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Complete Genome Sequences of Four Phages of the Horse
Chestnut Phyllosphere

Greg P. Krukonis,a Sam J. Roth,b Véronique A. Delesalleb

aDepartment of Biology, Angelo State University, San Angelo, Texas, USA
bDepartment of Biology, Gettysburg College, Gettysburg, Pennsylvania, USA

ABSTRACT Bacteriophages play important roles in determining bacterial communities,
including plant microbiota. Here, we describe four lytic phages, three Siphoviridae and
one Podoviridae, isolated from four different bacterial species found on the leaves of
horse chestnut trees. Their double-stranded DNA (dsDNA) genomes range from 39,095
to 46,062 bp and contain 51 to 70 genes.

To understand the roles bacteriophages play in the phyllosphere, phages found on
the leaves of horse chestnut trees (Aesculus hippocastanum; Sapindaceae) in Angel

and Greyhound Meadow, Oxford, UK, were isolated on bacterial strains, themselves iso-
lated from these leaves (1–5). The bacterial isolates were assigned to a genus and, if
possible, species based on sequencing of approximately 800 bp of the 16S rRNA region
and the top BLAST hit associated with a sequence (E value, ,10210) (1). Here, we
describe four of these phages, each isolated on a different bacterial species (Table 1).

Each phage was single-plaque purified at least three times on its isolation host and
amplified by overnight culturing in 10 ml King’s broth and 100 ml of the host (1). The cul-
tured lysate was filtered (pore size, 0.45 mm), and following the kit protocol for the
Promega Wizard PCR Preps DNA purification system (no. 7170), phage DNA was extracted
by the Koskella lab. At North Carolina State University’s Genomic Science Laboratory, libra-
ries for each DNA sample were prepared following the protocol for the Illumina TruSeq
Nano DNA library prep kit and sequenced on the Illumina MiSeq platform, using a v3 150
SE flow cell. Genome assembly was performed at Gettysburg College, using the GS v2.9 de
novo assembler (6). For each phage, 150-bp reads were assembled into one contig with
.1,000� coverage and the contig consensus quality was verified using Consed v29 (6, 7)
(Table 1). The genome ends were determined using PAUSE and PhageTerm (8, 9) (Table 1).
The finished sequences were imported into DNA Master v5.22.22 (10) to map and compare
the open reading frames. Putative genes were called based on both Glimmer v3.0 and
GeneMark v2.5 algorithms (11, 12). Putative functions of the gene products were predicted
using BLAST v2.12 (13) and HHpred (14). For the BLASTp matches, an E value below 1025

was required to assign a function. For the HHpred matches, a high probability (.85%),
substantial coverage (.50%), and low E value (,1025) were required. The presence of
tRNA genes was determined through the Web-based program ARAGORN (15). Default set-
tings were used in all programs.

These phages have double-stranded DNA (dsDNA) genomes ranging from 39,095
to 46,062 bp and containing 51 to 70 protein coding genes (Table 1). Three phages—
AH01, AH02, and AH03—have a genome organization typical of Siphoviridae, with
structural genes showing a conserved order (16). Their assignment to this family is sup-
ported by BLASTn matches to Siphoviridae phages but with varying query coverage
(Table 1). The best matches for AH02 and AH03 have low coverage; these two phages
are substantially different from previously sequenced phages. Pseudomonas phage
AH05 shows nucleotide similarity to Podoviridae Pseudomonas phages (Table 1). The
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GC contents of AH01, AH02, and AH05 are comparable to, if somewhat lower than,
that of their isolation host (Table 1). In contrast, AH03 has a much lower GC content
than its isolation host and also contains a tRNA gene for serine (anticodon gcu). Three
other phage isolates—from two different leaves on the same tree and from a leaf on a
second tree—were sequenced following the above protocols and determined to be
identical to AH03.

Data availability. The genome sequences and associated information can be found
under BioProject accession no. PRJNA754193 and GenBank/SRA accession no. MZ501269/
SRX11736852 (AH01), MZ501271/SRX11736853 (AH02), MZ501266/SRX11736854 (AH03),
and MZ501272/SRX11736856 (AH05).
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