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Abstract. Static and dynamic analyses are the two primary approaches to 

analyzing malicious applications. The primary distinction between the two is that 

the application is analyzed without execution in static analysis, whereas the 

dynamic approach executes the malware and records the behavior exhibited 

during execution.  Although each approach has advantages and disadvantages, 

dynamic analysis has been more widely accepted and utilized by the research 

community whereas static analysis has not seen the same attention. This study 

aims to apply advancements in static analysis techniques to demonstrate the 

identification of fine-grained functionality, and show, through clustering, how 

malicious applications may be grouped into associated family types. The scope 

of this research is focused on malicious software utilizing the Portable Executable 

(“PE”) file format for Microsoft Windows operating systems. 

1   Introduction 

Malicious software, herein referred to as malware, is one of the largest risks to safe 

and secure internet usage. In 2022, more than 30 million new malware samples were 

found, and malware authors created more than 316 thousand malware samples daily. 

(Database and Network Journal, 2022). As a result, certain aspects of the malware 

problem have been studied at length. Many of these studies involve different 

combinations of detection, classification, and clustering either through dynamic 

analysis or hybrid approaches (those involving a combination of static analysis and 

dynamic analysis) (ALGorain & Clark, 2022) which involves executing the malware 

for classification and clustering. The dynamic approach also requires more resources 

than the static approach (classifying and/or clustering without executing the malware).  

There are several issues when attempting to cluster malware into familial groups 

solely based on static analysis. First, the presence of an industry-accepted ground-truth 

dataset is unavailable. Datasets have been generated through honeypots, public 

databases, the collection and processing of cyber threat bulletins, or other means 

(Smith, et al, 2017). However, these datasets are insufficient for the familial 

classification task due to a lack of family labels and insufficient information as to the 
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internal state of the application. Secondly, data transformations in the form of packers, 

obfuscation, and encryption are commonly applied to malware to prevent or hinder 

analysis and detection. These data transformations can be of arbitrary complexity and 

depth and have, up to this point, discouraged meaningful attempts to statically 

categorize malware. Finally, malware is generated at an extraordinary rate. Malware 

authors and cyber criminals are in a perpetual survival-of-the-fittest struggle against 

one another and security vendors. These issues have a compounding effect when 

attempting to classify and cluster malware into families and are leading reasons why 

research has been primarily devoted to the dynamic analysis arena.   

Unfortunately, dynamic analysis is not a panacea. Dynamic analysis systems are 

complex and involve a significantly higher resource utilization footprint. The dynamic 

approach only records what happened when the malware was executed (what it did). 

This does not show other potential harm the malware could cause (what it can do). 

Furthermore, malware regularly detects dynamic analysis systems such as virtual 

machines and sandboxes. This can cause the malware to alter its behavior and change 

the observable characteristics recorded by the dynamic analysis system. These changes 

in behavior can be imperceptible to the system.   

Static and dynamic analysis are two sides of the same coin. Each has advantages and 

disadvantages, and neither are complete. This research aims to identify key 

observational metrics with respect to malware family clustering through static analysis 

and enabling interested parties to cluster malware into family groups without executing 

the malware.  

This research will enable interested parties to cluster malware into the known 

families without executing the malware. This will save time and the cost of acquiring a 

sandbox to execute the malware, and the cost of the computing power required to 

extract data from the sandbox to perform data analysis. Additionally, this research will 

reduce the cost of analyzing multiple malware samples of the same family and reduce 

the possibility of alerting threat actors to analysis by not using public data sources or 

executing the malware.   

The goal of this research is to use the static approach to cluster malware into the 

known malware families. This system's results are expected to augment the dynamic 

approach and/or provide interested parties with a much less expensive alternative to 

using the dynamic approach.  

 

2   Literature Review 

In order to identify and mitigate the consequences of malware, analysis 

techniques are crucial. The three primary methods for analyzing malware are static, 

dynamic, and hybrid. Static analysis is a quick and resource-effective technique with 

limitations in detecting new viruses. It entails looking at the source code or executable 

file without running it. Dynamic analysis, on the other hand, involves executing the 

malware in a controlled environment to observe its behavior, and although it provides 

more comprehensive analysis and can detect novel malware, it requires more resources 
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and is time-consuming. Hybrid analysis combines static and dynamic methodologies, 

combining their advantages to produce a more potent method of malware analysis. 

The EMBER dataset is a valuable resource for researchers looking to better 

understand use cases for malware classification. In their study, Anderson and Roth 

(2018) provide a detailed exploration of this dataset, which contains a comprehensive 

collection of Windows executable files, both malicious and benign. The authors 

describe the dataset in detail and highlight the value of its inclusion of benign 

executables, which eliminates the need for researchers to generate their own benign 

data for testing purposes. The focus of the study is on training machine learning models 

to detect Windows malware executables, making it a useful resource for researchers 

working in the field of malware analysis. 

 

2.1 Static Analysis 

 

Static analysis is primarily a method of analyzing software without actual execution- 

it involves examination the source code or executable binary. The main advantage of it 

being that it can be performed quickly and with less resources as compared to dynamic 

analysis. (Jusoh, Rosmalissa, et al., 2021) reviewed various techniques and approaches 

that were applied to the analysis of Android malware. With respect to static analysis, 

signature and source code review methods were utilized. These techniques involved 

examining the code to detect known patterns of malicious behavior or code structures 

known to be malware families. Accurate feature selection was identified as a critical 

component of the system and obfuscation was identified as a hurdle, and although the 

methods were useful, they have been known to be limited in scope and have difficulty 

detecting novel malware.  

To aid precise malware identification, Keong Ng, Jiang, et al. (2019) examined the 

deep embedded clustering method using the Virus dataset from the UCI repository. This 

method used autoencoders, PCA, and KNN to identify patterns and similarities in the 

binary files and group them into different malware libraries. Use of 3 layers of 

encoders/decoders was found to have the best results and outperformed K-means 

methods. Little work had been done on deep learning representations of malware 

clustering prior to the authoring of this study, and the advantage of this over source 

code review is its ability to detect novel malware that does not necessarily have a known 

code structure.  

Another promising approach to static detection is through Kim, Sangwon, et al 

(2022) which introduces a fully automated labeling system based on AVClass2. The 

tool extracts family information from antivirus and measures the frequency of label 

occurrence per sample family. The system then requires more than a million labels to 

build a graph using the same accuracy metric at AVClass2. The biggest benefit is that 

no prior knowledge is required to run this approach. As the author aims to efficiently 

extract existing malware data from antivirus engines and use those same samples to 

train ML algorithms, the accuracy is only based on the clustering and not the 

appropriateness of the labels.  

On a similar note, Sebastian and Caballero’s (2020) malware tag extraction tool uses 

AV labels (Detection labels by anti-virus engines) that contains information about the 

malware. The malware tags can be indexed to extract existing data from anti-virus 

engines to train ML algorithms. This method does however rely on the accuracy of the 
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AV labels themselves to train the model and may not capture the full behavior of the 

malware.  

Finally, Siwach, Costa, and De Nicola (2021) introduced a rule-based feature 

specification language, Symbolic Feature Specification Language (SFSL). The rules 

are based on the behavior of the malware sample- if the behavior matches the defined 

rules, the result will “generate feature vectors for a machine learning classifier.” The 

process includes “symbolizing” execution of the malware sample without actual 

execution- maintaining the process’ safety.  

 

2.2 Dynamic Analysis 

 

Execution in a controlled environment is the base premise of dynamic analysis. The 

main advantage of this method is being able to record the program’s exact behavior, 

which can aid in the discovery of novel or unknown malware. Although it is typically 

more comprehensive than static analysis, dynamic analysis does require more resources 

and can be more time-consuming. This analysis has been executed in a variety of 

techniques and Smith et al. (2017) talk about the difference between malware detection 

and behavioral analysis, the latter of which excludes watching malware behavior. To 

increase the effectiveness of malware detection and classification, the authors 

emphasize the necessity of observing malicious activity. This study also discusses the 

use of sandboxing as one of the main techniques of dynamic analysis. This involves 

using a controlled environment in which malware can be safely executed without fear 

of harming the host system. The behavior of the malware is observed, and results are 

then analyzed to identify malicious behavior.  

Nikolopoulos, Stavros D, and Polenakis (2017) defined a directed acyclic graph to 

represent the functionality of a malware sample by capturing API calls made by the 

sample during execution. As the API calls interface between the program and operating 

system, performing various essential functions, capturing them makes it possible to 

understand the behavior and understand malware activity. As this method captures 

behavior, it is possible to detect novel malware and is especially useful in detecting 

malware techniques that change the code of the malware with each execution.  

 

2.3 Hybrid Analysis  

 

Hybrid analysis combines elements of both static and dynamic analysis to overcome 

their individual limitations and provide a more thorough understanding of malware. 

This process entails combining both code examination techniques with execution of the 

code in a controlled environment. By utilizing the advantages of both methodologies, 

hybrid analysis can detect malicious patterns that might not be apparent with a single 

method alone. Aside from utilizing a sandbox, other techniques have been developed. 

Rizvi, et al. (2022) performed unsupervised clustering with neural networks to group 

malware samples based on features extracted from the code. The dataset was collected 

from high and low interaction honeypots and enterprise networks and labels were added 

based on VirusTotal search results. After analyzing files with PEStudio to determine if 

they were packed or obfuscated, they are then executed in a sandbox and the behavior 

is captured.   
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Another hybrid system proposed was through Ghouti and Imam (2020) in which 

binary values of a malware sample were converted into greyscale images and then 

classified using image processing techniques. The images were trained on a SVM 

model on the PCA data of the images. The authors used the EMBER dataset along with 

others to complete the analysis. A major advantage of this approach was its ability to 

provide a new dimension to the analysis through visual similarities, giving it an edge 

when dealing with obfuscated samples. However, the authors acknowledged the 

limitations of this approach, including lack of feature interpretability, high 

computational requirements, and impact of image resolution on classification accuracy. 

Despite the single dimensionality and novelty of the technology, the results of the study 

showed that there is potential in this method.  

It has been established that each of the three analysis techniques- static, dynamic, 

and hybrid have their own advantages and disadvantages. Static is ideal for quick and 

resource efficient analysis but limited in its ability to detect novel malware. Dynamic 

analysis allows for more comprehensive analysis and potential detection of novel 

malware through execution in a controlled environment but suffers from being far more 

time and resource intensive. A hybrid approach combines both static and dynamic 

analyses and can provide a more efficient solution. Additionally, using high-level 

representations of malware can help in identifying malware clusters through static 

analysis, potentially making it even more efficient than the hybrid approach. 

 

Hypothesis 

 

Malware can be clustered into family groups using features which fall into three 

categories. Features describing the malware's shape, those describing the internal 

structure, and features describing its capabilities. The shape of the malware is 

ascertained by utilizing features found in the EMBER dataset. Internal structure is 

extracted via measurements of graph node centrality.  Capabilities are a higher-level 

representation of the functionality of an application and include: the ability to download 

a file, ability to upload a file, ability to encrypt a hard drive etc. Capability features 

were extracted using the Mandiant CAPA tool. This is a tool that has rules designed to 

identify specific malware capabilities.  

Analysis proves that this methodology can be used to identify malware clusters using 

a static approach. This is an effective augmentation to the dynamic approach. While the 

dynamic approach exposes what happens during malware execution, it does not expose 

what could happen. The benefits of this approach lie in its cost saving, in terms of dollar 

cost and required processing power, and the identification of latent functionality. 

3   Methods 

This study follows a systematic process for malware sample analysis, which involves 

the collection of malware samples, feature extraction, dataset formation, and 

subsequent clustering. A ground truth dataset is established by collecting malware 
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samples from VX-Underground, MalwareBazaar, and VirusTotal. Within these 

databases, crowd-sourced and automatic labeling is applied. Ground truth is established 

through the validation of these family labels by processing all malware samples with 

configuration extraction utilities designed for each specific family. Features from the 

ground truth samples are then extracted using Radare2, CAPA, and the PageRank 

algorithm. Once the dataset is established, clustering analysis is leveraged to verify the 

established methodology by way of the labels provided by the ground truth collection. 

The methodology applied in this research is delineated in the following subsections:  

 

3.1 Sample Collection 

 

Malware samples were obtained from community databases, namely VX-

Underground, MalwareBazaar, and VirusTotal. These malware samples are collected 

through a variety of sources, and the databases provide a mechanism whereby samples 

can be submitted and tagged by contributors. In general, the tags enable identification 

and family association of the samples within these databases. However, malware 

families contain multiple variants and components which obscure the relationship 

between a sample, the sample's purpose, and the family. Thus, the samples must 

undergo additional processing to identify those which truly represent the family.  

After collecting the samples, the extraction scripts try to extract configuration data 

from the sample by running YARA rules and configuration extraction utilities. These 

tools are specifically designed to identify and extract configuration data from the 

malware family. As the primary focus of this study is on samples that are an actual 

representation of the family in which they were tagged, the research team has brought 

together multiple publicly available configuration extraction tools and tested them 

against each sample. These identification and extraction utilities attempt to extract the 

malware settings, and, as such, are “keys” for a specific malware family. If the key does 

not work, it is not a clean representation of the malware family. 

The research team used the PEiD packer detection library to remove all samples 

identified as having a packer or obfuscation applied to them. Packed samples are 

deemed not useful as the packer is a separate application than the malware sample. As 

such, all features extracted would not be representative of the malware family, but 

rather, would be describing the characteristics consistent with the packer application. 

Conceptually, software packers are akin to Matryoshka dolls. 

 

 

 

3.2 Feature Collection 

 

Similar to the EMBER, UCI Repository (Anderson and Roth, 2018, ALGorain and 

Clark, 2022), the research team identified features related to the Portable Executable 

(PE) file format. These features describe external aspects of PE applications and have 

been used in malware classification and categorization research. However, most 

features collected by the research team describe internal aspects of PE applications. 
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These features can be separated into two groups: those that describe the application's 

structure and those that describe its functionality.  

To characterize the structure of an application, the research team focused on 

collecting features from the top 100 functions which were identified by building an 

adjacency matrix of the interprocedural control-flow-graph (the graph representing the 

relationships between functions, CFG). This matrix was used to generate scores from 

the PageRank algorithm, a Google innovation that ranks the importance of web pages 

returned in search engine results (Murrugarra, David, et al., 2016).  

Describing the functionality of an application requires a higher-level understanding 

of the various components within, and the relationship between, them. To that end, the 

research team utilized CAPA, Mandiant’s open-source tool for describing the tactics, 

techniques, procedures (TTP), and capabilities present within an application. CAPA 

provides a mechanism to list known capabilities present within the malware sample and 

map them to the MITRE adversarial tactics, techniques, and common knowledge 

(ATT&CK) framework and the malware behavior catalogue (MBC). 

 

3.3 Data Description 

 

The dataset for this study contains 854 features with 318 depicting malware 

capabilities, 503 describing the internal structure of the application, and 35 features 

which represent the external shape of the malware. For example, “ 

capa_check_for_sandbox_and_av_modules” is a feature that describes a capability, while 

“function_0_func_size” describes the size of a function in the malware code.  The size is a 

property of the malware structure. 

This study tests whether the features used for clustering will work. Figure 1 is used 

to describe the rationale behind the methods. 
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Figure 1. Y-axis: The number of times “capa_check_for_sandbox_and_av_modules” 

was executed. X-axis: The malware family. 

 

 

 

Observe in Figure 1 that the cybergate family executed 

“capa_check_for_sandbox_and_av_modules” twice. There are 45 records in this 

dataset where this feature is executed twice. The research team believes that if a human 

can make such a discovery using one feature, a machine can cluster malware samples 

into families with great accuracy, using all the features in the dataset. 

 

3.4 Clustering  

 

Before clustering malware samples, dimensionality reduction was used to find the 

most important features. Traditionally, linear dimension reduction techniques like 

Principal Component Analysis are used but a nonlinear and non-deterministic method 

was more appropriate and produced better clustering results later. So instead of using 

Principal Component Analysis, Uniform Manifold Approximation and Projection 
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(UMAP) was used. UMAP is an alternative dimensionality reduction technique that 

uses Riemann geometry instead of constructing orthogonal vectors like PCA. Stratified 

shuffle split was used to validate the model and tune the hyperparameters for UMAP, 

where 80% of the data was used for training the model and 20% was set aside for 

testing. After dimensionality reduction, the clustering algorithm used was HDBSCAN. 

The difference between HDBSCAN and DBSCAN is that HDBSCAN can immediately 

determine the optimal number of clusters needed and can work with clusters of different 

densities. Originally, K-Means clustering was used but after tuning the number of 

clusters with the elbow method, the accuracy, precision, and recall were poor. 

HDBSCAN is a clustering method that finds clusters of varied sizes without having to 

specify a distance threshold first and can be used to predict future cluster membership, 

unlike DBSCAN. For this use case, optimal hyperparameters for HDBSCAN were 

identified as min samples of 2, min cluster size of 3, excess of mass cluster selection 

method, the Manhattan distance metric, and a cluster selection epsilon of 0.01. 

4   Results 

4.1 Metrics 

 

Family Name Quantity 

sodinokibi 464 

darkcomet 224 

njrat 156 

remcos 71 

nanocore 66 

limerat 51 

dcrat 38 

systembc 35 

gh0strat 24 

quasarrat 22 

asyncrat 16 

orcusrat 15 

redline 13 

blackshades 10 

Table 1: Family Distribution 

 

Test Mean 

Accuracy 
Test Weighted Mean 

Precision 

Test Weighted Mean 

Recall 
Mean Percent 

Classified 

97% 97% 97% 96% 

    

Table 2: Overall Metrics 
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Figure 2: Multiclass Test Precision 
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Figure 3: Multiclass Test Recall 

 

 

 

For each cluster it is desirable to have high accuracy. Specifically, high cluster 

family homogeneity. If, for example, a sample is not in the asyncrat family but is 

clustered into a grouping mainly comprised of that family then an error would have 

occurred.  Using 5-fold stratified 80/20 shuffle split, the mean accuracy on the test set 

was 97% with, on average, 96% of the samples successfully clustered. The mean cluster 

size obtained by this methodology is 7.57, reducing the 1205 total samples down to 152 

clusters.   
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4.2 Cluster Visualization 

 

Figure 4: Malware Samples Colored by Family 

 

 

 

After performing dimensionality reduction, the first and second UMAP components 

are plotted as x and y respectively. Notice the many different clusters in Figure 4. This 

is a 2-dimensional representation of multi-dimensional data. It is not possible to 

visualize more than three dimensions.  However, the usefulness of this plot is that 

samples that are alike are near each other.  The location and color of each sample 

within a cluster are important. Observing the clusters reveals that most of the points are 

near other points of the same color.  
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Figure 5. Malware Sample ‘sodinokibi’ Family 

 

 

 

Zooming in on a specific cluster, Figure 5, reveals that the malware samples form 

lines. This is an interesting result that occurs across multiple families. More 

investigation is required to understand why these lines are formed; anecdotal evidence 

indicates that this visual representation of a change in the malware family with respect 

to time. However, the main point of interest for this study is that the samples are 

clustered accurately and there is strong visual evidence. 
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4.3 Capabilities 

 

 

Malware 

Sample 

Execute anti-

debugging 

instructions 

Check for 

Unmoving 

mouse 

cursor 

Check 

HTTP status 

code 

Encode 

data using 

Base64 

Encode 

data using 

XOR 

648 0 1 1 1 1 

649 1 0 0 1 13 

      

Table 3 Malware Samples from the ‘sodinokibi’ Family 

 

 

 

Table 3 shows two malware samples from the dataset with five of the many CAPA 

rules. These rules are actions that malware samples can execute. The numbers in the 

CAPA rules columns represent the number of times the rule was observed in the 

sample. Although these samples did not trigger the same rules, they are clustered into 

the same family. This is evidence that the robustness of the methodology enables 

clustering even though exact matching is not present. 

5   Discussion 

 

The research conducted and the literature reviewed so far presents a comprehensive 

understanding of how malware files can be analyzed and classified based on their 

similarities and unique characteristics. The advent of advanced static analysis tools such 

as CAPA is radically changing the approach data science teams take in analyzing and 

classifying malware. An intrinsic advantage of these advancements is the ability to 

identify clusters of malware samples which have similarities in external shape, internal 

structure, and capabilities. This represents a significant stride towards understanding 

both the scope and intent of various malware types that pervade across the digital 

landscape.  

These sample clusters provide us with groups of malwares that display high 

similarity within their nature and functionalities. Through this clustering approach, we 

can decipher what these grouped samples are designed to accomplish, whether it 

involves downloading or uploading a file, encryption of a hard drive, or other potential 

functionalities. Clustering also provides insights into their unique objectives such as 

executing unauthorized system commands, encrypting data, or infringing upon user 

privacy. These capabilities directly correlate to the potential damage these malware 

files can inflict upon execution.  

Through understanding these clusters, we gain a critical insight into the severity of 

the potential damage these malware files can cause. For instance, if a cluster of malware 
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files can encrypt a hard drive or have system control capabilities, it signifies a serious 

threat to data security and system integrity. With this knowledge, we can prioritize the 

development and deployment of countermeasures targeted at these specific threats. 

Examples of this can include improving system defenses, implementing more robust 

data backup, and bolstering intrusion detection systems. Moreover, increased 

awareness of such threats would allow for targeted user education and understanding 

of digital hygiene practices.  

Another pivotal advantage is the efficiency that clustering introduces to malware 

analysis. Considering a scenario where 50 malware files are grouped into a cluster 

based on similar functionality, an in-depth analysis of a single representative file could 

offer insights into the behavior and objectives of the entire group. This saves 

considerable time and computational resources while avoiding unnecessary duplication 

of work, leading to an accelerated response time in combating threats.  

Despite its effectiveness, we must acknowledge that this clustering approach has its 

limitations. In the constantly evolving landscape of cyber threats, malware creators 

continue to innovate obfuscation and encryption techniques to bypass detection 

systems. Consequently, our static analysis tools and methodologies must continually 

adapt and, to maintain their reliability in detecting and classifying these threats, should 

be integrated into pre- and post-processing components of a hybrid analysis pipeline. 

This would decrease overall analysis costs and facilitate more flexible and adaptive 

strategies that can keep up with the advancements in malware technology. 

 

6   Conclusion  

The aforementioned methodology shows promise. Although no industry standard 

ground truth dataset with familial labels exists, this research hopes to have provided an 

outline that the research community at large can use. Furthermore, the goal of extracting 

features from malware samples, generating a ground truth dataset, and performing 

cluster analysis on that dataset with a high level of accuracy was achieved. 

Additionally, the data science team was able to perform this analysis without executing 

any of the malware samples, raising the bar for what can be accomplished through static 

analysis.  

Clustering malware samples using this methodology, with the accuracy levels 

mentioned under Results, the research shows that for a given cluster, everything within 

the cluster can be generalized to the same malware family with 97% accuracy. 

Generally speaking, this methodology may be applied to cluster any binary code of 

sufficient size. Future work may involve adding more CAPA rules, structural features, 

and extending this approach to binary code formats for different operating systems.  
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