaluation of transfer learning 
In order to effectively implement transfer learning, it is crucial to train CNN Model 1, 

also known as the base model. In this study, the base model was trained using Arabidopsis 

training data. CNN Model 1 underwent training on the 80% data of Arabidopsis training 

data for 100 epochs, using Binary Cross-Entropy (BCE) as the loss function, the RMSprop 

optimizer with a learning rate of 0.00003, and a batch size of 100. Once the model was 

successfully trained, its performance was evaluated on 20% holdout test data of 

Arabidopsis. CNN Model 1 demonstrated an accuracy of 95.95% and an AUC score of 

96.03% for Arabidopsis species holdout test data. 

The next step was to apply transfer learning to the poplar and maize species using 

CNN Model 2, which has a similar structure to CNN Model 1, as depicted in Figure 8.1. 

The base model’s weights were transferred to CNN Model 2 and used to train the poplar 

and maize data separately. The training of CNN Model 2 occurred in two stages: without 
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fine-tuning and with fine-tuning. In the first stage, the base model weights were transferred 

directly and frozen to prevent further training; for fine-tuning, the transferred weights were 

further trained based on the training data specific to CNN Model 2.  

Table 8.1 presents the outcomes of CNN Model 2 for poplar and maize species, 

comparing its effectiveness without transfer learning, with transfer learning, and with fine-

tuning. For the poplar species, CNN Model 2 demonstrated an accuracy of 75% and an 

AUC score of 75.11% without transfer learning. However, the accuracy significantly 

increased to 81.3% by utilizing transferred weights from CNN Model 1, which was trained 

on Arabidopsis species, and the AUC score rose to 81.35%. Further fine-tuning of these 

models led to further improvements in performance with an accuracy of 82.4% and an 

AUC score of 82.45%.  

Table 8.1: Performance Metrics of CNN Models for poplar and maize species using 
regulatory pair test data. The testing for the poplar and maize species consisted of 500 
positive pairs which were extracted through homologous mapping, 500 negative pairs 

which were randomly paired transcription factor and target genes which were not shown 
as positive pairs.  

No. Model Accuracy Precision Recall Specificity F1-
Score 

AUC 
score 

1 Poplar Species CNN 
Model 2 without 
Transfer Learning 

75 75.24 75.11 79.51 74.98 75.11 

2 Poplar Species CNN 
Model 2 with Transfer 
Learning 

81.3 81.36 81.35 83.61 81.3 81.35 

3 Poplar Species CNN 
Model 2 with Transfer 
Learning and Fine 
Tuning 

82.4 82.46 82.45 84.63 82.4 82.45 

4 Maize Species CNN 
Model 2 without 
Transfer Learning 

50.5 57.74 50.78 3.38 36.39 50.78 

5 Maize Species CNN 
Model 2 with Transfer 
Learning 

76 76.01 75.99 77.34 75.99 75.99 

6 Maize Species CNN 
Model 2 with Transfer 

76.9 77.16 76.87 81.91 76.83 76.87 
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Learning and Fine 
Tuning 

For the maize species, substantial improvement was evident when transfer learning 

was applied. Without transfer learning, the model's accuracy was only 50.5%, equivalent 

to random class guessing. In contrast, the model employing transfer learning achieved 76% 

accuracy and a 75.99% AUC score. Fine-tuning the model further enhanced its 

performance, with an accuracy of 76.9% and an AUC score of 76.87%. Figure 8.2 presents 

the ROC curves for the six CNN Models evaluated for poplar and maize species.  

 

 

Figure 8.2: Performance comparison of CNN Models with and without transfer learning 
for poplar and maize species. 

The ROC curves demonstrate the improved performance achieved through the 

incorporation of transfer learning and fine-tuning. For both species, the models employing 
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transfer learning exhibited a significant enhancement in performance compared to those 

without transfer learning. Additionally, the fine-tuning process further optimized the 

models, resulting in higher accuracy and AUC scores. 

In this study, the effectiveness of CNN Model 2 on poplar and maize species with and 

without the application of transfer learning and fine-tuning has been assessed. The results 

presented in Table 8.1 and Figure 8.2 conclusively demonstrate the substantial benefits of 

incorporating transfer learning and fine-tuning into the models. For both poplar and maize 

species, transfer learning dramatically improves model accuracy and AUC scores, while 

further fine-tuning leads to additional performance enhancements. These findings highlight 

the importance of leveraging prior knowledge from related tasks or species, as it 

significantly improves the model's ability to generalize and make accurate predictions. In 

conclusion, transfer learning and fine-tuning techniques are valuable tools for enhancing 

the performance of CNN models in the classification of plant species and can potentially 

be applied to various other domains and tasks to achieve superior results. 
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9 Discussion 
In this study, we addressed the challenges associated with constructing GRNs in plant 

species by utilizing a combination of ML and ANN approaches. GRNs play a crucial role 

in understanding the regulation of various metabolic pathways, biological processes, and 

complex traits in plant growth and response to environmental stimuli. Conventional 

experimental methods for constructing GRNs are labor-intensive and time-

consuming.  Therefore, the most efficient approach to construct GRNs is to identify 

candidate regulatory relationships using in-silico methods and then use experiment means 

to validate these candidate regulatory pairs.  

Our research highlights the potential of ML, ANN, and hybrid techniques for accurate 

GRN prediction using Arabidopsis thaliana, poplar, and maize transcriptomic data from 

the NCBI SRA database. We assessed various ML models and ANN approaches (including 

FCNs and CNNs), for GRN construction in plant species and evaluated their effectiveness 

on transcriptomic data. Additionally, we explored hybrid models combining CNN and ML 

methods to enhance gene regulatory pair predictions. Our findings reveal that hybrid 

models, such as Hybrid Random Forest, Hybrid Extremely Randomized Trees, and Hybrid 

Adaboost Models, significantly outperform traditional ML and ANN approaches on 

holdout test data and real test data, including lignin biosynthesis pathway analysis. 

Moreover, we developed a program to identify TF-binding motif locations, which 

effectively detected motifs in Arabidopsis species, reinforcing algorithm predictions. 

However, the unavailability of position weight matrix information for poplar and maize is 

a limitation of this approach. 
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One limitation of our study was that only small training data sets with a limited number 

of gene regulatory pairs are available in Arabidopsis, poplar, and maize. The TF-target 

gene pairs in the training data for less-studied species such as poplar and maize were 

identified through homologous mapping from Arabidopsis. Limited training data presents 

a significant constraint for supervised learning approaches, where training data is crucial. 

To address this issue, we utilized transfer learning techniques to explore whether 

knowledge gained from one species could be transferred to another. We trained a 

convolutional encoder on Arabidopsis species data and then applied the encoder to poplar 

and maize species data. The results showed a substantial improvement in performance 

using transfer learning compared to the outcomes obtained without transfer learning. This 

finding implies that cross-species analysis offers promising potential for future research in 

GRN construction and prediction. 

In conclusion, our study highlights the effectiveness of hybrid models that integrate 

ML and ANN approaches in predicting GRNs for plant species. These hybrid models 

exhibit superior performance compared to traditional ML or ANN methods alone. 

Additionally, the implementation of transfer learning techniques provides valuable insights 

into cross-species analysis, paving the way for future research and development in the field 

of GRN prediction and construction. 

  



81 

10 Conclusion 
This study effectively demonstrated the potential of combining ML and CNN 

approaches for constructing GRNs in plant species using transcriptome data from 

Arabidopsis thaliana, poplar, and maize. Hybrid models integrating CNN and ML 

techniques outperformed traditional ML or ANN methods in predicting gene regulatory 

relationships. Although CNN methods' potential was not fully realized due to limited 

training data, transfer learning techniques significantly improved performance, indicating 

the viability of cross-species analysis for future GRN research. 

This study contributes to the growing knowledge of GRN prediction in plant species 

by showcasing the value of hybrid models and transfer learning. These approaches enhance 

gene regulatory predictions and offer insights into cross-species analysis, paving the way 

for future research to improve our understanding of plant growth, responses to 

environmental stimuli, and regulation of metabolic pathways and biological processes. 
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