
Southern Methodist University Southern Methodist University

SMU Scholar SMU Scholar

Mathematics Theses and Dissertations Mathematics

Summer 7-31-2023

Neural Network Learning for PDEs with Oscillatory Solutions and Neural Network Learning for PDEs with Oscillatory Solutions and

Causal Operators Causal Operators

Lizuo Liu
lizuol@smu.edu

Follow this and additional works at: https://scholar.smu.edu/hum_sci_mathematics_etds

 Part of the Dynamic Systems Commons, and the Partial Differential Equations Commons

Recommended Citation Recommended Citation
Liu, Lizuo, "Neural Network Learning for PDEs with Oscillatory Solutions and Causal Operators" (2023).
Mathematics Theses and Dissertations. 23.
https://scholar.smu.edu/hum_sci_mathematics_etds/23

This Dissertation is brought to you for free and open access by the Mathematics at SMU Scholar. It has been
accepted for inclusion in Mathematics Theses and Dissertations by an authorized administrator of SMU Scholar.
For more information, please visit http://digitalrepository.smu.edu.

https://scholar.smu.edu/
https://scholar.smu.edu/hum_sci_mathematics_etds
https://scholar.smu.edu/hum_sci_mathematics
https://scholar.smu.edu/hum_sci_mathematics_etds?utm_source=scholar.smu.edu%2Fhum_sci_mathematics_etds%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/117?utm_source=scholar.smu.edu%2Fhum_sci_mathematics_etds%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/120?utm_source=scholar.smu.edu%2Fhum_sci_mathematics_etds%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.smu.edu/hum_sci_mathematics_etds/23?utm_source=scholar.smu.edu%2Fhum_sci_mathematics_etds%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalrepository.smu.edu/

NEURAL NETWORK LEARNING FOR PDES WITH OSCILLATORY SOLUTIONS

AND CAUSAL OPERATORS

Approved by:

Dr. Wei Cai
Professor

Dr. Thomas Hagstrom
Professor

Dr. Weihua Geng
Associate Professor

Dr. Haizhao Yang
Associate Professor

NEURAL NETWORK LEARNING FOR PDES WITH OSCILLATORY SOLUTIONS

AND CAUSAL OPERATORS

A Dissertation Presented to the Graduate Faculty of the

Dedman College

Southern Methodist University

in

Partial Fulfillment of the Requirements

for the degree of

Doctor of Philosophy

with a

Major in Mathematics

by

Lizuo Liu

B.S., Mathematics, Shanghai Jiao Tong University
M.S., Mathematics, Southern Methodist University

July 31, 2023

Copyright (2023)

Lizuo Liu

All Rights Reserved

Acknowledgments

First of all, I would like to express my deepest gratitude to my advisor, Professor Wei

Cai, for his guidance and support throughout my graduate studies. I am truly grateful for

his trust in me and his belief in my potential. I consider myself incredibly fortunate to

have been mentored by him, whose expertise and guidance have not only shaped me as a

researcher but also as an individual, and I am truly thankful for the impact he has had on

my academic and personal growth.

I would also like to extend my deepest gratitude and appreciation to Professor Xiaoguang

Li for his invaluable collaboration on the research paper published in the SIAM Journal of

Scientific Computing. Over the course of one year, His contributions and guidance have been

instrumental in shaping not only the success of our work but also my personal growth as a

researcher.

I would also like to thank Professor Bo Wang. His expertise has played a crucial role in

refining my coding skills and in shaping my understanding of the field of machine learning.

I am also deeply grateful to Dr. Kamaljyoti Nath from Brown University for his collab-

oration on the research paper relating to the Causality DeepONet. His patient assistance,

constructive feedback, and practical insights have significantly enhanced the clarity and co-

herence of our research work. I am truly appreciative of Dr. Kamaljyoti Nath’s contribution

to my growth as a writer and researcher.

I would also like to thank my thesis committee, Professor Thomas Hagstrom, Professor

Weihua Geng, and Professor Haizhao Yang. Their prompt feedbacks and suggestions are the

reasons for the completions of this thesis.

iv

Many thanks to the Mathematics Department at Southern Methodist University for

providing me with a stimulating and supportive environment to conduct my research. Also

thank my friends and colleagues for their support and encouragement.

Finally, I would like to thank my family for their unconditional love and support. I am

truly grateful for their encouragement and for their belief in me.

v

Liu, Lizuo B.S., Mathematics, Shanghai Jiao Tong University
M.S., Mathematics, Southern Methodist University

Neural network learning for PDEs with oscillatory solutions

and causal operators

Advisor: Dr. Wei Cai

Doctor of Philosophy degree conferred on July 31, 2023

Dissertation completed on July 6, 2023

In this thesis, we focus on developing neural networks algorithms for scientific computing.

First, we proposed a phase shift deep neural network (PhaseDNN), which provides a

uniform wideband convergence in approximating high frequency functions and solutions of

wave equations. Several linearized learning schemes have been proposed for neural networks

solving nonlinear Navier-Stokes equations. We also proposed a causality deep neural network

(Causality-DeepONet) to learn the causal response of a physical system. An extension of

the Causality-DeepONet to time-dependent PDE systems is also proposed.

The PhaseDNN makes use of the fact that common DNNs often achieve convergence in

the low frequency range first, and constructs a series of moderately-sized DNNs trained for

selected high frequency ranges. With the help of phase shifts in the frequency domain, each

of the DNNs will be trained to approximate the function’s specific high frequency range

at the speed of learning for low frequency. As a result, the proposed PhaseDNN is able

to convert high frequency learning to low frequency one, allowing a uniform learning to

wideband functions.

To solve the stationary nonlinear Navier-Stokes(NS) equation with deep neural networks,

we integrate linearization of the nonlinear convection term in the NS equation into the

vi

training process of multi-scale deep neural network (DNN) approximations of the NS solution.

Four forms of linearization are considered. We solve highly oscillating stationary flows in

complex domains utilizing the proposed linearized learning with multiscale neural networks.

The theorem of universal approximations to nonlinear operators proposed by Chen et

al. [11] is extended to operators with causalities, and the proposed Causality-DeepONet

implements the physical causality in its framework. The proposed Causality-DeepONet

considers causality (the state of the system at the current time is not affected by that of the

future, but only by its current state and past history) and uses a convolution-type weight

in its design. To demonstrate its effectiveness in handling the causal response of a physical

system, the Causality-DeepONet is applied to learn the operator representing the response

of a building due to earthquake ground accelerations.

Finally, we proposed a deep neural network approximation to the evolution operator for

time dependent PDE systems over long time period by recursively using one single neural

network propagator, in the form of POD-DeepONet with built-in causality feature, for a

small-time interval.

vii

TABLE OF CONTENTS

LIST OF FIGURES . xiii

LIST OF TABLES . xviii

CHAPTER

Preface . 1

0.1. Developing PhaseDNN and multi-scale deep neural network (DNN) for os-
cillatory PDE solutions . 1

0.1.1. PhaseDNN for learning high frequency wave solutions 1

0.1.2. Linearized learning for oscillatory Navier-Stokes (NS) flows 2

0.2. A Causality-DeepONet for learning operators with causality 3

0.2.1. Learning operator mapping seismic excitations to responses of building 3

0.2.2. DeepPropNet - Learning evolution PDE solution operator 4

1 Introduction . 6

1.1. Deep neural network . 6

1.1.1. Training the neural network . 8

1.1.2. Universal approximation theorems to functions . 9

1.1.3. Convergence of neural network approximations to functions 11

1.2. Spectral bias . 13

1.3. Physics-informed neural network . 14

1.3.1. Convergence of physics-informed neural network approximations 16

1.4. DeepONet . 18

1.4.1. Universal approximation theory . 18

1.4.2. DeepONet . 20

viii

2 A Phase Shift Deep Neural Network (PhaseDNN) for High Frequency Approxi-

mation and Wave Problems . 22

2.1. Introduction . 22

2.2. A Parallel phase shift DNN (PhaseDNN) for high frequency approximation 25

2.2.1. Frequency selection kernel ϕ∨
j (x) . 27

2.2.2. Training Data for parallel phase shift DNN (PhaseDNN) algorithm . 29

2.3. A coupled PhaseDNN . 30

2.3.1. Approximating functions . 30

2.3.2. Solving differential equations through least square residual mini-
mization . 32

2.3.3. Solving integral equations for exterior Helmholtz problems 35

2.4. Numerical results . 37

2.4.1. Approximation of functions with PhaseDNN . 37

2.4.1.1. Parallel PhaseDNN . 37

2.4.1.2. Coupled PhaseDNN . 40

2.4.2. Coupled PhaseDNN for solving PDEs with high frequency solutions 48

2.4.2.1. Helmholtz equation with constant wave numbers 48

2.4.2.2. Helmholtz equation with variable wave numbers 50

2.4.2.3. Solving elliptic equation . 54

2.4.2.4. Coupled PhaseDNN for solving exterior wave scattering
problem . 55

2.4.3. PhaseDNN as a meshless solver for 2D Helmholtz equation in a
complex domain . 56

3 Linearized Learning with Multiscale Deep Neural Networks for Stationary Navier-

Stokes Equations with Oscillatory Solutions . 58

3.1. Introduction . 58

3.2. Iterative method for stationary Navier–Stokes equations 61

ix

3.2.1. Stationary Navier-Stokes equations . 61

3.2.2. Iterative methods to solve stationary Navier-Stokes equations 62

3.3. Linearized learning algorithm with multiscale deep neural network 65

3.3.1. Multiscale deep neural network (MscaleDNN) . 65

3.3.2. Linearization schemes for neural network training 67

3.3.3. Linearized learning algorithms . 70

3.4. Numerical results . 70

3.4.1. A benchmark: A non-oscillatory problem - effect of linearized learning 70

3.4.2. Performance: Oscillating flows learned by MscaleDNN with lin-
earized learning . 72

3.4.2.1. A simple domain - effect of MscaleDNN 74

3.4.2.2. A complex domain . 74

3.4.2.3. Small viscosity coefficient . 77

4 A Causality-DeepONet for Causal Responses of Linear Dynamical Systems 81

4.1. Introduction . 81

4.2. Problem statement: Calculation of building response due to seismic load . . . 84

4.3. Background / Preliminary . 88

4.3.1. DeepONet . 88

4.3.2. Multi-scale deep neural network (MscaleDNN) . 89

4.3.3. POD-DeepONet . 90

4.4. Methodologies . 91

4.4.1. Multi-scale DeepONet . 91

4.4.2. Causality-DeepONet . 92

4.4.3. Loss function and error calculation . 95

4.5. Numerical results and discussion . 97

x

4.5.1. DeepONet and POD-DeepONet . 98

4.5.2. Multi-scale DeepONet . 103

4.5.3. Causality-DeepONet . 104

5 DeepPropNet - A Recursive Deep Propagator Neural Network for Learning Evo-

lution PDE Operators . 115

5.1. Introduction . 115

5.2. DeepONet with time causality and spatial POD . 118

5.3. A recursive DeepPropNet for learning evolution PDE operators 121

5.3.1. The evaluation of initial conditions . 124

5.3.2. Normalization and penalties . 127

5.4. Numerical results . 128

5.4.1. Results of CPOD-DeepONet . 129

5.4.2. Results of Deep Propagator . 131

6 Conclusions . 134

APPENDIX

A Appendix for Causality DeepONet . 138

A.1. Additional tables . 138

A.2. Additional figures . 140

A.2.1. A typical ground acceleration due to earthquake before and after
processing . 140

A.2.2. Additional results for numerical study for DeepONet 142

A.2.3. Additional results for numerical study for POD-DeepONet 144

A.2.4. Additional results for numerical study for Multi-scale DeepONet . . . 146

B The cases considered in the experiments of DeepPropNet . 148

C Evolutions of relative L2 errors for Deep Propagator . 151

xi

BIBLIOGRAPHY . 153

xii

LIST OF FIGURES

Figure Page

1.1 Schematic of a deep neural network. 7

1.2 Mathematical model of a neuron. 7

1.3 Schematic diagram of the DeepONet . 21

2.1 The fitting result for f(x) using the parallel PhaseDNN. 39

2.2 The detail results of training in different intervals. 39

2.3 Fitting result for f(x) using coupled PhaseDNN and a single fully connected
DNN. 41

2.4 Fitting result for f(x) using fewer data. 42

2.5 The loss curve for fitting f(x) using adaptive phase range strategy. 44

2.6 Fitting result for square wave function using selecting and sweeping methods. . 45

2.7 Fitting results for 2D problems using coupled PhaseDNN. 46

2.8 Fitting result for H(x, y, z) . 47

2.9 Numerical and exact solution of problem (2.27) with c = 0 and different λ and µ. 48

2.10 Non-convergence of usual fully connected DNN for high frequency case. 49

2.11 Numerical and exact solution of problem (2.27) with exact solution J0(µx) +
0.2 cos(λx). 50

2.12 Variable coefficient Helmholtz equations (2.27). 51

2.13 Numerical and reference solutions to problem (2.27) using coupled PhaseDNN. 51

2.14 Discontinuous coefficient Helmholtz equations (2.27). 52

xiii

2.15 Numerical and reference solution of problem (2.27) using coupled PhaseDNN
and integral equation method. 53

2.16 The numerical solution of equation (2.47) using coupled PhaseDNN. 54

2.17 The result of exterior problem using coupled PhaseDNN for the differential
equation (2.30) after 3000 epochs training. 55

2.18 The result of exterior problem using integral equation method after 300 epochs
training. 56

2.19 The numerical solution and error of 2D Helmholtz equation (2.51) in a compli-
cated domain. 57

3.1 Schematics of MscaleDNN . 66

3.2 A simple domain with one hole . 72

3.3 Losses (bottom 3 lines) of three linearized learning schemes (3.15) (3.16) or
(3.18) and loss (top line) based on nonlinear Navier-Stokes equation (3.4) . . 73

3.4 Linearized learning of fully connected network (FCN): The x components of
velocity after 300 epoch training for benchmark problem along the line
y = 0.7 . 73

3.5 Linearized learning of fully connected network (FCN):The pressures after 300
epoch training for benchmark problem along the line y = 0.7 73

3.6 Pressure of the oscillatory case for linearized learning with MscaleDNN and
fully connected networks (FCN) . 75

3.7 The first component of velocity of the oscillatory case for linearized learning
with MscaleDNN and fully connected networks (FCN) . 75

3.8 The results of the oscillatory case using linearized learning with multi-scale
neural networks . 76

3.9 The results of the oscillatory case using linearized learning with fully connected
networks (FCN) . 76

3.10 The errors of the oscillatory case for linearized learning with fully-connected
network (FCN) and multiscale network (MSNN) . 77

3.11 A more complex domain. 77

3.12 The results of the first component of velocity of the oscillatory case for four
linearized learning schemes with MscaleDNN . 78

xiv

3.13 Relative errors at the line y = 0.7 of four linearized learning schemes with
MscaleDNN for pressure of the complex domain case after 1000 epoch training 79

3.14 The relative errors of the complex domain case for four linearized learning
schemes with MscaleDNN . 79

3.15 The divergence of velocity ∇·u where u is trained by linearized learning scheme
(3.13) with 1000 epochs . 80

3.16 The relative errors of velocity u and pressure p along the line y = 0.7 where
neural networks are trained by linearized learning scheme (3.13) with 1000
epochs as ν = 0.001 . 80

3.17 The divergence of velocity ∇·u where neural networks are trained by linearized
learning scheme (3.13) with 1000 epochs as ν = 0.001 . 80

4.1 A typical ground acceleration due to earthquake . 86

4.2 Schematic Diagram of the DeepONet . 89

4.3 Schematic Diagram of the Causality-DeepONet . 95

4.4 Relative L2 error for DeepONet . 99

4.5 Relative L2 error for DeepONet with normalization . 101

4.6 Relative L2 error for POD-DeepONet . 102

4.7 Relative L2 error for Multi-scale DeepONet . 103

4.8 The worst case of predictions of Causality-DeepONet(Relative L2 Error: 0.0042)106

4.9 The best case of predictions of Causality-DeepONet(Relative L2 Error: 0.00025)107

4.10 Relative L2 error for training and testing dataset when using Causality-DeepONet
with different Branch and Trunk sizes . 109

4.11 Relative L2 error for training and testing dataset when using Causality-DeepONet
with different activation functions . 110

4.12 Relative L2 Error for training and testing dataset when using Causality-DeepONet
with different number of training samples . 112

4.13 Schematic diagram of Causality-DeepONet without convolution 114

4.14 Relative L2 error for training and testing Dataset when using Causality-DeepONet
with or without convolutions . 114

xv

5.1 Comparison between predictions of Causality DeepONet with POD and exact
solutions for heat equation . 130

5.2 Comparison between predictions of Causality DeepONet with POD and exact
solutions for wave equation . 130

5.3 Comparison between predictions of Deep Propagator and exact solutions for
heat equation . 131

5.4 Comparison between predictions of Deep Propagator and exact solutions for
wave equation. Initial conditions are obtained by finite difference. 132

5.5 Comparison between predictions of Deep Propagator and exact solutions for
wave equation. Initial conditions are obtained by least squares interpolation.133

5.6 Comparison between predictions of Deep Propagator and exact solutions for
wave equation. Initial conditions are obtained by predictions of two deep
propagator. 133

A.1 Ground acceleration . 141

A.2 Relative L2 error for DeepONet . 142

A.3 Relative L2 error for DeepONet with different activation functions 142

A.4 One of the training samples with predictions of DeepONet . 143

A.5 The best case of the predictions of DeepONet . 144

A.6 Relative L2 error for POD-DeepONet with different activation functions 144

A.7 One of the training samples with predictions of POD-DeepONet 145

A.8 The best case of the predictions of POD-DeepONet . 145

A.9 One of the training samples with predictions of MS-DeepONet 146

A.10 The best case of the predictions of MS-DeepONet . 147

C.1 Evolution of relative errors for solving heat equations . 151

C.1a The evolution of relative L2 errors for the training dataset(solid line)
and testing dataset (dashed line) when training Causality Deep-
ONet with POD. 151

xvi

C.1b The evolution of relative L2 errors for the training dataset(solid line)
and testing dataset (dashed line) when training Deep Propaga-
tor. 151

C.2 Evolution of relative errors for solving wave equations . 152

C.2a The evolution of relative L2 errors for the training dataset(solid line)
and testing dataset (dashed line) when training Causality Deep-
ONet with POD. Initial conditions are provided as inputs. 152

C.2b The evolution of relative L2 errors for the training dataset(solid line)
and testing dataset (dashed line) when training Deep Propagator.
Initial conditions u̇ are predicted by another Deep Propagator. 152

C.2c The evolution of relative L2 errors for the training dataset(solid line)
and testing dataset (dashed line) when training Deep Propagator.
Initial conditions u̇ are computed by finite difference. 152

C.2d The evolution of relative L2 errors for the training dataset(solid line)
and testing dataset (dashed line) when training Deep Propagator.
Initial conditions u̇ are computed by least square interpolations. . . . 152

xvii

LIST OF TABLES

Table Page

2.1 The training time statistics. For each j, the training time is the sum of training
time of real and imaginary part. Each DNN is trained by 1000 epochs with
batchsize 2000. 40

4.1 Relative L2 error for training and testing dataset when predicted using different
sizes of DeepONet. 99

4.2 Relative L2 error for training and testing dataset when predicted using different
sizes of DeepONet with Gaussian normalization for input and output. 100

4.3 Relative L2 error for training and testing dataset when using different sizes of
POD-DeepONet. 102

4.4 Relative L2 Error for Training and Testing Dataset when Using Different Sizes
of Multi-scale DeepONet. 103

4.5 Relative L2 error for training and testing dataset when using different sizes of
Causality-DeepONet . 108

4.6 Relative L2 error for training and testing dataset when using Causality-DeepONet
with different activation functions . 109

4.7 Relative L2 error for training and testing dataset when using Causality-DeepONet
with different numbers of training samples . 112

A.1 Properties of the earthquake records considered for training and testing of neu-
ral networks. 139

A.2 Properties of the earthquake records considered for training and testing of neu-
ral networks. 140

xviii

To my parents, who have always supported me in my endeavors.

Preface

Methodologies based on machine learning have achieved revolutionary results in many

fields involving large data, including image recognition, and natural language processing.

This Ph.D. research focuses on four projects applying machine learning methods to compu-

tational mathematics and scientific computing. The first two projects are related to using

neural networks to solve PDEs with oscillatory solutions. The next two projects are related

to using neural networks to approximate operators with causality.

0.1. Developing PhaseDNN and multi-scale deep neural network (DNN) for

oscillatory PDE solutions

In many scientific applications, acquiring enough amount of data to train a model to

satisfactory performance is prohibitively costly. Thus, for modeling and computation, partial

differential equations and the relevant initial or boundary conditions are now used instead

as regularization for the machine learning models. On the other hand, researchers have

discovered frequency bias or spectral bias of most DNNs where neural networks capture the

low frequency components of solutions first and then higher frequency components during

the training of the neural network. The first two research projects address these issues.

0.1.1. PhaseDNN for learning high frequency wave solutions

We proposed a special neural network to learn highly oscillating functions which are hard

to be learned by traditional fully connected neural networks. As an example, assume we use a

normal fully connected neural network to learn the function cos (2πx)+sin (200πx), then, the

neural network could learn the low frequency part cos (2πx) quickly, but it will have difficul-

1

ties in reducing the error for the oscillating part sin (200πx) in its learning. An intuitive idea

to accelerate the learning of the highly oscillating components is to shift the highly oscillating

components f̂j (k) ∈
[
ωj − ∆K

2
, ωj +

∆K
2

]
to a smooth domain f̂ shift

j (k) ∈
[
−∆K

2
, ∆K

2

]
and

train the neural network for f shift
j (x) = F−1

(
f̂j (k + ωj)

)
and shift the trained results back

by multiplying eiωjx. The procedure mentioned is termed PhaseDNN. PhaseDNN learns not

only the low frequency parts of the solution but also the oscillating parts uniformly, which

makes it possible for solving equations like Helmholtz equation efficiently.

0.1.2. Linearized learning for oscillatory Navier-Stokes (NS) flows

The second research project is to use the neural network to learn the solution of nonlinear

Navier-Stokes equation. Using the equation residual and the boundary or initial conditions

as regularization in the training loss, neural network, viewed as adaptive basis, could be

one of the promising alternatives of the basis function of finite element methods. Thus, we

studied neural networks for learning the solutions of the stationary nonlinear Navier-Stokes

equation. However, the traditional fully connected neural network can not learn the solution

easily based on the residual and regularization. We discovered that the main difficulty comes

from nonlinearity of the NS equation as the solution of the linear Stokes equation can be

learned well with a multi-scale DNN [67].

Based on this observation, several linearized learning schemes have been proposed to

mitigate the difficulties due to nonlinearity. The key idea is to first linearize the NS equa-

tion, learning is carried out based on the residual of the linearized equation and after some

epochs of training, the linearized equation is updated using the newly learned solution. This

procedure is carried on alternatively until the neural network solution for the nonlinear NS

equation converges. To be specific, the stationary nonlinear Navier-Stokes equation is lin-

earized by replacing one of the components in its nonlinear term by the learned solutions,

even though the learned solutions are not accurate initially. However, they will converge at

2

the end of training. Furthermore, the pressure is regularized by a Poisson equation given

that the flows are incompressible.

0.2. A Causality-DeepONet for learning operators with causality

The research above targets on solving one equation by one neural network. Once the

boundary conditions, initial conditions or the coefficients in the equations are changed, the

neural networks need to be retrained. Computing operators between physical quantities de-

fined in function spaces have many applications in forward and inverse problems in scientific

and engineering computations. For example, in wave scattering in inhomogeneous or ran-

dom media, the mapping between the media physical properties, which can be modelled as a

random field, and the wave field is a nonlinear operator, which represents some of the most

challenging computational tasks in medical imaging, geophysical and seismic problems.

0.2.1. Learning operator mapping seismic excitations to responses of building

A specific example comes from earthquake safety studies of buildings and structures, the

responses of structures to seismic ground accelerations give rise to a casual operator between

spaces of highly oscillatory temporal signals. One natural approach is to use a multi-scale

network [43] that could handle oscillating signals as part of DeepONet [47] to learn the

response operator. However, the neural network still could not predict the testing case well

even though training loss decay shows the convergence of the training of neural network.

Then, we proposed that causality and the convolution are the key physical properties of

the response operator, which was incorporated into the neural network framework, termed

Causality-DeepONet.

3

0.2.2. DeepPropNet - Learning evolution PDE solution operator

A dynamic system that describes the mapping from seismic ground accelerations to build-

ing responses results from the discretization of dynamic elasticity equation, thus using the

framework of Causality-DeepONet to learn the mappings between the solutions of a PDE

and the corresponding right hand sides is a natural extension. In this work, the neural net-

work was applied to learn the mapping from the right hand sides to the solutions of wave

equations with variable coefficients. A simple memory consumption calculation shows that it

is too memory-demanding in handling high frequency wave scattering problem if the spatial

domain is discretized as in the building responses problem. Borrowing the idea of princi-

pal orthogonal decomposition, the spacial domain is represented by linear combinations of

orthogonal basis, whose coefficients will be time-dependent.

Meanwhile, the global temporal dependence on the source terms of the waves hinders

the attempts to learn mappings for problems with large terminal time. Therefore, we pro-

posed a DeepPropNet where the time domain is decomposed to several small blocks and the

predictions of the previous block will provide the initial conditions of the next immediate

block. Once the DeepPropNet is trained, for time homogeneous problem that the velocity

c (x) only depends on x, we could use the DeepPropNet to provide the initial conditions for

next time block. The procedure can be carried on recursively until the whole time period

[0, T] is covered, a global propagator network is thus obtained. Since it is like the initial

propagator solver tracks the waves and propagates with the solutions along time direction

and the propagator itself is a deep neural network, we named it DeepPropNet short for deep

Propagator.

The rest of the thesis is organized as follows. In Chapter 1, a brief introduction to

the deep neural networks, the corresponding universal approximation properties, and some

works relating to the convergence with respect to training are presented. A review relating

to the physics-informed neural network is also presented in this chapter. A theorem relating

4

to the convergence of physics-informed neural network is listed. A brief introduction to the

DeepONet and the universal approximation property to operators are also presented. In

Chapter 2, a detailed introduction to the phaseDNN is presented with numerical examples.

In Chapter 3, the linearized learning scheme to accelerate the convergence of the neural net-

work training is presented with several numerical experiments showing that the combination

of linearized learning scheme and the multi-scale neural network can solve the stationary

Navier-Stokes equation with oscillatory force terms. In Chapter 4, the Causality-DeepONet

is presented with numerical examples. In Chapter 5, the DeepPropNet is presented with

numerical examples. In Chapter 6, the conclusion and the future works are presented.

5

Chapter 1

Introduction

1.1. Deep neural network

Artificial neural network, as a mathematical analogy to the biological brain, has been

studied for decades. Taking advantages of developments of hardware, software, and algo-

rithms, neural network has been widely used in many fields, such as computer vision, natural

language processing, and speech recognition. In this work, we specify the artificial neural

network to be the feedforward neural network, which is the most common type of neural

network.

A feedforward neural network contains one or more layers of neurons (nodes). The

neurons are organized in layers, with each layer connected to the next layer. The first layer

is called the input layer, and the last layer is called the output layer. The layers between the

input layer and the output layer are called hidden layers. The neurons in the input layer,

output layer, hidden layer are called input neurons, output neurons, and hidden neurons,

respectively. The neurons in the same layer are not connected to each other, but neurons in

the adjacent layers are fully connected to each other. The activation functions are applied

elementwisely for neurons in hidden layers and the neurons in the output layer do not have

activation function. The term deep in the deep neural network refers to that the neural

network is a feedforward network with more than one hidden layer. The schematic of a deep

neural network is shown in Figure 1.1.

6

x1

x2

x3

y

Figure 1.1: Schematic of a deep neural network. The input layer contains three input
neurons. The three hidden layers contain four hidden neurons each. The output layer
contains one output neuron. The neurons in the same layer share the same activation
function. The neurons in the adjacent layers are fully connected to each other.

Similar to its biological counterpart, the artificial neuron model is connected to other

neurons through weighted connections. The output of the neuron is determined by the

weighted sum of the inputs, a specific bias and the activation function. The weights can be

compared to the weights of synapses connecting the axon and the dendrites of the biological

neurons. The bias is analogous to the axon hillock of the biological neuron. The activation

function, typically a nonlinear function, introduces nonlinearity to the mathematical model.

Popular choices of activation functions include sigmoid function, hyperbolic tangent function,

and rectified linear unit (ReLU). The output of the neuron is akin to the action potentials

travelling through axon of a biological neuron. The schematic of a neuron model is shown

in Figure 1.2.

Σ

x1

x2
...
xn

yϕ (x)

b
w1

w2

wn

Figure 1.2: Mathematical model of a neuron. The output of the neuron is y is determined
by the weighted sum of the inputs x1, x2, . . . , xn given weights w1, w2, . . . , wn, a specific
bias b and the activation function ϕ (x).

7

Thus, for a 2-layer neural network, or a shallow neural network, we should have the

following form,

fθ (x) =
n∑

i=1

viσ
(
wT

i x
)

(1.1)

where x ∈ Rd, wi ∈ Rd, i = 1, 2, . . . , n, vi ∈ R, i = 1, 2, . . . , n, and σ (·) is the activation

function.

For a deep neural network, let x ∈ Rd be the input, W (1) ∈ Rn×d is the first weight

matrix, W (h) ∈ Rn×n is the weight at the h-th layer for h = 2, 3, . . . , H, b(h) ∈ Rn is the bias

at the h-th layer for h = 2, 3, . . . , H, v ∈ Rn is the weight vector for the output layer, and

σ (·) is the activation function. The deep neural network can be expressed as,

x(h) = σ
(
W (h)x(h−1) + b(h)

)
, 1 ≤ h ≤ H,

fθ (x) = vTx(H),

(1.2)

where the activation function σ (·) is applied element-wise.

1.1.1. Training the neural network

The weights v,W (1),W (2), . . . ,W (H) and bias b(1), b(2), . . . , b(H) are determined by min-

imizing the differences between the predictions or outputs of neural networks and the exact

values. The process of determining the weights and bias forms training the neural net-

work. The differences between predictions and exact values are expressed by the Euclidean

distance, or different kinds of divergences, which are specific for different tasks. The opti-

mization problem is typically solved by gradient descent or its variants due to the nonconvex

essence of this optimization problem.

Algorithm 1 shows the gradient descent algorithm for training a neural network. Once

the weights and biases of the neural network are initialized, the algorithm computes the

8

Algorithm 1 Gradient descent for neural network training.

1: Initialize the weights and biases of the neural network
2: Set the learning rate α, the maximum number of iterations K, the convergence threshold
ε, the current iteration counter k ← 0, the initial loss L0 ←∞

3: repeat
4: Compute the predicted output ŷ
5: Compute the loss function L(ŷ, y)

6: W ←W − α∂L(ŷ,y)
∂W

7: b← b− α∂L(ŷ,y)
∂b

8: Compute the total loss over the training set:
9: Lk ← 1

N

∑N
i=1 L(ŷi, yi)

10: Increment the iteration counter k ← k + 1
11: until k > K or |Lk − Lk−1|< ε

predicted output ŷ of the neural network and evaluate the loss L(ŷ, y). Then the gradients

of loss with respect to the parameters are evaluated by auto differentiation. The weights

and biases of the neural network are updated along the direction opposite to the gradients

to minimize the loss. The algorithm terminates when the maximum number of iterations is

reached or the loss function converges.

A specific case of gradient descent algorithm is stochastic gradient descent (SGD) [23].

Unlike the gradient descent algorithm, the SGD computes the gradients from a random

selected subset of the data to introduce randomness and reduce the computational cost.

From the implementation level, the SGD shuffles the training datasets and then apply the

gradient descent algorithm. The SGD algorithm is shown in Algorithm 2.

1.1.2. Universal approximation theorems to functions

The existence of a feedforward neural network structure for approximating a continuous

function is guaranteed by the universal approximation theorem to functions [13], which

states that finite linear combinations of continuous discriminatory functions are dense in the

continuous function space C
(
[0, 1]d

)
. Specifically, we have the following theorem,

9

Algorithm 2 Stochastic gradient descent for neural network training.

1: Initialize the weights and biases of the neural network
2: Set the learning rate α, the maximum number of iterations K, the convergence threshold
ε, the current iteration counter k ← 0, the initial loss L0 ←∞

3: repeat
4: Shuffle the training set
5: for each batch of training examples (x, y) do
6: Compute the predicted output ŷ
7: Compute the loss function L(ŷ, y)

8: W ←W − α∂L(ŷ,y)
∂W

9: b← b− α∂L(ŷ,y)
∂b

10: end for
11: Compute the total loss over the training set:
12: Lk ← 1

N

∑N
i=1 L(ŷi, yi)

13: Increment the iteration counter k ← k + 1
14: until k > K or |Lk − Lk−1|< ε

Theorem 1 (Universal Approximation Theorem to Functions [13]). Let σ (x) be continuous

and discriminatory, then for any f (x) ∈ C
(
[0, 1]d

)
and ε > 0, there exists a positive integer

n, real constants vi, bi ∈ R and real vectors wi ∈ Rd, where i = 1, 2, . . . , n, such that

∣∣∣∣∣f (x)−
n∑

i=1

viσ
(
wT

i x+ bi
)∣∣∣∣∣ < ε, ∀x ∈ [0, 1]d .

Definition 1.1. A function σ (x) is discriminatory if for a measure µ

∫
[0,1]d

σ
(
wTx+ b

)
dµ (x) = 0,

for all w ∈ Rd and b ∈ R implies µ = 0.

For specific activation functions, the error estimations of approximations relate to the

width and depth of neural networks. For example, if the activation function is ReLU, Lu et

al. [46] stated that for any n,H ∈ N+, the neural network with ReLU as activation functions

with width O (n lnn) and depth O (H lnH) could approximate function f (x) ∈ Cs
(
[0, 1]d

)

10

with a nearly optimal approximation error O
(
∥f∥Cs([0,1]d)n

−2s/dH−2s/d
)
, where

∥f∥Cs([0,1]d)= max
{
∥∂αf∥L∞([0,1]d): ∥α∥1≤ s, α ∈ Nd

}
for ∀f ∈ Cs

(
[0, 1]d

)
.

In the expression above, ∥α∥1=
∑
|αi|. In detail, there is a theorem for the approxima-

tion error estimation when applying neural networks with ReLU as activation function to

approximate smooth functions.

Theorem 2 (Deep Network Approximation for Smooth Functions [46]). Given a smooth

function f ∈ Cs
(
[0, 1]d

)
with s ∈ N+, for any N,L ∈ N+, there exists a function ϕ imple-

mented by a ReLU fully connected neural network with width C1 (N + 2) log2 (8N) and depth

C2 (L+ 2) log2 (4L) + 2d such that

∥f − ϕ∥L∞([0,1]d) ≤
C3

N2s/dL2s/d
∥f∥Cs([0,1]d),

where C1 = 17sd+13dd, C2 = 18s2, and C3 = 85 (s+ 1)d 8s.

1.1.3. Convergence of neural network approximations to functions

A long line of works have been focusing on the convergence of neural network approx-

imations to functions. In this section, we provide a short review of the existing results.

The problem discussed in this section is an empirical risk minimization problem with the

quadratic loss function

minθL (θ) =
1

N

N∑
i=1

(f (θ, xi)− yi)2 (1.3)

where f (θ, xi) is the feedforward neural network with parameters θ and input xi defined as

equation (1.2). θ are the collections of parameters {Wh, bh}Hh=1 of the neural network.

11

In the paper [17], Du et al. proved that for a deep neural network without bias, if the

activation function is softplus: σ (z) = log (1 + exp (z)), then the gradient descent algorithm

could achieve zero training loss.

Theorem 3 (Convergence Rate of Gradient Descent for Deep Fully Connected Neural Net-

works [17]). Assume for all i ∈ {1, 2, . . . , N}, ∥xi∥2= 1, |yi|= O (1) and the number of hidden

nodes per layer n satisfies

n = Ω

(
2O(H)max

{
N4

λ4min

,
N

δ
,
N2 log

(
HN
δ

)
λ2min

})
,

where λmin is the minimum eigenvalue of the gram matrix K(H) for the deep neural network.

If the step size is defined as

η = O

(
λmin

N22O(H)

)
,

then with probability at least 1 − δ over the random initialization, the loss at iteration k

satisfies

L (θ (k)) ≤
(
1− ηλmin

2

)k

L (θ (0)) .

Theorem 3 shows that if the width n is large enough, gradient descent will converge to

the global minimum with zero loss in a linear rate if step size is set properly.

As for the activation function ReLU, Allen-Zhu et al. [2] proved that for an over-parameterized

deep neural network, gradient descent will converge to the global minimum with zero loss,

as long as the dataset is non-degenerate, i.e., the data points are distinct.

Theorem 4 (Convergence Rate of Gradient Descent for DNN with ReLU Activations [2]).

Suppose the number of neurons n satisfies n ≥ Ω̃
(
poly

(
N,H, δ−1

min

)
· d
)
where δmin is the

minimum (relative) distance between two training data points, and poly (·, ·, ·) means a poly-

nomial. Starting from proper random initialization, with probability at least 1 − e−Ω(log2 n),

12

gradient descent with learning rate η = Θ
(

dδmin
poly(N,H)n

)
finds a θ s.t.

∑N
i=1∥f (θ,xi)−yi∥2≤ ε

in polynomial time

T = Θ

(
poly (N,H)

δ2min

log
1

ε

)
.

1.2. Spectral bias

The training dynamics of deep neural network is fundamental. In this section, we will

review the description of the training dynamics from the perspective of frequency domain.

Xu et al. [70] and Rahaman et al. [59] proposed the frequency principle or spectral bias,

respectively to describe one of the feature of the training dynamics of deep neural network.

In a nutshell, the neural network captures the low-frequency components of the data before

capturing the high-frequency components. For instance, when a deep neural network is

trained to fit f (x) = sin (x) + sin (10x), the neural network will fit the sin (x) part first and

then fit the sin (10x) part. In the paper [70], Xu et al. verified the statement experimentally

and theoretically.

Rigorously, the training dynamics of loss function with respect to frequency for a neural

network of one hidden layer only with activation function σ (x) = tanh (x) is described by

the following theorem.

Theorem 5 (Frequency Principle [70]). Suppose the target function has only two non-zero

frequencies k1, k2, i.e., |f̂ (k1) |> 0, |f̂ (k2) |> 0, and |k2|> |k1|> 0 and |f̂ (k) |= 0 otherwise.

The loss function is defined as L (x) = L (k1) + L (k2). Denote

S =

{
∂L (k1)

∂t
≤ 0,

∂L (k1)

∂t
≤ ∂L (k2)

∂t

}
,

13

that is, L (k1) descends faster than L (k2). Then, for sufficiently small δ, there exists

constants c, C > 0 such that

µ ({W : S holds}
⋂
Bδ)

µ (Bδ)
> 1− C exp

(
−c
δ

)

The study of the frequency principle has led to the development of several algorithms

aimed at accelerating the training process of deep neural networks. Among these algorithms

is PhaseDNN, which will be extensively discussed in the subsequent chapter.

1.3. Physics-informed neural network

Machine learning tools are typically reliant on data for training. However, in the context

of analyzing complex physical, biological, or engineering systems, a scarcity of available

data often poses a significant challenge. Consequently, we frequently encounter situations

where we must draw conclusions and make decisions based on incomplete information. In

this case, we need to incorporate the physical laws into the neural network. The physics-

informed neural network [61] is a class of neural network that incorporates the physical laws

into the loss of neural network. By doing so, it leverages the known principles governing the

system to enhance the accuracy and reliability of predictions. In this section, we will delve

into the physics-informed neural network.

Consider a partial differential equation (PDE) with general boundary conditions

Ltu (t,x) + Lxu (t,x) = f (t,x) , x ∈ Ω, t > 0

Bu (t,x) = g (t,x) , x ∈ ∂Ω

u (0,x) = u0 (x) , x ∈ Ω

(1.4)

14

where Lt is the differential operator with respect to t, Lx could be either linear or nonlinear

with respect to x, B could be either Dirichlet boundary condition, Neumann boundary

condition, or Robin boundary condition, or a combination thereof.

The loss function for the physics-informed neural network is defined as the combination of

the mean squared error of the training data, the PDE residual, and the boundary condition

residual, i.e.

L = αLdata + βLPDE + γLBC + δLIC, (1.5)

where α, β, γ, δ are the penalties/weights for specific loss, Ldata is the empirical loss of the

training data, which is defined as equation (1.3), and LPDE is defined as

LPDE =

∫ T

0

∫
Ω

[Ltu (t,x) + Lxu (t,x)− f (t,x)]2 dxdt. (1.6)

Similarly, LBC is defined as

LBC =

∫ T

0

∫
∂Ω

[Bu (t,x)− g (t,x)]2 dxdt. (1.7)

Finally, LIC is defined as

LIC =

∫
Ω

[u (0,x)− u0 (x)]2 dx. (1.8)

The integrals in the PDE residual (1.6), the boundary condition residual (1.7) and the

initial condition residual (1.8) are approximated by numerical integration methods, or the

15

Monte Carlo method,

∫ T

0

∫
Ω

[Ltu (t,x) + Lxu (t,x)− f (t,x)]2 dxdt ≈

1

N

N∑
i=1

[Ltu (ti,xi) + Lxu (ti,xi)− f (ti,xi)]
2 ,

∫ T

0

∫
∂Ω

[Bu (t,x)− g (t,x)]2 dxdt ≈ 1

M

M∑
i=1

[Bu (ti,xi)− g (ti,xi)]
2 ,

∫
Ω

[u (0,x)− u0 (x)]2 dx ≈
1

J

J∑
i=1

[u (0,xi)− u0 (xi)]
2 .

(1.9)

The points {ti,xi}Ni=1, {ti,xi}Mi=1 and {xi}Ji=1 are randomly sampled from [0, T] × Ω,

[0, T]× ∂Ω, and {0} × Ω respectively.

1.3.1. Convergence of physics-informed neural network approximations

The analysis of convergence of physics-informed neural network approximations is more

involved and problem specific. We will review the results from the paper [50].

In the paper [50], the authors consider to incorporate the boundary conditions into the

neural network structure to simplify the analysis. Consider 1D problem with Dirichlet bound-

ary condition as an example, the neural network is defined as

ũθ (x) = (x− a)pa (x− b)pb uθ (x) + (b0 − a0) (x− a) /(b− a) + a0,

given u (a) = a0, u (b) = b0, where 0 < pa, pb ≤ 1. Thus the term LBC in loss function (1.5)

vanishes. Problem with initial condition could be treated as a special case of problem with

Dirichlet boundary condition. The empirical loss for PINNs is defined as

16

RS (θ) =
1

N

N∑
i=1

[Ltũθ (ti,xi) + Lxũθ (ti,xi)− f (ti,xi)]
2 , (1.10)

Assume the operator Lxu =
∑d

α,β=1Aαβ (x)uxαxβ
+
∑d

α=1 bα (x)uxα + c (x)u and there

exists a constant CM such that for all x ∈ Ω = [0, 1]d, α, β ∈ {1, . . . , d},

|Aαβ (x) |≤ CM , |bα (x) |≤ CM , |c (x) |≤ CM ,

and further, Aαβ = Aβα, then we have the following theorem.

Theorem 6 (Training Convergence of PINNs [50]). Let u be the solution to the PDE (1.4)

and uθ be the solution to the PINN given loss function (1.10) that is minimized by the gradient

descent method with a proper learning rate. The neural network considered is a two-layer

neural network

uθ (x̃) =
n∑

i=1

viσ
(
wT

i x̃
)
,

where x̃ = (t,x), σ (x) = max
{

1
6
x3, 0

}
is the activation function. Define θ0 = vec {v0i , w0

i }
n
i=1

be the parameters after initialization with v0i ∼ N (0, γ2) and w0
i ∼ N (0, Id+1) for any γ ∈

(0, 1). Let Cd := E∥w∥121 < +∞, for any δ ∈ (0, 1), given N randomly sampled x̃i ∈ [0, T]×Ω,

if the number of neurons n satisfies

n ≥ max

512N4C4
MCd

λ2minδ
,
200
√
2CMd

3N log
(
4n (d+ 1) /δ

√
RS (θ0)

)
λS

,

223C3
Md

9N2 (log (4n (d+ 1) /δ))4
√
RS (θ0)

λ2min

}
,

then, with probability at least 1− δ, the empirical loss RS (θ (t)) satisfies

RS (θ (t)) ≤ exp

(
−nλmint

N

)
RS

(
θ0
)

17

Recall the definition of λmin is the minimum eigenvalue of the Gram matrix of the two-layer

neural network, like the definition in theorem 3.

1.4. DeepONet

DeepONet [47] was proposed by Lu et al., generalizing the original work of Chen &

Chen [11]. In the previous framework of physics-informed neural network, once the boundary

conditions or initial boundary conditions are changed, the neural network may need to be

retrained. DeepONet is proposed to solve this problem. It is expected to learn the mapping

between the initial condition, coefficients or the boundary conditions to the solutions. Fourier

neural operator [37] is another framework of neural operator that can be used to learn such

mappings. For each layer of Fourier neural operator, the weights are viewed as tunable

parameters in the Fourier space. The input of each layer is transformed into the Fourier

space and then a matrix-vector multiplication is applied to the transformed inputs with the

trainable parameter matrix. The output of that layer is transformed back to the original

space. In this section, we will offer a brief introduction to the framework of DeepONet and

the corresponding universal approximation theory to operators.

1.4.1. Universal approximation theory

The work of [11] gives a constructive procedure for approximating nonlinear operator G

between continuous functions G (f) (x) in a compact subset U ⊂ C(X) with X ⊆ Rd and

continuous functions f (x) in a compact subset V ⊂ C (F) with F ⊆ Rd

G : f(x) ∈ V ⊂ C(F)→ G(f)(x) ∈ U ⊂ C(X), (1.11)

where C (X) and C (F) are the continuous function spaces over X and F , respectively, and

X and F are compact subsets of Rd, the Euclidean space of dimension d. The universal

approximations with respect to operators are based on the two following results:

18

• Universal Approximation of Functions [11]: Given any ε1 > 0, there exists a

positive integer n, {wk}nk=1 ∈ Rd, {bk}nk=1 ∈ R, such that functions G(f)(x) selected

from a compact subset U of C(X) could be uniformly approximated by a one-hidden-

layer neural network with any Tauber-Wiener (TW) activation function σt∣∣∣∣∣G(f)(x)−
n∑

k=1

ck (G(f))σt (wk · x+ bk)

∣∣∣∣∣ ≤ ε1, ∀ x ∈ X , (1.12)

where ck (G(f)) is a linear continuous functional defined on V (a compact subset of

C(F)), and all wk, bk are independent of x and f (x). A Tauber-Wiener activation

function is defined as follows.

Definition 1.2. Assume R is the set of real numbers. σ : R → R is called a Tauber-

Wiener (TW) function if all the linear combinations g(x) =
I∑

i=1

ciσ (wix+ bi) are dense

in every C [a, b], where {wi}Ii=1 , {bi}
I
i=1 , {ci}

I
i=1 ∈ R are real constants.

If the function is not polynomial, then it is a TW function. For example, tanh (x) and

sigmoid σ (x) =
1

1 + e−x
are TW functions.

• Universal Approximation of Functionals [11]: Given any ε2 > 0, there exists

a positive integer M , m points {xj}mj=1 ∈ F with real constants cki ,W
k
ij, B

k
i ∈ R, i =

1, . . . ,M, j = 1, . . . ,m, such that a continuous functional ck (G(f)) defined on V could

be approximated by a one-hidden-layer neural network with any TW activation func-

tion σb ∣∣∣∣∣ck (G(f))−
M∑
i=1

cki σb

(
m∑
j=1

W k
ijf (xj) +Bk

i

)∣∣∣∣∣ ≤ ε2, ∀f ∈ V , (1.13)

where the coefficients cki ,W
k
ij, B

k
i and nodes {xj}mj=1 and m,M are all independent of

f (x).

Combining these two universal approximations, the authors of [11] proposed the universal

approximation of nonlinear operator by neural networks when restricted to the compact

19

subset V of the continuous function space C (F) defined on a compact domain F in Rd.

Namely, given any ε > 0, there exists positive integers M,n, m points {xj}mj=1 ∈ F ⊆ Rd

with real constants cki ,W
k
ij, B

k
i ∈ R, i = 1, . . . ,M, j = 1, . . . ,m, {wk}nk=1 ∈ Rd, {bk}nk=1 ∈ R

that are all independent of continuous functions f ∈ V ⊆ C(F) and x ∈ X ⊆ Rd such that

∣∣∣∣∣G(f)(x)−
n∑

k=1

{
M∑
i=1

cki σb

(
m∑
j=1

W k
ijf (xj) +Bk

i

)}
σt (wk · x+ bk)

∣∣∣∣∣ ≤ ε (1.14)

1.4.2. DeepONet

Based on the universal approximation of nonlinear operator, Lu et al. [47] proposed the

DeepONet by replacing the two one-hidden-layer neural networks in equation (1.14) with

two deep neural networks. For a general operator G(f)(x), DeepONet has form

G(f)(x) ∼
n∑

k=1

ck σB,k

(
{f (xj)}mj=1

)
︸ ︷︷ ︸

Bk

σT,k (x)︸ ︷︷ ︸
Tk

, (1.15)

where σB (·) with a signal {f(xj)}mj=1 as input is a deep neural network with n outputs,

named as the branch net, σT (·) with input x is also a deep neural network with n outputs

which is called the trunk net. The schematics are shown in Figure 1.3. The DeepONet has

been shown to be able to learn not only explicit mathematical operators like integration and

fractional derivatives, but also PDE operators [8, 15, 16,39,47].

20

n outputs

n outputs

Input

Dim: m

Branch Net

Trunk Net
n∑

k=1

ckBkTk

When x = x1When x = x2 When x = xm

f (x1)

f (x2)
...

f (xm−1)

f (xm)

f (x1)

f (x2)
...

f (xm−1)

f (xm)

. . .

f (x1)

f (x2)
...

f (xm−1)

f (xm)

x

Bk

Tk

Figure 1.3: Schematic Diagram of the DeepONet: A schematic diagram of DeepONet
showing branch and the trunk net along with the input data and output. The number of
the input neurons of the branch net is equal to the number of sensor points in the input
signals. The trunk net takes the input point x at where the output function need to be
evaluated. Thus, the first layer of trunk equal to the dimension of the problem.

21

Chapter 2

A Phase Shift Deep Neural Network (PhaseDNN) for High Frequency Approximation and
Wave Problems

The content in this chapter has been published in the following journal paper in collabo-

ration with Xiaoguang Li and Wei Cai:

Wei Cai, Xiaoguang Li, and Lizuo Liu, A Phase Shift Deep Neural Network for High

Frequency Approximation and Wave Problems, SIAM J. Sci. Comput., 42(5), A3285-A3312

(2020) [10].

2.1. Introduction

Deep neural networks (DNNs) have shown greater potential in approximating high di-

mensional functions, compared with traditional approximations based on Lagrangian inter-

polation or spectral methods. Recently, it has been found [49, 69, 70] that some common

NNs, including fully connected and convolution neural network (CNN) with tanh and ReLU

activation functions, demonstrate a frequency dependent convergence behavior. Namely,

the DNNs during the training are able to approximate the low frequency components of

the targeted functions first before higher frequency components. Spectral bias is defined as

the F-Principle of DNNs [69]. The stalling of DNN convergence in the later stage of train-

ing could be mostly related to learning the high frequency components of the data. The

F-principle behavior of DNNs is the opposite to that of the traditional multigrid method

(MGM) [5] in approximating the solutions of PDEs where the convergence occurs first in the

higher frequency end of the spectrum, as a result of the smoothing operator employed in the

MGM. The MGM takes advantage of this fast high frequency error reduction in the smooth-

ing iteration cycles and restricts the original solution on a fine grid to a coarser grid, then

22

continuing the smoothing iteration on the coarse grid to reduce the higher end frequency

spectrum in the context of the coarse grid. This downward restriction can be continued until

errors over all frequency are reduced by a small number of iterations on each level of the

coarse grids.

There are many scientific computing problems which involve high frequency solutions in

complex domains, such as high frequency wave equations in inhomogeneous media, arising

from electromagnetic wave propagation in turbid media, rough surface scattering, seismic

waves, and geophysical problems. Finding efficient solutions, especially in random environ-

ments, poses great computational challenges due to the highly oscillatory natures of the

solutions. To compute the high frequency waves in a deterministic medium, high order

methods such as spectral methods for the differential equations or wideband fast multipole

methods for the integral equations are often used. In this chapter, we will develop meshless

DNNs based numerical methods to handle high frequency functions and solutions of high

frequency wave equation in inhomogeneous media in complex domains. To improve the capa-

bility of usual DNNs for learning highly oscillatory functions in the physical spatial variables,

we propose a phase shift DNN with wideband learning capabilities in error reductions in the

approximation for all frequencies of the targeted function by taking advantage of the faster

convergence in the low frequencies of the DNN during its training. To learn a function of

specific frequency range, we employ a phase shift in the k-space to translate its frequency

to the range |k|< K0, then the phase shifted function with a low frequency content can be

learned by common DNNs with a small number of training epochs. The resulting series of

DNNs with phase shifts will make a phase shift deep neural network (PhaseDNN).

To achieve uniform wideband approximation of a general function, we can implement

the PhaseDNN in a parallel manner where original data is decomposed into data of specific

frequency range, which after a proper phase shift, is learned quickly. This approach can be

implemented in a parallel manner, however, frequency extraction of the original training data

23

have to be done using convolutions with a frequency selection kernel numerically, which could

become very expensive or not accurate for scattered training data. Alternatively, we can

implement the PhaseDNN in a non-parallel manner where data from all range of frequencies

are learned together with phase shifts included in the makeup of the PhaseDNN, resulting in

a coupled PhaseDNN. Although the coupled PhaseDNN lacks parallelism, it avoids the costly

convolution used in the parallel PhaseDNN to extract the frequency component from the

original training data. This feature will be shown to be important when higher dimensional

data are involved in the training. Thanks to this property, the coupled PhaseDNN will be

used to solve high frequency wave problems where we seek solutions in a space of PhaseDNNs

by minimizing the residuals of the differential equation in a least square approach. The idea

of using frequency shifts to speed up the convergence of the DNN is similar to one used in the

wave-ray MGM [44] for high frequency problems where phase factors set at some frequency

lattices together with smooth slowly variant amplitude functions are used in the wave-ray

MGM framework. Also, the coupled PhaseDNN can be viewed as a Fourier-expansion-like

neural network, please refer to the wavelet-like networks [6, 21].

The rest of the chapter will be organized as follows. In Section 2.2, we will review the fast

low frequency convergence property of neural network and present the parallel version phase

shift deep neural network - PhaseDNN. Based on the properties of the PhaseDNN, a coupled

PhaseDNN is introduced in Section 2.3 to reduce the cost of learning in training the DNN for

approximations. Then, the coupled PhaseDNN is used to find the solutions of wave problems

in inhomogeneous media using either differential equation or integral equation formulations.

Section 2.4 contains various numerical results of the PhaseDNN for approximations and

solutions of wave problems.

24

2.2. A Parallel phase shift DNN (PhaseDNN) for high frequency approxima-

tion

A deep neural network (DNN) is a sequential alternative composition of linear functions

and nonlinear activation functions. Given d1, d2 ≥ 1, let Θ(x) : Rd1 → Rd2 is a linear

function with the form Θ(x) = Wx + b, where W = (wij) ∈ Rd2×d1 , b ∈ Rd2 are called

weights and biases, respectively. The nonlinear activation function σ(u) : R → R. By

applying σ(u) componentwisely, we can extend the activation function to σ(u) : Rd → Rd.

A DNN with H + 1 layers can be expressed in a compact form as

T (x) = TH(x),

T h(x) = [Θh ◦ σ](T h−1(x)), h = 1, 2, . . . H,

(2.1)

with T 0(x) = Θ0(x), or equivalently, it explicitly:

T (x) = ΘH ◦ σ ◦ΘH−1 ◦ σ · · · ◦Θ1 ◦ σ ◦Θ0(x). (2.2)

Here, Θh(x) = W (h)x + b(h) : Rdh → Rdh+1 are linear functions. This DNN is also said to

have H hidden layers and its h-th layer has dh neurons.

In approximating a function f(x) by a DNN through training, we minimize the least

square loss function

L(W (0), b(1),W (1), b(1), . . . ,W (H), b(H)) = ∥f(x)− T (x)∥22 =
∫ +∞

−∞
|f(x)− T (x)|2 dx.

(2.3)

For simplicity, we denote all the parameters in DNN by a parameter vector θ, i.e.

θ = (W
(0)
11 , . . . ,W

(0)
d0d1

, b
(0)
1 . . . b

(0)
d1
,W

(1)
11 , . . . ,W

(1)
d1d2

, b
(1)
1 . . . b

(1)
d2
. . .) ∈ Rp.

25

Here, p = (d0+1)×d1+(d1+1)×d2+(d2+1)×d3+ . . . (dH +1) is the total number of the

parameters. Numerically, with N training data {x1, x2, . . . , xN}, the numerical loss function

is defined as

LN(θ) =
N∑
i=1

|f(xi)− T (xi, θ)|2. (2.4)

We can study the loss function in the frequency space and first, define the Fourier trans-

form and its inverse of a function f(x) by

F [f](k) = 1√
2π

∫ +∞

−∞
f(x)e−ikx dx, F−1[f̂](x) =

1√
2π

∫ +∞

−∞
f̂(k)eikx dk. (2.5)

Assuming the Fourier transform of f(x) and T (x, θ) exist, by Parseval’s equality, we have

L(θ) =

∫ +∞

−∞
|f(x)− T (x)|2 dx =

∫ +∞

−∞
|f̂(x)− T̂ (x)|2 dk. (2.6)

Let L(k, θ) = |f̂(x)−T̂ (x)|2 denote the k-frequency component of L(θ). According to [70],

we have the following theorem.

Theorem 7. Considering a DNN of one hidden layer with tanh activation function. For

any frequencies k1 and k2 such that |f̂(k1)|> 0, |f̂(k2)|> 0, and |k2|> |k1|> 0, there exist

positive constants c and C such that for sufficiently small δ, we have

µ
({

W (0) : |∂L(k1)
∂θj
| > |∂L(k2)

∂θj
|, for all j = 1, 2, . . . p

}
∩Bδ

)
µ(Bδ)

> 1− C exp(−c/δ), (2.7)

where Bδ is a ball with radius δ centered at the origin of the W (0)-parameter space and µ(·)

is the Lebesgue measure.

Theorem 7 states that when gradient decent method is applied to the loss function L(θ),

for most of the W (0)-parameter space, the low frequency component of loss function con-

26

verges faster than the high frequency component. It is equivalent to say that the low fre-

quency part of the DNN converges to that of the target function T (x) faster. Although

the result is only proved for a DNN with one hidden layer, these phenomena has also been

observed in higher dimensional experiments [59, 70]. Similar results have been proved for

ReLU network [59]. Therefore, to speed up the learning of higher frequency contents of a

target function f(x), we can employ a phase shift technique [9] to translate higher frequency

spectrum f̂(k) to a frequency range of [−K0, K0] for some small frequencyK0. Such a shift in

frequency is a simple phase factor multiplication on the training data in the physical space.

2.2.1. Frequency selection kernel ϕ∨
j (x)

For a given frequency increment ∆k, say, ∆k = 2K0, let us assume that for some integer

M > 0,

supp f̂(k) ⊂ [−M∆k,M∆k].

We first construct a mesh for the interval [−M∆k,M∆k] by

ωj = j∆k, j = −M, · · · ,M, (2.8)

Then, we introduce a POU (partition of unit) {ϕj(k)}Mj=−M for the interval [−M∆k,M∆k]

associated with the mesh as

1 =
M∑

j=−M

ϕj(k), k ∈ [−M∆k,M∆k]. (2.9)

The simplest choice of ϕj(k) is ϕj(k) = ϕ(
k−ωj

∆k
), and ϕ(k) is just the characteristic function

of [−1
2
, 1
2
], i.e., ϕ(k) = χ[− 1

2
, 1
2
](k). The inverse Fourier transform F−1 of ϕ(k), indicated by

∨, is ϕ∨(x) = 1√
2π

sin x
2

x
2
.

27

With the POU in (2.9), we can decompose the target function f(x) in the Fourier space

as follows,

f̂(k) =
M∑

j=−M

ϕj(k)f̂(k) ≜
M∑

j=−M

f̂j(k), (2.10)

which will give a corresponding decomposition in x-space as

f(x) =
M∑

j=−M

fj(x), (2.11)

where

fj(x) = F−1[f̂j](x).

The decomposition (2.11) involves 2M + 1 functions fj(x), whose frequency spectrum is

limited to [ωj − ∆k
2
, ωj +

∆k
2
]. Therefore, a simple phase shift could translate its spectrum to

[−∆k/2,∆k/2], and it could be learned quickly by a relatively small DNN Tj(x) with a few

training epochs.

Specifically, as the support of f̂j(k) is [ωj − ∆k
2
, ωj +

∆k
2
], then f̂j(k+ ωj) is supported in

[−∆k/2,∆k/2], and its inverse Fourier transform F−1
[
f̂j(k + ωj)

]
, denoted as

f shift
j (x) = F−1

[
f̂j(k + ωj)

]
(x) (2.12)

can be learned quickly by a DNN Tj(x, θ) by minimizing a loss function

Lj(θ) =

∫ ∞

−∞
|f shift

j (x)− Tj(x, θ)|2 dx (2.13)

in an n0-epochs of training.

Moreover, we know that

f shift
j (xi) = e−iωjxifj(xi), 1 ≤ i ≤ N, (2.14)

28

which provides the training data for f shift
j (x). Equation (2.14) shows that once f shift

j (x) is

learned, fj(x) is also learned by removing the phase factor.

fj(x) ≈ eiωjxTj(x, θ
(n0)). (2.15)

Now with all fj(x) for −M ≤ j ≤ M learned after n0 steps of training each, we have an

approximation to f(x) over all frequency range [−M∆k,M∆k] as follows

f(x) ≈
M∑

j=−M

eiωjxTj(x, θ
(n0)), (2.16)

where θ(n0) is the value of parameters after n0 steps of training.

2.2.2. Training Data for parallel phase shift DNN (PhaseDNN) algorithm

In practice, we only know the value of f(x) at some locations, which will be used to train

the PhaseDNN, namely, our goal is to learn the function f(x) using a training data set

{xi, fi = f(xi)}Ni=1. (2.17)

In order to apply the decomposition (2.11) to f(x), when carrying out the sub-training

problem (2.13), we need to compute the training data for f shift
j (x) based on original training

data (2.17). This procedure can be done in x-space through the following convolution

f shift
j (xi) = e−iωjxifj(xi) = e−iωjxiϕ∨

j ∗ f(xi) =
∫ ∞

−∞
ϕ∨
j (xi − s)f(s)ds

≈ 2δ

Ns

∑
xs∈(xi−δ,xi+δ)

e−iωjxiϕ∨
j (xi − xs)f(xs),

(2.18)

where δ is chosen such that the kernel function |ϕ∨(k)| is small enough outside (−δ, δ).

29

Note that the generation of training data for f shift
j (xi) and the subsequent training of

each DNN Tj(x, θ) to approximate f shift
j (x) can be done in parallel. For this reason, this

approach will be termed as a parallel PhaseDNN, which will consist of the following steps:

(1) select the phase frequency ωj, (2) for each j, construct the training data f shift
j (xi), (3)

train all DNN Tj(x, θ), and (4) combing all individual DNN Tj(x, θ) with a corresponding

shift backward to get an approximation for the original function f(x).

2.3. A coupled PhaseDNN

2.3.1. Approximating functions

In the previous section, we use the frequency selection kernel ϕ∨
j (x) to decompose the

training data into different frequency components, each of them after being phase-shifted

can be represented by a small DNN. This method can be implemented in parallel. This

strategy requires the use of convolution in (2.18) to construct the training data for each

small DNN. In principle, the computation cost of this part can be reduced to O(N log(N))

by using FFT, here N is the number of samples provided that the distribution of the data is

close to uniform and cover the whole domain where the approximation is sought. However,

for randomly distributed and scattered samples with many regions without data, the FFT

technique will not be applicable or efficient, and computing the convolution directly via

a matrix multiplication requires a storage and computation of O(N2). As a result, this

convolution process strongly restricts the performance of PhaseDNN for higher dimensions

and larger data set.

To avoid this problem, based on the construction of the parallel PhaseDNN (2.16), we

would like to consider a coupled weighted phase-shifted DNNs as an ansatz for a coupled

PhaseDNN,

T (x) =
M∑

m=1

eiωmxTm(x), (2.19)

30

to approximate f(x), x ∈ Rd, where Tm(x) are relatively small complex valued DNNs, i.e.,

Tm(x) = T
(real)
m (x) + iT

(imag)
m (x). T

(real)
m (x) and T

(imag)
m (x) are two independent DNNs.

{ωm}Mm=1 are frequencies we are particularly interested in from the target function.

We will minimize the following least square loss function

L(θ) =

∫ +∞

−∞
|f(x)− T (x)|2 dx, (2.20)

or numerically,

LN(θ) =
N∑
i=1

|f(xi)− T (xi)|2 =
N∑
i=1

∣∣∣∣∣f(xi)−
M∑

m=1

eiωmxiTm(xi)

∣∣∣∣∣
2

. (2.21)

Remark 1. This method is similar to an expansion with Fourier modes of selected frequency

with variable coefficients defined by DNNs. When f(x) is a real function, it is equivalent to

use real ‘Fourier’ series rather than complex ‘Fourier’ series. Namely, we will consider the

following sine and cosine expansions

T (x) =
M∑

m=1

Am cos(ωmx) +Bm sin(ωmx) (2.22)

to approximate f(x), where Am, Bm are DNNs while ω = 0 will always be included.

It can be shown that under the condition that the weights of input layer for each Tm

is small, the coupled PhaseDNN is equivalent to the parallel PhaseDNN [10]. In practical

applications, the condition that the weights of input layer for each Tm is small holds at the

beginning of training, since we always use small random values to initialize the network. As

a matter of fact, to encourage this condition in the training process, we can add a weight

31

regularization in the loss function, namely,

LR
N(θ) =

N∑
i=1

|f(xi)− T (xi)|2+β
∑
m,l

∥Wm,l∥2F , (2.23)

where xi are training data, Wm,l is the weight matrix of the l-th layer of sub DNN Tm,

β is a regularization parameter. This weight regularization can also restrain some training

disasters like gradient blowing up, etc [23].

Comparing with the approach of phase selecting kernel of previous section, the main

advantage of the coupled PhaseDNN is that there is no need for computing convolutions,

without the additional quadrature errors, to generate training data for the training of a

selected frequency range. This allows us to deal with a large data set and higher dimensional

problems. However, the coupled PhaseDNN cannot be parallelized and we must choose the

frequencies ωm before training, then build DNN T (x) using these ωm frequencies. If coupled

PhaseDNN does not contain enough frequencies, we can modify the coupled phaseDNN with

additional frequencies to improve the result.

2.3.2. Solving differential equations through least square residual minimization

The coupled PhaseDNN (2.19) will be taken as an ansatz for finding the solution of

differential equations (DEs) by minimizing the least squares of the DE’s residual, similar

to the least square finite element (LSFE) method [4, 30] and the physics-informed neural

network (PINN) [61].

The coupled PhaseDNN will approximate the solution of the following high frequency

Helmholtz equation

L[u] ≜ u′′ + (λ2 + cω(x))u = f(x), (2.24)

32

where λ > 0, cω(x) can be viewed as a perturbation modeling the inhomogeneity of the

otherwise homogeneous media.

The PhaseDNN solution, in the form of (2.19) or (2.22), for (2.24) with different boundary

conditions can be sought by minimizing the following loss function,

LN(θ) = Lode(θ) + ρLbc(θ), (2.25)

where

Lode(θ) =
N∑
i=1

|L[T](·, θ)(xi)− f(xi)|2, (2.26)

{xi}Ni=1 ∈ [−1, 1] are pre-selected locations to evaluate the residual of the DE by the DNN,

and Lbc is the boundary condition regularization term, ρ is the regularization parameter.

We consider two typical kinds of boundary value problems. One is Dirichlet boundary

condition for an interior Helmholtz problem,

u′′ + (λ2 + cω(x))u = f(x),

u(a) = u1, u(b) = u2.

(2.27)

For this case, the Lbc term is chosen naturally as

Lbc = (T (a, θ)− u1)2 + (T (b, θ)− u2)2. (2.28)

Remark 2. For 1D Dirichlet boundary value problems, we can also deal with the bound-

ary condition by a slight modification of the coupled PhaseDNN by replacing the coupled

PhaseDNN T (x, θ) in (2.26) with

T̃ (x, θ) = T (x, θ) + P (θ)x+Q(θ), (2.29)

33

where P (θ) = (u2−u1+T (a, θ)−T (b, θ))/(b−a), Q(θ) = (u1(b−T (a, θ))−u2(a−T (b, θ)))/(b−

a). With this modification, T̃ (x, θ) will be a coupled PhaseDNN who satisfies the Dirichlet

boundary condition naturally, and we can use LN(θ) = Lode(θ) as the loss function.

In the following numerical experiments, we use both (2.25) and (2.29) to deal with the

Dirichlet boundary conditions. These two methods perform similarly in the numerical tests.

However, the latter approach will be difficult to apply to problems in complex 3-D domains.

The second type is an outgoing radiation condition for an exterior Helmholtz problem

for the wave scattering of a finite inhomogeneity described by a compact supported function

ω(x),
u′′ + (λ2 + cω(x))u = f(x)

u′ ± λu→ 0, (x→ ∓∞).

(2.30)

For the exterior problem, we assume both the perturbation ω(x) and resource function

f(x) are compactly supported in [−1, 1], and we are only interested in the solution in [−1, 1].

To solve the differential equation on the unbounded domain, we need to truncate the domain

to a finite one with an absorbing boundary condition, which in this case is the same as the

radiation condition. So, we will consider the following Robin problem of the Helmholtz

equation,
u′′ + (λ2 + cω(x))u = f(x)

u′(−a) + λu(−a) = 0, u′(a)− λu(a) = 0,

(2.31)

where a constant a ≥ 2 is chosen. It can be shown that with ω(x) and f(x) supported in

[−1, 1], boundary value problems (2.30) and (2.31) have the same solution in [−1, 1]. The

Lbc is chosen as

Lbc = |T ′(−a, θ) + iλT (−a, θ)|2+|T ′(−a, θ)− iλT (−a, θ)|2.

34

Note that the solution is complex valued, T (x, θ) here should use form (2.19) and each Tm

in (2.19) should also be complex valued.

2.3.3. Solving integral equations for exterior Helmholtz problems

For exterior scattering problem, a more convenient approach is by converting (2.30) into

an integral equation via a Green’s function.

When c = 0, the Green’s function of problem (2.30) is simply

G(x, x′) =
1

2iλ
eiλ|x−x′|. (2.32)

We can write the solution to (2.30) with c > 0 in terms of G(x, x′) by an integral equation

u(x) =

∫ ∞

−∞
f(x′)G(x, x′) dx′ −

∫ ∞

−∞
cω(x′)u(x′)G(x, x′) dx′

=

∫ 1

−1

f(x′)G(x, x′) dx′ −
∫ 1

−1

cω(x′)u(x′)G(x, x′) dx′

≜ fG(x)−K[u].

(2.33)

The second equality holds because f(x) and ω(x) are supported in [−1, 1]. The term fG(x)

can be calculated by a Gaussian quadrature before training.

In order to apply PhaseDNN to approximate the solution of the integral equation (2.33),

we will first discretize the integral operator in a finite dimensional space by considering a

finite element mesh {ξj}Mj=1 for the interval [−1, 1] and a finite element nodal basis {ϕj(x)}Mj=1

with the Kronecker property, i.e.,

ϕj(ξk) = δjk. (2.34)

35

For a function u(x) expressed in term of the basis functions ϕj(x),

u(x) =
M∑
j=1

ujϕj(x), uj = u(ξj), (2.35)

the application of integral operator K[u] gives

K[u](x) =
M∑
j=1

uj

∫ 1

−1

G(x, ξ)ω(ξ)ϕj(ξ)dξ ≜
M∑
j=1

ujψj(x), (2.36)

where

ψj(x) =

∫ 1

−1

G(x, ξ)ω(ξ)ϕj(ξ)dξ. (2.37)

Substituting (2.35) and (2.37) into (2.33) , we have

M∑
j=1

ujϕj(x) = fG(x)− c
M∑
j=1

ujψj(x). (2.38)

We will find a DNN T (x, θ) approximation for solution u(x) by minimizing the loss function

of residual of (2.38) at N -locations {xi}Nj=1 with uj replaced by T (ξj, θ),

LN(θ) = ∥AT (θ) + cBT (θ)− fG∥2, (2.39)

where T (θ) = [T (ξ1, θ), T (ξ2, θ), . . . T (ξM , θ)] ∈ RM , fG = [(fG)(x1), . . . (fG)(xN)] ∈ RN and

Aij = ϕj(xi), Bij = ψj(xi), 1 ≤ i ≤ N, 1 ≤ j ≤M . The matrix B can also be calculated by

a Gaussian quadrature before training.

The integral equation method also applies to other types of homogenous boundary con-

ditions, provided that one can write down the Green’s function for equation (2.24) with

the corresponding boundary condition, the corresponding matrix B can be computed by

Gaussian quadrature, similarly.

36

Remark 3. The residual of the integral equation formulation can also be viewed as a pre-

conditioned version of that of the differential equation. If we write L = L1 + cL2, where

L1[u] = u′′ + λ2u, L2[u] = ω(x)u(x), the operator G ∗ (·) can be regarded as the inverse

operator of L1. Thus the equation (2.33) is just (I + cL−1
1 L2)u = L−1

1 f . When c is small,

this preconditioned residual is expected to give a better performance than the PhaseDNN with

least square residual of the differential equation and our numerical results later will confirm

this.

In the next section, we will apply the parallel PhaseDNN and coupled PhaseDNN method

to the approximation problem, and solving differential equations with the coupled PhaseDNN.

All problems in this chapter are running on an NVIDIA Tesla V100 GPU, which is on the

SMU Maneframe II, SMU’s high performance computing (HPC) cluster. The platform we

use both include Tensorflow and Pytorch. We use Tensorflow 1.13 to solve the differential

form and use Pytorch to solve the integral equation. All the training processes are carried

out by Adam algorithm [34]. We set all the parameters of Adam as default except the

learning rate. We will specify the learning rate in the following numerical examples.

2.4. Numerical results

2.4.1. Approximation of functions with PhaseDNN

2.4.1.1. Parallel PhaseDNN

In this section, we will present numerical results to demonstrate the capability of PhaseDNN

to learn the high frequency content of target functions. In practice, we could sweep over

all frequency ranges with a prescribed frequency increment ∆k = 5. For the test function

for which we have some rough idea about the range of frequencies in the data, only a few

frequency intervals are selected for the phase shift.

37

We choose a target function f(x) in [−π, π]

f(x) =

10(sinx+ sin 3x), if x ∈ [−π, 0],

10(sin 23x+ sin 137x+ sin 203x), if x ∈ [0, π].

(2.40)

Because the frequencies of this function are well separated, we need not to sweep all the

frequencies in [−∞,+∞]. Instead, we select ∆k = 5, and use the following functions

ϕ1(k) = χ[−205,−200](k) ϕ2(k) = χ[−140,−135](k)

ϕ3(k) = χ[−25,−20](k) ϕ4(k) = χ[−5,0](k)

ϕ5(k) = χ[0,5](k) ϕ6(k) = χ[20,25](k)

ϕ7(k) = χ[135,140](k) ϕ8(k) = χ[200,205](k)

to collect the frequency information in the corresponding frequency intervals and shift the

center of the interval to the origin by a phase factor. For each fj(x) = F−1[f̂ϕj](x), we

construct two DNNs to learn its real part and imaginary part, separately. Every DNN has

4 hidden layers and each layer has 40 neurons. Namely, the DNN has a structure 1-40-40-

40-40-1. The training data is obtained by 10,000 samples from the uniform distribution on

[−π, π] and the testing data is 10000 evenly spaced points in [−π, π]. We train these DNNs

with 1000 epochs by Adam optimizer with training rate 0.002. The batchsize is 2000 for

each DNN. The result is shown in Figure 2.1 while the detail of the training result is shown

in Figure 2.2. These figures clearly shows that phase DNN can capture the various high

frequencies, from low frequency ±1, ±3 to high frequency ±203 quite well. The training

times of PhaseDNN are collected in Table 2.1

38

Figure 2.1: The fitting result for f(x) using the parallel PhaseDNN. Left panel: the blue
solid line is f(x) and the data marked by red dots are the predicted value by PhaseDNN at
testing data set. Right panel: the error plot.

(a) (b) (c)

(d) (f)(e) (f)

Figure 2.2: The detail results of training in different intervals. The subfigures (a)-(f) shows
the results in interval [−π, 0], [−π/10, π/10], [π/3− π/10, π/3 + π/10],
[π/2− π/10, π/2 + π/10], [2π/3− π/10, 2π/3 + π/10] and [π − π/10, π] correspondingly.
The blue solid line is f(x) and the data marked by red dots are the values of PhaseDNN at
testing data set.

It is shown that the convolution calculus for preparing data for f shift
j (x) costs about 40%

of the total computing time. It is quite a large portion and inefficient. Because in different

intervals, fj(x) can be trained in parallel, PhaseDNN is ideal to take advantage of parallel

computing architectures. Although the total computing time is 210 seconds, in practice, the

computation can be done in 27 seconds with parallelization. In comparison, a normal single

39

Frequency Convolution Training Total Time

Interval time(s) Time(s) (s)

[−205,−200] 11.32 15.05 26.38

[−140,−135] 11.32 15.18 26.51

[−25,−20] 11.46 14.99 26.45

[−5, 0] 10.70 14.97 25.67

[0, 5] 11.22 14.98 26.21

[20, 25] 11.26 15.00 26.27

[135, 140] 11.32 15.13 26.45

[200, 205] 11.32 15.03 26.36

Total 89.94 120.37 210.32

Table 2.1: The training time statistics. For each j, the training time is the sum of training
time of real and imaginary part. Each DNN is trained by 1000 epochs with batchsize 2000.

fully connected 24-layer DNN with 640 neurons per hidden layer shows non-convergence in

Figure 2.3(c) and (d) after over 5 hours of training.

2.4.1.2. Coupled PhaseDNN

1-D Problem: We will apply the coupled PhaseDNN method to the same test problem

(2.40). The frequencies {ωm} are selected to be 0, 5, 25, 135, 200. For each Am and Bm, we

also set it as a 1-40-40-40-40-1 DNN.

The training parameters are set as the same as before. Testing data is 10000 evenly

spaced points in [−π, π]. The testing result is shown in Figure 2.3(a). The average L2

relative training error and testing error are both 1.4 × 10−3. The pointwise testing error

is shown in Figure 2.3(b). It is clear that the error is concentrated in the neighborhood

of 0, where the derivative of f(x) is discontinuous. Out of this neighborhood, the relative

maximum error is 8× 10−3.

40

To show the accuracy and efficiency of the coupled PhaseDNN, we try to learn f(x) by

a single fully connected DNN. The DNN is set to have 24 hidden layers and 640 neurons

in each layer. The training is also carried out with 10000 random training samples, 2000

batchsize and learning rate 0.001. After 50000 epochs during 5 hours of training, the result

with a total loss of 100 is shown in Figure 2.3(c) and (d) (blue line).

(b)

(c) (d)

(a)

Figure 2.3: Fitting result for f(x) using coupled PhaseDNN and a single fully connected
DNN. (a) Fitting result of couple phase DNN after 10000 epochs of training. We select
frequency {ωm} = {0, 5, 25, 135, 200}. The blue solid line is real data while the red dots are
predicted value of couple PhaseDNN. The subplot at upper left is the local detail plot for
interval [0.9, 1.6]. (b) The pointwise error of coupled PhaseDNN. (c) Fitting result of a
fully connected DNN after 50000 epochs of training. The DNN has 24-layers and 640
neurons in each layer. (d) The convergence properties of coupled phase DNN and single
fully connected DNN in log scale. The blue line is training error of fully connected DNN.
The red line is training error of coupled phase DNN.

One can see that a single fully connected DNN cannot learn this highly oscillated function

even with such a large network and a very long training time. The convergence behavior

of a single DNN and coupled PhaseDNN are shown in Figure 2.3(d). It is shown that the

training loss of coupled phaseDNN reduces quickly to O(10−1) after 1000 epochs while the

41

loss of a single DNN stays O(102) even after 10000 epochs. Coupled PhaseDNN is proven

to be efficient in learning high frequency functions.

In fact, 10000 samples are too much for this example. It turns out that 1000 samples

can lead to a good approximation with equation (2.40). Even with 500 samples, which is a

much too small data set for the frequency 203, We can still get a ‘reasonable’ result. The

testing results with 10000 evenly spaced points in [−π, π] is shown in Figure 2.4.

Figure 2.4: Fitting result for f(x) using fewer data. We select frequency
wn ∈ {0, 5, 25, 135, 200}. Left panel: training with 1000 random samples. Right panel:
training with 500 random samples. The subplots at upper left in each panel are local detail
plots for interval [0.9, 1.6].

• Shift frequency adaptivity

In general, there is no prior knowledge of the distribution of frequency content in the

target function, it will be difficult to pre-fix the shift frequencies in the PhaseDNN. However,

we could adopt an adaptive approach where the shift frequencies ωm could be dynamically

added in the construction of the PhaseDNN as follows.

We start with a coupled PhaseDNN T (x) =
∑M

m=1Am cos(ωm) +Bm sin(ωm) with some

pre-selected frequencies based on the best knowledge of the target function and assume it

has a loss LM . We can continue to train the DNN for another n0 epochs, if the new loss

L′
M does not decrease sufficiently enough, say, L′

M > ηLM for some constant η, we then

42

conclude that the coupled PhaseDNN as it is does not contain enough frequencies to learn

the target function well. Therefore, to improve the coupled PhaseDNN, we can add a new

frequency ωM+1 to T (x) so T (x)← T (x)+AM+1 cos(ωM+1)+BM+1 sin(ωM+1) and train the

new coupled PhaseDNN for another n0 epochs. If the loss decreases significantly, we can

continue the training, otherwise we can add another new (higher) frequency again if the loss

does not decay enough.

The additional ωM+1 should be bigger than all ωm, m = 1, 2, . . .M where ωm can simply

be ωm = (m − 1)∆K. The decay parameter η is chosen in [0.8, 0.9]. The adaptive phase

shift frequency strategy is summarized as follows:

1. Set T (x) = T0(x) with an initial loss L = L0, m = 0.

2. Train the coupled PhaseDNN for n0 epochs, denote the current loss is L′

3. If L′ > ηL, 0 < η < 1, then choose a new ωm+1 > max1≤i≤m ωi, set T (x) ←

Am+1 cos(ωm+1) +Bm+1 sin(ωm+1).

4. m← m+ 1, back to step 2.

5. Repeat the process until the loss is small enough or ωm is sufficiently large.

This strategy is tested on the problem in Section 2.4.1.2. We set all the training pa-

rameters the same as in Section 2.4.1.2, and choose ωm = 20m,m = 1, 2, . . . 12. The decay

parameter η = 0.9 while n0 = 500. The loss curve of training is shown in Figure 2.5

43

Figure 2.5: The loss curve for fitting f(x) using adaptive phase range strategy. We use
frequency wm = 20m, m = 1, 2, . . . 12 sequentially and η = 0.9. The steps on the curve
corresponds the adding of frequency 20, 140 and 200.

One can see there are three abrupt drops on the loss curve, indicating the significant

decrease of loss due to the adaptive procedure, i.e., these three drops at epoch 500, 3500

and 5000 correspond to adding frequency 20,140 and 200, respectively. We should note that

adding more frequencies will lead to larger DNNs, thus more computing cost. Therefore,

how to identify the most relevant frequencies so that the coupled PhaseDNN can be most

efficient is an important issue demanding further investigations.

• Discontinuous functions and frequency sweep

Next we consider discontinuous functions and we replace the sin in equation (2.40) by

square wave function with same frequency and learn it by (2.22) with ωm ∈ {0, 5, 25, 135, 200}

and ωm = −1600 : 10 : 1600. These two DNNs are trained with 10000 samples and 1000

epochs. The results are shown in Figure 2.6(a), (b). It can be seen that the coupled

PhaseDNN has a larger error for discontinuous function, compared with the case for the

smooth sin case. The sweeping strategy is preferred for discontinuous functions. From the

plot of error’s DFT in Figure 2.6(c) and (d), one may find that the sweeping strategy does

learn the information in frequency domain [−1600, 1600]. For the frequency larger than 1600,

neither strategy can learn it.

44

(a) (b)

(c) (d)

Figure 2.6: Fitting result for square wave function using selecting and sweeping methods.
(a) Fitting result using selecting method with ωm ∈ {0, 5, 25, 135, 200}. (b) Fitting result
using sweeping method. Frequency domain is [-1600,1600]. (c) DFT of error of selecting
method. (d) DFT of error of sweeping method.

2-D problem: We use equation (2.22) to learn 2D and 3D problems. For 2D test, the

function G(x, y) = g(x)g(y) is used, where g(x) is defined by

g(x) =

sinx+ sin 3x, if x ∈ [−π, 0],

sin 23x+ sin 137x, if x ∈ [0, π].

(2.41)

The function g(x) is the f(x) in (2.40) without the sin 203x component. In this test, we

choose {wm} ∈ {0, 5, 25, 135} × {0, 5, 25, 135}. Training setting are 640 × 640 = 409600

samples and 80 epochs with batchsize 100. Testing data is 100 × 100. The result is shown

in Figure 2.7 (left).

45

Figure 2.7: Fitting results for 2D problems using coupled PhaseDNN. Left panel: fitting
result for G(x, y). Right panel: fitting result for G̃(x, y).

The result is good even for the highest frequency region. In this example, the highest

frequency is 137. With more data, we can learn a function of even higher frequency.

Furthermore, we test another problem with G̃(x, y) = sin(g̃(x)g̃(y)) with

g̃(x) =

sinx+ sin 3x, if x ∈ [−π, 0],

sin 23x, if x ∈ [0, π].

(2.42)

The highest frequency of G̃(x, y) is about 200. We use the similar training setups as the

previous test and choose ωm ∈ {10 : 10 : 210} × {10 : 10 : 210}. The fitting result is shown

in Figure 2.7 (right). The L2 fitting error is 5.2× 10−3.

3-D Problem: The test problem for 3D is H(x, y, z) = h(x)h(y)h(z), where

h(x) =

sinx+ sin 3x, if x ∈ [−π, 0]

sin 23x+ sin 32x, if x ∈ [0, π].

(2.43)

The selected frequency is ωm ∈ {0, 5, 25, 30} × {0, 5, 25, 30} × {0, 5, 25, 30}. Training uses

250× 250× 250 = 1.5625× 107 random samples and 150 epochs with batchsize 15625. For

46

plotting, we choose hypersurface z = 1 and z = 1
2
(x+y) as test data. Each Am, Bm is chosen

to be 1-20-20-20-20-1 The relative L2 error is 3× 10−2. Results are shown in Figure 2.8.

Figure 2.8: Fitting result for H(x, y, z). Left panel: fitting result on hypersurface z = 1.
Right panel: fitting result on hypersurface z = 1

2
(x+ y).

The number of data. Basically, the data set must be big enough so that it can reveal

all the frequencies. That means we still need O(Nd) data. For each direction, N samples

must reveal the highest frequency of this direction. This means, even though DNN has the

advantage that the number of unknowns p increases linearly with respect to the number of

dimension, we still need an exponentially large data set. In our 3D test, we use 250 samples

to reveal frequency 32 on average, the total number 1.56× 107 is really a very big data set.

It is clear that the PhaseDNN approach cannot overcome curse of dimensionality. If we

have no prior knowledge on the frequency distribution, coupled phaseDNN can be considered

as building a mesh in Fourier space. Thus, in general, the number of ωm will increase

exponentially. In our 3D test problem, there are 172 different ωm, which corresponds to 343

sub DNNs. The whole coupled phaseDNN T (x) has a width over 6000. It is a shallow but

very wide DNN. The number of parameters is large. With a large number of data, the whole

training takes about 8 hours.

47

2.4.2. Coupled PhaseDNN for solving PDEs with high frequency solutions

2.4.2.1. Helmholtz equation with constant wave numbers

We will solve the constant coefficient case for (2.27), namely, c = 0 with zero boundary

condition u(−1) = u(1) = 0 and the following high oscillatory forcing term

f(x) = (λ2 − µ2) sin(µx). (2.44)

We set ωm ∈ {0, λ, µ}, each Am, Bm to be 1-40-40-40-40-1 DNN. The entire T (x, θ) is

trained with 10000 evenly spaced samples, 100 epochs and batchsize 100. We choose four

special cases: λ = 3, µ = 2; λ = 200, µ = 2; λ = 2, µ = 200; and λ = 300, µ = 200. The

result is shown in Figure 2.9.

Figure 2.9: Numerical and exact solution of problem (2.27) with c = 0 and different λ and
µ. (a): λ = 3, µ = 2. (b): λ = 200, µ = 2. (c): λ = 2, µ = 200. (d): λ = 300, µ = 200. The
subplots in figure (b), (c) and (d) are local detail plots for interval [0.3, 0.5].

48

The training takes about 5 minutes with a maximum error is O(10−4). For comparison,

a single fully connected DNN with similar scale as T (x) cannot solve the equation at all

when the frequency is high. The training result after 1500 epochs for λ = 3, µ = 2 and

λ = 200, µ = 2 are shown in Figure 2.10, showing the non-convergence for high frequency

solution using a common fully connected DNN (Figure 2.10 (right)).

Figure 2.10: Non-convergence of usual fully connected DNN for high frequency case:
numerical and exact solution of problem (2.27) with different λ and µ. Left panel:
λ = 3, µ = 2. Right panel: λ = 200, µ = 2.

Next, we will consider the case of a more complicated solution beyond plane waves with

an exact solution u(x) = J0(µx) + 0.2 cos(λx), where J0(x) is the 0-order Bessel function.

For this case, the forcing term in (2.27) is f(x) = µ2J ′′
0 (µx) + λ2J0(µx) with corresponding

nonzero Dirichlet boundary conditions. We choose ωj ∈ {0, λ, µ} in a coupled PhaseDNN,

which gives accurate numerical results for λ = 200, µ = 100 as shown in Figure 2.11.

49

(a) (b)

Figure 2.11: Numerical and exact solution of problem (2.27) with exact solution
J0(µx) + 0.2 cos(λx). We choose λ = 200, µ = 100. (a): Numerical and exact solution of
problem (2.27). Blue line:exact solution. Red dots: numerical solution obtained by coupled
PhaseDNN. The subplot at upper left is the local detail plot for interval [0.3,0.5](b): Error
of the numerical solution.

2.4.2.2. Helmholtz equation with variable wave numbers

Next we solve problem (2.27) with u(−1) = u(1) = 0 and c > 0, and a variable wave

number

ω(x) = sin(mx2), (2.45)

where m > 0 is a constant. As there is no explicit exact solution to this equation, the

numerical solution obtained by a finite difference method with a fine mesh will be used as

the reference solution.

Differential equation formulation. We will first find the solution by solving the Helmholtz

differential equation with a coupled PhasedDNN.

We consider the parameter λ = 2, µ = 200, c = 0.9λ2 = 3.6 and m = 1 in equation

(2.27), which corresponds to a high frequency external wave source and a low wave number

with small background media inhomogeneity. In the coupled PhaseDNN, we choose wm ∈

{1, 2, 3, 4, 200}. Other training parameters are set to be similar as in the constant coefficient

50

case. The numerical result of coupled phaseDNN and reference solution is shown in Figure

2.12 and the absolute error is in the order of O(10−3).

Figure 2.12: Variable coefficient Helmholtz equations (2.27): Numerical and exact solution
using coupled phaseDNN. λ = 2, µ = 200, c = 3.6 and m = 1. Left panel: The numerical
solution and reference solution obtained by finite difference method. The subplot at lower
right is the local detail plot for interval [0.3, 0.5]. Right panel: The absolute value of the
difference between numerical solution and reference solution.

Figure 2.13: Numerical and reference solutions to problem (2.27) using coupled PhaseDNN.
λ = 100, µ = 200, c = 0.1λ2 and m = 100. Left panel: The numerical solution obtained by
least square based coupled PhaseDNN method and the reference solution. Right panel: the
discrete Fourier transform of reference solution and numerical solution. Blue line: DFT of
reference solution. Red line: DFT of PhaseDNN numerical solution.

Next, we choose λ = 100, µ = 200, c = 0.1λ2 = 1000 and m = 100, which corresponds

to a high frequency external wave source and a high wave number with larger background

media inhomogeneity. ωm is picked to be {0, 90, 100, 110, 190, 200, 210}. The learning result

is shown in Figure 2.13. One can see in the Fourier space for the solution (the right panel of

Figure 2.13) that coupled PhaseDNN with least square residual of the differential equation

51

shows the unresolved error at the ±λ frequency while the µ frequency converges well. This

error is due to the behavior of the Fourier symbol of the differential operator at the λ

frequency and turns out to be difficult to avoid. Theoretical analysis and remedy of these

phenomena will be carried out in a future work.

Discontinuous coefficient - waves in layered media We apply the PhaseDNN to the

wave propagation in a two layer media. Let c = 1 in (2.27) and,

ω(x) =

−0.75λ2, if x < 0

0, if x ⩾ 0.

This equation models a wave in a two layer media with an interface at x = 0 where trans-

mission conditions are imposed. On the left of the boundary, the wave number is λ/2 while

λ on the right side. With Dirichlet boundary condition u(−1) = u(1) = 0, the numeri-

cal result is shown in Figure 2.14. The parameters here are λ = 50, µ = 200. We choose

ωj ∈ {0, λ/2, λ, µ} for the coupled PhaseDNN.

Figure 2.14: Discontinuous coefficient Helmholtz equations (2.27): Numerical and reference
solutions to two layer media problem using coupled PhaseDNN. λ = 50, µ = 200. Left
panel: The numerical solution obtained by least square based coupled PhaseDNN method
and the reference solution. Right panel: the difference between numerical solution and
reference solution.

52

Integral equation formulation. Next, we will apply the integral equation approach (2.33)

(2.39) to this problem. The Green’s function for u′′+λ2u = δ(x−x′) with Dirichlet boundary

condition u(−1) = u(1) = 0 is given by

G(x′, x) =

(− tanλ cosλx

′
+ sinλx

′
)(tanλ cosλx+ sinλx)

2λ tanλ
, s ≤ x,

(tanλ cosλx
′
+ sinλx

′
)(− tanλ cosλx+ sinλx)

2λ tanλ
, s > x

(2.46)

Figure 2.15: Numerical and reference solution of problem (2.27) using coupled PhaseDNN
and integral equation method. λ = 100, µ = 200, c = 1000 and m = 100. Left panel: The
numerical solution with reference solution. The subplot is the local detail plot for interval
[0.3, 0.5]. Right panel: The difference between numerical solution and reference solution.

With the same parameter setting, the numerical solution obtained by integral equation

method is shown in Figure 2.15. The absolute error is in the order of O(10−3). It is clear that

coupled PhaseDNN with least square residual of the integral equation (2.33) (2.39) gives a

much more accurate solution than that with the differential equation method and does not

suffer from high wave number errors as in Figure 2.13.

53

2.4.2.3. Solving elliptic equation

We can also solve elliptic differential equation with high frequency external sources using

the coupled PhaseDNN. We consider a test problem

u′′ − λ2u = −(λ2 + µ2) sin(µx),

u(−1) = u(1) = 0,

(2.47)

which has an exact solution as

u(x) = − sinµ

sinhλ
sinh(λx) + sin(µx). (2.48)

We choose λ = 3, µ = 250 in equation (2.47). To solve this equation, we set a coupled

PhaseDNN with ωm ∈ {0, µ}. Each subnetwork is a fully connected DNN with 4 layers and

20 neurons in each layer. Accurate training result is shown in Figure 2.16.

Figure 2.16: The numerical solution of equation (2.47) using coupled PhaseDNN. λ = 3,
µ = 250. Left panel: Numerical solution(in red) and exact solution(in blue) of equation
(2.47). The subplot is the local detail plot for interval [0.3, 0.5]. Right panel: the error of
numerical solution.

54

2.4.2.4. Coupled PhaseDNN for solving exterior wave scattering problem

We consider problem (2.30) with λ = 100, µ = 200, c = 0.1λ2. The variable wave

coefficient

ω(x) = χ[−1,1](x) sin(1− x2), (2.49)

and the forcing term

f(x) = χ[−1,1](x)(λ
2 − µ2)(1− x2) sin(µx). (2.50)

We first solve the problem with radiation boundary condition (2.31), which is an exact

absorbing boundary condition in this case, by the coupled PhaseDNN for the differential

equation. The real part of the solution is shown in Figure 2.17. We set each subnetwork

in (2.22) to be a 1-20-20-20-20-1 DNN. Training data set is 3000 evenly spaced points in

[−2, 2]. The training runs 3000 epochs with batchsize 600.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
x

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

R
ea

l e
rr(

x)

Figure 2.17: The result of exterior problem using coupled PhaseDNN for the differential
equation (2.30) after 3000 epochs training. Left panel: The real part of numerical and
reference solution to exterior problem. Blue line: reference solution. Red dots: numerical
solution. The subplot is the local detail plot for interval [0.3, 0.5]. Right panel: the error of
the real part of numerical solution.

Again, this problem will be solved by the coupled PhaseDNN with the integral equation

(2.33) (2.39), and the result is given in Figure 2.18. The training parameters are set similarly

55

as for the differential equation method. Training runs 300 epochs. Better performance of the

coupled PhaseDNN for the integral equation approach (2.33) (2.39), requiring much fewer

training epochs, is shown, compared with the differential equation coupled PhaseDNN. Again

, we can see that the PhaseDNN with integral equation formulation gives much better results

of that with a differential equation.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
x

-5

-4

-3

-2

-1

0

1

2

3

4

5

R
ea

l(e
rr)

10-3

Figure 2.18: The result of exterior problem using integral equation method after 300 epochs
training. Left panel: The real part of numerical and reference solution to exterior problem.
Blue line: reference solution. Red dots: numerical solution. The subplot is the local detail
plot for interval [0.3, 0.5]. Right panel: the error of the real part of numerical solution.

2.4.3. PhaseDNN as a meshless solver for 2D Helmholtz equation in a complex domain

Since the coupled PhaseDNNs based on least square loss do not require a mesh, this

method is ideal for handling complicated domains without expensive meshing cost as in

traditional finite element methods. We consider the following 2D Helmholtz equation in a

domain Ω of an equilateral triangle with a circle removed inside. The bottom of the triangle

is {(x,−
√
3
3
)|−1 ⩽ x ⩽ 1} and the center of circle locates at the center of triangle and the

radius is 1/
√
12.

∆u+ λ2u = f(x, y), if (x, y) ∈ Ω

u(x, y) = g(x, y), if (x, y) ∈ ∂Ω.
(2.51)

56

The exact solution is chosen as u(x, y) = exp(sin(µ1x) sin(µ2y)). f(x, y), g(x, y) in (2.51)

is chosen according to the differential equation. In the numerical test, the parameters are

λ = 100, µ1 = 30, µ2 = 50. A coupled PhaseDNN with ωj ∈ {0, λ, µ1, µ2, 2µ1, 2µ2} ×

{0, λ, µ1, µ2, 2µ1, 2µ2} gives accurate numerical solution as shown in Figure 2.19

Figure 2.19: The numerical solution and error of 2D Helmholtz equation (2.51) in a
complicated domain. λ = 100, µ1 = 30, µ2 = 50. Left panel: The color map of numerical
solution. Right panel: the error of the numerical solution.

57

Chapter 3

Linearized Learning with Multiscale Deep Neural Networks for Stationary Navier-Stokes
Equations with Oscillatory Solutions

The content in this chapter has been published in the following journal paper in collabo-

ration with Bo Wang and Wei Cai:

Lizuo Liu, Bo Wang and Wei Cai, Linearized Learning with Multiscale Deep Neural

Networks for Stationary Navier-Stokes Equations with Oscillatory Solutions, East Asian J.

Appl. Math., 13, pp. 740-758 (2023) [42].

3.1. Introduction

Deep neural network (DNN) machine learning methods have been researched as alterna-

tive numerical methods for solving partial differential equations arising from many practical

engineering problems. The deep learning framework for solving those kinds of problems uses

the given partial differential equations as regularization in the loss function during training,

where the auto-differentiation can be applied to the inputs of the neural network. Since

auto differentiation with respect to the inputs of neural network are built-in, thus there is

no need for any pre-generated meshes in the solution domain. Therefore, such a framework

has the potential of being a flexible meshless method to solve governing equations from fluid

and solid mechanics in complex geometries, as an alternative method to traditional finite ele-

ment method. Moreover, these methods have shown much power in solving high dimensional

parabolic PDEs [26,60,73].

Fluid mechanics, on the other hand, has also been one of the active research fields for

the applications of neural network with physical information as regularization. In the work

58

of [7,62], the authors proposed a method that combines the Navier-Stokes (NS) equation with

visualization data to predict the velocity field and pressure field, with synthetic data in [62]

and real experimental imaging data in [7], respectively. In [19], a physical-informed neural

network is used for solving the Reynolds-averaged Nevier-Stokes equations with Reynolds-

stress components
(
u2, uv, and v2

)
as extra outputs of the neural networks. Rao, Sun

& Liu [63] proposed a mixed-variable scheme with Cauchy stress tensor to eliminate the

intractability of the complex form of naive Navier-Stokes equation and its high-order deriva-

tives (e.g., ∇2) and this scheme was applied to learn the steady flow and the transient flow

passing a cylinder respectively. Furthermore, Oldenburg et al. [54] proposed the Geometry

Aware Physics Informed Neural Network to handle the Navier-Stokes Equations with irreg-

ular geometry where they utilize the shape encoding network, i.e., an encoder, to reduce the

geometry dimensions to a size-fixed latent vector k and k will be the input of two additional

neural networks, one to handle the boundary constraints and one to handle physical infor-

mation, i.e., the governing PDEs. In the meantime, the error estimations for neural networks

to approximate the Navier-Stokes equations has been studied in [14].

Recent studies on DNNs have shown that they have a frequency dependence performance

in learning solution of PDEs and fitting functions. Namely, the lower frequency components

of the solution are learned first and quickly compared with the higher frequency components

[70]. Several attempts have been made to remove such a frequency bias for the DNNs. The

main idea is to convert the higher frequency content of the solution to a lower frequency

range so the conventional DNNs can learn the solution in acceptable training epochs. One

way to achieve this goal is to use phase shifts [10] while the other is to introduce a multiscale

structure into the DNNs [43] in which sub-neural networks with different scales will target

different ranges of the frequency in the solutions. The PhaseDNN has been shown to be

very effective for high frequency wave propagation while the MscaleDNN [43] has been used

to learn highly oscillatory Stokes flow solutions in complex domains [67] as well as high

dimensional PDEs [73].

59

Most of the previous works are focusing on linear PDEs. The learning of the solution of

linear PDEs via least squared residuals of the PDEs is in some sense equivalent to a fitting

problem in the frequency domain in view of the Parseval’s identity of Fourier transforms. So

it is natural the performance improvements of multiscale DNN also holds for learning the

solution of linear PDEs.

Additional difficulties arise when there are nonlinearities introduced in the PDEs. Based

on the results from Jin et al. [31], it is found that it could take O (104) epochs to solve a simple

domain problem, thus ineffective and impractical especially when highly oscillating problems

are to be considered. Also, the MscaleDNN applied directly to the nonlinear Navier-Stokes

equation did not produce the same large improvement over conventional DNNs as in the case

of the linear Stokes equations [67]. To handle such issues, we developed a linearized learning

procedure for the Navier-Stokes equation by integrating linearizations of the Navier-Stokes

equation in the loss function and dynamically updating the linearization as the learning is

being carried out. Numerical results demonstrated the fast convergence of this approach

in producing highly accurate approximations to oscillatory solutions of the Navier-Stokes

equations.

The rest of the chapter will be organized as follows. Section 3.2.1 will review several

iterative schemes for solving Navier-Stokes equations commonly used by the finite element

methods that inspires the linearized learning scheme of this chapter. Section 3.3 will in-

troduce the multiscale DNN structure for learning oscillatory solutions with wide range of

frequencies, and then 4 linearized learning schemes for the Navier-Stokes equation will be

proposed in Section 3.3.2. Numerical tests of the linearized learning schemes will be con-

ducted for 2-D oscillatory flows in a domain containing one or multiple random cylinder(s)

in Section 3.4.

60

3.2. Iterative method for stationary Navier–Stokes equations

3.2.1. Stationary Navier-Stokes equations

The problem considered in this chapter is the following stationary Navier-Stokes equations

(u · ∇)u− ν∆u+∇p = f in Ω,

∇ · u = 0 in Ω,

u = g on ∂Ω,

(3.1)

where Ω is an open bounded domain in Rd, d = 2, 3. u are the stationary flow velocity, p

is the pressure, ν is the kinematic viscosity. f is the external source term. In this chapter,

we consider the incompressible flow, thus the constraints ∇ · u = 0 are considered. The

boundary conditions are Dirichlet boundary conditions.

To solve the stationary Navier-Stokes equation in a least squared minimal residual ap-

proach, intuitively, the PDEs (3.1) are written in a system of first order equations as

in [4] by introducing an extra velocity-gradient term, U, where Uij = (∂ui/∂xj), i, j =

1, . . . , d, for d = 2, 3 such that ∇ · U = ∆u. In this chapter, we consider the velocity-

pressure formulation for the Navier Stokes equations as our benchmark loss, following the

results of [67],

−ν∇ ·U+U · u+∇p = f in Ω, (3.2a)

U− (∇u)T = 0 in Ω, (3.2b)

∇ · u = 0 in Ω. (3.2c)

61

Similarly, to obtain an equation for the pressure p, we take the divergence on both sides

of equation (3.2a) and apply the equation (3.2c) to arrive at

∆p+ 2(−uxvy + uyvx) = ∇ · f , (3.3)

where the subscripts ·x, ·y means the derivative with respect to x, y, respectively. Then, a

loss function for the velocity gradient (Vg) and a velocity-pressure (VP) formulation of the

NS equations can be defined as

LV gV P (θu, θp, θU) := ∥ν∇ ·U−U · u−∇p+ f∥2Ω

+ α ∥u− g∥2∂Ω

+ β ∥∆p+ 2(−uxvy + uyvx)−∇ · f∥2Ω

+ γ ∥∇ · u∥2Ω +
∥∥U− (∇u)T

∥∥2
Ω

(3.4)

where α and β are penalty terms to enforce the Poisson equation for the pressure p and

the Dirichlet boundary conditions of the velocity u, respectively. ∥·∥Ω is the L2 norm on

Ω and ∥·∥∂Ω is the L2 norm on ∂Ω. Later, we will show in Section 3.4.1 the training of

the network based on the formulation (3.2), using the nonlinear first order system and the

Poisson equation (3.3), converges slowly(even with the MscaleDNNs).

3.2.2. Iterative methods to solve stationary Navier-Stokes equations

Three iterative methods were introduced for solving the stationary Navier-Stokes equa-

tions in [27]. We will give a short review for those methods in this section.

LetX, Y,M be the Hilbert spacesX = H1
0 (Ω)

d, Y = L2(Ω)d,M = L2
0(Ω). The superscript

d at the end of H1
0 (Ω)

d and L2(Ω)d means the dimension. For the case we are interested in,

d = 2. Then assume un
h ∈ X, pnh ∈ M are the solutions at n-th iteration of velocity u and

pressure p, the three iterative schemes are given as follows.

62

• Iterative method I

a (un
h,vh)− d (vh, p

n
h) + d (un

h, qh) + b
(
un−1
h ,un−1

h ,vh

)
= (f ,vh) ,

∀vh ∈ X, ∀qh ∈M, n ≥ 1

(3.5)

• Iterative method II

a (un
h,vh)− d (vh, p

n
h) + d (un

h, qh)+b
(
un
h,u

n−1
h ,vh

)
+ b
(
un−1
h ,un

h,vh

)
= b

(
un−1
h ,un−1

h ,vh

)
+ (f ,vh) ,

∀vh ∈ X, ∀qh ∈M, n ≥ 1

(3.6)

• Iterative method III

a (un
h,vh)− d (vh, p

n
h) + d (un

h, qh) + b
(
un−1
h ,un

h,vh

)
=(f ,vh) ,

∀vh ∈ X, ∀qh ∈M, n ≥ 1

(3.7)

where a (u,v) = ν (∇u,∇v) ,u,v ∈ X, d (v, q) = (q, divv) ,v ∈ X, q ∈ M , b (u,v,w) =(
(u · ∇)v + 1

2
uv,w

)
,u,v,w ∈ X. (·, ·) is the L2-scalar inner product.

Assume a1(u,v,w) = ((u · ∇)v,w), then b (u,v,w) = 1
2
a1 (u,v,w)− 1

2
a1 (u,w,v). The

bilinear term a (·, ·) is continuous and coercive on X × X; the bilinear d (·, ·) satisfies that

for all q ∈M

sup
v∈X

|d (v, q) |
∥∇v∥2,X

≥ β0∥q∥2,M ,

where β0 > 0, ∥·∥2,X and ∥·∥2,M are the corresponding L2 norm in X and M respectively.

The trilinear form a1 (·, ·, ·) satisfies

63

|a1 (u,v,w) |≤ N∥∇u∥2,X∥∇v∥2,X∥∇w∥2,X ,

where N > 0.

Under stability conditions

4N∥f∥−1

ν2
< 1,

25N∥f∥−1

3ν2
< 1

where ∥f∥−1= ∥∇f∥2,X and the uniqueness condition

N∥f∥−1

ν2
< 1,

the following error estimates for the three schemes can be obtained.

Given a mesh size h for a finite element method and the number of iterative steps m, for

iterative methods I (3.5) and III (3.7), it has been shown [27] that

ν ∥u− un
h∥2,X ⩽ C1h

2 + C2ν
∥∥un

h − un−1
h

∥∥
2,X

,

ν ∥∇ (u− un
h)∥2,X + ∥p− pnh∥2,M ⩽ C3h+ C4ν

∥∥un
h − un−1

h

∥∥
2,X

,

where C1, . . . , C4 are constants.

For the iterative method II (3.6), we have

ν ∥u− un
h∥2,X ⩽ C5h

2 + C6|log h|1/2
∥∥∇ (un

h − un−1
h

)∥∥
2,X

∥∥un
h − un−1

h

∥∥
2,X

,

ν ∥∇ (u− un
h)∥2,X + ∥p− pnh∥2,X ⩽ C7h+

C8|log h|1/2
∥∥∇ (un

h − un−1
h

)∥∥
2,X

∥∥un
h − un−1

h

∥∥
2,X

,

64

where C5, . . . C8 are constants.

The strong forms of these three iterative methods, which will be used in defining the loss

functions of linearized learning schemes, are given below.

• Iterative method I

−ν∆un + (un−1 · ∇)un−1 +∇p = f (3.8)

• Iterative method II

−ν∆un +
[(
un−1 · ∇

)
un + (un · ∇)un−1

]
+∇p = f + (un−1 · ∇)un−1 (3.9)

• Iterative method III

−ν∆un +
(
un−1 · ∇

)
un +∇p = f (3.10)

3.3. Linearized learning algorithm with multiscale deep neural network

3.3.1. Multiscale deep neural network (MscaleDNN)

In order to improve the capability of the DNN to represent functions with multiple scales,

MscaleDNN was developed in [43], which consists of a series of parallel fully connected sub-

neural networks, for solving partial differential equations. Each of the subnetworks will

receive a scaled input with different scales. The final output of the MscaleDNN is a linear

combination of the outputs of the parallel fully connected neural networks(refer to Figure

3.1). The individual subnetwork in the MscaleDNN with a scaled input is designed to approx-

imate a segment of frequency content of the targeted function and the scaling is to convert

a specific high frequency segment to a lower frequency domain, thus leading to frequency

65

uniform convergence of approximations for highly oscillating functions. Furthermore, due to

the radial scaling used in the MscaleDNN as shown in [43], it could be very powerful once

we consider to approximate solutions of high dimensional PDEs [73].

Figure 3.1: Schematics of MscaleDNN: The MscaleDNN shown has n scales 1, 2, . . . n.
The outputs of MscaleDNN y are linear combinations of y1, y2, . . . yn.

Figure 3.1 shows the schematics of a typical MscaleDNN consisting of n parallel subnet-

works. Each subnetwork are with L hidden layers and can be expressed as

fθ(x) = W [L−1]σ ◦ (· · · (W [1]σ ◦ (W [0](x) + b[0]) + b[1]) · · ·) + b[L−1],

where W [1], · · · ,W [L−1] are trainable weights and b[1], · · · , b[L−1] are bias to be optimized via

the training, σ(x) is the activation function. Mathematically, a MscaleDNN solution f(x)

is represented by the following weighted sum of subnetworks fθni with network parameters

denoted by θni

f(x) =
M∑
i=1

ωifθni (αix),

66

where αi is the chosen scale for the i-th subnetwork as shown in Figure 3.1. For more

details on the design and discussion about the MscaleDNN, we refer to the original paper

[43,71].

In this chapter, the following plane wave activation function will be used due to its

localized frequency property [65,67],

σ(x) = sin(x).

For the input scales, we consider the scale to be 2i−1 for the i-th subnetwork.

3.3.2. Linearization schemes for neural network training

To speed up the convergence of the training of the DNN solutions of the NS equations, in

this section, we will propose an iterative training procedure for the stationary Navier-Stokes

equation based on the iterative scheme introduced in Section 3.2.2 so that the residual of the

training procedure are linearized. Note the term ”linearized” is specific for the non-linear

term (u · ∇)u. In a nutshell, by fixing either u or ∇u in (u · ∇)u, the stationary Navier-

Stokes equation turns to be a linear equation, thus we coin the term linearized learning.

Assume the learned velocities up to current epoch are u∗
θ = (u∗, v∗) and the velocities to

be learned at current epoch are denoted as uθ = (u, v) with pθ as the pressure to be learned

at current epoch. Thus 4 schemes with different linearization are listed below.

• Scheme 1 (GradFixed): Gradients of velocities in the nonlinear term will be fixed

during training.

−ν∆uθ + (uθ · ∇)u∗
θ +∇pθ = f ,

∆pθ + 2(−uxvy + uyvx) = ∇ · f .
(3.11)

67

• Scheme 2 (VFixed): Velocities in the nonlinear term are fixed during training, in-

spired by iterative method III (3.10).

−ν∆uθ + (u∗
θ · ∇)uθ +∇pθ = f ,

∆pθ + 2(−uxvy + uyvx) = ∇ · f .
(3.12)

• Scheme 3 (VFixed1): This is the strong form of the Iterative method II (3.9), which

can be seen as a modification of Scheme 2 (VFixed) (3.12).

−ν∆uθ + (u∗
θ · ∇)uθ + (uθ · ∇)u∗

θ +∇pθ = f + (u∗
θ · ∇)u∗

θ,

∆pθ + 2(−uxvy + uyvx) = ∇ · f .
(3.13)

• Scheme 4 (Hybrid): The Navier-Stokes equation in this scheme is represented as the

average of Scheme 1(GradFixed) (3.11) and Scheme 2(VFixed) (3.12).

−ν∆uθ +
1

2
[(u∗

θ · ∇)uθ + (uθ · ∇)u∗
θ] +∇pθ = f ,

∆pθ + 2(−uxvy + uyvx) = ∇ · f .
(3.14)

Based on equations (3.11)-(3.14), we can design four loss functions as follows.

• Loss function for Scheme 1:

L∇ = Ru + αBu + βRp+γDu,

Ru = ∥−ν∆uθ + (uθ · ∇)u∗
θ +∇pθ − f∥22,X

Rp =
∥∥∆p+ 2(−uxvy + uyvx)−∇ · f

∥∥2
2,M

,

Bu =

∫
∂Ω

(u − g)2 dS,

Du =

∫
Ω

(∇ · u)2 dx.

(3.15)

68

• Loss function for Scheme 2:

Lu = Ru + αBu + βRp+γDu,

Ru = ∥−ν∆uθ + (u∗
θ · ∇)uθ +∇pθ − f∥22,X

Rp =
∥∥∆p+ 2(−uxvy + uyvx)−∇ · f

∥∥2
2,M

,

Bu =

∫
∂Ω

(u − g)2 dS,

Du =

∫
Ω

(∇ · u)2 dx.

(3.16)

• Loss function for Scheme 3:

Lu1 = Ru + αBu + βRp+γDu,

Ru = ∥−ν∆uθ + (u∗
θ · ∇)uθ + (uθ · ∇)u∗

θ +∇pθ − f − (u∗
θ · ∇)u∗

θ∥
2
2,X

Rp =
∥∥∆p+ 2(−uxvy + uyvx)−∇ · f

∥∥2
2,M

,

Bu =

∫
∂Ω

(u − g)2 dS

Du =

∫
Ω

(∇ · u)2 dx.

(3.17)

• Loss function for Scheme 4:

LH = Ru + αBu + βRp+γDu,

Ru =

∥∥∥∥−ν∆uθ +
1

2
[(u∗

θ · ∇)uθ + (uθ · ∇)u∗
θ] +∇pθ − f

∥∥∥∥2
2,X

Rp =
∥∥∆p+ 2(−uxvy + uyvx)−∇ · f

∥∥2
2,M

,

Bu =

∫
∂Ω

(u − g)2 dS,

Du =

∫
Ω

(∇ · u)2 dx.

(3.18)

69

Note ∥·∥2,X are the L2 norm of space X, ∥·∥2,M are the L2 norm of space M , and α, β, γ

are the penalty terms. The Poisson equation for pressure p is also considered as a further

regularization for training pθ.

3.3.3. Linearized learning algorithms

Our linearized learning algorithm for the Navier-Stokes equation is implemented through

the following steps illustrated in Algorithm 3. In the implementation, u∗
θ and uθ are two

different neural networks with same number of hidden layers and the same number of hidden

neurons at each layer. Once the loss (3.15)-(3.18) decreases below a specific ratio, then the

parameters of uθ are copied to u∗
θ, and the parameters of u∗

θ will be frozen up to c epochs until

the loss decreases the specific ratio again. The algorithm will terminate once the training

epoch is up to the maximum training epoch N . The optimizer considered is the popular

Adam Optimizer [34].

3.4. Numerical results

3.4.1. A benchmark: A non-oscillatory problem - effect of linearized learning

We first consider a non-oscillatory problem in a rectangle domain Ω = [0, 2] × [0, 1]

with one cylinder hole centered at (0.7, 0.5) whose radius is 0.2 as shown in Figure 3.2, the

analytical solutions of the incompressible Navier-Stokes equations is given as follows:

u = 1− eλx cos (2mπx+ 2nπy) ,

v =
λ

2nπ
eλx sin (2mπx+ 2nπy) +

m

n
eλx cos (2mπx+ 2nπy) ,

p =
1

2
(1− e2λx), λ =

Re

2
−
√

Re2

4
+ 4π2, Re =

1

ν
.

(3.19)

70

Algorithm 3 Linearized Learning Algorithm: Once the loss L is smaller than or equal
to γτ , the parameters of ui

θ will be copied to u∗
θ and note that the parameters of u∗

θ will never
be updated by Adam algorithm. It should be noted that the number of epochs before
updating the fixed (linearized) term c will be a hyperparameter to be adjusted carefully.

1: procedure LinearizedLearning(u0
θ,u

∗
θ, pθ)

2: γ ← 0.9 ▷ The ratio to make sure the loss is strictly less than the threshold τ when
updating the network u∗

θ

3: τ ← 1012 ▷ The threshold
4: for i← 0, . . . , N do
5: for j ← 1, . . . , c do ▷ c is a variable to determine the epochs to train the new

network ui
θ

6: L← Loss(u∗
θ,u

i
θ, pθ) ▷ The Loss is one of (3.15)-(3.18)

7: Update ui
θ by Adam with L

8: Update pθ by Adam with L
9: end for
10: if L ≤ γτ then
11: τ = L
12: u∗

θ ← ui
θ

13: ui+1
θ ← ui

θ

14: end if
15: end for
16: return u∗

θ, pθ ▷ The outputs
17: end procedure

In this non-oscillatory case, we consider the frequencies m = 1, n = 2 and the viscosity

ν = 0.05. The source term f is obtained by substituting the exact solution (3.19) into the

Navier-Stokes equation (3.1). The boundary conditions are Dirichlet boundary conditions

which are obtained by computing the analytical solutions (3.19) on boundaries, including

the four edges of the rectangle and the circle inside. The penalty terms α, β, γ are set to be

104, 1, 1 for this case. We will show the linearization could speed up the learning procedure

for a neural network to learn the solution of the stationary Navier-Stokes equation in this

section.

We compared the performance of the convergence of fully connected network (fcn) with

different loss schemes, including the VgVP formulation (3.4) and three linearized schemes

(3.15) or (3.16) or (3.18). The training data are generated by randomly sampling 160000

points inside Ω and 16000 points on ∂Ω during each epoch. In the learning process, The

71

number of batches for each epoch are set to be 50. We choose the fully connected neural

network with 4 hidden layers, 100 hidden neurons each layer for uθ,u
∗
θ, pθ for all cases. The

hyperparameters are the same for the four cases. The losses during training for different

cases by minimizing given loss function are compared in Figure 3.3. The results show that

the three linearized learning neural networks converge in 300 epochs for all schemes while

learning using the loss function (3.4) for the nonlinear Navier-Stokes equations fails to (top

line in Figure 3.3). The comparisons of the x component of velocity and pressure along

the line y = 0.7 of different linearized schemes after 300 epoch training are shown in Figure

3.4 and 3.5. For the current case, The Hybrid scheme (3.18) offers the best approximation,

but the results of the GradFixed scheme (3.15) and the VFixed scheme (3.16) lose some

accuracy, which corresponds to the loss Figure 3.3.

Figure 3.2: A simple domain with one hole: A rectangle domain Ω = [0, 2]× [0, 1] with
one cylinder hole centered at (0.7, 0.5) whose radius is 0.2.

3.4.2. Performance: Oscillating flows learned by MscaleDNN with linearized learning

In a previous work [67], it has been shown that the MscaleDNN could improve the approx-

imation performance dramatically when learning oscillatory solutions for the linear Stokes

equations. Based on the previous experience, we consider MscaleDNN is the preferential

framework for solving Navier-Stokes equation with oscillatory solutions, combined with the

linearized learning scheme. The frequencies now are taken to be m = 40, n = 35, much

72

Figure 3.3: Losses (bottom 3 lines) of three linearized learning schemes (3.15) (3.16) or
(3.18) and loss (top line) based on nonlinear Navier-Stokes equation (3.4). The results
show that the neural networks with 3 linearized learning schemes (GradFixed(3.15),
VFixed(3.16) and Hybrid(3.18)) converge fast compared with the neural networks using
the VgVp loss function (3.4).

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

x

0.6

0.8

1.0

1.2

1.4

1.6

1.8

v
x

a) VFixed scheme

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

x

0.6

0.8

1.0

1.2

1.4

1.6

1.8

v
x

b) Hybrid scheme

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

x

0.50

0.75

1.00

1.25

1.50

1.75

2.00

v
x

c) GradFixed scheme

Figure 3.4: Linearized learning of fully connected network (FCN): The x components of
velocity after 300 epoch training for benchmark problem along the line y = 0.7

0.0 0.5 1.0 1.5 2.0

x

0.0

0.1

0.2

0.3

0.4

0.5

p

a) VFixed scheme

0.0 0.5 1.0 1.5 2.0

x

0.0

0.1

0.2

0.3

0.4

0.5

p

b) Hybrid scheme

0.0 0.5 1.0 1.5 2.0

x

0.0

0.1

0.2

0.3

0.4

0.5

p

c) GradFixed scheme

Figure 3.5: Linearized learning of fully connected network (FCN):The pressures after 300
epoch training for benchmark problem along the line y = 0.7

73

higher than the benchmark problem. We also adjusted the learning rate during training by

a decrease of 5% every 50 epochs for the oscillating flow case to accelerate the convergence.

3.4.2.1. A simple domain - effect of MscaleDNN

In this section, we consider the same simple domain as in Figure 3.2 and utilize Scheme

1(GradFixed) (3.11) of the linearized learning algorithms where the previous velocity is used

to linearize the convection term. The purpose of this section is to show that MscaleDNN

combining with linearized learning scheme could offer extraordinary performance improve-

ment for stationary Navier-Stokes equations with oscillating solutions.

The multiscale deep neural networks are given 8 scales: {x, 2x, 4x, 8x, 32x, 64x, 128x},

whose subnetworks contain 4 hidden layers and 128 hidden neurons in each layer. As a com-

parison, we also trained a 4-layer fully connected neural network with 1024 hidden neurons

combining GradFixed scheme in 1000 epochs. Figures 3.6 and 3.7 show the predictions of

networks after 1000 epoch training. Figures 3.8 and 3.9 give more details along the line

y = 0.7. The penalty terms α, β, γ are set to be 104, 1, 1, respectively, as the same as in

Section 3.4.1. Figure 3.10 shows the relative errors of these 2 different neural network struc-

tures along the line y = 0.7. We could conclude that the MscaleDNN improves the accuracy

of both the pressure field and the velocity field compared with the fully connected neural

network.

3.4.2.2. A complex domain

In this section, we consider an oscillating case in complex domain with more than one hole.

The domain is shown in Figure 3.11. In this case, we use the similar settings for the multiscale

deep neural networks, adjustments of learning rates, and sampling strategies like what we

choose in the oscillatory case with the scale of the simple domain with one hole in Section

74

a) Contour of pressure of the oscillatory case after 1000
epoch training for linearized learning with fully-connected

network (FCN)
b) Contour of velocity of the first component after 1000

epoch training for linearized learning with MscaleDNN

Figure 3.6: Pressure of the oscillatory case for linearized learning with MscaleDNN and
fully connected networks (FCN)

a) Contour of the first component of velocity of the
oscillatory case after 1000 epoch training for linearized

learning with fully-connected network (FCN)

b) Contour of the first component of velocity of the
oscillatory case after 1000 epoch training for linearized

learning with MscaleDNN

Figure 3.7: The first component of velocity of the oscillatory case for linearized learning
with MscaleDNN and fully connected networks (FCN)

3.4.2. The multiscale deep neural network has 8 scales: {x, 2x, 4x, 8x, 32x, 64x, 128x}, whose

subnetworks contain 4 hidden layers and 128 hidden neurons in each layer. The frequencies

selected for this case are the same as what in Section 3.4.2.1. The initial learning rate for

this case is 4e− 3. The penalty terms α, β, γ are set to be 104, 1, 1, respectively, as the same

as in Section 3.4.1. Figure 3.12 shows contours of the first component of velocity for different

schemes. Figure 3.14 and Figure 3.13 show the relative errors of these 4 different linearization

75

a) Pressure of the oscillatory case after 1000 epoch training
alone line y = 0.7

b) Velocity of the first component after 1000 epoch training
along the line y = 0.7

Figure 3.8: The results of the oscillatory case using linearized learning with multi-scale
neural networks

a) Pressure of the oscillatory case after 1000 epoch training
alone line y = 0.7

b) Velocity of the first component after 1000 epoch training
along the line y = 0.7

Figure 3.9: The results of the oscillatory case using linearized learning with fully connected
networks (FCN)

schemes along the line y = 0.7. All schemes we propose converge more accurately to the

exact solutions.

Figure 3.15 displays the behavior of the velocity field’s divergence under varying penalty

values γ while the neural networks are trained by scheme (3.13). The results indicate that

as γ increases, the divergence of velocity decreases. The divergence-free property thus is

enforced through the extra regularization with large penalty.

76

a) Error of two different models w.r.t. pressure of the
oscillatory case after 1000 epoch training alone line y = 0.7

b) Error of two different models w.r.t. velocity of the first
component after 1000 epoch training along the line

y = 0.7

Figure 3.10: The errors of the oscillatory case for linearized learning with fully-connected
network (FCN) and multiscale network (MSNN)

Figure 3.11: A more complex domain.

3.4.2.3. Small viscosity coefficient

In this section, we consider the same oscillating case in the complex domain but with

smaller viscosity coefficient, ν = 0.001. The multiscale deep neural networks are the same

as in the oscillatory case with 8 scales: {x, 2x, 4x, 8x, 32x, 64x, 128x} and the corresponding

subnetworks contain 4 hidden layers and 128 hidden neurons in each layer. The learning

rates are multiplied by 0.1 at the 100th, 300th, 600th epoch. The batch size is 8092 in the

domain and 512 on the boundary of domain, respectively. The penalties considered in the

case are 104 for α, 1 for β and 103 for γ, respectively. The frequencies selected for this case

are the same as what in Section 3.4.2.1. The initial learning rate is 4e − 3. The scheme is

(3.13) as it gives the best results for the complex domain case in Section 3.4.2.2. Figure 3.16

77

a) Contour of the first component of velocity of the
oscillatory case after 1000 epoch training for scheme

gradFixed (3.11)

b) Contour of the first component of velocity of the
oscillatory case after 1000 epoch training for scheme vFixed

(3.12)

c) Contour of the first component of velocity of the
oscillatory case after 1000 epoch training for scheme

vFixed1 (3.13)

d) Contour of the first component of velocity of the
oscillatory case after 1000 epoch training for scheme Hybrid

(3.14)

Figure 3.12: The results of the first component of velocity of the oscillatory case for four
linearized learning schemes with MscaleDNN

and 3.17 show the results of linearized learning scheme (3.13). The divergence of velocity is

even better comparing with the larger viscosity coefficient case.

78

Figure 3.13: Relative errors at the line y = 0.7 of four linearized learning schemes with
MscaleDNN for pressure of the complex domain case after 1000 epoch training

a) Relative errors alone line y = 0.7 of GradFixed linearized
learning scheme (3.11) and Hybrid linearized learning
scheme (3.14) for the first component of velocity of the

complex domain case after 1000 epoch training

b) Relative errors along the line y = 0.7 of vFixed linearized
learning scheme (3.12) and vFixed1 linearized learning
scheme (3.13) for the first component of velocity of the

complex domain case after 1000 epoch training

Figure 3.14: The relative errors of the complex domain case for four linearized learning
schemes with MscaleDNN

79

a) ∇ · u given γ = 100. The largest
value is 2.16

b) ∇ · u given γ = 103. The largest
value is 0.9

c) ∇ · u given γ = 106. The largest
value is 0.07

Figure 3.15: The divergence of velocity ∇ · u where u is trained by linearized learning
scheme (3.13) with 1000 epochs

a) Relative errors for velocities in both x direction and y
direction alone line y = 0.7 b) Relative errors for pressure p alone line y = 0.7

Figure 3.16: The relative errors of velocity u and pressure p along the line y = 0.7 where
neural networks are trained by linearized learning scheme (3.13) with 1000 epochs as
ν = 0.001

Figure 3.17: The divergence of velocity ∇ · u where neural networks are trained by
linearized learning scheme (3.13) with 1000 epochs as ν = 0.001. The largest value is 0.023

80

Chapter 4

A Causality-DeepONet for Causal Responses of Linear Dynamical Systems

The content in this chapter has been submitted as a journal paper in collaboration with

Kamaljyoti Nath and Wei Cai:

Lizuo Liu, Kamaljyoti Nath, and Wei Cai, A Causality-DeepONet for Causal Responses

of Linear Dynamical Systems, arXiv preprint arXiv:2209.08397 (2022), under review in Com-

mun. Comput. Phys. [41].

4.1. Introduction

Computing operators between physical quantities defined in function spaces have many

applications in forward and inverse problems in scientific and engineering computations.

For example, in wave scattering in inhomogeneous or random media, the mapping between

the media physical properties, which can be modelled as a random field, and the wave

field is a nonlinear operator, which represents some of the most challenging computational

tasks in medical imaging, geophysical and seismic problems. A specific example comes from

earthquake safety studies of buildings and structures, the response of structures to seismic

ground accelerations gives rise to a causal operator between spaces of highly oscillatory

temporal signals.

Structural dynamic analysis has always been one of the crucial problems in the civil

engineering field. Traditionally, researchers in this field analyzing structural dynamic re-

sponse focus on constructing proper mathematical models like ordinary or partial differen-

tial equations and utilizing grid-based numerical methods to solve them. The finite element

method [76] is one of the popular methods considered for the solutions along with an appro-

81

priate time integration scheme like Newmark’s-Beta method [12, 53]. Alternatively, system

identification-based methods, as an attempt to construct a surrogate model by mapping the

input signals to the output responses directly, have shown their superior capability in accel-

erating the computations. A comprehensive review of this approach was provided in [32,66].

Meanwhile, recently learning time sequential response operator between input and output

signals [35] has been studied using recurrent neural network (RNN) [20,36], long short-term

memory neural network (LSTM) [29], WaveNet [55], the one-step ResNet approximation [58]

and the multi-step recurrent ResNet approximation [58]. The RNN and its variant LSTM

are ubiquitous network structures for predicting time series in financial engineering, machine

translation, and sentiment analysis and so on in the natural language processing field. In

particular, LSTM has been shown to have the potential to predict building responses ex-

cited by seismic ground accelerations [33, 72]. The one-step ResNet approximation and the

multi-step recurrent ResNet approximation, provide the approximation to the integral form

of the dynamical system and have demonstrated effective equation recovery for linear and

nonlinear dynamical systems [22,58].

Deep neural networks (DNNs), as one of the most intuitive frameworks for model reduc-

tions with its superior ability to approximate general high dimensional functions [13], have

been considered recently in learning mappings whose closed forms are not known. So far,

DNNs have shown much promise in solving problems from scientific and engineering comput-

ing, including initial and boundary value problems of ODEs and PDEs [10,18,26,31,43,61,73].

Soon after universal approximation theorems to functions by neural networks was pro-

posed [13], Chen & Chen [11] proved that there also exists a framework that could give

universal approximations to nonlinear operators between Banach spaces. Based on this the-

ory, the DeepONet [47] was constructed for learning operators where trunk net functions are

used as basis and the branch net functions as mappings from the input functions to some

hidden manifolds. The DeepONet replaced the one-hidden layer networks in the original

proposal in Chen & Chen’s paper [11] by two deep neural networks, which has been shown

82

to have the potential to break the curse of dimensionality from the input space. In the mean-

time, another approach for learning operators based on a graph kernel network [38] for PDEs

has also been proposed. The nonlinear operator is decomposed by composing nonlinear ac-

tivation functions with a class of integral operators with a trainable kernel. The Fourier

neural operator has been proposed [37] by replacing the integral operator with the Fourier

transform and a trainable mask in frequency domain. Both the graph kernel neural network

and the Fourier neural operator show the capability to approximate specific operators with

very good accuracy and efficiency.

In this chapter, we will study the DeepONet specifically for time-dependent operators

from a physical system such as those encountered in building seismic wave response prob-

lems. The Causality-DeepONet will be proposed to ensure the causality of the retarded

Green’s function of the underlying differential equation between the input seismic ground

accelerations and the output building responses. In addition to the causality consideration,

the time homogeneity of a dynamic system will also be used in the design of the neural

network by encoding the convolutional nature of the retarded Green’s function in the choice

of the network weights. The proposed DeepONet with built-in causality allows us to learn,

accurately and with minimum requirement of training data, the mapping between the ground

accelerations and the corresponding displacements of the building at the roof level excited

by the seismic ground accelerations.

It could be noted that the term causality is also used in fields such as causal inference

[45,51] and causal interpretability of neural network [52], or applying the neural network to

solve problem like causal reasoning [25]. Those works are referring to the logical cause-effect

relationships between data. However, in our setting we focus on the physical concept of

temporal causality, i.e., the state of the system at the current time is not affected by that

of the future, but only by its current state and past history. For this reason, we name our

framework Causality-DeepONet. In a study of crack propagation [24], past histories of tensile

83

energies were provided as input to the branch net of a variational energy-based DeepONet

with convolution to predict the growth of fracture under quasi-static loading conditions.

This approach is similar to implicit time discretization of nonlinear time evolution equation

commonly used for time dependent Navier-Stokes equations where the state(s) of the system

at previous time step(s) act as a forcing term for the linear system to be solved for the state

of the current time.

The rest of the chapter is organized as follows. In Section 4.2, we state the problem

considered in the present study. In Section 4.3, we give a short review of the universal

approximation theory of nonlinear operators by neural networks, and its recent development

DeepONet. Further, we provide a review of a multi-scale neural network introduced to handle

high frequency functions and the POD-DeepONet for efficient basis functions in the trunk

net of DeepONet. In Section 4.4, we propose two extensions of the DeepONet, one is the

multi-scale DeepONet, the other is the Causality-DeepONet. In Section 4.5, a comparison

of the results with all the mentioned frameworks will be carried out.

4.2. Problem statement: Calculation of building response due to seismic load

The problem under study is the prediction of the dynamic response of a multi-story build-

ing due to seismic loading. The equation of motion, after a finite element type discretization,

for the building due to ground motions during an earthquake could be written as a dynamic

system of differential equations [12],

Mẍ+Cẋ+Kx = f(t), (4.1)

where M , C and K are the mass, damping and stiffness matrices of the system from the

finite element discretization. f(t) the applied force, for our case, is due to ground motions

84

during an earthquake and could be written as

f(t) = Mιüg, (4.2)

where üg is the ground acceleration due to the earthquake and ι is the influence vector. The

interested reader may refer [12] for more details on formulation and solution methods.

Ground accelerations due to earthquakes are recorded at different recording stations. In

the present study, we consider ground accelerations due to earthquakes for different earth-

quakes recorded at different stations and taken from the database of the Pacific Earthquake

Engineering Research Center (https://peer.berkeley.edu/) 1. One of the typical records of

ground accelerations is shown in Figure 4.1. The earthquake record at different stations may

be recorded at different sampling rates (different δt). Earthquake records recorded at finer

δt < 0.02 sec are filtered using a Butterworth filter with frequency (0.1-24.9) Hz then re-

sampled to δt = 0.02 sec and after that amplified to match with original PGA level. Figures

before and after processing for the mentioned earthquake record in Figure 4.1 are shown in

Appendix A.2.1. The building is considered at rest initially with the initial condition

x(0) = 0,

ẋ(0) = 0.

(4.3)

1The earthquake ground acceleration considered are taken from the Pacific Earthquake Engineering Re-
search Center (PEER: https://peer.berkeley.edu/)

85

https://peer.berkeley.edu/
https://peer.berkeley.edu/

0 50 100 150 200

Time (s)

−0.025

0.000

0.025

A
c
c
e
le
ra

ti
o
n
s
(g

)

PGA

(a)

0 10 20 30 40 50

Frequency (Hz)

10
−2

A
m
p
li
tu

d
e

(b)

Figure 4.1: A typical ground acceleration due to earthquake: The ground
acceleration is due to 14383980 earthquake recorded at station North Hollywood, 2008 (a)
time history of the acceleration (b) frequency spectrum. The absolute maximum
acceleration is indicated which is also known as Peak Ground Acceleration (PGA) of the
earthquake.

Our objective is to evaluate an operator operating on the ground acceleration and predict

the response of the building. Thus, it is a mapping from ground acceleration to the response

of the top floor of the building.

R : üg(t) −→ x1(t). (4.4)

Detailed numerical study is carried out for a six-storied reinforced cement concrete (RCC)

building. A 3D model of the building is generated in openseespy [74]. Apart from the dead

load (beam, column, slab, wall etc.), the live load is also considered on each floor and roof.

The lumped mass of the structure is calculated for a full dead load and 50% of the live load

at floor level and 25% at roof level. The damping matrix of the building is calculated using

model damping for 5% model damping for all the modes. Ground acceleration is applied

in the major direction. The records obtained from PEER contain 3 different directions.

The vertical ground accelerations are not considered. The other two horizontal ground

accelerations are considered one at a time and applied only in the major direction.

In the case of a classical damped system [12], the displacement x(t) may be decomposed

as the superposition of the modal contributions of undamped system:

x(t) =
n∑

l=1

ϕlql (t) := Φq, (4.5)

86

where ql and ϕl are the modal coordinates and the corresponding modes, respectively, for nat-

ural frequency ωl. Φ = [ϕ1, ϕ2, · · · , ϕn], q = [q1, q2, · · · , qn]T . The responses (displacement)

x(t) of the system for ground accelerations üg(t) may be represented as

x(t) =

∫ t

0

üg(τ)h(t− τ)dτ, (4.6)

where

h(t) = −
n∑

ℓ=1

ϕℓ
Γℓ

ωℓD

e−ξℓωℓt sinωℓDt, (4.7)

h(t) is the unit impulse response, also known as, the Green’s function and fundamental

solutions, Γℓ =
ϕT
ℓ Mι

ϕT
ℓ Mϕℓ

and ι is the influence vector, ωℓD = ωℓ

√
1− ξ2ℓ with ξℓ as the

damping ratio.

In the case of a non-classical damped system [12], the responses (displacement) x(t) of

the system due to ground accelerations üg(t) may be represented as

x(t) = −
n∑

ℓ=1

[
γ̃δℓω

N
ℓ Dℓ (t) + αδ

ℓḊℓ (t)
]
, (4.8)

where

Dℓ (t) =

∫ t

0

üg(τ)Hℓ(t− τ)dτ, (4.9)

and

Ḋℓ (t) =

∫ t

0

üg(τ)Ḣℓ(t− τ)dτ, (4.10)

Hℓ(t) = −
1

ωN
ℓD

e−ξNℓ ωN
ℓ t sinωN

ℓDt is the the Green’s function of the non-classical damped sys-

tem, with

ωN
ℓD = ωN

ℓ

√
1− (ξNℓ)2, (4.11)

and

ωN
ℓ = |λNℓ |, ξNℓ = −

Re
(
λNℓ
)

|λNℓ |
, (4.12)

87

where λNℓ is the eigenvalues of the system of first-order differential equations reduced from

equation (4.1). ωN
ℓ is a function of the amount of system damping.

Further, γ̃δℓ =
(
ξNℓ α

δ
ℓ −

√
1− (ξNℓ)2γδℓ

)
with αδ

ℓ = Re(2βδ
ℓψℓ), γ

δ
ℓ = Im(2βδ

ℓψℓ) and

βδ
ℓ =

−ψT
ℓ Mι

2λNℓ ψ
T
ℓ Mψℓ + ψT

ℓ Cψℓ

, (4.13)

where ψℓ is the corresponding eigenvector of λℓ .

The discussion above of equations (4.6) and (4.8) infers and inspires us to consider two

phenomena in formulating an operator, the first one is that the responses at the present

state is not influenced by the future ground acceleration, we understand it as causality of

the system, meaning the state of the system at the current time should not be affected

by the future, but only by its past history of the ground acceleration. The second one

is the convolution nature of the Green’s function kernel. As shown in many works with

convolutional neural networks [1, 56, 68, 75], the convolution function as a specific domain

knowledge for neural network to learn about the target operator. With these two insights

we will construct an operator in the DeepONet framework to address both causality and

convolution kernel in Section 4.4.2, and name it as Causality-DeepONet.

4.3. Background / Preliminary

In this section, first we will review the DeepONet in Section 4.3.1. Multi-scale deep neural

networks and POD-DeepONet will be described in Sections 4.3.2 and 4.3.3, respectively.

4.3.1. DeepONet

Based on the universal approximation of nonlinear operators, Lu et al. [47] proposed the

DeepONet by replacing the two one-hidden-layer neural networks in equation (1.14) with

88

two deep neural networks. For a general operator G(f)(x), DeepONet has form

G(f)(x) ∼
N∑
k=1

ck σB,k

(
{f (xj)}mj=1

)
︸ ︷︷ ︸

Bk

σT,k (x)︸ ︷︷ ︸
Tk

, (4.14)

where σB (·) with a signal {f(xj)}mj=1 as input is a deep neural network with N outputs,

named as the branch net, σT (·) with input x is also a deep neural network with N outputs

which is called the trunk net. The schematics are shown in Figure 4.2. The DeepONet

has already been shown it is able to learn not only explicit mathematical operators like

integration and fractional derivatives, but also PDE operators [8, 15,16,39,47].

N outputs

N outputs

Input

Dim: m

Branch Net

Trunk Net
N∑
k=1

ckBkTk

When x = x1When x = x2 When x = xm

f (x1)

f (x2)
...

f (xm−1)

f (xm)

f (x1)

f (x2)
...

f (xm−1)

f (xm)

. . .

f (x1)

f (x2)
...

f (xm−1)

f (xm)

x

Bk

Tk

Figure 4.2: Schematic Diagram of the DeepONet: A schematic diagram of DeepONet
showing branch and the trunk net along with the input data and output. The number of
the input neurons of the branch net is equal to the number of sensor points in the input
signals. The trunk net takes the input point x at where the output function need to be
evaluated. Thus, the first layer of trunk equal to the dimension of the problem. In the
present study, it is the time point x = t at which the output needs to be evaluated. Note
for different time point t, the corresponding input of branch net is the same.

89

4.3.2. Multi-scale deep neural network (MscaleDNN)

Multi-scale Deep Neural Network [43] is a specific framework for problem whose output

function is highly oscillatory. Since the highly oscillating feature of the responses of buildings

excited by ground accelerations due to earthquakes, we also propose the multi-scale Deep-

ONet that incorporates the multi-scale neural network into the DeepONet. The general fully

connected neural network could learn the low frequency content of the data quickly, but the

learning process will be stalled when higher frequency components are involved in the data.

This frequency bias phenomenon is considered as the Frequency Principle studied in [70].

To remedy the frequency bias in terms of learning convergence, Liu et al. [43] introduced a

MscaleDNN to accelerate the convergence of neural network for fitting problems of highly

oscillating data. The MscaleDNN contains several sub-neural networks, for each of which a

different frequency scaling is introduced by scaling the inputs accordingly, to arrive at the

following form for the MscaleDNN,

fθ (x) ∼
S∑

i=1

wifθi (Six) , (4.15)

where Si are the custom scales and {fθi (·)}
S
i=1 are the distinct sub-fully connected neural

networks. Equation (4.15) shows a multi-scale neural network with S scales. The final

output of multi-scale deep neural network is the weighted sum of the outputs of the sub-

neural networks with trainable weights wi. The MscaleDNN has already shown its power for

solving fitting problems and PDEs with high frequencies in [42,43,67].

4.3.3. POD-DeepONet

Instead of modeling the basis of output data by training the trunk net, Lu et al. [48]

propose the POD-DeepONet based on the work of Bhattacharya et al. [3]. The trunk net in

the vanilla DeepONet is replaced by the basis obtained from proper orthogonal decomposition

90

(POD) of the outputs of training data after the mean of which is removed. Thus, the outputs

of branch net are the coefficients of the precomputed basis vectors

G(f) ∼
p∑

k=1

σB,k

(
{f (xj)}mj=1

)
Bk + B0, (4.16)

where B0 is the mean of the output of training data, {Bk}pk=1 are the selected p basis vectors

obtained by SVD or POD of the zero-mean outputs of training data, and σB({f (xj)}mj=1)

is the deep neural network with p outputs whose kth output corresponds to the kth singular

value. In [48], it was shown that POD-DeepONet is more effective than the vanilla DeepONet

and the vanilla Fourier Neural Operator [37].

4.4. Methodologies

4.4.1. Multi-scale DeepONet

As shown in Figure 4.1, the spectrum of a typical earthquake signals contains not only

low frequency components, but also high frequency components, therefore, we introduce the

multi-scale DeepONet to handle the oscillatory information. Since the oscillatory features

are function of time t, it is natural that we replace the fully connected trunk net by the

MscaleDNN with S scales.

G(f)(t) ∼
N∑
k=1

ckσB,k

(
{f (tj)}mj=1

)
σT,k (t) ,

σT (t) =
S∑

i=1

wiσθi (Sit) ,

(4.17)

where {σθi (·)}
S
i=1 are S distinct fully connected neural networks with N outputs.

91

4.4.2. Causality-DeepONet

The DeepONet proposed in [47] is based on a proven theorem of universal approximation

for nonlinear operators, as introduced in the Section 1.4.1. We will apply the universal

approximation theory to nested subspaces of continuous functions indexed by the output

time, which will provide a heuristic argument for the form of the Causality-DeepONet to be

proposed. Rigorous mathematical justification though is still to be derived.

For a ground acceleration dynamic excitation üg(s), the response function R(üg)(t) expe-

riences a retardation effect due to the causality of the physical process. Therefore, applying

the universal approximation of function (1.12) to input function space

C[0, t] ⊆ C[0, T],∀t ∈ [0, T], (4.18)

we have,

∣∣∣∣∣R(üg)(t′)−
N∑
k=1

ck (R(üg), t)σt (wkt
′ + bk)

∣∣∣∣∣ ≤ ε1, ∀ t′ ∈ [0, t] ⊆ [0, T]. (4.19)

Comparing with the original universal approximation theorem of functions equation

(1.12), we will require the dependence of t for the parameters ck (R(üg), t), in which we

may introduce the causality and convolution. It can be assumed that for every given in-

terval [0, t], the approximation equation (4.19) is valid within the interval based on the proof

in [11]. In principle, the integer N , the parameters {wk}Nk=1 , {bk}
N
k=1 ∈ R, should also have

a t-dependence, however, due to the nested property in (4.18), for practical implementations

they will be taken as global parameters to be trained for all t ∈ [0, T].

Following the discussion in Section 4.2, we extend the universal approximation of func-

tionals (1.13) to approximate the functionals with causality. The functional ck (R(üg), t)

92

(from a compact subset of C[0, t]) could be rewritten as

ck (R(üg), t) = ck
(
R(ügχ[0,t])

)
∈ R, üg ∈ C[0, t], t ∈ [0, T] , (4.20)

where χ[0,t] (s) is the characteristic function, such that

χ[0,t] (s) =

1 s ∈ [0, t],

0 otherwise.

(4.21)

Then, following the similar approach as universal approximation of functionals (1.13), we

may state that given any ε2 > 0, there exists a positive integer M , m equalspaced points

{sj}mj=1 ∈ [0, t] with real constants cki ,W
k
ij, B

k
i ∈ R, i = 1, . . . ,M, j = 1, . . . ,m, such that

ck (R(üg), t) could be approximated by a one-hidden-layer neural network with any TW

activation function σb∣∣∣∣∣∣∣ck(R(üg), t)−
M∑
i=1

cki σb

⌊ t
h⌋∑

j=1

W k
i,m−⌊ t

h⌋+j
üg (sj) +Bk

i

∣∣∣∣∣∣∣ ≤ ε2,∀üg ∈ C[0, t], (4.22)

where the h is the step size and m =

⌊
t

h

⌋
. For any given interval [0, t], based on the

results of [11], there exists m ∈ N such that there are m points {sj}mj=1 that could be

applied to construct the functional approximation (1.13). We further assume those points

are equalspaced. The equalspaced sampling could be obtained by applying some appropriate

smoothing kernel to input and output functions for the problems that are not equalspaced.

And likewise, the coefficients cki ,W
k
ij, B

k
i and nodes {sj}mj=1 and m,M are all independent of

üg (s), however, t-dependent.

The indicator function χ[0,t] (s) (4.21), implemented by the inner upper summation limit⌊
t
h

⌋
in equation (4.22), as a discontinuous function does not belong to the continuous function

93

space, which could be replaced by a smoothed version with a short transition at s = t while

still keeping the causality.

Causality-DeepONet: Combining these two desired universal approximations, we can

heuristically consider the following DNN representation of an operator for retarded response

for t ∈ [0, T] ⊂ R. The basic idea is that we could find m points {si}mi=1 ∈ [0, T] to

approximate the functional ck(R(üg), T) based on the universal approximation of functionals

with causality (4.22). The information to approximate the functional ck(R(üg), t) where

[0, t] ⊆ [0, T] is offered by the value of {üg(si)}
⌊ t
h
⌋

i=1 only. To keep the input signals of the

same length at different time point, we consider zero-padding {üg(si)}
⌊ t
h
⌋

i=1 as shown in Figure

4.3. Thus the coefficients cki ,W
k
ij, B

k
i and nodes {sj}mj=1 are t-independent. In addition, the

convolution with respect to the input signals could be implemented by shifting the signals,

as shown in Figure 4.3.

Namely, we could find positive integers M,N , m equalspaced points {tj}mj=1 ∈ [0, T] with

real constants cki ,W
k
ij, B

k
i ∈ R, i = 1, . . . ,M, j = 1, . . . ,m, {wk}Nk=1 ∈ R, {bk}Nk=1 ∈ R that

are all independent to continuous functions üg ∈ C [0, T] and t, such that

R(üg)(t) ∼
N∑
k=1

ck

M∑
i=1

σb

⌊ t
h⌋∑

j=1

W k
i,⌊Th ⌋−⌊ t

h⌋+j
üg (sj) +

⌊Th ⌋−1∑
j=⌊ t

h⌋
W k

i,⌊Th ⌋−j
0 +Bk

i

︸ ︷︷ ︸

Bk

σt (wkt+ bk)︸ ︷︷ ︸
Tk

.

(4.23)

94

N outputs

N outputs

Input

Dim: m

Branch Net

Trunk Net
N∑
k=1

ckBkTk

When t = s1When t = s2 When t = sm

0
...

0

0

üg (s1)

0
...

0

üg (s1)

üg (s2)

. . .

üg (s1)
...

üg (sm−2)

üg (sm−1)

üg (sm)

t

Bk

Tk

Figure 4.3: Schematic Diagram of the Causality-DeepONet: A schematic of the
Causality-DeepONet showing branch and the trunk net along with the input data and
output. Similar to DeepONet, the number of input neurons of branch of
Causality-DeepONet is equal to the number of sensor points in the input signals. The
input signals of branch, however, will be replaced by a zero-padding signals with a shifting
window to express the causality and the convolution.

4.4.3. Loss function and error calculation

In the present study, we consider two loss functions depending on the method considered.

Assuming x̂ℓ(θ) are the predicted response by neural network for the ℓth earthquake ground

acceleration ü
(ℓ)
g with the corresponding true value xℓ, where θ are trainable variables of the

neural networks, including the weights and bias. The first loss function considered is the

MSE loss function

L(θ) = 1

n

n∑
ℓ=1

∥xℓ − x̂ℓ(θ)∥2

=
1

n

n∑
ℓ=1

[
1

m

m∑
i=1

(x
(i)
ℓ − x̂

(i)
ℓ (θ))2

]
.

(4.24)

95

where n is the number of samples (different earthquake accelerations) considered and ∥·∥2

is the MSE error for one sample, m is the number of points in each of the earthquake

acceleration.

The second loss function considered is a weighted MSE loss function and defined as,

L(θ) =1

n

n∑
ℓ=1

1

max|xℓ|
∥xℓ − x̂ℓ(θ)∥2

=
1

n

n∑
ℓ=1

1

max|xℓ|

[
1

m

m∑
i=1

(x
(i)
ℓ − x̂

(i)
ℓ (θ))2

]
.

(4.25)

The penalty is set to be the reciprocal of the maximum of the absolute value of the

response. This act as a normalization factor when the responses have different magnitude

for different earthquakes. The larger penalty is considered to the responses whose magnitude

is smaller, thus it is expected that the neural network could predict the response whose

magnitude is smaller accurately.

In order to check the accuracy of the predicted results we consider relative L2 error,

Relative L2 Error =
1

n

n∑
ℓ=1

∥xℓ − x̂ℓ(θ)∥
∥xℓ∥

=
1

n

n∑
ℓ=1

√√√√√√√
m∑
i=1

(x
(i)
ℓ − x̂

(i)
ℓ (θ))2

m∑
i=1

(x
(i)
ℓ)2

,

(4.26)

and for the error with respect to the ℓth case, we consider the relative error,

Err =
maxi

∣∣∣x(i)ℓ − x̂
(i)
ℓ (θ)

∣∣∣
maxi

∣∣∣x(i)ℓ

∣∣∣ . (4.27)

96

The parameters θ which include both weights and biases are optimized using the Adam

optimizer [34] in a Pytorch [57] environment,

θ∗ = argmin
θ
L(θ). (4.28)

Once the optimized parameters of the networks (weights and biases) are obtained, these

may be used for the prediction of the response of the system for an unknown input signal

(earthquake ground acceleration).

4.5. Numerical results and discussion

In this section, we will present the numerical results of multi-scale DeepONet (MS-

DeepONet) and Causality-DeepONet for the prediction of response of the multistoried build-

ing discussed in Section 4.2. We will also have a comparison study of the results with a few

other DeepONet methods. First, we will study the prediction of the response with different

DeepONet methods along with different sizes of networks and training samples. Then, we

will present predicted responses with multi-scale DeepONet and Causality-DeepONet. We

also study the different methods with different network sizes and training samples, which

are discussed in subsequent sections. To avoid overfitting, dropout [28] is considered during

training for a few of the cases, but is disabled during evaluation.

The testing dataset consists of different earthquakes which are not included in the training

dataset. The test dataset is considered from 19 different earthquakes. One of them is

recorded at three different stations. Two of them are recorded at the same station. Thus,

the testing dataset consists of 44 ground accelerations (2 horizontal directions) from different

earthquake recording stations. The training dataset consists of different earthquakes not

considered in the testing dataset are may be from the same or different earthquakes and the

same or different recording stations. Details about the training and testing dataset is shown

in Table A.1 and A.2 in Appendix A.1.

97

4.5.1. DeepONet and POD-DeepONet

First, we will present the predicted results with the DeepONet method. For this pur-

pose, we consider different trunk and branch sizes along with different training samples. As

discussed in Section 4.4.3, we consider two different loss functions given by equations (4.24)

and (4.25).

Different network sizes considered in the branch and trunk for DeepONet are shown

in Table 4.1 along with the training samples considered. The training of DeepONet is

considered with Adam optimizer for a total epoch of 5000 with ReLU(x) activation function

with a learning rate of 10−4 in the first 1000 epochs, then 10−5 in the 1000 to 3000 epochs,

and 10−6 for the remaining epochs. In order to avoid overfitting, we consider using dropout

with a rate of 0.01 for the branch net and L2 weight regularization with 3× 10−5 coefficient

for weights of the branch net as well. The relative L2 errors for the training and testing

samples after 5000 epochs are also shown in Table 4.1. The relative L2 errors with epoch

for training and testing are shown in Figure 4.4. A few more studies about the DeepONet

are shown in the Appendix A.2.2. The relative L2 errors with epoch when using DeepONet

with different activation functions are shown in Figure A.3, with sin(x), tanh(x), Sigmoid(x)

considered. The relative L2 error with epoch of case that t is scaled to [0, 1] is shown in

Figure A.2(a). The relative L2 error with epoch of case with fixed learning rate 10−4 is

shown in Figure A.2(b). The relative L2 errors with epoch of cases training up to 20000

epochs with fixed learning rate 10−4 is shown in Figure A.2(c)-(d). The predicted responses

for few of testing dataset are shown in Appendix A.2.2. It could be observed that the error

in predicted responses are high for both training and testing dataset in all the cases from

Table 4.1 and Figure 4.4 and cases in Appendix A.2.2.

98

Table 4.1: Relative L2 error for training and testing dataset when predicted using
different sizes of DeepONet.

Case Branch1 Trunk1 Sample
Loss (4.24) Loss (4.25)

Train Test Train Test

1 [4000]-[50]×3-[50] [1]-[50]×3-[50] 50 1.0 0.999 1.001 1.004

2 [4000]-[100]×3-[100] [1]-[100]×3-[100] 50 1.0 0.999 1.00 1.002

3 [4000]-[200]×3-[200] [1]-[200]×3-[200] 50 1.0 0.999 1.001 1.003

4 [4000]-[50]×3-[50] [1]-[50]×3-[50] 100 1.00 0.999 1.00 1.002

5 [4000]-[100]×3-[100] [1]-[100]×3-[100] 100 1.0 0.999 1.0 1.002

6 [4000]-[200]×3-[200] [1]-[200]×3-[200] 100 1.0 0.999 1.0 0.999

1The notation [N1]-[N2]× 3-[N3] represents a neural network with the input size of N1,
3 hidden layers with N2 neurons in each layer, and the output dimension of N3 neurons.

0.00 1.25 2.50 3.75 5.00

Epoch ×10
3

9.49

16.16

22.82
29.49

×10
−1 (a)

Train(1.0)

Test(0.999)

0.00 1.25 2.50 3.75 5.00

Epoch ×10
3

9.49

13.91

18.33
22.75

×10
−1 (c)

Train(1.0)

Test(0.999)

0.00 1.25 2.50 3.75 5.00

Epoch ×10
3

9.49

10.58

11.67

12.76
×10

−1 (e)

Train(1.0)

Test(0.999)

0.00 1.25 2.50 3.75 5.00

Epoch ×10
3

9.50

16.08

22.65
29.22

×10
−1 (b)

Train(1.001)

Test(1.004)

0.00 1.25 2.50 3.75 5.00

Epoch ×10
3

9.50

14.84

20.19
25.54

×10
−1 (d)

Train(1.0)

Test(1.002)

0.00 1.25 2.50 3.75 5.00

Epoch ×10
3

9.50

10.99

12.48
13.97

×10
−1 (f)

Train(1.001)

Test(1.003)

0.00 1.25 2.50 3.75 5.00

Epoch ×10
3

9.49

17.08

24.68
32.27

×10
−1 (g)

Train(1.0)

Test(0.999)

0.00 1.25 2.50 3.75 5.00

Epoch ×10
3

9.49

10.59

11.69

12.78
×10

−1 (i)

Train(1.0)

Test(0.999)

0.00 1.25 2.50 3.75 5.00

Epoch ×10
3

9.49

10.23

10.96

11.69
×10

−1 (k)

Train(1.0)

Test(0.999)

0.00 1.25 2.50 3.75 5.00

Epoch ×10
3

9.50

18.17

26.85
35.52

×10
−1 (h)

Train(1.0)

Test(1.002)

0.00 1.25 2.50 3.75 5.00

Epoch ×10
3

9.50

10.41

11.32

12.23
×10

−1 (j)

Train(1.0)

Test(1.002)

0.00 1.25 2.50 3.75 5.00

Epoch ×10
3

9.49

10.46

11.43

12.41
×10

−1 (l)

Train(1.0)

Test(0.999)

Figure 4.4: Relative L2 Error for DeepONet: Training and testing Relative L2 error
with epoch for DeepONet when considered different sample size in training and with
different trunk and branch sizes. The plots (a), (c), (e), (g) (i) (k) are the cases
corresponding to Case-1 to Case-6 of Table 4.1, respectively, with Loss function (4.24).
Similarly, the plots (b), (d), (f), (h), (j), (l) are the cases corresponding to Case-1 to Case-6
of Table 4.1, respectively, with Loss function (4.25).

99

To understand the effect of normalization of the input and output dataset on the accuracy

of the predicted results, we consider Gaussian normalization of the input and output data,

xnorm(t) =
x(t)− µx(t)

σx(t)
(4.29)

where xnorm(t) are the data after normalization. µx(t) and σx(t) are the ensemble mean and

standard deviation of the training dataset.

The predicted responses are decoded to the actual response with the same mean and

standard deviation. Similar to the DeepONet case discussed above, we study the effect of

normalization with different network sizes and the results are shown in Table 4.2 along with

training and testing loss for only the MSE Loss function (4.24) considered. A ReLU(x)

activation function is considered with learning rate of 10−3 in the first 1000 epochs, then

10−4 in the 1000 to 10000 epochs, 10−5 for rest of the epoch up to 20000 epochs. The other

hyperparameters considered are a dropout rate of 0.01 and a L2 weight regularization with

a coefficient of 10−5 for the branch net. The relative L2 error with epoch for training and

testing dataset are shown in Figure 4.5. It could be observed that the training relative L2

error does not reduce even after the normalization of the input and output.

Table 4.2: Relative L2 error for training and testing dataset when
predicted using different sizes of DeepONet with Gaussian normalization
for input and output.

Case Branch Trunk Sample
Loss (4.24)

Train Test

1 [4000]-[100]×3-[100] [1]-[100]×3-[100] 100 1.847 2.379

2 [4000]-[200]×3-[200] [1]-[200]×3-[200] 100 1.841 2.378

100

0 5 10 15 20

Epoch ×10
3

17.97

19.91

21.86

23.80
×10

−1 (a)

Train(1.847)

Test(2.379)

0 5 10 15 20

Epoch ×10
3

17.92

19.88

21.84

23.80
×10

−1 (b)

Train(1.841)

Test(2.378)

Figure 4.5: Relative L2 Error for DeepONet with Normalization: Relative L2 Error
for training and testing dataset when using different sizes of DeepONet with Gaussian
normalization for input and output. (a) and (b) are Case-1 and Case-2 of Table 4.2,
respectively.

From the above discussion, it could be observed that the DeepONet is not able to predict

the response of the building with sufficient accuracy. As discussed in Section 4.3, one of

the modified versions of DeepONet is the POD-DeepONet, where the trunk net is replaced

by POD modes obtained by proper orthogonal decomposition of the zero-mean training

data (output data). These bases act as the trunk, and the branch is expected to learn the

coefficient of the basis vectors.

Similar to DeepONet, in this case as well, we consider two loss functions given by (4.24)

and (4.25) with different sizes of branch net as shown in Table 4.3. The training of POD-

DeepONet is considered with Adam optimizer for a total of 20000 epochs with ReLU(x)

activation function. To avoid overfitting, we consider L2 weight regularization with coefficient

10−6. The learning rate considered is 10−3 in the first 5000 epochs, then 10−4 in the 5000

to 10000 epochs, and 10−5 for the rest of the epochs up to 20000. The relative L2 error

with epoch is shown in Figure 4.6. It could be observed that the loss function with an

additional penalty given by equation (4.25) could offer better convergence for training cases

compared with the case only considering MSE loss given by equation (4.24). Further, the

relative L2 errors are smaller compared to DeepONet for the training dataset. However,

the performance of the network is poor in the case of the testing dataset shows that 100

training samples could not offer enough information for the target response space, even

101

though there are slight improvements with the increase in network size. The relative L2

errors for training and testing dataset with epoch when using POD-DeepONet with different

activation functions are shown in Figure A.6. The predicted response for the best training

and testing cases are shown in Figure A.8. The performance of POD-DeepONet highly relies

on the quality of the training data. If the training dataset covers a large enough region of

the space of interest, then the POD-DeepONet could have very good performance.

Table 4.3: Relative L2 error for training and testing dataset when
using different sizes of POD-DeepONet.

Case Network Size1 Sample
Loss (4.24) Loss (4.25)

Train Test Train Test

1 [4000]-[50]×3-[100] 100 0.517 1.254 0.213 1.054

2 [4000]-[100]×3-[100] 100 0.469 1.209 0.085 1.047

3 [4000]-[200]×3-[100] 100 0.448 1.213 0.061 1.033

1The notation [N1]-[N2]×3-[N3] represents a neural network with the
input size of N1, 3 hidden layers with N2 neurons in each layer, and
the output dimension of N3 neurons.

0 5 10 15 20

Epoch ×10
3

5.17

13.88
22.58
31.28

×10
−1 (a)

Train(0.517)

Test(1.254)

0 5 10 15 20

Epoch ×10
3

4.69

12.24
19.78
27.33

×10
−1 (b)

Train(0.469)

Test(1.209)

0 5 10 15 20

Epoch ×10
3

4.49

11.71
18.93
26.16

×10
−1 (c)

Train(0.448)

Test(1.213)

0 5 10 15 20

Epoch ×10
3

2.13

11.50
20.86
30.22

×10
−1 (d)

Train(0.213)

Test(1.054)

0 5 10 15 20

Epoch ×10
3

0.85

8.98
17.1225.25

×10
−1 (e)

Train(0.085)

Test(1.047)

0 5 10 15 20

Epoch ×10
3

0.61

7.58
14.5521.51

×10
−1 (f)

Train(0.061)

Test(1.033)

Figure 4.6: Relative L2 error for POD-DeepONet: Relative L2 Error for training and
testing dataset when using POD-DeepONet with different sizes. The plots (a), (c), (e) are
the cases corresponding to Case-1 to Case-3 of Table 4.3, respectively, with Loss function
(4.24). Similarly, the plots (b), (d), (f) are the cases corresponding to Case-1 to Case-3 of
Table 4.3, respectively, with Loss function (4.25).

102

4.5.2. Multi-scale DeepONet

In the previous section, we discussed the results of DeepONet and POD-DeepONet and

observed that the results were not satisfactory. In this section, we will present and discuss

the results of one of the proposed variants of DeepONet, the multi-scale DeepONet.

Table 4.4: Relative L2 Error for Training and Testing Dataset when Using Different Sizes of
Multi-scale DeepONet.

Case Branch1 Trunk2 Sample
Loss (4.24) Loss (4.25)

Train Test Train Test

1 [4000]-[200]×3-[200] [1]-20×{[10]×3}-[200] 100 0.349 1.041 0.304 0.994

2 [4000]-[400]×3-[400] [1]-20×{[20]×3}-[400] 100 0.232 1.005 0.166 1.006

1The notation [N1]-[N2]×3-[N3] represents a neural network with the input size of N1, 3 hid-
den layers with N2 neurons in each layer, and the output dimension of N3 neurons.
2The notation [N1]-20×{[N2]×3}-[N3] represents a neural network with the input size of N1,
and 20 sub-neural networks that contain 3 hidden layers with N2 hidden neurons in each layer.
The output dimension is N3. To keep the number of neurons as the same as previous cases, the
number of hidden neurons for each subnet at each layer are divided by 20, the number of scales.

0.00 1.25 2.50 3.75 5.00

Epoch ×10
3

2.95

9.27

15.58
×10

−1 (a)

Train(0.349)

Test(1.041)

0.00 1.25 2.50 3.75 5.00

Epoch ×10
3

1.99

8.53
15.06

×10
−1 (b)

Train(0.232)

Test(1.005)

0.00 1.25 2.50 3.75 5.00

Epoch ×10
3

2.55

8.46

14.37
×10

−1 (c)

Train(0.304)

Test(0.994)

0.00 1.25 2.50 3.75 5.00

Epoch ×10
3

1.20

5.88
10.55

×10
−1 (d)

Train(0.166)

Test(1.006)

Figure 4.7: Relative L2 Error for Multi-scale DeepONet: Relative L2 Error with
epoch for training and testing dataset when using different sizes of multi-scale DeepONet.
The plots (a) and (b) correspond to Case-1 and Case-2 of Table 4.4, respectively, with loss
function given by equation (4.24). The plots (c) and (d) correspond to Case-1 and Case-2
of Table 4.4, respectively, with loss function (4.25).

103

The architecture of multi-scale DeepONet is discussed in Section 4.4.1 where the fully

connected deep neural network in the trunk net is replaced by a multi-scale neural network

(MscaleDNN). In the present study we consider an MscaleDNN in the trunk with 20 equally

spaced scales [1, 1 + 20π, · · · , 1 + 20nπ, · · · , 1 + 780π]. In the meantime, the time t is scaled

to t ∈ [0, 1]. The activation function considered for all the cases is sin(x), according to the

results in [42, 67]. To avoid overfitting, we consider dropout rate of 0.10 for the trunk net.

The learning rate considered is 3× 10−4 in the first 1000 epochs, then 1.5× 10−4 in the 1000

to 2500 epochs, and 7.5× 10−5 for the rest of the epochs up to 5000. The relative L2 errors

for different network sizes with different training loss functions are shown in Table 4.4. The

relative L2 errors with epoch for training and testing dataset are shown in Figure 4.7. It

could be observed the obtained operator is not desired based on the results of testing cases,

though the MS-DeepONet accelerated the convergence for the training process.

4.5.3. Causality-DeepONet

As discussed in Section 4.2 and Section 4.4.2, both convolution and causality are consid-

ered in the formulation of Causality-DeepONet. In this section, we will present the numerical

results and a comprehensive discussion about Causality-DeepONet for the prediction of the

responses of the problem discussed in Section 4.2.

Similar to the previous numerical examples, in this study as well, we consider the two loss

functions given by equations (4.24) and (4.25) with different network sizes. We also study the

effect of the number of training samples on the accuracy of test results. Further, given the fact

that there are multiple choices of activation functions, we test a few of the popular activation

functions with the same training dataset and the same network sizes. As shown later,

Causality-DeepONet with standard sigmoid activation functions converges much slower. By

defining a custom sigmoid function, the performance is improved. Furthermore, to study

the effect of only causality without convolution, we do a numerical study with causality only

104

and observed that convolution is also an indispensable component of the proposed Causality-

DeepONet. Unlike the previous studies, we provide the initial conditions as additional data

pairs {üg : [0, 0, . . . , 0] , x(0) : 0} in the training dataset to force the Causality-DeepONet

satisfy the initial conditions.

Figure 4.8 and Figure 4.9 show the worst and the best predictions using Causality-

DeepONet for the test dataset. The network is trained using 100 training samples. The

network size considered is [4000]-[120]×2-[120] for branch and [1]-[120]×2-[120] for trunk.

The activation function considered is tanh(x). To avoid overfitting, we consider L2 weight

regularization with a coefficient 1× 10−4 for the branch net. The learning rate considered is

10−3 in the first 2000 epochs, then 10−4 in the 2000 to 10000 epochs, and 10−5 for the rest of

the training up to 20000 epochs. The loss function considered for this case is Loss (4.25). It

could be observed that Causality-DeepONet can predict the responses with good accuracy

for all the cases, as the error for the worst case also is within the satisfactory limit.

105

0 10 20

Frequency (Hz)

10
−3

A
m

p
li
tu

d
e

(a)

0 20 40 60 80

Time (s)

−0.0005

0.0000

0.0005

D
is
p
la
c
e
m

e
n
t
(m

)

(b)

0 20 40 60 80

Time (s)

0.000

0.001

A
c
c
e
le
ra

ti
o
n
s
(g

)

(c)

0 20 40 60 80

Time (s)

1.00
2.00
3.00
4.00

E
rr
o
rs

×10
−2 (d)

True Response Predictions

Figure 4.8: The Worst Case of Predictions of Causality-DeepONet(Relative L2

Error: 0.0042): The worst predictions in testing dataset for the Causality-DeepONet. (a)
The Amplitude of the prediction and true response in Fourier Domain, (b) The prediction
and true response, (c) The corresponding input signals, (d) The relative error equation
(4.27).

106

0 5 10 15 20 25

Frequency (Hz)

10
−1

A
m
p
li
tu

d
e

(a)

0 20 40 60 80

Time (s)

−0.05

0.00

0.05

D
is
p
la
c
e
m
e
n
t
(m

)

(b)

0 20 40 60 80

Time (s)

−0.025

0.000

0.025

A
c
c
e
le
ra

ti
o
n
s
(g

)

(c)

0 20 40 60 80

Time (s)

0.80

1.60

2.40

E
rr
o
rs

×10
−4 (d)

True Response Predictions

Figure 4.9: The Best Case of Predictions of Causality-DeepONet(Relative L2

Error: 0.00025) The best predictions in testing dataset for the Causality-DeepONet. (a)
The Amplitude of the prediction and true response in Fourier Domain, (b) The prediction
and true response, (c) The corresponding input signals, (d) The relative error equation
(4.27).

To study the effect of different network size and loss function ((4.24) and (4.25)), we

consider different network sizes with the same number of training dataset. The activation

function considered for all the cases is tanh(x). To avoid overfitting, we consider L2 weight

regularization for the branch net with a coefficient 10−4. The learning rate considered is 10−3

in the first 2000 epochs, then 10−4 in the 2000 to 10000 epochs, and 10−5 for the rest of the

epochs up to 20000 epochs. The relative L2 errors for both training and testing dataset after

completion of training is shown in Table 4.5 and the corresponding relative L2 error with

epoch is shown in Figure 4.10. It could be observed that the proposed Causality-DeepONet

shows a good accuracy for both loss functions. The MSE loss function given by (4.24) is

more sensitive to the network size as relative L2 errors for both training and testing are

reduced with an increase in network sizes. The weighted loss function given by (4.25) is less

sensitive to the network sizes for this numerical study. Further, it is also observed that the

107

relative L2 error in the case of loss function (4.25) is less than that of relative L2 error in

the case of loss function (4.24). Thus, we conclude that the additional penalty terms in the

loss function removes the bias from the magnitude of output functions/data in the present

study. For the further numerical studies conducted, we consider with loss function given by

(4.25) only.

Table 4.5: Relative L2 error for training and testing dataset when using different sizes
of Causality-DeepONet

Case Branch1 Trunk1 Sample
Loss (4.24) Loss (4.25)

Train Test Train Test

1 [4000]-[30]×2-[30] [1]-[30]×2-[30] 10 0.055 0.089 0.017 0.018

2 [4000]-[60]×2-[60] [1]-[60]×2-[60] 10 0.023 0.040 0.013 0.014

3 [4000]-[90]×2-[90] [1]-[90]×2-[90] 10 0.030 0.051 0.018 0.019

4 [4000]-[120]×2-[120] [1]-[120]×2-[120] 10 0.018 0.033 0.012 0.015

1The notation [N1]-[N2]×2-[N3] represents a neural network with the input size of N1, 2
hidden layers with N2 neurons in each layer, and the output dimension of N3 neurons.

108

0 5 10 15 20

Epoch ×10
3

0.37

3.33

×10
−1 (a)

Train(0.055)

Test(0.089)

0 5 10 15 20

Epoch ×10
3

1.11

10.00
×10

−1 (b)

Train(0.023)

Test(0.04)

0 5 10 15 20

Epoch ×10
3

0.37

3.33

×10
−1 (c)

Train(0.03)

Test(0.051)

0 5 10 15 20

Epoch ×10
3

0.37

3.33

30.00
×10

−1 (d)

Train(0.018)

Test(0.033)

0 5 10 15 20

Epoch ×10
3

0.59

2.96

15.00
×10

−1 (e)

Train(0.017)

Test(0.018)

0 5 10 15 20

Epoch ×10
3

0.59

2.96

15.00
×10

−1 (f)

Train(0.013)

Test(0.014)

0 5 10 15 20

Epoch ×10
3

0.59

2.96

15.00
×10

−1 (g)

Train(0.018)

Test(0.019)

0 5 10 15 20

Epoch ×10
3

0.59

2.96

15.00
×10

−1 (h)

Train(0.012)

Test(0.015)

Figure 4.10: Relative L2 Error for Training and Testing Dataset when Using
Causality-DeepONet with Different Branch and Trunk Sizes: The plots (a), (b),
(c), (d) are the cases corresponding to Case-1 to Case-4 of Table 4.5, respectively, with
Loss function equation (4.24). Similarly, the plots (e), (f), (g), (h) are the cases
corresponding to Case-1 to Case-4 of Table 4.5, respectively, with Loss function (4.25).

Table 4.6: Relative L2 error for training and testing dataset when
using Causality-DeepONet with different activation functions

Case Activation Sample
Relative L2 Error (4.26)

Train Test

1 tanh(x) 10 0.012 0.015

2 sin(x) 10 0.013 0.019

3 Sigmoid(x) 10 0.165 0.143

4 ReLU(x) 10 0.008 0.015

5 Custom Sigmoid (4.30) 10 0.02 0.024

109

0 5 10 15 20

Epoch ×10
3

1.11

10.00

×10
−1 (a)

Train(0.012)

Test(0.015)

0 5 10 15 20

Epoch ×10
3

1.11

10.00

×10
−1 (b)

Train(0.013)

Test(0.019)

0 5 10 15 20

Epoch ×10
3

10.00

90.00

×10
−1 (c)

Train(0.165)

Test(0.143)

0 5 10 15 20

Epoch ×10
3

0.37
3.33

30.00

×10
−1 (d)

Train(0.008)

Test(0.015)

0 5 10 15 20

Epoch ×10
3

1.11

10.00
×10

−1 (e)

Train(0.02)

Test(0.024)

Figure 4.11: Relative L2 Error for Training and Testing Dataset when Using
Causality-DeepONet With Different Activation Functions: The plots (a)-(e)
correspond to cases Case-1 to Case-5 of Table 4.6, respectively.

As discussed earlier, there are multiple choices of activation functions, and we test the

performance of Causality-DeepONet with a few popular activation functions. For this pur-

pose, we consider the same network sizes and training dataset and loss functions (4.25) for

all the cases of activation function considered. The network sizes considered are [4000]-

[120]×2-[120] for branch and [1]-[120]×2-[120] for trunk. To avoid overfitting, we consider

L2 weight regularization for the parameters in branch net with a coefficient 10−4 for case

1,2,4,5 and 5 × 10−6 for case-3 in Table 4.6. The learning rate considered is 10−3 in the

first 2000 epochs, then 10−4 in the 2000 to 10000 epochs, and 10−5 for the rest of the epoch

up to 20000 epochs. As shown in Table 4.6 and Figure 4.11, It could be concluded that

the Causality-DeepONet with tanh(x), sin(x) and ReLU(x) as activation functions obtains

excellent predictions given limited training samples. However, the Causality-DeepONet with

Sigmoid as activation function is not convergent as expected. By shifting the Sigmoid

σ(x) =
1

1 + e−x
− 1

2
(4.30)

could improve the results, as shown in Figure 4.11(e) and case 5 in Table 4.6.

From the above discussion it could be observed that the proposed Causality-DeepONet

is able to predict the response of the problem considered with a good accuracy. We also

110

study the effect of training samples in the accuracy of predicted response. For this purpose

we consider different samples with same network size and other hyperparameters. The

statistical properties of the different training samples are shown in Table ?? in Appendix

A.1. It could be noted that the training samples in datasets Train-I, Train-II, Train-III are

exclusively different. The training samples in datasets Train-II and Train-III are included in

the dataset Train-IV. The training samples in dataset Train-I and Train-IV are included in

dataset Train-V. The training samples in dataset Train-V are included in dataset Train-VI.

We consider a network size of [4000]-[120]×2-[120] for branch and [1]-[120]×2-[120] for

trunk. The activation function considered is tanh(x). To avoid overfitting, we consider

L2 weight regularization with a coefficient 1 × 10−4 for the branch net. The learning rate

considered is 10−3 in the first 2000 epochs, then 10−4 in the 2000 to 10000 epochs, and 10−5

for the 10000 to 20000 epochs. The relative L2 errors of different cases with different sample

in training are shown in Table 4.7 and Figure 4.12. It could be observed that the L2 error is

small even with smaller number of training set and the accuracy increases with the increase

in number of training set, though the improvements in accuracy is limited with increase

in number of samples. On the other hand, it could also be observed that the performance

of Causality-DeepONet of Case-3 in Table 4.7 with 10 training samples that have larger

deviation is poor comparing with Case-4 to Case-6 in Table 4.7. The further observation

from Table 4.7 is that the training relative L2 error is greater than the testing relative L2

error in Case-4 of Table 4.7, given the fact that dataset Train-IV contains Train-II and

Train-III.

111

Table 4.7: Relative L2 error for training
and testing dataset when using
Causality-DeepONet with different
numbers of training samples

Case Sample
Relative L2 Error (4.26)

Train Test

1 7 0.005 0.017

2 8 0.003 0.003

3 10 0.012 0.015

4 20 0.006 0.003

5 50 0.003 0.003

6 100 0.002 0.002

0 5 10 15 20

Epoch ×10
3

0.12
1.11

10.00

×10
−1 (a)

Train(0.005)

Test(0.017)

0 5 10 15 20

Epoch ×10
3

0.12

1.11

10.00

×10
−1 (b)

Train(0.003)

Test(0.003)

0 5 10 15 20

Epoch ×10
3

1.11

10.00

×10
−1 (c)

Train(0.012)

Test(0.015)

0 5 10 15 20

Epoch ×10
3

0.37

3.33

30.00
×10

−1 (d)

Train(0.006)

Test(0.003)

0 5 10 15 20

Epoch ×10
3

0.12

1.11

10.00

×10
−1 (e)

Train(0.003)

Test(0.003)

0 5 10 15 20

Epoch ×10
3

0.12

1.11

10.00
×10

−1 (f)

Train(0.002)

Test(0.002)

Figure 4.12: Relative L2 Error for Training and Testing Dataset when Using
Causality-DeepONet with Different Number of Training Samples: The plots
(a)-(e) correspond to the cases Case-1 to Case-5 in Table 4.7, respectively.

As discussed in Section 4.2, the proposed Causality-DeepONet involves both the phe-

nomenon of causality and convolution. To evaluate the importance of convolution on the

accuracy of prediction, we study the method only with causality but without convolution.

The neural network considered for this purpose has form

Rc(üg)(t) ∼
N∑
k=1

ck

M∑
i=1

σb

⌊ t
h⌋∑

j=1

W k
i,jüg (sj) +

⌊Th ⌋∑
j=⌊ t

h⌋+1

W k
i,j0 +Bk

i

︸ ︷︷ ︸

Bk

σt (wkt+ bk)︸ ︷︷ ︸
Tk

(4.31)

112

The difference between the formulation given by equation (4.31) and the proposed Causality-

DeepONet (4.23) is in the difference in the weights of the branch. In the case of the for-

mulation without convolution, the weights are W k
i,j, whereas in the case of the proposed

Causality-DeepONet (with convolution) the weights are W k
i,⌊Th ⌋−⌊ t

h⌋+j
.

To study the effect of convolution, we compared the results of the problem with Causality-

DeepONet and Causality-DeepONet without convolution. A network size of [4000]-[120]×2-

[120] for branch and [1]-[120]×2-[120] for the trunk are considered in both the cases. The

activation function considered for both cases is tanh(x). To avoid overfitting, we consider L2

weight regularization for the branch net with a coefficient 10−4. The learning rate considered

is 10−3 in the first 2000 epochs, then 10−4 in the 2000 to 10000 epochs, and 10−5 for the rest

of the epoch up to 20000 epochs. The case without convolution is considered to be trained

with 100 training samples. However, the case with convolution is trained with 10 training

samples only. Figure 4.14 shows the relative L2 error for both the cases. It can be observed

that the variant without convolution is not able to provide satisfactory accuracy.

113

N outputs

N outputs

Input

Dim: m

Branch Net

Trunk Net
N∑
k=1

ckBkTk

When t = s1When t = s2 When t = sm

üg (s1)

0

0
...

0

üg (s1)

üg (s2)

0
...

0

. . .

üg (s1)

üg (s2)

üg (s3)
...

üg (sm)

t

Bk

Tk

Figure 4.13: Schematic Diagram of Causality-DeepONet without Convolution: A
schematic of the Causality-DeepONet without convolution showing branch and the trunk
net along with the input data and output. The number of input neurons for the branch is
equal to the number of sensor points in the input signals. The input signals for the branch,
however, are replaced by a zero-padding for the future information.

0 5 10 15 20

Epoch ×10
3

1.11

10.00

×10
−1 (a)

Train(0.012)

Test(0.015)

0 5 10 15 20

Epoch ×10
3

10.00

15.00

22.50

×10
−1 (b)

Train(1.0)

Test(0.999)

Figure 4.14: Relative L2 Error for Training and Testing Dataset when Using
Causality-DeepONet with or without Convolutions: (a) Causality-DeepONet with
convolution with loss function (4.25), 10 training samples. (b) Proposed Net with causality
only with loss function (4.25), 100 training samples.

114

Chapter 5

DeepPropNet - A Recursive Deep Propagator Neural Network for Learning Evolution PDE
Operators

The content in this chapter has been submitted as a preprint in collaboration with Wei

Cai:

Lizuo Liu, and Wei Cai, DeepPropNet–A Recursive Deep Propagator Neural Network for

Learning Evolution PDE Operators, arXiv preprint arXiv:2202.13429 (2022) [40].

5.1. Introduction

Consider an evolution system

∂nu

∂tn
= Lxu+ f (x, t) x ∈ Rd or periodic

u (x, 0) = u0 (x)

u′ (x, 0) = u1 (x)

...

u(n−1) (x, 0) = un−1 (x)

(5.1)

where Lx are linear operators, n = 1 or 2 and u could be a scalar or vector.

To obtain an intuitive sense of the problem to study, we first consider the inhomogeneous

scalar wave (d’Alembert) equation

∂2u

∂t2
− c2 (x, t) ∂

2u

∂x2
= f(x, t), x ∈ R, t ≥ 0, (5.2)

115

with the source term f compactly supported on a bounded space-time domain Q = S× [0, T]

where S ⊂ R. This means that the source term f(x, t) differs from zero only on S and for

the limited time interval [0, T]. When c (x, t) is constant, the solution to the Cauchy problem

(5.2) is given by:

u(x, t) =
1

2
(u0(x− ct)+u0(x+ ct))+

1

2c

∫ x+ct

x−ct

u1(ξ)dξ+
1

2c

∫ t

0

∫ x+c(t+τ)

x−c(t−τ)

f(ξ, τ)dξdτ. (5.3)

When n = 1, the solution u(x, t) to (5.1) can also be formally written as

u(x, t) = etLu0 +

∫ t

0

e(t−s)Lf(x, s)ds (5.4)

= P (u0, f(x, s), 0 ≤ s ≤ t).

The solution u(x, t) can be viewed through an evolution operator P (u0, u1, . . . , un−1,

f(x, s), 0 ≤ s ≤ t), which maps the initial conditions and the source term into the solution

u (x, s) , 0 < s < t. Learning such a map between functions has been actively studied recently

with various types of operator learning methods, including DeepONet [47] as discussed pre-

viously and Fourier Neural Operator [37]. The focus of this chapter is to find an efficient

way to learn this evolution operator with moderate size neural network for large time t.

For a lack of a precise term, borrowing the term from quantum mechanics for the Green’s

function propagator [64], we shall name the operator P as the propagator for the evolution

system. From equation (5.3), it is clear that if we like to train a neural network operator

for large time t, the size of the network will grow for increasing time t. And, the amount of

information to be input into a network will increase dramatically as t grows as well. Thus,

we will propose a recursive propagator formulation for the evolution operator network.

116

First, the solution time interval [0, T] will be divided into N smaller sub-intervals

t0 = 0 < t1 < · · · < ti < · · · tN , ti = i∆t, ∆t = T/N, (5.5)

and for ti ≤ t ≤ ti+1, the solution is given by the propagator with initial condition of the

solution ui and its velocity vi =
.
ui, i.e.,

u(x, t) = P (ui, vi, f(x, s), ti ≤ s ≤ t), (5.6)

where the initial condition ui would have been given by the propagator for the time block

ti−1 ≤ t ≤ ti.

The propagators in (5.6) will be approximated by a single neural network in the form of

DeepONet structure [47] with modification for time causality, namely,

P (ui, vi, f(x, s), ti ≤ s ≤ t) ∼ Pθ(ui, vi, f(x, s), ti ≤ s ≤ t), 0 ≤ i ≤ N − 1. (5.7)

Therefore, the propagator Pθ(u0(x), v0(x), f(x, t)) will be trained to map the initial and

forcing function data into the solution u(x, t), t0 ≤ t ≤ t1. Moreover, this same propagator

Pθ will be trained to approximate the solution for time periodic t1 ≤ t ≤ t2 where the initial

condition at t1 can be computed with the propagator for the previous time interval [t0, t1].

This procedure will be used recursively until we have trained the same propagator for the

last time interval [tN−1, tN]. Taken all together, we arrive at a propagator neural network for

the whole time interval [0, T] where the building block is the single propagator of moderate

size Pθ(u0(x), v0(x), f(x, t)), t0 ≤ t ≤ t1). By controlling the size of the ∆t, the size of this

propagator can be easily controlled for efficiency as well as accuracy. As the evolution PDE

system has to observe the causality of the physical system, the DeepONet framework will be

modified to include the causality, a previously proposed Causality-DeepONet in the study of

117

dynamical system for modeling building response to seismic waves [41] will be used for this

purpose.

The rest of the chapter is organized as follows. In Section 5.2, we will review the Deep-

ONet [41] with time causality and extension with proper orthogonal decomposition (POD)

approach for efficient treatment of spatial dependence of the solution. Section 5.3 will give

the algorithm of the DeepPropNet and numerical results of the DeepPropNet will be pre-

sented in Section 5.4.

5.2. DeepONet with time causality and spatial POD

A Causality-DeepONet was discussed in Chapter 4 to handle the time causality in dy-

namical system and was shown to be very effective to predict the seismic response of building.

Here, we will just recall the final form.

Causality-DeepONet: ADNN representation of an operator G(f)(t) for any continuous

function f(t) with retarded response for t ∈ K2 = [0, T] ⊂ R is given as

G(f)(t) ∼ Gθ (f) (t) =
K∑
k=1

I∑
i=1

cki σb

⌈ t
h⌉∑

j=1

ξk
i,m−⌈ t

h⌉+j
f (sj)

 · σtrk (ωk · t+ ζk) , (5.8)

where {sj}mj=1 ⊂ K1 = [0, T] ⊂ X , coefficients θ = {cki , ξkij, ωk, ζk, j = 1, . . . ,
⌈
t
h

⌉
, i =

1, . . . , I, k = 1, . . . K}-all independent of continuous function f ∈ V ⊂ C(F) and t.

To handle the spatial dependence of solution u(x, t) for the evolution system, we will

adopt the idea of separation of variables and assume the spatial coefficients to be some

given basis functions, like sinusoidal or polynomials, which correspond to different boundary

conditions. As for the problem discussed in this chapter, since the boundary condition is

periodic, the basis functions will be sinusoidal.

118

Indeed, there are many other ways to construct the spatial basis. As shown in POD-

DeepONet [48], the authors assumed that there is a set of global basis which could be found

by singular value decomposition(SVD) or proper orthogonal decomposition(POD) of the

targeted output of training data. The trunk net will be replaced by these basis functions,

then the neural network is learning the mapping between input functions to the coefficients

for different basis functions, or singular values if we consider SVD as an example. Thus, the

quality of the training data could be the Achilles’ heel of POD-DeepONets. As discussed

in [3], the approximation error has order O
(
N− 1

2

)
if considering doing POD/SVD on both

the input functions and output functions and the mapping between the coefficients is learned,

where N is the number of training cases.

Furthermore, as for a problem with causality, The POD-DeepONet’s philosophy guides

us either do the SVD for the whole outputs regardless of the difference of temporal variables

and spatial variables, or do specific SVD time step by time step to keep the causality for

which the basis for all time steps are required, or consider solutions at each time step for each

case as an independent target and find a common basis with respect to spatial dimensions

for all time steps & all cases. These ideas either burns the high memory cost, or destroys the

causality in a brutal-force way. Therefore, a modification of POD-DeepONet for problems

with causality is crucial. As mentioned before, we follow the idea of POD-DeepONet but

only construct the basis of spatial domain explicitly and utilize the Causality-DeepONet to

handle the temporal-dependent coefficients of each spatial basis.

In the following, we consider the solution with form

u (x, t) = ψ0 (t) +
M∑

m=1

ψm (t) cos (mπx) + ϕm (t) sin (mπx) , (5.9)

which is the Fourier decomposition with respect to the spatial coordinates.

119

We modify the Causality-DeepONet (5.8) by

P
(−→
f
)
(x, t) ∼ Pθ

(−→
f
)
(x, t) =

[−→σ br

(−→
f
)
⊙−→σ trk (t)

]
· −→σ basis (x) , (5.10)

where ⊙ is the elementwise multiplication, · is the inner product,

−→
f (s) = [a0 (s) , a1 (s) , b1 (s) , . . . , aN (s) , bN (s)] ,

−→σ br,i

(−→
f
)
= σb

⌈ t
h⌉∑

j=1

ξ0
i,m−⌈ t

h⌉+j
a0 (sj)

+
N∑

n=1

⌈ t
h⌉∑

j=1

(
ξn,a
i,m−⌈ t

h⌉+j
an (sj) + ξn,b

i,m−⌈ t
h⌉+j

bn (sj)

) ,

(5.11)

−→σ trk,i (t) = σtrk (ωi · t+ ζi) , (5.12)

−→σ basis (x) = {1, cos(πx), sin(πx), · · · , cos(πBx), sin(πBx)}. (5.13)

a0 (s), . . . an (s) and b1 (s) , . . . , bn (s) are the time-dependent coefficients of the Fourier

decomposition in spacial domain with respect to the right-hand side f (x, t).

Note the Causality DeepONet with POD (5.10) automatically satisfies the initial condi-

tion,

u (x, 0) = 0. (5.14)

Thus, by multiplying (t− t0)i−1, it satisfies the initial conditions,

∂i−1u

∂ti−1
(x, 0) = 0, i = 1, 2. (5.15)

120

So we could incorporate the non-zero initial conditions by adding several extra terms

(t− t0)j uj (x), j = 0, . . . , n− 1, i.e., the Causality-DeepONet (5.10) is modified by

Pθ

(−→
f
)
(x, t,−→u0 , . . . ,−−→un−1) =

[
(t− t0)n−1−→σ br

(−→
f
)
⊙−→σ trk (t)

+
n−1∑
j=0

(t− t0)j −→uj

]
· −→σ basis (x) ,

(5.16)

where −→uj are the coefficients of initial conditions obtained by

−→uj ,2k+1 =

∫ ∞

−∞
uj (x) sin (kπx) dx,

−→uj ,2k =
∫ ∞

−∞
uj (x) cos (kπx) dx

k = 1, . . . , B, j = 0, . . . , n− 1, (5.17)

for k = 0,

−→uj 0 =
1

2

∫ ∞

−∞
uj (x) dx. (5.18)

The activation functions of σb and σtrk are tanh (x). The modes number B in the CPOD-

DeepONet(Causality-DeepONet with POD) (5.16) is not necessarily equal to the modes of

the input
−→
f , but needs to be greater than or equal to the number of given modes M of

the solution (5.9). The algorithm of the CPOD-DeepONet is shown in Algorithm 4. To

obtain the memory efficiency, we will do outer product rather than computing elementwise

as shown in the last line of algorithm following the fact that equation (5.9) has separation

of variables,. This is one of the cruxes to handle higher dimensional problem.

Loss function Given batch size N for the training process and the total number of the

test cases N , the loss function is defined as

Loss (θ) = 1

NNtNx

N∑
i=1

Nt∑
j=1

Nx∑
k=1

(
Pθ

(−→
f
)
(xk, tj,

−→u0 , . . . ,−−→un−1)− yijk
)2
, (5.19)

where Nt is the number of time step and Nx is the number of points in the x direction.

121

Algorithm 4 The algorithm of Causality POD-DeepONet

Input: t, x, [a0 (s) , a1 (s) , b1 (s) , . . . , aN (s) , bN (s)], −→u0 , . . . ,−−→un−1

Output: u (x, t)

1: yt ← Gθ ([a0 (s) , a1 (s) , b1 (s) , . . . , aN (s) , bN (s)]) (t) ▷ Gθ is the Causality-DeepONet.
The output yt has size of [batchsize× Nt× NBx]

2: yx ← [1, cos (2πx) , sin (2πx) , . . . cos (2Mπx) , sin (2Mx)] ▷ The output yx has size of
[batchsize× Nx× NBx]

3: yi ←
∑n−1

j=0
−→uj (t− t0)j ▷ The initial conditions

4: u (x, t)← Einsum (’bxn,btn→ bxt’, yx, yt) + yi ▷
The Einsum is the Einstein summation convention, (’bxn,btn→ bxt’) means the index
change in the Einstein summation convention.

5.3. A recursive DeepPropNet for learning evolution PDE operators

Following the semigroup formulation of evolution PDEs, the DeepPropNet computes

block by block along the time direction recursively. The initial conditions for each block

together with the forcing functions for that time block will be as input for DeepPropNet

as presented in last section. The DeepPropNet is constructed recursively with a CPOD-

DeepONet to learn the PDE evolution operator over long time interval.

• Recursive Formulation of DeepPropNet: To predict the time series in the time block

[t0, t1] at the beginning, the Deep Propagator(DeepPropNet) is to learn the mapping

Pθ : {[u0(x), . . . , un−1 (x)], f (x, s) , t0 ≤ s ≤ t} 7→ u (x, t) , t0 ≤ t ≤ t1, x ∈ R, (5.20)

which is exactly a CPOD-DeepONet with to solve the PDE on a small time block [t0, t1].

Once the Deep Propagator is learned, the wave field in the next time block [t1, t2] could

be predicted by the Deep Propagator by using the initial propagator as follows

u (x, t) = Pθ

[
Pθ (x, t1) , Ṗθ (x, t1) , . . . ,P(n−1)

θ (x, t1) , f (x, s) , t1 ≤ s ≤ t
]
, (5.21)

122

where the initial condition is replaced by the prediction of DeepPropNet at time t1, and

t1 ≤ t ≤ t2, x ∈ R.

The resulting propagator for the time block [t1, t2] then will be again to be used to

provide the initial condition for t = t2 and the same initial propagator network is applied

for prediction u (x, t) in the time period [t2, t3].

This procedure can be carried on recursively until the whole time period [0, T] is covered,

a global propagator network is thus obtained. Since it is like the initial propagator solver

which tracks the waves and propagates with the solutions along the time direction and the

propagator itself is a deep neural network, we call it Deep Propagator(DeepPropNet).

This is another crux to solve high dimensional problem. As illustrated in Section 5.1, the

input size could explode due to the global dependence of source term, by solving it block

by block recursively combining with the memory-efficient trick from separation of variables,

learning high dimensional evolution operators is manageable now.

Loss function Similar to the loss function in Section 5.2, we will define the loss function

of DeepPropNet block by block in time. Given a batch size N for training process, number

of blocks Nb and the total number of the test records N , the loss function is defined as

Loss (θ) = 1

NNtNx

N∑
i=1

Nb∑
n=1

Nt,n+1∑
j=Nt,n

Nx∑
k=1(

Pθ

(−→
f
)(

xk, tj,Pθ

(
xk, tNt,n

)
, Ṗθ

(
xk, tNt,n

)
, . . . ,P(n−1)

θ

(
xk, tNt,n

))
− yijk

)2
,

(5.22)

where the n-th block starts from tNt,n but ends in tNt,n+1 , Nx is the number of points on x

direction, and Nt =
∑Nb

n=1Nt,n. The inputs
−→
f for the initial conditions P(i−1)

θ

(
xk, tNt,n

)
are

omitted for simplicity of notations.

123

5.3.1. The evaluation of initial conditions

To propagate to the next time block from the initial time block, we need to evaluate the

initial condition at the next time block, according to the recursive formulation In this section

we discuss the method to estimate the initial conditions for every time blocks. Consider a

2nd Order Evolution PDE Operator as an example, Ṗθ (t) need to be evaluated, and we

notice there is an implicit time dependence in the branch net. The auto differentiation with

respect to t in the trunk net is inaccurate, thus we introduce several alternatives.

• Finite Difference for the Computation of Derivatives To estimate the first order

derivative Ṗθ (t1), we consider the 4th order approximation by finite difference

Ṗθ (t1) ≈
1

h

[
25

12
Pθ (t1) − 4Pθ (t1 − h)

+ 3Pθ (t1 − 2h)− 4

3
Pθ (t1 − 3h) +

1

4
Pθ (t1 − 4h)

]
+O

(
h4
)
.

(5.23)

• Least Squares Approximation for the Computation of Derivatives On the other

hand, we could also estimate the derivatives by using the least squares approximations with

polynomials to the predictions. Assume the outputs of the neural networks in one time block

are listed as [Pθ (t0) ,Pθ (t1) , . . . ,Pθ (tM)], we could consider using the q-th order polynomials

P̃q (t) =

q∑
i=0

αit
i, (5.24)

to interpolate the predictions by least squares approximation, i.e., minimizing the L2 error

L (α0, α1, . . . , αq) =
M∑
j=k

(
Pθ (tj)− P̃q (tj)

)2
. (5.25)

124

Note that it is not necessary to set k to be the starting point of the time blocks. Thus, we

could estimate the derivatives of predictions at end points tM

∂Pθ

∂t
(tM) ≈ ∂P̃n

∂t
(tM) =

q∑
i=1

iαit
i−1
M , (5.26)

Loss Function To obtain higher accuracy of the derivatives for methods of finite difference

and least squares approximation, other regularization in loss function is required. We need

to apply a procedure as what PINNs did to train the DeepPropNet by using the following

residue of the PDEs and the corresponding initial conditions in the next time block as further

regularization for the loss function

Lpinn =
1

NNtNx

N∑
i=1

Nb∑
n=1

Nt,n+1∑
j=Nt,n

Nx∑
k=1(

Pθ

(−→
f
)(

xk, tj,Pθ

(
xk, tNt,n

)
, Ṗθ

(
xk, tNt,n

)
, . . . ,P(n−1)

θ

(
xk, tNt,n

))
− yijk

)2
+ β

∫
Ω

∥LtPθ [u0,n, u1,n, f]− LxPθ [u0,n, u1,n, f]− f∥2dxdt

+ γ

∫
x∈R
∥Pθ [u0,n, u1,n, f] (t0, x)− u0,n+1∥2

+ ∥∂tPθ [u0,n, u1,n, f] (t0, x)− u1,n+1 (x) ∥2dx,
(5.27)

where β and γ are the penalty terms, u0,n, u1,n, n = 1, . . . Nb−1 are the exact initial conditions

for the n-th time block. The derivative LtPθ is obtained by

P̈θ (t) ≈
1

h2

[
− 1

12
Pθ (t− 2h) +

4

3
Pθ (t− h)−

5

2
Pθ (t) +

4

3
Pθ (t+ h)− 1

12
Pθ (t+ 2h)

]
+O

(
h4
)

(5.28)

and

∂2Pθ

∂t2
(tM) ≈ ∂2P̃n

∂t2
(tM) =

q∑
i=2

i (i− 1)

2
αit

i−2
M . (5.29)

for finite difference and least squares approximation, respectively.

125

• Recursive Formulation with the Extra Frist Order Term: Those methods could

predict relative accurate first order derivative for noisy data, but we need higher accuracy of

prediction to iterate the DeepPropNet. Thus, we consider training an extra DeepPropNet

to predict the −→v d at the end point of each time block. We could define u1(x, t) = ut(x, t) as

the DeepPropNet framework, where

u1(x, t) = {−→v d−1 +
−→σ br,c (σ1(f1), σ2(f2), . . . , σm(fm))⊙−→σ trk,c (t)} · −→σ basis (x) . (5.30)

Loss function To train u1(x, t), further assumption that ut(x, t) is known during the

training process is needed. Loss for u1(x, t) is defined as

Loss = 1

NNtNx

N∑
i=1

Nb∑
n=1

Nt,n+1∑
j=Nt,n

Nx∑
k=1

(u1 (xk, tj)− ut,ijk)2 . (5.31)

To predict the wave field in the time block [t0, t1] at the beginning, the two Deep Prop-

agators are to learn the mapping

Pθ :
{
[u0 (x) , . . . un−1 (x)],

−→
f (t)

}
7→ u (x, t) t0 ≤ t ≤ t1, x ∈ R. (5.32)

and

Qθ :
{
[u1 (x) , . . . un−1 (x)],

−→
f (t)

}
7→ ut (x, t) t0 ≤ t ≤ t1, x ∈ R. (5.33)

Once the Deep Propagator is learned, the wave field in the next time block [t1, t2] could be

predicted by the Deep Propagator by using the initial propagator as follows

u (x, t) = Pθ

[
Pθ (t1) ,Qθ (t1) ,

−→
f (t)

]
(x) t1 ≤ t ≤ t2, x ∈ R, (5.34)

126

where the initial conditions are replaced by the predictions of DeepPropNet Pθ and Qθ at

time t1. In the meantime, the ut is predicted by

ut (x, t) = Qθ

[
Qθ (t1) ,

−→
f (t)

]
(x) t1 ≤ t ≤ t2, x ∈ R. (5.35)

5.3.2. Normalization and penalties

In this section, we introduce the 2 strategies utilized in this chapter to improve the

performance of our method.

Normalization of the Inputs and Outputs According to the results of the paper [41], we

set the activation function for all our cases as tanh(x). However since there are O
(
JK Nt

Nb

)
inputs for both case 1 and case 2 in appendix B, it may cause the outputs of the first layer to

be all 1. To avoid the gradient vanishing caused by the magnitude of the inputs, we shrink

the inputs to a reasonable scale by normalization,

−→
f s =

−→
f

J3Kπ2
. (5.36)

In the meantime, A further normalization to the output could assure the Causality DeepONet

with POD captured the temporal feature fast and accurately,

Pθ

(−→
f s

)
(x, t,−→u0 , . . . ,−−→un−1) =

[
C (t− t0)n−1−→σ br

(−→
f s

)
⊙−→σ trk (t)

+
n−1∑
j=0

−→uj (t− t0)j
]
· −→σ basis (x) ,

(5.37)

where C ∼ O(JK). It could be noted that this is equivalent to draw the parameters of last

layer of CPOD-DeepONet from a distribution with large deviation during the initialization

phase of neural network.

127

Extra Penalty for training During backpropagation, the gradient of the loss with respect

to the parameters θ of neural network should satisfy

∇θL = C (t− t0)n−1 1

IJ

I∑
i=1

J∑
j=1

[
Pθ

(−→
f
)
(xi, tj,

−→u0 , . . . ,−−→un−1)− u (xi, tj)

]

×−→σ basis (xi) · ∇θ

[
−→σ br

(−→
f
)
⊙−→σ trk (tj)

]
.

(5.38)

When n = 2 and (t−t0)n−1 is small, we should have∇θL ∼ O
(
(t− t0)n−1) which could cause

the poor prediction near the initial conditions. To avoid such issue, we consider applying

penalty terms with O
(

1
(t−t0)

n−1

)
in the Loss Function

L(x, u; θ) = 1

(t− t0)
n−1

1

IJ

I∑
i=1

J∑
j=1

[
Pθ

(−→
f
)
(xi, tj,

−→u0 , . . . ,−−→un−1)− u (xi, tj)

]2
(5.39)

5.4. Numerical results

In this section, we present numerical results to demonstrate the effectiveness of the pro-

posed CPOD-DeepONet and DeepPropNet. We first consider the nonhomogeneous heat

equation with variable coefficients on free space. Then, we consider the nonhomogeneous

wave equation with variable coefficients on free space. The cases are constructed given exact

solutions. For each case, the variable coefficients are given, thus the right-hand side are

determined by the exact solutions and variable coefficients. The time-dependent coefficients

for the right hand side term are the inputs for DeepPropNet and the Causality DeepONet

with POD. The specific forms of the exact solutions are given in the Appendix B.

128

To evaluate the training process, the mean of the relative L2 error is considered. The

relative L2 error in a complete epoch is defined as

LR
train =

1

B

B∑
k=1

1

N

N∑
i=1

∥∥∥Pθ(k)

(−→
fi

)
(x, t)− uik (x, t)

∥∥∥
2

∥ui (x, t)∥2
, (5.40)

where B is the number of batches, θ(k) means the parameters of neural network at k-th

batch. Similarly, we define the relative L2 error for the testing dataset

LR
test =

1

N

N∑
i=1

∥∥∥Pθ

(−→
fi

)
(x, t)− ui (x, t)

∥∥∥
2

∥ui (x, t)∥2
. (5.41)

Here, N is the total number of test cases. The evolutions of training and testing relative L2

error are plotted in the Appendix B.

5.4.1. Results of CPOD-DeepONet

In this section, we present the results of CPOD-DeepONet on both cases mentioned in

the Appendix B. The network structures are the same for both cases, with 4 hidden layers

and 100 hidden neurons in the trunk net and 4 hidden layers and 100 hidden neurons in the

branch net. The input size of the branch net is 800 and the input size of the trunk net is 1.

The learning rate considered is 10−4 for the first 30 epochs and then 5 × 10−5 for 30 to 50

epochs, and then 2.5× 10−6 after 50 epochs.

Results of Case 1 The inputs for the CPOD-DeepONet are the coefficients of basis func-

tions of x in (2.8). The shape of the inputs depends not only on J,K, but also on ν, δ. In this

case we assume J = 3, K = 4, ν = 2, δ = 3 with 800 equal spaced time steps, and there are

800 random sampled points on x-direction for each time step. Figure 5.1 shows the results

after training 100 epochs.

129

Figure 5.1: The comparison between exact solutions (left) and predictions (middle) of
CPOD-DeepONet after training 100 epochs for the nonhomogeneous heat equation with
time-independent variable coefficient case, where J = 3, K = 4, ν = 2, δ = 3. The right
plots shows the relative error. 1000 training data will be updated for every 50 epochs.
There are 800 time steps. The maximum relative error is 6%.

Results of Case 2 Similar to case 1, the inputs for the CPOD-DeepONet are the coefficients

of basis functions of x. The shape of the inputs depends not only on J,K, but also on n.

In this case we assume J = 3, K = 4 and n = 5 with 800 equal spaced time steps, and

there are 800 random sampled points on x-direction for each time step. There are two initial

conditions are considered instead. Figure 5.2 shows the results after training 500 epochs.

Figure 5.2: The comparison between exact solutions and the predictions of
CPOD-DeepONet after training 500 epochs for the time-independent variable coefficient
wave equation case, where J = 3, K = 4, n = 5. 1000 training data will be updated for
every 50 epochs. There are 800 time steps. The maximum relative error is 11%. Left: the
exact solution. Middle: the predicted solution of CPOD-DeepONet. Right: the relative
error.

130

5.4.2. Results of Deep Propagator

In this section, we present the results of Deep Propagator for both the nonhomogeneous

heat equation with variable coefficients and the nonhomogeneous wave equation with variable

coefficients mentioned in Appendix B. The network structures are the same for both cases,

with 4 hidden layers and 100 hidden neurons in the trunk net and 4 hidden layers and 100

hidden neurons in the branch net. The number of blocks considered is 8, thus the input size

of the branch net is 100 and the input size of the trunk net is 1. The learning rate considered

is 10−4 for the first 30 epochs and then 5 × 10−5 for 30 to 50 epochs, and then 2.5 × 10−6

after 50 epochs.

Results of Case 1 The predictions of intitial conditions are exactly the last predictions

at one time block for this case. The settings for J,K, δ, ν and the number of points on

x-direction are the same as in Section 5.4.1. Figure 5.3 shows the comparison between

predictions from Deep Propagator after training 100 epochs and exact solutions.

Figure 5.3: The comparison of exact solutions with predictions of Deep Propagator after
training 100 epochs, given data of the first time block for the time-independent variable
coefficient nonhomogeneous heat equation case, where J = 3, K = 4, ν = 2, δ = 3. 1000
training data will be updated for every 50 epochs. The DeepPropagator propagates 8 time
blocks, the time scale for each time blocks is 0.25. There are 200 time steps for each time
block. The current DeepPropagator contains 10 modes. The maximum relative error is 8%.
Left: the exact solution. Middle: the predicted solution of Deep Propagator. Right: the
relative error.

Next, we show the comparison of predictions for different methods to compute the initial

conditions for case 2. The settings for J,K, n and the number of points on x-direction are

131

the same as in Section 5.4.1. The DeepPropNet to approximate u (x, t) has same shape for

three different scenarios.

Deep Propagator with Finite Difference for Initial conditions The predictions of

initial conditions are obtained by the finite difference method mentioned in Section 5.3.1.

Figure 5.4 shows the comparison between predictions from Deep Propagator after training

1000 epochs and exact solutions. It could be noted that the training data are all the 8 time

blocks in this case.

Figure 5.4: The comparison of exact solutions and predictions after training 1000 epochs,
given data of the 8 time blocks for the time-independent variable coefficient wave equation
case, where J = 3, K = 4, n = 5. The initial conditions are computed by finite difference.
1000 training data will be updated for every 50 epochs. The DeepPropagator propagates 8
time blocks, the time scale for each time blocks is 0.125. There are 100 time steps for each
time block. Left: the exact solution. Middle: the predicted solution of Deep Propagator
with respect to u. Right: the relative error. The maximum relative error for this case is
160%.

Deep Propagator with Least Squares Interpolations for Initial conditions The

predictions of initial conditions are obtained by interpolations with respect to the predictions

of u for each time block and u̇ at the last time step for current time block is obtained by taking

derivatives with respect to t for the interpolations in this case, as discussed in Section 5.4.1.

Figure 5.5(middle) shows the predictions of Deep Propagator after training 1000 epochs. It

could be noted the training data in all 8 time blocks are fed to train deep propagator in this

case.

132

Figure 5.5: The comparison of exact solutions and predictions after training 1000 epochs,
given data of the 8 time blocks for the time-independent variable coefficient wave equation
case, where J = 3, K = 4, n = 5. The initial conditions are computed by least squares
interpolations. 1000 training data will be updated for every 50 epochs. The
DeepPropagator propagates 8 time blocks, the time scale for each time blocks is 0.125.
There are 100 time steps for each time block. Left: the exact solution. Middle: the
predicted solution of Deep Propagator with respect to u. Right: the relative error. The
maximum relative error for this case is 30%.

Deep Propagator with Extra DeepPropNet for Initial conditions The predictions

of initial conditions are exactly the predictions of u at the last time step and the predictions

of u̇ at the last time step for current time block, respectively. Figure 5.6 shows the results

of training 1000 epochs. It could be noted that the training data is only the first time block

in this case.

Figure 5.6: The comparison of exact solutions and predictions after training 1000 epochs,
given data of the 8 time blocks for the time-independent variable coefficient wave equation
case, where J = 3, K = 4, n = 5. The initial conditions are obtained by the predictions of
two deep propagators. 1000 training data will be updated for every 50 epochs. The
DeepPropagator propagates 8 time blocks, the time scale for each time blocks is 0.125.
There are 100 time steps for each time block. Left: the exact solution. Middle: the
predicted solution of Deep Propagator with respect to u. Right: the relative error. The
maximum relative error for this case is 6%.

133

Chapter 6

Conclusions

In this thesis, we presented a method to accelerate the convergence of neural network

learning oscillatory solutions, several linearized learning schemes for neural network solving

stationary Navier-Stokes equations, a variant of DeepONet for time-dependent problems,

and a corresponding time-causal framework for solving time-dependent partial differential

equations.

In Chapter 2, we have proposed a phase shift DNN to learn high frequency information by

using frequency shifts to convert the high frequency learning to low frequency one. As shown

by various numerical tests, this approach increases dramatically the capability of the DNN

as a viable tool for approximating high frequency functions and solutions of high frequency

wave differential and integral equations in inhomogeneous media.

The optimization problem with the training of DNNs is complex and not much under-

stood during the search of parameter spaces of the DNNs for a local or global minima. The

specific structure of the proposed PhaseDNN seems to provide a favorable parameter struc-

ture (inspired by the mathematical or physical properties of the solutions), within which

the optimization can be carried out much more efficiently than the common fully connected

DNNs can provide. Moreover, our numerical results also show that the PhaseDNN with in-

tegral equation formulation of the high frequency wave problems gives better accuracy than

that with differential equations. All these issues will be the subject of future theoretical

analysis of the PhaseDNN. Also for future work, we will further develop the PhaseDNN to

handle the high dimensionality problems from random inhomogeneous media in wave prop-

134

agation. The other interesting extension is to expect the neural network to capture the

frequency information automatically.

In Chapter 3, we have proposed four linearized learning schemes to solve the stationary

highly oscillatory Navier-Stokes flows with multiscale deep neural networks and showed the

acceleration of convergence of the schemes are substantial, which demonstrate the capability

of the multiscale deep neural networks and the effectiveness of the linearized schemes to

solve the nonlinear Navier-Stokes equations. These schemes shed some light on the practical

applications of neural network machine learning algorithms to the nonlinear equations, which

are time-consuming using traditional finite element methods. The deep neural network based

methods offer an alternative that doesn’t require meshes and has no need to solve large-scale

linear systems, as in traditional numerical methods.

There are more works to be done for these linearized learning methods, among them the

most important is to understand the convergence property of these schemes. The applications

of these schemes to other nonlinear PDEs will also be considered. Another challenging work

is to consider the time dependent Navier-Stokes equation, which will be explored in a future

work. Additionally, exploring the extension of the presented method to the 3D Navier-Stokes

equation will be a topic for future research.

In Chapter 4, we have studied how to improve the accuracy of DeepONet for causal oscil-

latory linear dynamical systems. Two new variants of DeepONet, the multi-scale DeepONet

and the Causality-DeepONet are proposed. As an application, we considered the problem

of learning the mapping between earthquake ground accelerations and building’s causal re-

sponses, which are both highly oscillatory. In the multi-scale DeepONet, multi-scale neural

networks are used in the trunk net. Meanwhile, the Causality-DeepONet includes both

causality and convolution as specific domain knowledge in its design. Though the multi-

scale DeepONet improved the training of the seismic response operator, it failed to give

satisfactory prediction results in the test cases. However, the Causality-DeepONet is able

135

to provide accurate predictions in the test cases as well. We have also studied the effect of

the size of networks, the number of training samples, and the type of activation functions

on the accuracy of prediction of responses using Causality-DeepONet. It is found that the

proposed Causality-DeepONet can provide good accuracy in the prediction of response of

the problem considered.

For future work, the Causality-DeepONet for nonlinear problems such as nonlinear dy-

namics, nonlinear electrical circuits etc, may be considered. Also future studies should in-

clude establishing a solid mathematical foundation for the Causality-DeepONet by extending

the work of [11] to the proposed framework of the Causality-DeepONet.

In Chapter 5, we proposed the recursive way to construct DeepPropNet - a DNN propa-

gator for evolution system over large time period by using a single building block propagator

over a small time period, thus reducing the overall complexity and size of the neural network

required. For the design of the DeepPropNet, we also extended the Causality DeepONet

with POD with specific basis to alleviate the memory burden for large spatial variables. By

separately handling the spatial and temporal domain, we gain not only the memory efficiency

but also the training boost. The preliminary numerical results have shown the feasibility of

this recursive DeepPropNet in predicting the time evolution of wave propagations.

The proposed DeepPropNet here is based on a supervised learning approach where the

data can be generated by a separate numerical method or observation data or analytical

solution when available. In theory, we could also use an unsupervised learning procedure to

train the DeepPropNet by using the following residual of the PDEs as the loss function.

Loss =
∫
Ω

|| LtPθ [u0, v0, f]− LxPθ [u0, v0, f]− f ||2 dxdt. (6.1)

136

It is also natural to extend this framework to learn high frequency problems, since the

spatial oscillating terms will be handled explicitly by the basis, but the temporal oscillating

terms could be handled by the Causality DeepONet, based on our experience in the work [41].

Future work will be conducted on more complex evolution systems, the unsupervised

training, training over partial time domain, highly oscillating problems and higher dimen-

sional problems as well as initial boundary value problems.

137

Appendix A

Appendix for Causality DeepONet

A.1. Additional tables In Table A.1 and A.2, we show the statistical properties of the

training and testing dataset. The total number of testing dataset considered is 44 earthquake

ground accelerations. These test data are considered for all the numerical examples. It is

also important to note that in the case of training, dataset Train-I, Train-II and Train-III

are completely different dataset. Training dataset Train-I is not included in training dataset

Train-II, similarly, training dataset Train-I and Train-II are not included in training dataset

Train-III. However, training dataset Train-IV includes training dataset Train-III and training

dataset Train-V includes training dataset Train-IV as well. The training dataset Train-VI

includes all the training data I to V. The training dataset Train-VI is used for the training of

DeepONet, DeepONet with Gaussian Normalization, POD-DeepONet, MSDeepONet. The

training dataset Train-I to Train-VI are the data used for the discussion in Section 4.4.2.

138

Table A.1: Properties of the earthquake records considered for training and testing of
neural networks.

Case Test Train-I Train-II Train-III

Samples 44 7 8 10

Mag.

Min 4.30 6.30 4.90 4.92

Max 7.90 7.62 7.62 7.62

Mean 6.58 7.29 6.48 7.07

SD 0.82 0.46 1.04 0.83

PGA

max|üg|

Min 0.00103 0.00966 0.00499 0.00245

Max 0.35726 0.14425 0.11854 0.31313

Mean 0.05298 0.05915 0.05262 0.10973

SD 0.06428 0.04255 0.03863 0.11792

Max üg

Min 0.00103 0.00966 0.00498 0.00245

Max 0.35726 0.14425 0.09805 0.30114

Mean 0.04883 0.05610 0.04460 0.10440

SD 0.06199 0.04148 0.03279 0.11204

Min üg

Min -0.27870 -0.13713 -0.11854 -0.31313

Max -0.00095 -0.00671 -0.00499 -0.00233

Mean -0.04820 -0.05413 -0.05262 -0.09849

SD 0.05502 0.04177 0.03863 0.10559

Energy

∥üg∥2

Min 0.00020 0.00632 0.00188 0.00043

Max 3.22599 2.47209 2.05953 7.31542

Mean 0.38912 0.57996 0.44703 1.66238

SD 0.71029 0.81379 0.65613 2.40233

139

Table A.2: Properties of the earthquake records considered for training and testing of
neural networks.

Case Train-IV Train-V Train-VI

Samples 20 50 100

Mag.

Min 4.90 4.90 4.70

Max 7.62 7.62 7.62

Mean 6.85 7.01 7.10

SD 0.94 0.83 0.82

PGA

max|üg|

Min 0.00245 0.00119 0.00119

Max 0.31313 0.31313 0.31313

Mean 0.08027 0.06972 0.07277

SD 0.09269 0.07151 0.06338

Max üg

Min 0.00245 0.00118 0.00118

Max 0.30114 0.30114 0.30114

Mean 0.07439 0.06440 0.06661

SD 0.08818 0.06795 0.06008

Min üg

Min -0.31313 -0.31313 -0.31313

Max -0.00233 -0.00119 -0.00112

Mean -0.07365 -0.06312 -0.06791

SD 0.08314 0.06391 0.05899

Energy

∥üg∥2

Min 0.00043 0.00016 0.00016

Max 7.31542 7.31542 7.31542

Mean 1.03450 0.77436 0.82185

SD 1.86043 1.34532 1.22943

A.2. Additional figures

A.2.1. A typical ground acceleration due to earthquake before and after processing

Figure A.1(a)-(b) show ground acceleration due to earthquake 14383980 before and after

processing. The ground acceleration record are recorded with δt = 0.005 sec. The signal

is passed through a Butterworth filter. It is also important to note that the length of the

140

signal is 200 second which is much higher than the other signal considered. Thus, we have

not considered initial 23.56 second acceleration, and we have not considered the earthquake

after 103.56 sec. The acceleration removed accounts for 0.7% of total energy.

0 50 100 150 200

Time (s)

−0.025

0.000

0.025

A
c
c
e
le
ra

ti
o
n
s
(g

)

PGA

(a)

0 10 20 30 40 50

Frequency (Hz)

10
−2

A
m

p
li
tu

d
e

(b)

0 20 40 60 80

Time (s)

−0.025

0.000

0.025

A
c
c
e
le
ra

ti
o
n
s
(g

)

PGA

(c)

0 5 10 15 20 25

Frequency (Hz)

10
−2

10
0

A
m

p
li
tu

d
e

(d)

Figure A.1: Ground Acceleration: The ground acceleration due to 14383980 earthquake
recorded at station North Hollywood, 2008 (a) Time history of the acceleration. (b)
Frequency spectrum. (c) The resampled acceleration. (d) The frequency spectrum of
resampled acceleration.

141

A.2.2. Additional results for numerical study for DeepONet

0.00 1.25 2.50 3.75 5.00

Epoch ×10
3

7.99

8.67

9.34

10.02
×10

−1 (a)

Train(1.0)

Test(1.003)

0.00 1.25 2.50 3.75 5.00

Epoch ×10
3

7.99

8.80

9.62

10.43
×10

−1 (b)

Train(1.0)

Test(0.999)

0 5 10 15 20

Epoch ×10
3

8.00

10.94

13.88
16.82

×10
−1 (c)

Train(1.001)

Test(1.006)

0 5 10 15 20

Epoch ×10
3

7.99

8.80

9.62

10.43
×10

−1 (d)

Train(1.001)

Test(1.006)

Figure A.2: Relative L2 Error for DeepONet: All of these cases are with loss function
(4.25). The activation function for all the cases are ReLU(x). To avoid overfitting, we
consider using dropout rate 0.01 for the branch net and with 3× 10−5 L2 regularization.
The network size is [4000]-[200]×3-[200] and [1]-[200]×3-[200] for the branch, the trunk net,
respectively. (a) In this case, t is re-scaled to [0, 1], the learning rate is 10−4 in the first
1000 epochs, then 10−5 in the 1000 to 3000 epochs, at last 10−6 for the 3000 to 5000
epochs. (b) In this case, the learning rate are set to be 10−4 for all the 5000 epochs. (c)
This is the case with same setting as case-3 in Table 4.1 but training up to 20000 epochs
with same learning rate 10−4. (d) This is the case with same setting as case-6 in Table 4.1
but training up to 20000 epochs with same learning rate 10−4.

0.0 2.5 5.0 7.5 10.0

Epoch ×10
3

7.99

10.89

13.80
16.70

×10
−1 (a)

Train(1.0)

Test(0.999)

0.0 2.5 5.0 7.5 10.0

Epoch ×10
3

7.99

8.70

9.40

10.11
×10

−1 (b)

Train(1.0)

Test(0.999)

0.0 2.5 5.0 7.5 10.0

Epoch ×10
3

8.06

8.97

9.88

10.80
×10

−1 (c)

Train(1.024)

Test(1.067)

Figure A.3: Relative L2 Error for DeepONet with Different Activation
Functions: All of these cases are with loss function (4.25) and are trained 10000 epochs.
To avoid overfitting, we consider using dropout rate 0.01 for the branch net and with
3× 10−5 L2 regularization. The learning rate is 10−4 for all the cases. The network size is
[4000]-[200]×3-[200] and [1]-[200]×3-[200] for the branch, the trunk net, respectively. (a)
with Sigmoid(x) as activation function. (b) with tanh(x) as activation function. (c) with
sin(x) as activation function.

142

0 5 10 15 20 25

Frequency (Hz)

10
−2

A
m
p
li
tu

d
e

(a)

0 20 40 60 80

Time (s)

−0.05

0.00

0.05

D
is
p
la
c
e
m
e
n
t
(m

)

(b)

0 20 40 60 80

Time (s)

0.0

0.1

A
c
c
e
le
ra

ti
o
n
s
(g

)

(c)

0 20 40 60 80

Time (s)

2.00
4.00
6.00
8.00

E
rr
o
rs

×10
−1 (d)

True Response Predictions

Figure A.4: One of the Training Samples with Predictions of DeepONet: One of
the training samples of DeepONet for Case-4 in Table. 4.1 with Loss (4.25). (a) The
Amplitude of the prediction and true response in Fourier Domain, (b) The prediction and
true response, (c) The corresponding input signals, (d) The relative error (4.27).

143

0 5 10 15 20 25

Frequency (Hz)

10
−2

A
m

p
li
tu

d
e

(a)

0 20 40 60 80

Time (s)

−0.02

0.00

D
is
p
la
c
e
m

e
n
t
(m

)

(b)

0 20 40 60 80

Time (s)

0.000

0.025

A
c
c
e
le
ra

ti
o
n
s
(g

)

(c)

0 20 40 60 80

Time (s)

2.00
4.00
6.00
8.00

E
rr
o
rs

×10
−1 (d)

True Response Predictions

Figure A.5: The Best Case of the Predictions of DeepONet: The best predictions
for the DeepONet for testing cases for Case-4 in Table. 4.1 with Loss (4.25). (a) The
Amplitude of the prediction and true response in Fourier Domain, (b) The prediction and
true response, (c) The corresponding input signals, (d) The relative error (4.27).

A.2.3. Additional results for numerical study for POD-DeepONet

0 5 10 15 20

Epoch ×10
3

1.03

9.35
17.67
25.99

×10
−1 (a)

Train(0.106)

Test(1.041)

0 5 10 15 20

Epoch ×10
3

1.00

9.32
17.65
25.98

×10
−1 (b)

Train(0.102)

Test(1.041)

0 5 10 15 20

Epoch ×10
3

7.47

66.58
125.69
184.81

×10
−1 (c)

Train(0.734)

Test(1.115)

Figure A.6: Relative L2 Error for POD-DeepONet with Different Activation
Functions: All of these cases are with loss function (4.25) and are trained 20000 epochs.
To avoid overfitting, we consider using 10−6 L2 regularization for the net. The learning rate
is 10−4 for all the cases. The network size is [4000]-[200]×3-[100]. (a) with sin(x) as
activation function. (b) with tanh(x) as activation function. (c) with Sigmoid(x) as
activation function.

144

0 5 10 15 20 25

Frequency (Hz)

10
−3

A
m
p
li
tu

d
e

(a)

0 20 40 60 80

Time (s)

−0.0025

0.0000

0.0025

D
is
p
la
c
e
m
e
n
t
(m

)

(b)

0 20 40 60 80

Time (s)

−0.005

0.000

0.005

A
c
c
e
le
ra

ti
o
n
s
(g

)

(c)

0 20 40 60 80

Time (s)

0.00

0.12

2.96

E
rr
o
rs

×10
−1 (d)

True Response Predictions

Figure A.7: One of the Training Samples with Predictions of POD-DeepONet:
One of the training samples of POD-DeepONet with Loss (4.25). (a) The Amplitude of the
prediction and true response in Fourier Domain, (b) The prediction and true response, (c)
The corresponding input signals, (d) The relative error (4.27).

0 5 10 15 20 25

Frequency (Hz)

10
−2

A
m
p
li
tu

d
e

(a)

0 20 40 60 80

Time (s)

−0.02

0.00

0.02

D
is
p
la
c
e
m
e
n
t
(m

)

(b)

0 20 40 60 80

Time (s)

−0.005

0.000

0.005

A
c
c
e
le
ra

ti
o
n
s
(g

)

(c)

0 20 40 60 80

Time (s)

1.50

3.00

4.50

E
rr
o
rs

×10
−1 (d)

True Response Predictions

Figure A.8: The Best Case of the Predictions of POD-DeepONet: The best
predictions for the POD-DeepONet for testing cases with Loss (4.25). (a) The Amplitude
of the prediction and true response in Fourier Domain, (b) The prediction and true
response, (c) The corresponding input signals, (d) The relative error (4.27).

145

A.2.4. Additional results for numerical study for Multi-scale DeepONet

0 5 10 15 20 25

Frequency (Hz)

10
−1

A
m
p
li
tu

d
e

(a)

0 20 40 60 80

Time (s)

−0.025

0.000

D
is
p
la
c
e
m
e
n
t
(m

)

(b)

0 20 40 60 80

Time (s)

−0.025

0.000

0.025

A
c
c
e
le
ra

ti
o
n
s
(g

)

(c)

0 20 40 60 80

Time (s)

0.40
0.80
1.20
1.60

E
rr
o
rs

×10
−1 (d)

True Response Predictions

Figure A.9: One of the Training Samples with Predictions of MS-DeepONet: One
of the training samples of MS-DeepONet with Loss (4.25). (a) The Amplitude of the
prediction and true response in Fourier Domain, (b) The prediction and true response, (c)
The corresponding input signals, (d) The relative error (4.27).

146

0 5 10 15 20 25

Frequency (Hz)

10
−2

A
m
p
li
tu

d
e

(a)

0 20 40 60 80

Time (s)

−0.02

0.00

0.02

D
is
p
la
c
e
m
e
n
t
(m

)

(b)

0 20 40 60 80

Time (s)

−0.005

0.000

0.005

A
c
c
e
le
ra

ti
o
n
s
(g

)

(c)

0 20 40 60 80

Time (s)

1.50

3.00

4.50

E
rr
o
rs

×10
−1 (d)

True Response Predictions

Figure A.10: The Best Case of the Predictions of MS-DeepONet: The best
predictions for the MS-DeepONet for testing cases with Loss (4.25). (a) The Amplitude of
the prediction and true response in Fourier Domain, (b) The prediction and true response,
(c) The corresponding input signals, (d) The relative error (4.27).

147

Appendix B

The cases considered in the experiments of DeepPropNet

Case 1: Time-independent Variable Coefficinet Case We consider the nonhomoge-

neous heat equation with variable coefficients on free space for the DeepPropNet.

∂C (x, t)

∂t
= D (x)

∂2C

∂x2
− V (x)

∂C

∂x
+ f (x, t) , t ∈ [0, T] (2.1)

with initial boundary condition.

The exact solution of the problem will be assumed as

C (x, t) =
J∑

j=1

{[
K∑
k=1

(ajk cosπkt+ bjk sin πkt)

]
cosπjx

+

[
K∑
k=1

(cjk cosπkt+ djk sin πkt)

]
sin πjx

}
.

(2.2)

148

Let D (x) = sin δπx and V (x) = cos νπx, where δ, ν ∈ N. We could derive the corre-

sponding right hand side as

f (x, t) =
J∑

j=1

{[
K∑
k=1

(−ajkkπ sin πkt+ bjkkπ cosπkt)

]
cosπjx

+

[
K∑
k=1

(−cjkkπ sin πkt+ djkkπ cos πkt)

]
sin πjx

+

[
K∑
k=1

(ajk cos πkt+ bjk sin πkt)

]
(jπ)2 cosπjx sin δπx

+

[
K∑
k=1

(cjk cosπkt+ djk sin πkt)

]
(jπ)2 sinπjx sin δπx

−

[
K∑
k=1

(ajk cos πkt+ bjk sin πkt)

]
jπ sin πjx cos νπx

+

[
K∑
k=1

(cjk cosπkt+ djk sin πkt)

]
jπ cosπjx cos νπx

}
.

(2.3)

The corresponding initial condition is

C (x, t) =
J∑

j=1

{
K∑
k=1

(ajk) cosπjx

+
K∑
k=1

(cjk) sinπjx

}
.

(2.4)

Case 2: Time-independent Variable Coefficient Case In this case, we consider the

inhomogeneous scalar wave (d’Alembert) equation

∂2u

∂t2
− c2 (x, t) ∂

2u

∂x2
= f(x, t), x ∈ R, t ≥ 0, (2.5)

with the source term f that is compactly supported on a bounded space-time domain Q =

S × [0, T] where S ⊂ R. This means that the source term f(x, t) differs from zero only on S

149

and operates for the limited time interval [0, T]. The wave speed c (x, t) is a function of x

c (x) =
√
sin (nπx) + 1, (2.6)

and the exact solution is given by

u (x, t) =
J∑

j=1

{[
K∑
k=1

(ajk cos πkt+ bjk sin πkt)

]
cos πjx

+

[
K∑
k=1

(cjk cos πkt+ djk sinπkt)

]
sin πjx

}
,

(2.7)

thus, the corresponding right hand side will be

f (x, t) =
J∑

j=1

K∑
k=1

(
j2 − k2

)
(ajk cosπkt+ bjk sin πkt) cosπjx

+
J∑

j=1

K∑
k=1

(
j2 − k2

)
(cjk cosπkt+ djk sin πkt) sinπjx

+
J∑

j=1

K∑
k=1

j2

2
π2 (ajk cos πkt+ bjk sin πkt) sin (n+ j) πx

−
J∑

j=1

K∑
k=1

j2

2
π2 (cjk cos πkt+ djk sin πkt) cos (n+ j) πx

+
J∑

j=1

K∑
k=1

j2

2
π2 (ajk cos πkt+ bjk sin πkt) sin (n− j) πx

+
J∑

j=1

K∑
k=1

j2

2
π2 (cjk cosπkt+ djk sin πkt) cos (n− j) πx.

(2.8)

150

Appendix C

Evolutions of relative L2 errors for Deep Propagator

(a) The evolution of relative L2 errors for the
training dataset(solid line) and testing dataset
(dashed line) when training Causality
DeepONet with POD.

(b) The evolution of relative L2 errors for the
training dataset(solid line) and testing dataset
(dashed line) when training Deep Propagator.

Figure C.1: The evolution of relative L2 errors for Causality DeepONet with POD and
Deep Propagator solving the nonhomogeneous heat equation.

151

(a) The evolution of relative L2 errors for the
training dataset(solid line) and testing dataset
(dashed line) when training Causality
DeepONet with POD. Initial conditions are
provided as inputs.

(b) The evolution of relative L2 errors for the
training dataset(solid line) and testing dataset
(dashed line) when training Deep Propagator.
Initial conditions u̇ are predicted by another
Deep Propagator.

(c) The evolution of relative L2 errors for the
training dataset(solid line) and testing dataset
(dashed line) when training Deep Propagator.
Initial conditions u̇ are computed by finite
difference.

(d) The evolution of relative L2 errors for the
training dataset(solid line) and testing dataset
(dashed line) when training Deep Propagator.
Initial conditions u̇ are computed by least
square interpolations.

Figure C.2: The evolution of relative L2 errors for Causality DeepONet with POD and
Deep Propagator solving the nonhomogeneous wave equation.

152

BIBLIOGRAPHY

[1] Albawi, S., Mohammed, T. A., and Al-Zawi, S. Understanding of a convolutional
neural network. In 2017 International Conference on Engineering and Technology
(ICET) (Aug 2017), pp. 1–6. 88

[2] Allen-Zhu, Z., Li, Y., and Song, Z. A convergence theory for deep learning via
over-parameterization. In Proceedings of the 36th International Conference on
Machine Learning (09–15 Jun 2019), K. Chaudhuri and R. Salakhutdinov, Eds.,
vol. 97 of Proceedings of Machine Learning Research, PMLR, pp. 242–252. 12

[3] Bhattacharya, K., Hosseini, B., Kovachki, N. B., and Stuart, A. M. Model
Reduction And Neural Networks For Parametric PDEs. The SMAI journal of
computational mathematics 7 (2021), 121–157. 90, 119

[4] Bochev, P. B., and Gunzburger, M. D. Least-squares finite element methods.
Springer, 2009. 32, 61

[5] Brandt, A. Multi-level adaptive solutions to boundary-value problems. Mathematics of
Computation 31, 138 (1977), 333–390. 22

[6] Bruna, J., and Mallat, S. Invariant scattering convolution networks. IEEE
Transactions on Pattern Analysis and Machine Intelligence 35, 8 (2013), 1872–1886.
24

[7] Cai, S., Wang, Z., Fuest, F., Jeon, Y. J., Gray, C., and Karniadakis, G. E.
Flow over an espresso cup: inferring 3-d velocity and pressure fields from tomographic
background oriented schlieren via physics-informed neural networks. Journal of Fluid
Mechanics 915 (2021), A102. 59

[8] Cai, S., Wang, Z., Lu, L., Zaki, T. A., and Karniadakis, G. E. DeepM&Mnet:
Inferring the electroconvection multiphysics fields based on operator approximation by
neural networks. J. Comput. Phys. 436, C (jul 2021). 20, 89

[9] Cai, W., Li, X., and Liu, L. PhaseDNN - a parallel phase shift deep neural network
for adaptive wideband learning, 2019. 27

[10] Cai, W., Li, X., and Liu, L. A phase shift deep neural network for high frequency
approximation and wave problems. SIAM Journal on Scientific Computing 42, 5
(2020), A3285–A3312. 22, 31, 59, 82

[11] Chen, T., and Chen, H. Universal approximation to nonlinear operators by neural
networks with arbitrary activation functions and its application to dynamical systems.
IEEE Transactions on Neural Networks 6, 4 (July 1995), 911–917. vii, 18, 19, 82, 92,
93, 136

[12] Chopra, A. K. Dynamics of Structures, 4th ed. Pearson, 2011. 82, 84, 85, 86, 87

153

[13] Cybenko, G. Approximation by superpositions of a sigmoidal function. Mathematics of
Control, Signals, and Systems (MCSS) 2, 4 (Dec. 1989), 303–314. 9, 10, 82

[14] De Ryck, T., Jagtap, A. D., and Mishra, S. Error estimates for physics-informed
neural networks approximating the Navier–Stokes equations. IMA Journal of
Numerical Analysis (01 2023). drac085. 59

[15] Deng, B., Shin, Y., Lu, L., Zhang, Z., and Karniadakis, G. E. Approximation
rates of DeepONets for learning operators arising from advection–diffusion equations.
Neural Networks 153 (2022), 411–426. 20, 89

[16] Di Leoni, P. C., Lu, L., Meneveau, C., Karniadakis, G., and Zaki, T. A.
DeepONet prediction of linear instability waves in high-speed boundary layers. arXiv
preprint arXiv:2105.08697 (2021). 20, 89

[17] Du, S., Lee, J., Li, H., Wang, L., and Zhai, X. Gradient descent finds global
minima of deep neural networks. In International conference on machine learning
(2019), PMLR, pp. 1675–1685. 12

[18] E, W., and Yu, T. The Deep Ritz method: A deep learning-based numerical algorithm
for solving variational problems. Communications in Mathematics and Statistics 6
(2017), 1–12. 82

[19] Eivazi, H., Tahani, M., Schlatter, P., and Vinuesa, R. Physics-informed neural
networks for solving Reynolds-averaged Navier–Stokes equations. Physics of Fluids 34,
7 (07 2022). 075117. 59

[20] Elman, J. L. Finding structure in time. Cognitive Science 14, 2 (1990), 179–211. 82

[21] Fan, Y., Orozco Bohorquez, C., and Ying, L. BCR-Net: A neural network based
on the nonstandard wavelet form. Journal of Computational Physics 384 (2019), 1–15.
24

[22] Fu, X., Chang, L.-B., and Xiu, D. Learning reduced systems via deep neural
networks with memory. Journal of Machine Learning for Modeling and Computing 1,
2 (2020), 97–118. 82

[23] Goodfellow, I., Bengio, Y., and Courville, A. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org. 9, 32

[24] Goswami, S., Yin, M., Yu, Y., and Karniadakis, G. E. A physics-informed
variational DeepONet for predicting crack path in quasi-brittle materials. Computer
Methods in Applied Mechanics and Engineering 391 (2022), 114587. 83

[25] Gowtham Reddy, A. Causality in neural networks - an extended abstract. In
Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society (New
York, NY, USA, 2021), AIES ’21, Association for Computing Machinery, p. 271–272.
83

[26] Han, J., Jentzen, A., and E, W. Solving high-dimensional partial differential
equations using deep learning. Proceedings of the National Academy of Sciences 115,
34 (2018), 8505–8510. 58, 82

[27] He, Y., and Li, J. Convergence of three iterative methods based on the finite element
discretization for the stationary Navier–Stokes equations. Computer Methods in
Applied Mechanics and Engineering 198, 15 (2009), 1351 – 1359. 62, 64

154

http://www.deeplearningbook.org

[28] Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., and
Salakhutdinov, R. Improving neural networks by preventing co-adaptation of
feature detectors. ArXiv abs/1207.0580 (2012). 97

[29] Hochreiter, S., and Schmidhuber, J. Long short-term memory. Neural Computation
9, 8 (11 1997), 1735–1780. 82

[30] Jiang, B.-N., and Povinelli, L. A. Least-squares finite element method for fluid
dynamics. Computer Methods in Applied Mechanics and Engineering 81, 1 (1990),
13–37. 32

[31] Jin, X., Cai, S., Li, H., and Karniadakis, G. E. NSFnets (Navier-Stokes flow nets):
Physics-informed neural networks for the incompressible Navier-Stokes equations.
Journal of Computational Physics 426 (2021), 109951. 60, 82

[32] Kerschen, G., Worden, K., Vakakis, A. F., and Golinval, J.-C. Past, present
and future of nonlinear system identification in structural dynamics. Mechanical
Systems and Signal Processing 20, 3 (2006), 505–592. 82

[33] Kim, H.-S. Development of seismic response simulation model for building structures
with semi-active control devices using recurrent neural network. Applied Sciences 10,
11 (2020), 3915. 82

[34] Kingma, D. P., and Ba, J. Adam: A Method for Stochastic Optimization. CoRR
abs/1412.6980 (2015). 37, 70, 97

[35] Li, Q., and E, W. Machine learning and dynamical systems. SIAM news (11 2021). 82

[36] Li, Z., Han, J., E, W., and Li, Q. Approximation and optimization theory for linear
continuous-time recurrent neural networks. Journal of Machine Learning Research 23,
42 (2022), 1–85. 82

[37] Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart,
A., and Anandkumar, A. Fourier neural operator for parametric partial differential
equations. arXiv preprint arXiv:2010.08895 (2020). 18, 83, 91, 116

[38] Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart,
A., and Anandkumar, A. Neural operator: Graph kernel network for partial
differential equations. arXiv preprint arXiv:2003.03485 (2020). 83

[39] Lin, C., Li, Z., Lu, L., Cai, S., Maxey, M., and Karniadakis, G. E. Operator
learning for predicting multiscale bubble growth dynamics. The Journal of Chemical
Physics 154, 10 (2021), 104118. 20, 89

[40] Liu, L., and Cai, W. DeepPropNet–a recursive deep propagator neural network for
learning evolution pde operators. arXiv preprint arXiv:2202.13429 (2022). 115

[41] Liu, L., Nath, K., and Cai, W. A Causality-DeepONet for causal responses of linear
dynamical systems. arXiv preprint arXiv:2209.08397 (2022). 81, 118, 127, 137

[42] Liu, L., Wang, B., and Cai, W. Linearized learning with multiscale deep neural
networks for stationary Navier-Stokes equations with oscillatory solutions. East Asian
Journal on Applied Mathematics 13, 3 (2023), 740–758. 58, 90, 104

155

[43] Liu, Z., Cai, W., and Xu, Z.-Q. J. Multi-scale deep neural network (MscaleDNN) for
solving poisson-boltzmann equation in complex domains. Communications in
Computational Physics 28, 5 (2020), 1970–2001. 3, 59, 65, 66, 67, 82, 90

[44] Livshits, I., and Brandt, A. Accuracy properties of the wave-ray multigrid algorithm
for helmholtz equations. SIAM Journal on Scientific Computing 28, 4 (2006),
1228–1251. 24

[45] Louizos, C., Shalit, U., Mooij, J., Sontag, D., Zemel, R., and Welling, M.
Causal effect inference with deep latent-variable models. In Proceedings of the 31st
International Conference on Neural Information Processing Systems (Red Hook, NY,
USA, 2017), NIPS’17, Curran Associates Inc., p. 6449–6459. 83

[46] Lu, J., Shen, Z., Yang, H., and Zhang, S. Deep network approximation for smooth
functions. SIAM Journal on Mathematical Analysis 53, 5 (2021), 5465–5506. 10, 11

[47] Lu, L., Jin, P., Pang, G., Zhang, Z., and Karniadakis, G. E. Learning nonlinear
operators via DeepONet based on the universal approximation theorem of operators.
Nature Machine Intelligence 3, 3 (2021), 218–229. 3, 18, 20, 82, 88, 89, 92, 116, 117

[48] Lu, L., Meng, X., Cai, S., Mao, Z., Goswami, S., Zhang, Z., and Karniadakis,
G. E. A comprehensive and fair comparison of two neural operators (with practical
extensions) based on FAIR data. Computer Methods in Applied Mechanics and
Engineering 393 (2022), 114778. 90, 91, 119

[49] Luo, T., Ma, Z., Xu, Z.-Q. J., and Zhang, Y. Theory of the frequency principle for
general deep neural networks. CSIAM Transactions on Applied Mathematics 2, 3
(2021), 484–507. 22

[50] Luo, T., and Yang, H. Two-layer neural networks for partial differential equations:
Optimization and generalization theory, 2020. 16, 17

[51] Luo, Y., Peng, J., and Ma, J. When causal inference meets deep learning. Nature
Machine Intelligence 2, 8 (2020), 426–427. 83

[52] Moraffah, R., Karami, M., Guo, R., Raglin, A., and Liu, H. Causal
interpretability for machine learning - problems, methods and evaluation. SIGKDD
Explor. Newsl. 22, 1 (may 2020), 18–33. 83

[53] Newmark, N. M. A method of computation for structural dynamics. Journal of the
Engineering Mechanics Division 85, 3 (1959), 67–94. 82

[54] Oldenburg, J., Borowski, F., Öner, A., Schmitz, K.-P., and Stiehm, M.
Geometry aware physics informed neural network surrogate for solving Navier-Stokes
equation (GAPINN). Advanced Modeling and Simulation in Engineering Sciences 9, 1
(2022), 8. 59

[55] Oord, A. v. d., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A.,
Kalchbrenner, N., Senior, A., and Kavukcuoglu, K. Wavenet: A generative
model for raw audio, 2016. 82

[56] O’Shea, K., and Nash, R. An introduction to convolutional neural networks. arXiv
preprint arXiv:1511.08458 (2015). 88

156

[57] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G.,
Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A.,
Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner,
B., Fang, L., Bai, J., and Chintala, S. PyTorch: An imperative style,
high-performance deep learning library. In Advances in Neural Information Processing
Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, Eds. Curran Associates, Inc., 2019, pp. 8024–8035. 97

[58] Qin, T., Wu, K., and Xiu, D. Data driven governing equations approximation using
deep neural networks. Journal of Computational Physics 395 (2019), 620–635. 82

[59] Rahaman, N., Baratin, A., Arpit, D., Draxler, F., Lin, M., Hamprecht, F.,
Bengio, Y., and Courville, A. On the spectral bias of neural networks. In
Proceedings of the 36th International Conference on Machine Learning (09–15 Jun
2019), K. Chaudhuri and R. Salakhutdinov, Eds., vol. 97 of Proceedings of Machine
Learning Research, PMLR, pp. 5301–5310. 13, 27

[60] Raissi, M. Forward-backward stochastic neural networks: Deep learning of
high-dimensional partial differential equations, 2018. 58

[61] Raissi, M., Perdikaris, P., and Karniadakis, G. Physics-informed neural networks:
A deep learning framework for solving forward and inverse problems involving
nonlinear partial differential equations. Journal of Computational Physics 378 (2019),
686–707. 14, 32, 82

[62] Raissi, M., Yazdani, A., and Karniadakis, G. E. Hidden fluid mechanics: Learning
velocity and pressure fields from flow visualizations. Science 367, 6481 (2020),
1026–1030. 59

[63] Rao, C., Sun, H., and Liu, Y. Physics-informed deep learning for incompressible
laminar flows. Theoretical and Applied Mechanics Letters 10, 3 (2020), 207–212. 59

[64] Shankar, R. Principles of quantum mechanics. Springer, New York, NY, 1994. 116

[65] Sitzmann, V., Martel, J., Bergman, A., Lindell, D., and Wetzstein, G.
Implicit neural representations with periodic activation functions. In Advances in
Neural Information Processing Systems (2020), H. Larochelle, M. Ranzato, R. Hadsell,
M. Balcan, and H. Lin, Eds., vol. 33, Curran Associates, Inc., pp. 7462–7473. 67

[66] Sohn, H., Farrar, C. R., Hemez, F. M., Shunk, D. D., Stinemates, D. W.,
Nadler, B. R., and Czarnecki, J. J. A review of structural health review of
structural health monitoring literature 1996-2001. 82

[67] Wang, B., Zhang, W., and Cai, W. Multi-scale deep neural network (MscaleDNN)
methods for oscillatory stokes flows in complex domains. Communications in
Computational Physics 28, 5 (2020), 2139–2157. 2, 59, 60, 61, 67, 72, 90, 104

[68] Winovich, N., Ramani, K., and Lin, G. ConvPDE-UQ: Convolutional neural
networks with quantified uncertainty for heterogeneous elliptic partial differential
equations on varied domains. Journal of Computational Physics 394 (2019), 263–279.
88

[69] Xu, Z. J. Understanding training and generalization in deep learning by fourier analysis,
2018. 22

157

[70] Xu, Z.-Q. J., Zhang, Y., Luo, T., Xiao, Y., and Ma, Z. Frequency principle:
Fourier analysis sheds light on deep neural networks. Communications in
Computational Physics 28, 5 (2020), 1746–1767. 13, 22, 26, 27, 59, 90

[71] Zhang, L., Cai, W., and Xu, Z.-Q. J. A correction and comments on ”multi-scale
deep neural network (MscaleDNN) for solving poisson-boltzmann equation in complex
domains cicp, 28 (5): 1970–2001, 2020”. Communications in Computational Physics
33, 5 (2023), 1509–1513. 67

[72] Zhang, R., Chen, Z., Chen, S., Zheng, J., Büyüköztürk, O., and Sun, H. Deep
long short-term memory networks for nonlinear structural seismic response prediction.
Computers & Structures 220 (2019), 55–68. 82

[73] Zhang, W., and Cai, W. FBSDE based neural network algorithms for
high-dimensional quasilinear parabolic PDEs. Journal of Computational Physics 470
(2022), 111557. 58, 59, 66, 82

[74] Zhu, M. OpenSeesPy. https://openseespydoc.readthedocs.io/en/latest/#, 2015. [Online].
86

[75] Zhu, Y., Zabaras, N., Koutsourelakis, P.-S., and Perdikaris, P.
Physics-constrained deep learning for high-dimensional surrogate modeling and
uncertainty quantification without labeled data. Journal of Computational Physics
394 (2019), 56–81. 88

[76] Zienkiewicz, O. C., Taylor, R. L., and Zhu, J. Z. The finite element method: its
basis and fundamentals. Elsevier, 2005. 81

158

https://openseespydoc.readthedocs.io/en/latest/#

	Neural Network Learning for PDEs with Oscillatory Solutions and Causal Operators
	Recommended Citation

	 LIST OF FIGURES
	 LIST OF TABLES
	Preface
	0.1. Developing PhaseDNN and multi-scale deep neural network (DNN) for oscillatory PDE solutions
	0.1.1. PhaseDNN for learning high frequency wave solutions
	0.1.2. Linearized learning for oscillatory Navier-Stokes (NS) flows

	0.2. A Causality-DeepONet for learning operators with causality
	0.2.1. Learning operator mapping seismic excitations to responses of building
	0.2.2. DeepPropNet - Learning evolution PDE solution operator

	1 Introduction
	1.1. Deep neural network
	1.1.1. Training the neural network
	1.1.2. Universal approximation theorems to functions
	1.1.3. Convergence of neural network approximations to functions

	1.2. Spectral bias
	1.3. Physics-informed neural network
	1.3.1. Convergence of physics-informed neural network approximations

	1.4. DeepONet
	1.4.1. Universal approximation theory
	1.4.2. DeepONet

	2 A Phase Shift Deep Neural Network (PhaseDNN) for High Frequency Approximation and Wave Problems
	2.1. Introduction
	2.2. A Parallel phase shift DNN (PhaseDNN) for high frequency approximation
	2.2.1. Frequency selection kernel _j^(x)
	2.2.2. Training Data for parallel phase shift DNN (PhaseDNN) algorithm

	2.3. A coupled PhaseDNN
	2.3.1. Approximating functions
	2.3.2. Solving differential equations through least square residual minimization
	2.3.3. Solving integral equations for exterior Helmholtz problems

	2.4. Numerical results
	2.4.1. Approximation of functions with PhaseDNN
	2.4.1.1. Parallel PhaseDNN
	2.4.1.2. Coupled PhaseDNN

	2.4.2. Coupled PhaseDNN for solving PDEs with high frequency solutions
	2.4.2.1. Helmholtz equation with constant wave numbers
	2.4.2.2. Helmholtz equation with variable wave numbers
	2.4.2.3. Solving elliptic equation
	2.4.2.4. Coupled PhaseDNN for solving exterior wave scattering problem

	2.4.3. PhaseDNN as a meshless solver for 2D Helmholtz equation in a complex domain

	3 Linearized Learning with Multiscale Deep Neural Networks for Stationary Navier-Stokes Equations with Oscillatory Solutions
	3.1. Introduction
	3.2. Iterative method for stationary Navierâ•ﬁStokes equations
	3.2.1. Stationary Navier-Stokes equations
	3.2.2. Iterative methods to solve stationary Navier-Stokes equations

	3.3. Linearized learning algorithm with multiscale deep neural network
	3.3.1. Multiscale deep neural network (MscaleDNN)
	3.3.2. Linearization schemes for neural network training
	3.3.3. Linearized learning algorithms

	3.4. Numerical results
	3.4.1. A benchmark: A non-oscillatory problem - effect of linearized learning
	3.4.2. Performance: Oscillating flows learned by MscaleDNN with linearized learning
	3.4.2.1. A simple domain - effect of MscaleDNN
	3.4.2.2. A complex domain
	3.4.2.3. Small viscosity coefficient

	4 A Causality-DeepONet for Causal Responses of Linear Dynamical Systems
	4.1. Introduction
	4.2. Problem statement: Calculation of building response due to seismic load
	4.3. Background / Preliminary
	4.3.1. DeepONet
	4.3.2. Multi-scale deep neural network (MscaleDNN)
	4.3.3. POD-DeepONet

	4.4. Methodologies
	4.4.1. Multi-scale DeepONet
	4.4.2. Causality-DeepONet
	4.4.3. Loss function and error calculation

	4.5. Numerical results and discussion
	4.5.1. DeepONet and POD-DeepONet
	4.5.2. Multi-scale DeepONet
	4.5.3. Causality-DeepONet

	5 DeepPropNet - A Recursive Deep Propagator Neural Network for Learning Evolution PDE Operators
	5.1. Introduction
	5.2. DeepONet with time causality and spatial POD
	5.3. A recursive DeepPropNet for learning evolution PDE operators
	5.3.1. The evaluation of initial conditions
	5.3.2. Normalization and penalties

	5.4. Numerical results
	5.4.1. Results of CPOD-DeepONet
	5.4.2. Results of Deep Propagator

	6 Conclusions
	A Appendix for Causality DeepONet
	A.1. Additional tables
	A.2. Additional figures
	A.2.1. A typical ground acceleration due to earthquake before and after processing
	A.2.2. Additional results for numerical study for DeepONet
	A.2.3. Additional results for numerical study for POD-DeepONet
	A.2.4. Additional results for numerical study for Multi-scale DeepONet

	B The cases considered in the experiments of DeepPropNet
	C Evolutions of relative L^2 errors for Deep Propagator
	BIBLIOGRAPHY

