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Abstract 

Deep learning achieves remarkable success through training using massively labeled 

datasets. However, the high demands on the datasets impede the feasibility of deep 

learning in edge computing scenarios and suffer from the data scarcity issue. Rather than 

relying on labeled data, animals learn by interacting with their surroundings and 

memorizing the relationships between events and objects. This learning paradigm is 

referred to as associative learning. The successful implementation of associative learning 

imitates self-learning schemes analogous to animals which resolve the challenges of deep 

learning. Current state-of-the-art implementations of associative memory are limited to 

simulations with small-scale and offline paradigms. Thus, this work implements 

associative memory with an Unmanned Ground Vehicle (UGV) and neuromorphic 

hardware, specifically Intel’s Loihi, for an online learning scenario. This system emulates 

the classic associative learning in rats using the UGV in place of the rats. In specific, it 

successfully reproduces the fear conditioning with no pretraining procedure or labeled 

datasets. The UGV is rendered capable of autonomously learning the cause-and-effect 

relationship of the light stimulus and vibration stimulus and exhibiting a movement 

response to demonstrate the memorization. Hebbian learning dynamics are used to update 

the synaptic weights during the associative learning process. The Intel Loihi chip is 

integrated with this online learning system for processing visual signals with a 

specialized neural assembly. While processing, the Loihi’s average power usages for 

computing logic and memory are 30 mW and 29 mW, respectively. 
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1 Introduction 

The natural world has inspired innovations in science and engineering across a broad 

range of disciplines. In recent decades the interest in studying biological mechanisms in 

order to imitate them, or biomimicry, has surged in popularity and produced new fields as 

well as several technological advancements [1]. One of these emerging fields is 

neuromorphic computing, which focuses on applying principles of neuroscience and the 

study of nervous systems to solve current problems in computing and artificial 

intelligence (AI). By creating novel brain-inspired architectures and specialized 

processing algorithms, neuromorphic computing introduces a new computing paradigm 

aiming to take advantage of the extraordinary capabilities and efficiency of biological 

nervous systems. 

One such capability is the ability to remember relationships between previously unrelated 

objects or ideas through associative learning, a form of online learning that is pervasive 

throughout the animal kingdom [2-4]. Associative learning gives animals the ability to 

relate and memorize events in temporal proximity, contrasting the mainstream data-

driven learning methods prevalent in modern AI and machine learning (ML). The 

nervous system realizes associative memory through its ability to modify the strength of 

synaptic connections between neurons in response to their firing activity, known as 

synaptic plasticity. The memorization mechanism is due to the strengthening of the 

synaptic connections occurring from the neurons firing in response to concurrent events. 

The more a synaptic connection is strengthened, the larger the quantity of the 
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neurotransmitter delivered to the neurons on the receiving end of the synapse becomes. If 

the strength is high enough, neurons that did not previously fire in response to a given 

stimulus will instead fire. In the case of these receiving neurons being “response neurons” 

triggering a certain response from the system, this strengthening can cause the response 

to occur to a stimulus that did not previously cause the response neurons to fire. This 

“signal pathway modification” is the mechanism used to memorize the relationship 

between concurrent events, instead of standard backpropagation. 

1.1 Motivation and Contribution 

Associative memory can be used in AI systems to provide an alternative realization of 

active self-learning through environmental interaction and exposure. The prevalent issue 

of reliance on large datasets is avoided because the process of signal pathway 

modification requires only a few repetitions of the training process. This is important 

because large datasets lead to long training phases and high computational demands, 

which consequently lead to very large energy demands. Furthermore, large labeled 

datasets are infamously difficult to produce and verify the quality of. Data-driven deep 

learning, like what has been demonstrated with Deep Neural Networks (DNNs), suffers 

from these staple data issues. While many significant achievements have been made with 

deep learning, these issues restrict its application to systems incorporating unwieldy 

supercomputers. Thus, many AI endeavors must look beyond deep learning for scenarios 

necessitating constraints such as size, weight, and power (SWaP), little to no data or 

pretraining, and autonomy independent from a remote computer [5, 6]. 
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Previous work has yielded successful implementations of associative learning in 

neuromorphic systems; however, this work has not moved beyond simulations with 

relatively simple tasks and small neural networks [4, 7-14]. Many of these works also 

require labeled datasets for pretraining [10-14]. These issues leave the goal to mimic 

animals’ exploration and learning capabilities far from realized, but we introduce some 

new real-world associative learning experiments to get one step closer. A mobile robot 

with a neuromorphic system is an ideal platform to replicate a classic associative learning 

experiment called fear conditioning. Traditionally fear conditioning experiments were 

performed with a rat which learns to associate a neutral stimulus, like a buzzer, with a 

undesirable stimulus, like an electric shock. The undesirable stimulus will immediately 

evoke a “fear response”, such as running away, while the neutral stimulus will not evoke 

the response until after presenting the two stimuli together for several repetitions. Once 

the association is learned, the rats demonstrate enduring behavioral changes indicating 

their associative memory. 

Several brain regions have been proven to be involved in the learning process, including 

frontotemporal amygdala, hippocampus, etc. The process of fear conditioning cannot be 

reproduced by other state-of-the-art associative memory models [4, 7-14] due to their 

limited neural network sizes. The simple neural network models cannot process 

informative signals, such as visual signals. These informative signals are processed with 

large-scale neural assemblies rather than simply a few neurons in the brain [15-20]. To 

resolve these limitations, the design uses a large-scale biological plausible neural 

assembly to process the visual signals. Specifically, in this system and experimental 
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designs, the mobile robot with sensors serves as the substitute for the rats in fear 

conditioning experiments. The neuromorphic chip (Intel Loihi) provides a computational 

platform for the associative memory learning operation. In the experiment, the brightness 

of a light emulates the visual stimulus, and the vibration signals from the accelerometer 

mimic the shock signals to the rats. Thus, the vibration signals are the undesirable 

stimulus and light is the neutral stimulus. The movement of the mobile robot emulates the 

fear response. The perception of the light and the vibration are separately processed 

within two different neural assemblies. Two neural assemblies connect to the response 

neuron, which stimulates the movement of the robot, with two signal pathways. One 

signal pathway with a weak synaptic connection serves as the conditional signal pathway, 

while another one with a stronger synaptic connection is the unconditional signal 

pathway. 

The mobile robot provides this neuromorphic system with an ideal interface to interact 

with the environment, enabling for the first time, to our best knowledge, the 

implementation of associative memory as real-time online learning with no pretrained 

procedure. The contributions of this work are summarized as follows: 

1) In contrast to other state-of-the-art works [10-14], associative learning was 

implemented in Intel’s Loihi chip for online learning in a mobile robotics application. 

2) This work reproduces the classic fear conditioning of rats with solid biological 

rationales from the cellular level (Hebbian learning) to the behavior level (neural 

assemblies). 
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3) The goal in training the neural network is signal pathway modification, the novel 

learning paradigm of associative learning.  

4) This work does not require labeled datasets. 

1.2 Background 

By reverse engineering the underlying biological mechanisms enabling associative 

learning in animals, a novel self-learning paradigm is created that implements the 

associative learning capability on a neuromorphic system. This section will introduce 

state-of-the-art neuromorphic systems and neuromorphic computing hardware, followed 

by an analysis of the mechanisms from the cellular to the behavioral level that enable 

associative learning. 

1.2.1 Neuromorphic Computing 

Neuromorphic system emulates nervous systems, such as human brains, aiming at 

implementing Artificial Intelligence [21-26]. Human brains have the capability of 

executing sophisticated missions in unbelievably ultra-low energy. The average power of 

human brains is as small as ~20 watts [2]. In addition, unlike the training process 

required for Artificial Neural Networks (ANNs) using big data, the nervous systems can 

adjust their responses by constantly interacting with their surroundings. This learning 

process is referred to as associative learning [2]. These incredible capabilities of nervous 

systems are attributed to their parallelization, high degree of connectivity, adjustable 
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network topology, the colocation of data memory computation, and spike-based 

information representation.  

Human brains consist of billions of neurons and trillions of synapses forming a high-

degree and three-dimensional neural network. Through this extraordinarily complex 

network, an individual neuron can communicate with more than ten thousand other 

neurons simultaneously. Within this complex neural network, neurons are mainly signal 

processing units and the synapse between neurons is connecting organs. As computing 

units, the neurons integrate the received spiking signals in their cell body and send 

another sequence of spiking signals to other neurons through synapses. The signal 

strength received by other neurons depends on the connection strength of the synapses. 

The connection strength among neurons can be adjusted. This feature is named as 

synaptic plasticity [2, 27, 28]. In specific, the connection strength among neurons 

becomes strong if the presynaptic neuron and postsynaptic neuron are firing together. 

This synaptic connection strength change inspired a learning paradigm known as Hebbian 

learning [29-32].  

In addition, the computational units (neurons) and the memory units (synapses) are 

located in close proximity. This structure eliminates one of the biggest inefficiencies in 

von Neumann architecture that separates computing units and memory at different 

locations. The physical separation leads to data needing to be constantly transferred back 

and forth between memory and central processing units (CPUs). Furthermore, 

neuromorphic systems use sparse and event-based computation, meaning that only a 

small percentage of the available computing resources are active for a given task, and 
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they’re only activated and consuming power as needed in response to present events. 

Neuromorphic computing attempts to exploit these useful properties by modeling the 

architecture, neuron and synaptic cells, and the way of learning observed in the brain, 

enabling a new era of computers and AI [33].  

Neuromorphic systems utilize specialized neuromorphic chips with artificial neurons. 

These chips are generally used to operate spiking neural networks (SNNs), which encode 

the information with a sequence of spikes just like nervous systems. In an SNN, neurons 

communicate with each other with discrete “spike” signals. There are various types of 

neuromorphic chips, such as Intel’s Loihi [34, 35]. Unlike traditional GPUs and CPUs 

built upon von Neumann architecture operating on digital information, Loihi chips are 

specifically designed for neuromorphic computing and asynchronous SNNs. To date, two 

generations of Loihi chips have been released. The first generation of Loihi chip was 

revealed in 2017 [34, 35]. Loihi-1 chips consist of 130,000 electronic neurons and 130 

million synapses at 128 neuromorphic cores. The advanced 14 nm process of Intel 

renders the area of the Loihi-1 chip as small as 60 mm2. Loihi-1 chips implement the 

digital leaky-and-fire neurons located on 128 cores. At each core, the communication 

among neurons is organized in a mesh configuration. The synapses in Loihi-1 chips are 

fully configurable and further support weight-sharing and compression features. The 

plasticity of synapses can be manipulated with various biologically plausible learning 

rules, such as Hebbian rules, STDP, and reward-modulated rules [34, 35]. The firing 

behavior of neurons in Loihi chips is implemented when received spikes accumulate to a 
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threshold value in a certain time, the neurons will fire off their own spikes to their 

connected neurons. 

Loihi-1 chips are offered with several neuromorphic platforms providing distinct 

interfaces for integrating the Loihi-1 chip with other computer systems or Field-

Programmable Gate Array (FPGA) devices. Kapoho Bay, shown in Figure 1.1, includes 

1-2 Loihi chips with a USB interface. 

 

Figure 1.1: Kapoho Bay with two onboard Loihi chips used in this work. 

Nahuku is a 32-chip Loihi board with a standard FPGA Mezzanine Card (FMC) 

connector. The FMC connector allows the Nahuku system to communicate with the Arria 

FPGA development board.  Pohoiki Spring is a large-scale Loihi chip with 100 million 

neurons equipped as a server for remote access. The second generation of the Loihi chips, 

namely Loihi-2, was introduced in late 2021 [36]. Loihi-2 is fabricated in Intel 4 process, 

previously referred to as 7 nm technology. Powered by this advanced technology, the 

area of the Loihi-2 reduces to 31 mm2 from 60 mm2 of the first generation Loihi chips. 

Unlike the rigid neuron models in the last generation of Loihi chips, Loihi-2 realizes fully 
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programmable neuron models. In Loihi-2, the specific behavior of the neurons can be 

programmed with microcode instructions. The microcode instructions support basic 

bitwise and math operations that can be used to specify custom neuron models. Loihi-2 

chip is dedicatedly designed for neuromorphic computing and edge devices with parallel 

computations achieving high computational and energy efficiency. The comparison 

between two generations of Loihi chips is summarized in Table 1.1 

Table 1.1: Introduction to Loihi and Loihi 2 Chips. 

Feature Loihi 1 Loihi 2 

Technology Intel 14 nm Intel 4 (7 nm) 

Die Area 60 mm2 31 mm2 

Max # Neurons/Chip 128,000 1 million 

Max # Synapses/Chip 128 million 120 million 

Neuron Model Generalized digital LIF Fully programmable 

 Loihi 1 uses a Leaky Integrate and Fire (LIF) model for implementing neurons. The LIF 

model is popular because it provides the information processing functionality of neural 

dynamics while remaining simple enough to evaluate with limited computation. LIF 

neurons are characterized using the following equations [37]:  

 
𝐶𝐶𝑚𝑚

𝑑𝑑𝑉𝑉𝑚𝑚
𝑑𝑑𝑑𝑑

= 𝐺𝐺𝐿𝐿(𝐸𝐸𝐿𝐿 − 𝑉𝑉𝑚𝑚) + 𝐴𝐴 ∗ 𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎, 

𝑖𝑖𝑖𝑖 𝑉𝑉𝑚𝑚 > 𝑉𝑉𝑡𝑡ℎ 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 𝑉𝑉𝑚𝑚 = 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 

(1) 
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where 𝐶𝐶𝑚𝑚 is the membrane capacitance, 𝐺𝐺𝐿𝐿is the leak conductance, 𝐸𝐸𝐿𝐿is the leak 

potential, 𝑉𝑉𝑚𝑚 is the membrane potential, A is the input signal gain, 𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎 is the input 

current, and 𝜏𝜏𝑅𝑅𝑅𝑅 is the membrane RC time constant. A variation of the LIF neuron model 

is the simpler Integrate and Fire model. As the name suggests, Integrate and Fire neurons 

are the same as LIF neurons but without the decaying membrane potential; in other 

words, 𝜏𝜏𝑅𝑅𝑅𝑅 in (2) is set to infinity. 

1.2.2 Associative Learning 

Animals have the capability of memorizing different events if they occur at the same time 

or with a small-time lag. The capability is referred to as associative memory [2]. 

Associative memory learning is first studied by Ivan Pavlov in the 1890s when he was 

studying salivation reflex actions in dogs [2]. During Pavlov’s experiments, the dogs 

originally had a salivation reflex to the presence of food, instead of the sound of whistles. 

However, if these two signals were presented together several times, the dogs salivated 

even if they only listened to the sound of a whistle with no food provided. This means the 

dogs can memorize the sound of whistles as a sign of food [2, 7, 38] through a 

learning/memorizing process. Through a series of experiments, Pavlov concluded that 

dogs have the capability of associating two originally irrelevant signals together through 

a training process, which is referred to as associative memory learning later. In general, 

two types of stimuli exist in associative memory learning: unconditional stimuli (US) and 

conditional stimuli (CS). The unconditional stimuli evoke the response with no training 

 𝜏𝜏𝑅𝑅𝑅𝑅 =  𝐶𝐶𝑚𝑚/𝐺𝐺𝐿𝐿 (2) 
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required. On the contrary, conditional stimuli demand an associative learning process to 

acquire corresponding reactions. For instance, in Pavlov’s experiments, the presence of 

food is the unconditional stimulus, and the sound of whistles is a conditional stimulus 

(CS). After dogs, further studies demonstrate that associative memory learning is a self-

learning paradigm of a large variety of animals such as rats, bats, sea slugs [2]. 

 

Figure 1.2: Illustration of associative memory learning of Aplysia. 

The studies in neuroscience exhibit that signal pathway modification and synaptic 

plasticity are highly related to associative memory learning [2, 23]. In a nervous system, 

the shapes of the spiking signals are almost identical (spikes) whatever the signals come 

from the sensation of light or hearing. Thus, neuroscientists hypothesize that the brains 

distinguish these signals by the signal pathways they are traveling to rather than their 

shapes. This hypothesis is much more straightforward in invertebrates that have simple 
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nervous systems. Figure 1.2 illustrates part of the nervous system of Aplysia that has two 

signal pathways from siphon to gill and from tail to the gill, separately.  

With these two signal pathways, Aplysia can accomplish a simple version of associative 

memory learning by memorizing the touch on the tail and stimulus from the siphon. 

When the tail of an Aplysia is touched, its gill shrinks, demonstrating an unconditional 

signal pathway. On the contrary, the gill does not shrink if the siphon is cut, exhibiting a 

conditional signal pathway. By applying a touch to the tail and stimulus on the siphon at 

the same time several times, the gill motor neuron becomes more responsive to the touch 

on the siphon alone. At the cellular level, the concurrent stimulus on the siphon and tail 

leads to a spiking signal overlapping when the stimulus is applied at the same time, 

shown in Figure 1.2. As a result, the synaptic connection among neurons, from the siphon 

to the gill, becomes stronger than the original state. This means the signal pathway from 

the siphon to the gill becomes unimpeded from blocked. These experiments on Aplysia 

demonstrate two critical factors for associative memory learning: (1) signal pathway 

modification; and (2) synaptic plasticity.  

For more complicated animals, such as rats, the sensation signals are processed not in 

individual neurons but in a group of neurons. These groups of neurons are referred to as 

neural assemblies [30, 39-41]. For example, fear conditioning experiments in rats involve 

two types of stimuli: electric shock on the food and a sound as neutral stimuli. These two 

types of signals are processed at different neural regions: auditory thalamus and 

somatosensory thalamus. The experimental goal is to let the rats associate the neutral 

sound with undesired electric shock by applying these two stimuli at the same time. Thus, 
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it is one type of associative memory learning scheme. The studies have strong 

experimental evidence showing that signal pathway modification potentially occurs in 

lateral nucleus because the output signals from the auditory thalamus and somatosensory 

thalamus converge at the lateral nucleus [2]. This hypothesizes that associative memory 

learning in higher animals is accomplished via the association of two, or several, neural 

assemblies together, rather than individual neurons.  

1.2.3 Sparse Coding and the Locally Competitive Algorithm 

Traditional convolutional neural networks have shown unmatched performance in image 

classification and related tasks, but are easily attackable, suffer from training and large 

data issues, and usually require power hungry GPUs for computation [42]. In the pursuit 

to understand and mimic biological brains, researchers have discovered spatial and 

temporal sparsity help enable efficient signal processing in neurobiological systems [43].  

Trying to model this effect has enabled networks to perform feature extraction similar to 

the V1 region of the primary visual cortex [44]. Sparse coding has been used to compress 

various types of sensory information, model the transmission of visual information from 

the eye to the brain, and even predict future frames in a video stream [45, 46]. 

The nature of “sparsifying” a signal into its essential components makes sparse coding 

inherently resistant to noise and adversarial attack [47]. The goal of the sparse coding 

problem is to represent an input (often an image) with a minimal subset of features, or 

“atoms”, chosen from an overcomplete “dictionary” basis set. The sparsity arises from 

trying to use the least number of atoms to represent the input, creating a tradeoff between 
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sparsity and accuracy. This problem can formally be defined by the following LASSO 

equivalent regression problem: 

 𝐸𝐸(𝑎𝑎) =
1
2
‖𝑥𝑥 − 𝛷𝛷 ∙ 𝑎𝑎‖2 2 + 𝜆𝜆 ∙ ‖𝑎𝑎‖1 (3) 

 𝑎𝑎∗ = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑎𝑎

𝐸𝐸(𝑎𝑎) (4) 

Where 𝐸𝐸(𝑎𝑎) is the cost, 𝑎𝑎 is the “sparse code” vector consisting of the feature 

coefficients 𝑎𝑎𝑖𝑖, 𝑥𝑥 is the input signal, and Φ is the dictionary matrix, the columns of which 

are the features Φ𝑖𝑖.  The cost is determined by how close input matches the 

reconstruction Φ ∙ 𝑎𝑎, and the size of the sparse code vector ‖𝑎𝑎‖1, where 𝜆𝜆 is an additional 

sparsity penalty parameter to control the tradeoff between sparsity and accuracy. Eq. (4) 

shows 𝑎𝑎∗ is the optimal sparse code for minimizing the cost in Eq. (3). 

Models for solving sparse coding like the Locally Competitive Algorithm (LCA) offer 

biologically plausible methods for efficient and robust information processing that can be 

realized in neuromorphic hardware [48]. LCA is inspired by lateral inhibition observed in 

neuroscience and uses it to emulate the sparse coding that occurs in the V1 region. The 

algorithm uses only local competition between neighboring neuron elements, and it can 

be implemented with SNNs unlike other solutions to the sparse coding problem. The 

basic idea is that each dictionary feature is represented by a neuron, with its firing rate or 

activation indicating its feature’s contribution to the input. The activation is achieved by 

the weights of the connections from the input to these “feature neurons”. The higher a 

feature neuron’s activity level is, the more it inhibits, or reduces, its neighboring neurons’ 
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activity levels. In [49] its shown that a discrete spiking implementation solves Eq. (3,4) 

given a non-negative constraint to the input arising from the binary nature of spikes only 

being able to represent positive values; without this constraint the convergence of LCA is 

not guaranteed [50, 51]. The process can be implemented with the following Spiking 

LCA (S-LCA) dynamical systems algorithm:  

 𝑢̇𝑢 = 1
𝜏𝜏

(𝛷𝛷𝑇𝑇𝑥𝑥 − 𝑢𝑢 − (𝛷𝛷𝑇𝑇𝛷𝛷 − 𝐼𝐼)),  𝑎𝑎 = 𝑇𝑇𝜆𝜆(𝑢𝑢) (5) 

 𝑇𝑇𝜆𝜆(𝑢𝑢) = 0  if  𝑢𝑢 ≤ 𝜆𝜆 ,  else  𝑇𝑇𝜆𝜆(𝑢𝑢) = 𝑢𝑢 − 𝜆𝜆 (6) 

Where 𝜏𝜏 is the discrete timestep, 𝑎𝑎𝑖𝑖 is the average firing rate of neuron 𝑖𝑖, 𝑢𝑢𝑖𝑖 is the average 

soma current for the neuron, and 𝑇𝑇𝜆𝜆 is the thresholding function that determines if neuron 

𝑖𝑖 is going to fire. This is achieved by adjusting the bias, Vth, of the neurons to -𝜆𝜆. It has 

been shown that the S-LCA system dynamics converge to the set of average firing rates 

𝑎𝑎𝑖𝑖 corresponding to the optimum solution 𝑎𝑎∗. 

 

Figure 1.3: The LCA network model. 
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There are really two parts to the sparse coding problem when trying to find the optimal 

sparse representation of a given input: finding the sparse code vector 𝑎𝑎∗, and finding the 

optimal dictionary atoms Φ𝑖𝑖 that yield the best 𝑎𝑎∗ solution. Several unsupervised 

methods can be used to learn the dictionary, including both online and offline learning 

methods [52]. Models using learned dictionaries offer more sparsity and accuracy as 

there are more variables giving more points to optimize. One way to think of this effect is 

lowering yet complicating the energy landscape. The basic idea is to alternate between 

updating the coefficients 𝑎𝑎𝑖𝑖 and the dictionary atoms Φ𝑖𝑖 for a given input or batch of 

inputs. Several variations of this method for both spiking and non-spiking LCA 

implementations have been demonstrated and analyzed, some of which address the binary 

spiking constraints and some of which take advantage of emerging neuromorphic 

hardware capabilities like signed and nonbinary spikes [50, 52, 53]. It has even been 

shown that simulating periods of sleep during training can improve learning [54]. Sparse 

coding models show a learned dictionary can generalize well to different types of data, 

demonstrating transfer learning [55]. The dictionary learning process alone has 

implemented associative learning by utilizing multimodal sensory data as the input [56]. 

1.2.4 Mobile Robotics 

Mobile robotics provide an ideal application for neuromorphic computing due to the 

conditions and constraints in their common use cases. One important benefit of 

neuromorphic computing is the impressive minimal size, weight, and power (SWaP) 

requirements for performing complex cognition tasks necessary in many robotics 

scenarios. Mobile robots need to maintain high energy efficiency as they have limited 
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power supplies. Many applications limit or do not provide communication with a remote 

host, requiring the robot to perform independent autonomous execution of tasks using c  

only the onboard computational resources. These applications are more generally referred 

to as edge computing, which is the computing paradigm that seeks to process data near 

the source instead of communicating with more powerful remote computational 

resources. Another ideal aspect of neuromorphic computing in robotics applications 

arises in scenarios that offer limited preexisting data. The scenarios may inhibit creation 

of data due to cost or impracticality of collection, such as Lunar and Martian terrain data 

for space exploration applications [6]. Several mobile robotics applications are a poor fit 

for traditional DL approaches as they have large power requirements and rely on datasets 

for training. 

Clearpath’s Jackal UGV fitted with a ZED 2 stereo camera and VLP-16 LIDAR sensor, 

shown in Figure 1.4 is selected as the mobile robotics platform. 



18 

 

Figure 1.4: Clearpath Jackal UGV used for mobile robotics experiment. 

The Jackal UGV also contains an important sensor, the Inertial Measurement Unit (IMU). 

IMU’s generally consist of an accelerometer and gyroscope that measure forces used to 

calculate the device’s acceleration and orientation. Clearpath provides several software 

packages used to interface with the UGV via the Robot Operating System (ROS) 

framework. ROS is designed to operate with several independent processes, called nodes, 

that perform individual specific tasks. The nodes can use a variety of communication 

paradigms to communicate with each other, including a publish-subscribe framework and 

client-service framework. Publish-subscribe communication consists of dedicated 
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channels, called topics, that nodes can access as a publisher or subscriber. The publishing 

nodes transmit data messages corresponding to the appropriate topic, and all of the nodes 

subscribed to that topic receive the data whenever it is transmitted. In contrast, the client-

service framework consists of a service node serving a specific function that is only 

performed when a corresponding client node sends a request to do so. The popular 

Gazebo simulation environment integrates with ROS and is selected for simulating 

experiments because Clearpath provides supporting packages for working with Gazebo 

and the Jackal. 
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2 Associative Memory Experiment 

This section explores the methodology and design process for using mobile robotics to 

reproduce fear conditioning in rats. The electric shock used as the unconditional stimulus 

in the classical fear conditioning experiment is replaced with vibration from a constructed 

vibration platform. Similarly, the buzzer tone used as the conditional stimulus is replaced 

by light from a mounted light source. The neuromorphic system utilizes Leaky Integrate 

and Fire (LIF) style neurons because they are capable of modeling the signal pathways 

and higher-level information processing in neural assemblies, while simple enough to 

remain computationally inexpensive. The neural network is implemented in Nengo, a 

neuromorphic simulator developed by Applied Brain Research [57]. Intel’s Loihi chip is 

used as a backend for Nengo in several experiments. The ROS framework is used to 

operate the mobile robot, a Clearpath Robotics Jackal UGV, and for transferring data in 

and out of the Nengo program [58]. 

2.1 Simulation and Preliminary Testing 

The main goal of the experiment is to achieve signal pathway modification through 

Hebbian learning, so initially a simple network is created to demonstrate simple 

associative learning with Nengo. Two programmatically controlled network inputs, called 

nodes, are created to represent the conditional and unconditional stimuli. Shown in Figure 

2.1, each input node is connected to a single LIF neuron that activates, or fires, to 

represent recognition of the US or CS. These neurons are referred to as the US neuron 
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and CS neuron, respectively. A third LIF neuron, the response neuron, is created to signal 

the response of the network to the stimuli. 

 

 

Figure 2.1: Neural network for demonstrating Hebbian learning. 

The values used for the LIF parameters from Eq. (1,2) are given for the three LIF neurons 

in Table 2.1. 

Table 2.1: LIF neuron parameters for simple associative learning. 

Neuron Types 𝝉𝝉𝑹𝑹𝑹𝑹 A Vreset (V) Vth (V) 

US neuron 0.02 1.0 0.01 1.0 

CS neuron 0.02 1.0 0.01 1.0 
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Neuron Types 𝝉𝝉𝑹𝑹𝑹𝑹 A Vreset (V) Vth (V) 

Response neuron 0.02 1.0 0.01 1.0 

For all LIF neurons in Nengo, the firing threshold is fixed at 1 V and input gain is 

modified instead. The initial value for 𝜏𝜏𝑅𝑅𝑅𝑅 in Nengo’s standard implementation of spiking 

LIF neurons is 0.02, which was not modified as the neurons exhibited desired behavior. 

Vreset was set at 0.01 V so the neurons fire when they receive the default programmable 

input stimulus without modifying the default gain of 1.0. The US neuron’s output spikes 

are relayed to the to the response neuron via an unmodifiable synaptic connection 

modeled by the lowpass filter with the impulse response: 

Where 𝜏𝜏 is the time constant in seconds. This filter is chosen for all synapses because it is 

the default model in Nengo and works well for the intended purpose. The default 𝜏𝜏 of 

0.005 seconds, which corresponds to a cutoff frequency about 32 Hz, is initially used for 

all synapses. Synaptic connections have “weights” that are scalar values multiplied with 

the output signal to act as a gain for the synapse output current. Inhibitory connections 

that reduce the postsynaptic neuron’s potential can be implemented using a negative 

value for the synapse weight. The CS neuron is connected to the response neuron by a 

modifiable synapse that uses the Hebbian learning rule in (8) to modulate its weight. 

                      Δ𝑤𝑤 =  𝜂𝜂𝑟𝑟𝑖𝑖𝑟𝑟𝑗𝑗 
 (8) 

ℎ(𝑡𝑡) =
1
𝜏𝜏
𝑒𝑒
−𝑡𝑡
𝜏𝜏  (7) 
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Where 𝑤𝑤 is the synaptic weight, 𝜂𝜂 is the learning rate constant, 𝑟𝑟𝑖𝑖 is the presynaptic 

neuron’s filtered activity, and 𝑟𝑟𝑗𝑗 is the postsynaptic neuron’s filtered activity. This 

equation states that when the postsynaptic and presynaptic neuron fire simultaneously, 

the synapse strength increases proportional to the firing rates of the neurons. The synaptic 

weight of the learning synapse is initially set to 0.0001 so the US input signal triggers the 

response neuron, but the CS input signal does not. The learning rate, 𝜂𝜂, was empirically 

chosen as 2 × 10−5 so that the learning could be completed in relatively few training 

cycles without being unrealistically short (i.e., one cycle or less). Each training cycle 

consists of presenting the US and CS each for two seconds, with one second of overlap, 

followed by 1 second of no stimulus, illustrated by Figure 2.2. 

First the initial response to both stimuli is demonstrated, followed by training cycles to 

increase the synaptic weight. After enough repetitions, the synapse strength has increased 

enough that presentation of CS causes the response neuron to fire due to the CS neuron’s 

output alone, demonstrating successful associative learning. 
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Figure 2.2: Hebbian learning causing synaptic weight modification. 

With a validated proof of concept for implementing associative learning in Nengo, a 

simulation of the mobile robotics experiment is conducted. Clearpath has developed 

support for the Jackal UGV in the Gazebo simulation environment, so it is chosen for 

simulating the experiment [59]. Unfortunately, implementing a vibration platform to 

provide the US proved quite problematic as Gazebo tends to become unstable when 

objects start rapidly colliding with each other. Consequently, it was deemed sufficient to 

record real vibration data for use in the simulation. The vibration table generates 15 Hz 

vibration with an amplitude of 1.2 mm, the lowest available settings offered by the 
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vibration table which were chosen to minimize impact on the UGV. These vibrations are 

measured by the Jackal UGV’s onboard IMU. Clearpath’s ROS software running on the 

UGV receives the stream of data from the IMU and publishes the robot’s acceleration to 

an IMU topic where other ROS nodes can access it. This vibration data can be recorded 

and played back at any time, and it will appear as though the data publishing is happening 

in that moment. Creating an instance of Nengo running inside of a ROS node subscribed 

to the IMU topic provides a ROS a communication channel to Nengo. The raw 

acceleration data during vibration, shown in Figure 2.3, is more easily integrated with the 

network after undergoing some minimal preprocessing. 

 

Figure 2.3: Acceleration data from vibration table at 15 Hz.  

As shown above, the z-axis has an average magnitude due to the Earth’s gravity of 9.81 

m/s2, which is removed to bring the resting acceleration for all three axes to zero. 
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Initially, the resultant acceleration shown in (9) was used to evaluate the vibration state of 

the UGV. 

 
𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟 =  �𝑎𝑎𝑥𝑥2 + 𝑎𝑎𝑦𝑦2 + (𝑎𝑎𝑧𝑧 − 9.8)2 

(9) 

However, observing Figure 2.3, one can see the z-axis acceleration deviates from its 

resting value much more than the other two axes. This signifies the z-axis acceleration 

measurement alone should be sufficient for indicating vibration, so the preprocessing 

equation is simplified to the following equation: 

𝑎𝑎𝑟𝑟 =  |𝑎𝑎𝑧𝑧 − 9.8| 
(10) 

This new equation is ideal as preprocessing should be minimized to take full advantage of 

the neuromorphic system’s potential for efficiency. A comparison of 𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟 and 𝑎𝑎𝑟𝑟 during 

vibration is shown in Figure 2.4. The rectified z-axis acceleration shows trends and 

magnitudes similar to the resultant acceleration, so it is selected for vibration 

preprocessing. The US input node is converted to receive the IMU data, evaluate (10), 

and use ar as its output. The node’s output can be thought of as a spike generator with a 

firing rate proportional to its value, though the actual implementation details stray from 

this concept. 
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Figure 2.4: Comparison of resultant acceleration, 𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟, and rectified z-axis acceleration, 

𝑎𝑎𝑟𝑟. 

To keep preprocessing minimal, the raw values from the node are not scaled or 

normalized to a standard range (e.g., -1 to 1). Instead, the input synapse and LIF 

parameters of the US neuron, now the vibration detection neuron is adjusted to achieve 

the desired response to the vibration signals. The values summarized in Table 2.2 are 

selected for the simulation experiment. 

Table 2.2: LIF neuron parameters for associative learning in mobile robotics simulation. 

Neuron Types 𝝉𝝉𝑹𝑹𝑹𝑹 A Vreset (V) Vth (V) 

(US) Vibration neuron 0.02 1.3 0.6 1.0 

(CS) Brightness neuron 0.02 0.9 0.15 1.0 
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Neuron Types 𝝉𝝉𝑹𝑹𝑹𝑹 A Vreset (V) Vth (V) 

(Response) Movement neuron 0.02 1.0  0.01 1.0 

The default 𝜏𝜏𝑅𝑅𝑅𝑅 of 0.02 seconds is kept because it is sufficient for the desired 

functionality. The other two parameters are calculated and optimized based on the 

experimental setups so that they produce the desired responses for their respective uses.  

 

Figure 2.5: Vibration neuron response to acceleration. 

For the vibration detection neuron, gain (A) and bias ( 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) were empirically derived so 

the vibration neuron only exhibits the desired behavior of continuously sending output 

spikes if the vibration platform is enabled, shown in Figure 2.5. The filter time constant 
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of the synapse between the input and vibration neuron is increased to 0.2 seconds to 

prevent the vibration neuron from firing when the UGV makes small sudden movements 

like stopping. Next, the simulated stereo camera is used to measure the brightness of a 

light, the CS replacing the buzzer tone for rats, in Gazebo. Unfortunately, Gazebo does 

not support the ZED 2 stereo camera installed on the Jackal UGV; however, the 

Bumblebee2 is supported and has a similar function, so it is used as the stereo camera in 

simulation. Only one camera is needed for the experiment, so just the right one is used. A 

Gazebo environment similar to the real-world experiment setup is constructed with a light 

panel and placeholder vibration platform, shown in Figure 2.6. 

 

Figure 2.6: Gazebo environment setup for associative learning experiment. 
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The light panel has a circular light that is centered in the right camera’s frame when the 

UGV is on the vibration platform, shown in Figure 2.7. The image data is not as easily 

interfaceable with Nengo as the acceleration data, because it requires a custom “Nengo 

process” to be created among other additional support processes. Nengo processes can be 

used for several things, like making a node output a simple function, or describing a 

dynamical system to a group of neurons. A Nengo process, the “camera process,” is 

created to receive an image upon request from a dedicated ROS service, downsample the 

image to a given resolution, and rescale the pixel values from a discrete range of 0 to 255 

to a continuous range of -1 to 1 for use as stimulus outputs. 

 

Figure 2.7: Images from simulated camera light panel in Gazebo (on and off). 

The ROS service subscribes to the image data topic and stores the most recent frame for 

delivery to any requesting client, acting as a one sample buffer for the image stream. This 

keeps the camera process from being bombarded with image data it is not ready for. 

Preliminary testing showed the framerate of the image data coming from the image topic 
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was unreasonably slow, so the camera process was modified to use a compressed image 

stream. The compressed image stream requires significant additional software to interface 

with the stream and decode the images compared to the uncompressed stream, so the 

corresponding modifications were made to the Nengo process and the ROS service. With 

the camera process implemented and receiving a smooth video stream of images, the CS 

node can be converted to use the camera process and output the rescaled pixel intensity 

data to the network. Initially only the CS neuron, now the brightness detection neuron, is 

used to detect the light. Shown in Figure 2.8, the image is rescaled to 5x3 pixels so one 

center pixel contains the approximate average value of the entire light, and the camera 

process’ extraneous computations are minimized. 

 

Figure 2.8: Resized images for brightness detection in simulation (on and off). 

The middle pixel’s intensity is used as the output of the CS node that connects to the 

brightness neuron, the rest of the CS node outputs are left disconnected. The LIF 

parameters for the brightness neuron in Table 2.2 are derived empirically to achieve the 

desired functionality, analogous to the vibration neuron. With these parameters, the 
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brightness neuron fires continuously when the light panel is activated, and ceases to fire 

as soon as the light is turned off, as shown in Figure 2.9. 

Figure 2.9: Brightness neuron activating with light stimulus in simulation. 

Finally, the response neuron is converted to a movement neuron by creating a “movement 

output node” that sends movement commands to the UGV, simulating the fear response 

of the rat. First, a slight bias is added to 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 for the movement neuron in Table 2.2 

because it is found to slightly improve stability in the Nengo’s execution (e.g., avoiding 

division by zero). Like the vibration node, the movement node communicates with the 
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UGV through a movement ROS topic. Conversely, the Nengo node now publishes the 

data, and the Jackal software subscribes to the movement topic. Clearpath’s software on 

the Jackal UGV receives the movement commands and controls the motor drivers while 

utilizing wheel encoders and other sensor data to calculate odometry. Upon receiving a 

spike from the movement neuron, the movement node starts sending command the UGV 

to move backwards with a velocity of 0.3 m/s. The node keeps sending commands until 

about one second after the last spike is received, moving the UGV to the neutral position 

shown in Figure 2.10. 

 

Figure 2.10: The Jackal UGV moved to neutral position after movement response. 
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The associative learning network and three new functioning subsystems are ready to be 

tested for the simulation experiment, shown in Figure 2.11. 

 

Figure 2.11: System for associative learning with mobile robotics experiment. 

Initial simulation issues revealed the need for multithreaded programming to force Nengo 

to execute simulation time steps as close to real-time as possible. Nengo’s original 

operation is to execute the time steps as fast as it can, while ROS and the Gazebo 

simulator’s default behavior is to try to execute in real-time. This leads to undesirable 

behavior because Nengo is receiving time stretched “slow-motion” data. This real-time 

modification enables Nengo networks to be executed with a cumulative difference of less 

than one timestep from perfect real-time throughout the execution, which means it is 

perfectly optimized and any further improvements would yield no benefit. The 

modification proved invaluable when migrating from simulation to a real-world 

experiment and increasing the network size. The NengoGUI version of Nengo does 

include real-time simulation execution; however, the techniques used in this work yield 
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significantly more accurate and consistent execution timing. This is presumably due to 

the custom real-time Nengo attempting to keep the average time step execution in sync 

with real-time, instead of each individual time step. Furthermore, NengoGUI is much 

more resource intensive and computationally limited than standard Nengo, which makes 

it poorly suited for larger, more complicated networks. 

The real-time Nengo modifications enable the experiment to be successfully simulated in 

the Gazebo environment. First, the light is activated to demonstrate the lack of response 

to the CS, then the vibration table is “activated” by replaying vibration data to show the 

US triggering the movement response. Next, training cycles are performed in which the 

two stimuli are presented simultaneously in overlapping periods. Finally, the light is 

again activated to trigger the movement response without the vibration stimulus, 

demonstrating the successful associative learning process. The learning is accomplished 

through the Hebbian learning modification of the synaptic weight. The same learning rate 

𝜂𝜂 is used as before: 2 × 10−5. 

2.2 Experimental Validation 

Next, the associative learning experiment is migrated to the real-world through a series of 

modifications to the simulation experiment. The vibration input node and vibration 

neuron have already been optimized for the vibration signals coming from the real-world 

vibration platform, so no additional adjustments are necessary. Similarly, the existing 

movement response neuron and output node are sufficient. The new experimental setup, 

shown in Figure 2.12, differs mainly in the brightness perception process.  
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Figure 2.12: Experimental setup for real-world associative learning experiment. 

The Jackal UGV sits atop an eight inch tall testing platform consisting of nine 23 inch by 

23 inch wooden panels constructed for the experiment. The center panel is a vibration 

platform, outlined in red in Figure 2.12, with the vibration table beneath it. The vibration 

platform provides the 15 Hz vibration signals read by the IMU. The new background, 

light panel, and environmental lighting provide completely different images, shown in 

Figure 2.13, for the new camera, the Jackal UGV’s ZED 2.  

 

Figure 2.13: Images from the ZED 2 camera showing the light panel on and off.  
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The new camera requires a revised Nengo camera process and ROS service to input 

image data into the network, but the 5x3 image center pixel output setup remains the 

same. The 5x3 images of the light panel are shown in Figure 2.14.  

 

Figure 2.14: Example images of the light panel from real-world experiment. 

Because of the new environment, the LIF parameters must again be empirically derived, 

yielding the values listed in Table 2.3. 

Table 2.3: LIF neuron parameters for associative learning in real-world mobile robotics 

experiment. 

Neuron Types 𝝉𝝉𝑹𝑹𝑹𝑹 A Vreset (V) Vth (V) 

(US) Vibration neuron 0.02 1.3 0.6 1.0 

(CS) Brightness neuron 0.02 0.3 -1.0 1.0 

(Response) Movement neuron 0.02 1.0  0.01 1.0 

The updated brightness neuron parameters reproduce the desired brightness detection 

function of the neuron as shown in Figure 2.15. 
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Figure 2.15: Brightness neuron firing in response to the activated light panel. 

Now that all subsystems are functional in the real-world experimental setup, The same 

process from the simulation is used to train the network, shown in Figure 2.16. 
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Figure 2.16: Real-time experiment data of associative memory with UGV: (a) The 

membrane potentials and spiking outputs of the brightness detection neuron, vibration 

detection neuron, and movement neuron. (b) The UGV is moving away from the 

vibration platform 
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Again, the same value of 2 × 10−5 is used as the learning rate 𝜂𝜂 for the Hebbian learning 

process. The strength of the synaptic connection in the conditional pathway increases as 

the stimuli are presented simultaneously. The preliminary results show successful 

associative learning in a mobile robotics rendition of the fear conditioning experiment. 

The experiment comparison is summarized in Figure 2.17. 

 

Figure 2.17: Neuromorphic system for reproducing fear conditioning in rats. 

The system uses biological rationales to implement associative learning; however, these 

neural assemblies are still over simplified and do not easily extrapolate to more 

complicated information processing tasks. 
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2.3 Adding the Locally Competitive Algorithm 

To improve the capabilities of the associative learning network, a sparse coding inspired 

LCA network is created for the brightness detection neural assembly. The same camera 

process is used to interface with the image stream, but the images are now resized to 

24x48 pixels, shown in Figure 2.18, to provide a more realistic image processing 

scenario. 

 

Figure 2.18: Higher resolution images of the light panel on (a) and off (b). 

Recall that LCA attempts to represent an input in terms of features from a dictionary, Φ. 

Each feature, Φi, is the size of the LCA input, in this case a 3x3 image patch. The images 

in Figure 2.18 are divided into nine regions that are further subdivided into 3x3 image 

patches, shown in Figure 2.19. 



42 

 

Figure 2.19: Image division layout showing regions and patch structure. 

Only the center region containing the light is used as an input to the LCA network to 

reduce extraneous neural activity computations. The input patches typically overlap in 

convolutional LCA, which introduces connections between the patch feature neurons of 

overlapping patches. A convolutional stride of three is chosen in order to avoid 

overlapping patches and isolate each individual LCA network as it is theorized the 

desired functionality will still be achieved. This simplifies implementation of the LCA 

networks and reduces the computational resources required to execute the model. Each of 

the 16 patches in the center region are inputs to individual LCA optimization solving 

networks. The pixel intensity is converted to spiking input via a spike generator layer. 

This “rate-codes” the values with Integrate and Fire neurons spiking at a proportional 

firing rate. A depiction of one of these networks is shown in Figure 2.20. 
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Figure 2.20: Single layer LCA network for brightness detection in one image patch. 

This network configuration is referred to as single layer because there is one layer of 

“feature neurons” solving the LCA optimization function in conjunction with the 

synapses that connect the feature neurons to the inputs and to each other. For 

convenience, the LCA equations are restated below. 

 𝑢̇𝑢 = 1
𝜏𝜏

(𝛷𝛷𝑇𝑇𝑥𝑥 − 𝑢𝑢 − (𝛷𝛷𝑇𝑇𝛷𝛷 − 𝐼𝐼)),  𝑎𝑎 = 𝑇𝑇𝜆𝜆(𝑢𝑢) (5) 

 𝑇𝑇𝜆𝜆(𝑢𝑢) = 0  if  𝑢𝑢 ≤ 𝜆𝜆 ,  else  𝑇𝑇𝜆𝜆(𝑢𝑢) = 𝑢𝑢 − 𝜆𝜆 (6) 

The input x is transmitted from the output of the camera process to the input of LCA 

layer, which solves for the “sparse code” 𝑎𝑎∗. The layer solves 𝑎𝑎∗ as firing rates of each 

feature neuron converge to the coefficients 𝑎𝑎𝑖𝑖. Each feature neuron receives the input 

associated with one dictionary atom, or feature, Φi because the weights of the synapses 
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connecting it to the input are the elements of the vector Φi. A dark feature is manually 

created for the dictionary by choosing elements for the vector that are all negative, 

because the pixel intensities range from -1 to 1. An analogous light feature is created by 

choosing positive vector elements. It is important that the feature vectors Φi all have unit 

norm, so the magnitude of the feature vectors does not affect the sparsity penalty in (3). 

In addition, the dictionary Φ should be overcomplete, meaning a should have a larger 

dimension than x; however, the only two features used in the experiment are light and 

dark. Hence, the neural assembly for brightness detection can only be referred to as 

“inspired by” sparse coding. The undercomplete dictionary does not truly solve the sparse 

coding problem and may not even converge to a solution; however, the underlying 

competition mechanics are believed to be sufficient for the desired functionality. The 

dictionary could be made overcomplete by increasing the number of features, and 

therefore feature neurons, so it is greater than the size of the input. It is also possible to 

generate learned dictionary features through training with spiking neurons through a 

modified implementation of LCA [53]. The additional feature neurons could contain a 

combination of positive and negative as variations of light and dark features with 

minimal changes to the theory of operation. On the contrary, making them gradients or 

other basic image elements could potentially reduce unwanted activity of the light feature 

neuron(s) by providing features that better represent the less definite patches of the 

image. Furthermore, expanding the input to accept RGB pixel values instead of scalars 

would allow for more selective dictionary features, theoretically reducing the unwanted 

activity in feature neurons presented with an input dissimilar to their corresponding 
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feature. The brightness perception network has a third layer after the LCA layer that is 

used to integrate the output spikes of the corresponding patch feature neurons in each 

region, shown in Figure 2.21. 

 

Figure 2.21: Partition of brightness perception network used for the images’ center 

region. Note that only the neurons associated with the light feature are depicted. 

Proper implementation of LCA requires the LCA layer (feature neurons) to use the 

Integrate and Fire neuron model and replace the synapse model with a buffer (one time 

step delay). Coincidentally, the existing brightness neuron from Table 2.3 performs the 
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desired function of the Layer 3 neuron in Figure 2.21 without any adjustments. Table 2.4 

summarizes the parameters of the neurons in the network.  

Table 2.4: LCA neuron parameters for light detection. 

Neuron Types 𝝉𝝉𝑹𝑹𝑹𝑹 A Vreset (V) Vth (V) 

(Layer 1) Input layer neuron ∞ 25 0.5 1.0 

(Layer 2) LCA neuron ∞ 1.0 -𝜆𝜆 = 0.85 1.0 

(Layer 3) Light detector neuron 0.02 0.3  -1.0 1.0 

The input spike generator layer’s parameters are determined so that the maximum input 

value corresponds to the maximum firing rate of once per timestep. Layer 2’s Vreset 

parameter, which implements the sparsity penalty, was empirically adjusted for the 

desired function. The synapse model is modified by removing the filter and simply 

multiplying the weight by the spikes to implement spiking LCA. The weights of the 

synapses connected to the feature neurons are set to the values of the corresponding 

dictionary atom. The feature neurons have inhibitory connections between them with 

weights given by the matrix −(Φ𝑖𝑖
𝑇𝑇 ∙ Φ𝑗𝑗)𝑎𝑎𝑗𝑗. The synaptic weights are summarized in 

Table 2.5. 

Table 2.5: Synaptic weights for LCA neurons. 

Presynaptic Connection Postsynaptic Connection Weight 

Input spike generator Light feature neuron 0.111 

Input spike generator Dark feature neuron -0.111 

Dark feature neuron Light feature neuron -1.0 
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Presynaptic Connection Postsynaptic Connection Weight 

Light feature neuron Dark feature neuron -1.0 

Intuitively, the weights of the synapses connecting the inputs to the light and dark feature 

neurons produce excitatory signals when the corresponding light or dark input is applied, 

and inhibitory signals when the opposing input is applied. It is worth noting that Loihi 1 

neurons and almost all biological neurons cannot be both excitatory and inhibitory. 

Providing the image with the light on, (a) from Figure 2.18, as the input stimulus to the 

network significantly increases the center region light feature neurons’ activity and 

switching the input image to (b), where the light is off, immediately reduces the activities 

of the neurons. The images are presented alternately for two second periods producing 

the activity shown in Figure 2.22.  

 

Figure 2.22: Membrane potentials of light feature neurons corresponding to the center 

region. 
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The output spikes from the light feature neurons drive the activity of the third layer 

brightness detection neuron, which is shown in Figure 2.23. The neuron output reliably 

spikes when the light is on and not when it is off. 

 

Figure 2.23: Membrane potential and spike output of layer 3 brightness detection neuron 

corresponding to the center region. 

The functioning brightness detection LCA network is easily integrated with associative 

learning network for the experiment as they were both implemented in Nengo. The 

existing network is modified by simply replacing the brightness neuron with the LCA 

network to as the output from the camera process. No further modifications are necessary 

as the layer 3 neuron connecting to the learning synapse, or conditional pathway, is 

identical to the previous brightness neuron. The associative learning experiment can now 

be repeated with the new network configuration, the results are shown in Figure 2.24. 
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Figure 2.24: Weight change from Hebbian learning in associative learning experiment 

with LCA. 

Integrating the LCA neural assembly into the existing associative learning model yields a 

network much larger than those found in other state-of-the-art works, compared in Table 

2.6. 
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 Table 2.6: Comparison of experimental setup and network model size with other state-

of-the-art works.  

Publication Neuron 

Count 

Synapse 

Count 

Dataset Experiment 

Type 

Biology Scenario 

[10] 6 3 N/A Simulation N/A 

[11] 3 1 N/A Simulation N/A 

[14] 5 6 N/A Simulation N/A 

[12] 3 1 N/A Simulation N/A 

[60] 3 1 N/A Simulation N/A 

[61] 3 2 N/A Simulation N/A 

[62] 

 

3 2 N/A Simulation Cellular Association 

in Aplysia 

[7] 

 

20 100 Pretrained 

with dataset 

Simulation N/A 

This work 

 

1419 1420 No dataset 

required 

Real-world 

Experiment 

Fear conditioning in 

rats 

In addition to the larger network scale, the associative learning in this work reproduces 

fear conditioning in rats in a real-world experiment without any pretraining, setting it 

apart from the other works. 

Next the applicability of the experiment is expanded with Intel’s Loihi neuromorphic 

hardware. Implementing the neural network on specialized neuromorphic hardware 

brings the real-world effort of the experiment one step further and takes advantage of the 

performance and energy efficiency of NC. ABR, the developers of Nengo, created an 
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extension to the program called Nengo Loihi that utilizes Intel’s proprietary NxSDK 

platform to execute network models created in Nengo using Loihi as the computational 

backend. Conveniently, the network neurons and modules are compatible with Nengo 

Loihi without any modifications; however, only the STDP learning rule is implemented, 

so the extension must be modified to support Hebbian learning. Because of this, only the 

LCA portion of the network, which is the vast majority, runs on the Loihi. Intel’s NxSDK 

software provides an implementation of LCA optimized for the Loihi, so it is used to 

create the same LCA network used previously. Loihi 1 is not capable of producing 

negative output spikes, which are required for the standard version of spiking LCA. Loihi 

2 does not have this limitation, so it could be used in the future. A solution to this issue 

for Loihi 1 was attempted by the NxSDK developers, however the effectiveness of this 

solution is disputed in [50]. The capabilities of Loihi necessitate a couple other changes 

to the network. Loihi’s synaptic weights are represented with 4-bit of resolution instead 

of the 24-bit resolution of the standard floating-point representation used by Nengo. The 

other major change is the reduction of the simulation time step from 1 ms to 20 ms when 

executing on Loihi. The power consumption of the Loihi is monitored during execution 

of the LCA network to measure its energy efficiency, shown in Figure 2.25. The power 

consumption is monitored for the compute logic, represented by VDD, the SRAM 

memory units, represented VDDM, and the IO interface, represented by VDDIO. 
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Figure 2.25: Power consumption of LCA network running on Loihi. 

The power measurements are made throughout the experiment, and the values are 

averaged and reported every 8 time steps. Figure 2.25 shows the VDDIO power 

consumption is negligible compared to the other two measurements. VDD and VDDM 

have approximately equal average power consumptions of 30 mW and 29 mW, 

respectively. 
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3 Conclusion and Future Work 

This work implements a classic self-learning paradigm in rats: associative learning (fear 

conditioning) using a mobile robot and a neuromorphic system (Loihi chip) in an online 

learning scenario. In specific, a mobile robot is the substitute for the rats in fear 

conditioning experiments. Two signal pathways are assigned for conditional and 

unconditional stimulus. In the experiments, vibration signals emulate the unconditional 

stimulus, while brightness of lights is assigned as the conditional stimulus. Originally, the 

mobile robot only moves when it detects vibration signals. After providing these two 

signals concurrently several times, the robot performs a movement when light signals are 

present alone. The detection of lights and vibrations are implemented with Leaky 

Integrate and Fire Neurons. In addition, the movement of the robot is controlled by 

specially designed response neurons. The signal pathway modification during associative 

memory learning is implemented with Hebbian learning. Compared to other state-of-the-

art works, this successfully reproduces the fear conditioning of rats in a real-world 

scenario with no labeled data or pretraining process. 

My own contributions in neuromorphic computing applications for robotics are: 

o Reviewing neuromorphic computing field and applications: [63], 

o Reproducing fear conditioning of rats with UGVs: [64], 

o Implementing associative learning in mobile robots with neuromorphic computing 

[65]. 
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There are several opportunities for furthering the presented work. The LCA 

implementation could be improved by utilizing overlapping LCA patches, an 

overcomplete dictionary, a feature dictionary learned from experimental data, and using 

the Loihi 2 hardware. Improving the capability of the LCA network to differentiate colors 

in RGB images instead of brightness in grayscale images would be applicable to more 

scenarios. A common application for sparse coding and LCA is natural language 

processing, which can be viewed as processing oscillating one dimensional signals. In a 

similar manner, LCA could be used to provide a more robust and biologically plausible 

neural assembly for vibration detection analogous to the one for light detection. The 

vibration detection could be made more neuromorphic with the simpler modification of 

using the delta of z-axis acceleration as an input to reduce preprocessing and “eventify” 

the input so that neural activity corresponds with changes in the environment. Hebbian 

learning could also be added to Nengo Loihi in order to run the full model on the Loihi. 

Alternatively, Intel’s Lava development platform could be used in place of Nengo for a 

more tightly integrated system. This would be ideal; however, ROS support in Lava is not 

yet available at the time of this work. Most robotics works involving neuromorphic 

systems utilize a neuromorphic Dynamic Vision Sensor (DVS) camera. Ideally, the 

system would incorporate a DVS camera in place of the ZED 2. These cameras generate 

event based spiking representations of the input in place of integer pixel values, making 

them extremely efficient and able to interface with the neuromorphic computing 

hardware at a much lower level. 
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