
SMU Data Science Review SMU Data Science Review

Volume 7 Number 2 Article 4

2023

Static Malware Family Clustering via Structural and Functional Static Malware Family Clustering via Structural and Functional

Characteristics Characteristics

David George
Southern Methodist University, davidg@mail.smu.edu

Andre Mauldin
Southern Methodist University, amauldin@mail.smu.edu

Josh Mitchell
Southern Methodist University, joshmitchell@mail.smu.edu

Sufiyan Mohammed
Southern Methodist University, sufim@mail.smu.edu

Robert Slater
Southern Methodist University, rdslater@mail.smu.edu

Follow this and additional works at: https://scholar.smu.edu/datasciencereview

 Part of the Data Science Commons, Information Security Commons, and the Risk Analysis Commons

Recommended Citation Recommended Citation
George, David; Mauldin, Andre; Mitchell, Josh; Mohammed, Sufiyan; and Slater, Robert (2023) "Static
Malware Family Clustering via Structural and Functional Characteristics," SMU Data Science Review: Vol.
7: No. 2, Article 4.
Available at: https://scholar.smu.edu/datasciencereview/vol7/iss2/4

This Article is brought to you for free and open access by SMU Scholar. It has been accepted for inclusion in SMU
Data Science Review by an authorized administrator of SMU Scholar. For more information, please visit
http://digitalrepository.smu.edu.

https://scholar.smu.edu/datasciencereview
https://scholar.smu.edu/datasciencereview/vol7
https://scholar.smu.edu/datasciencereview/vol7/iss2
https://scholar.smu.edu/datasciencereview/vol7/iss2/4
https://scholar.smu.edu/datasciencereview?utm_source=scholar.smu.edu%2Fdatasciencereview%2Fvol7%2Fiss2%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1429?utm_source=scholar.smu.edu%2Fdatasciencereview%2Fvol7%2Fiss2%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=scholar.smu.edu%2Fdatasciencereview%2Fvol7%2Fiss2%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1199?utm_source=scholar.smu.edu%2Fdatasciencereview%2Fvol7%2Fiss2%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.smu.edu/datasciencereview/vol7/iss2/4?utm_source=scholar.smu.edu%2Fdatasciencereview%2Fvol7%2Fiss2%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalrepository.smu.edu/

Static Malware Family Clustering via Structural and

Functional Characteristics

Josh Mitchell, Sufiyan Mohammed, Andre Mauldin1, David George, Robert

Slater2
1Master of Science in Data Science, Southern Methodist University,

Dallas, TX 75275 USA
2Faculty, Data Science Department

Southern Methodist University,

Dallas, TX 75275 USA

Abstract. Static and dynamic analyses are the two primary approaches to

analyzing malicious applications. The primary distinction between the two is that

the application is analyzed without execution in static analysis, whereas the

dynamic approach executes the malware and records the behavior exhibited

during execution. Although each approach has advantages and disadvantages,

dynamic analysis has been more widely accepted and utilized by the research

community whereas static analysis has not seen the same attention. This study

aims to apply advancements in static analysis techniques to demonstrate the

identification of fine-grained functionality, and show, through clustering, how

malicious applications may be grouped into associated family types. The scope

of this research is focused on malicious software utilizing the Portable Executable

(“PE”) file format for Microsoft Windows operating systems.

1 Introduction

Malicious software, herein referred to as malware, is one of the largest risks to safe

and secure internet usage. In 2022, more than 30 million new malware samples were

found, and malware authors created more than 316 thousand malware samples daily.

(Database and Network Journal, 2022). As a result, certain aspects of the malware

problem have been studied at length. Many of these studies involve different

combinations of detection, classification, and clustering either through dynamic

analysis or hybrid approaches (those involving a combination of static analysis and

dynamic analysis) (ALGorain & Clark, 2022) which involves executing the malware

for classification and clustering. The dynamic approach also requires more resources

than the static approach (classifying and/or clustering without executing the malware).

There are several issues when attempting to cluster malware into familial groups

solely based on static analysis. First, the presence of an industry-accepted ground-truth

dataset is unavailable. Datasets have been generated through honeypots, public

databases, the collection and processing of cyber threat bulletins, or other means

(Smith, et al, 2017). However, these datasets are insufficient for the familial

classification task due to a lack of family labels and insufficient information as to the

1

George et al.: Static Malware Family Clustering

Published by SMU Scholar, 2023

internal state of the application. Secondly, data transformations in the form of packers,

obfuscation, and encryption are commonly applied to malware to prevent or hinder

analysis and detection. These data transformations can be of arbitrary complexity and

depth and have, up to this point, discouraged meaningful attempts to statically

categorize malware. Finally, malware is generated at an extraordinary rate. Malware

authors and cyber criminals are in a perpetual survival-of-the-fittest struggle against

one another and security vendors. These issues have a compounding effect when

attempting to classify and cluster malware into families and are leading reasons why

research has been primarily devoted to the dynamic analysis arena.

Unfortunately, dynamic analysis is not a panacea. Dynamic analysis systems are

complex and involve a significantly higher resource utilization footprint. The dynamic

approach only records what happened when the malware was executed (what it did).

This does not show other potential harm the malware could cause (what it can do).

Furthermore, malware regularly detects dynamic analysis systems such as virtual

machines and sandboxes. This can cause the malware to alter its behavior and change

the observable characteristics recorded by the dynamic analysis system. These changes

in behavior can be imperceptible to the system.

Static and dynamic analysis are two sides of the same coin. Each has advantages and

disadvantages, and neither are complete. This research aims to identify key

observational metrics with respect to malware family clustering through static analysis

and enabling interested parties to cluster malware into family groups without executing

the malware.

This research will enable interested parties to cluster malware into the known

families without executing the malware. This will save time and the cost of acquiring a

sandbox to execute the malware, and the cost of the computing power required to

extract data from the sandbox to perform data analysis. Additionally, this research will

reduce the cost of analyzing multiple malware samples of the same family and reduce

the possibility of alerting threat actors to analysis by not using public data sources or

executing the malware.

The goal of this research is to use the static approach to cluster malware into the

known malware families. This system's results are expected to augment the dynamic

approach and/or provide interested parties with a much less expensive alternative to

using the dynamic approach.

2 Literature Review

In order to identify and mitigate the consequences of malware, analysis

techniques are crucial. The three primary methods for analyzing malware are static,

dynamic, and hybrid. Static analysis is a quick and resource-effective technique with

limitations in detecting new viruses. It entails looking at the source code or executable

file without running it. Dynamic analysis, on the other hand, involves executing the

malware in a controlled environment to observe its behavior, and although it provides

more comprehensive analysis and can detect novel malware, it requires more resources

2

SMU Data Science Review, Vol. 7 [2023], No. 2, Art. 4

https://scholar.smu.edu/datasciencereview/vol7/iss2/4

and is time-consuming. Hybrid analysis combines static and dynamic methodologies,

combining their advantages to produce a more potent method of malware analysis.

The EMBER dataset is a valuable resource for researchers looking to better

understand use cases for malware classification. In their study, Anderson and Roth

(2018) provide a detailed exploration of this dataset, which contains a comprehensive

collection of Windows executable files, both malicious and benign. The authors

describe the dataset in detail and highlight the value of its inclusion of benign

executables, which eliminates the need for researchers to generate their own benign

data for testing purposes. The focus of the study is on training machine learning models

to detect Windows malware executables, making it a useful resource for researchers

working in the field of malware analysis.

2.1 Static Analysis

Static analysis is primarily a method of analyzing software without actual execution-

it involves examination the source code or executable binary. The main advantage of it

being that it can be performed quickly and with less resources as compared to dynamic

analysis. (Jusoh, Rosmalissa, et al., 2021) reviewed various techniques and approaches

that were applied to the analysis of Android malware. With respect to static analysis,

signature and source code review methods were utilized. These techniques involved

examining the code to detect known patterns of malicious behavior or code structures

known to be malware families. Accurate feature selection was identified as a critical

component of the system and obfuscation was identified as a hurdle, and although the

methods were useful, they have been known to be limited in scope and have difficulty

detecting novel malware.

To aid precise malware identification, Keong Ng, Jiang, et al. (2019) examined the

deep embedded clustering method using the Virus dataset from the UCI repository. This

method used autoencoders, PCA, and KNN to identify patterns and similarities in the

binary files and group them into different malware libraries. Use of 3 layers of

encoders/decoders was found to have the best results and outperformed K-means

methods. Little work had been done on deep learning representations of malware

clustering prior to the authoring of this study, and the advantage of this over source

code review is its ability to detect novel malware that does not necessarily have a known

code structure.

Another promising approach to static detection is through Kim, Sangwon, et al

(2022) which introduces a fully automated labeling system based on AVClass2. The

tool extracts family information from antivirus and measures the frequency of label

occurrence per sample family. The system then requires more than a million labels to

build a graph using the same accuracy metric at AVClass2. The biggest benefit is that

no prior knowledge is required to run this approach. As the author aims to efficiently

extract existing malware data from antivirus engines and use those same samples to

train ML algorithms, the accuracy is only based on the clustering and not the

appropriateness of the labels.

On a similar note, Sebastian and Caballero’s (2020) malware tag extraction tool uses

AV labels (Detection labels by anti-virus engines) that contains information about the

malware. The malware tags can be indexed to extract existing data from anti-virus

engines to train ML algorithms. This method does however rely on the accuracy of the

3

George et al.: Static Malware Family Clustering

Published by SMU Scholar, 2023

AV labels themselves to train the model and may not capture the full behavior of the

malware.

Finally, Siwach, Costa, and De Nicola (2021) introduced a rule-based feature

specification language, Symbolic Feature Specification Language (SFSL). The rules

are based on the behavior of the malware sample- if the behavior matches the defined

rules, the result will “generate feature vectors for a machine learning classifier.” The

process includes “symbolizing” execution of the malware sample without actual

execution- maintaining the process’ safety.

2.2 Dynamic Analysis

Execution in a controlled environment is the base premise of dynamic analysis. The

main advantage of this method is being able to record the program’s exact behavior,

which can aid in the discovery of novel or unknown malware. Although it is typically

more comprehensive than static analysis, dynamic analysis does require more resources

and can be more time-consuming. This analysis has been executed in a variety of

techniques and Smith et al. (2017) talk about the difference between malware detection

and behavioral analysis, the latter of which excludes watching malware behavior. To

increase the effectiveness of malware detection and classification, the authors

emphasize the necessity of observing malicious activity. This study also discusses the

use of sandboxing as one of the main techniques of dynamic analysis. This involves

using a controlled environment in which malware can be safely executed without fear

of harming the host system. The behavior of the malware is observed, and results are

then analyzed to identify malicious behavior.

Nikolopoulos, Stavros D, and Polenakis (2017) defined a directed acyclic graph to

represent the functionality of a malware sample by capturing API calls made by the

sample during execution. As the API calls interface between the program and operating

system, performing various essential functions, capturing them makes it possible to

understand the behavior and understand malware activity. As this method captures

behavior, it is possible to detect novel malware and is especially useful in detecting

malware techniques that change the code of the malware with each execution.

2.3 Hybrid Analysis

Hybrid analysis combines elements of both static and dynamic analysis to overcome

their individual limitations and provide a more thorough understanding of malware.

This process entails combining both code examination techniques with execution of the

code in a controlled environment. By utilizing the advantages of both methodologies,

hybrid analysis can detect malicious patterns that might not be apparent with a single

method alone. Aside from utilizing a sandbox, other techniques have been developed.

Rizvi, et al. (2022) performed unsupervised clustering with neural networks to group

malware samples based on features extracted from the code. The dataset was collected

from high and low interaction honeypots and enterprise networks and labels were added

based on VirusTotal search results. After analyzing files with PEStudio to determine if

they were packed or obfuscated, they are then executed in a sandbox and the behavior

is captured.

4

SMU Data Science Review, Vol. 7 [2023], No. 2, Art. 4

https://scholar.smu.edu/datasciencereview/vol7/iss2/4

Another hybrid system proposed was through Ghouti and Imam (2020) in which

binary values of a malware sample were converted into greyscale images and then

classified using image processing techniques. The images were trained on a SVM

model on the PCA data of the images. The authors used the EMBER dataset along with

others to complete the analysis. A major advantage of this approach was its ability to

provide a new dimension to the analysis through visual similarities, giving it an edge

when dealing with obfuscated samples. However, the authors acknowledged the

limitations of this approach, including lack of feature interpretability, high

computational requirements, and impact of image resolution on classification accuracy.

Despite the single dimensionality and novelty of the technology, the results of the study

showed that there is potential in this method.

It has been established that each of the three analysis techniques- static, dynamic,

and hybrid have their own advantages and disadvantages. Static is ideal for quick and

resource efficient analysis but limited in its ability to detect novel malware. Dynamic

analysis allows for more comprehensive analysis and potential detection of novel

malware through execution in a controlled environment but suffers from being far more

time and resource intensive. A hybrid approach combines both static and dynamic

analyses and can provide a more efficient solution. Additionally, using high-level

representations of malware can help in identifying malware clusters through static

analysis, potentially making it even more efficient than the hybrid approach.

Hypothesis

Malware can be clustered into family groups using features which fall into three

categories. Features describing the malware's shape, those describing the internal

structure, and features describing its capabilities. The shape of the malware is

ascertained by utilizing features found in the EMBER dataset. Internal structure is

extracted via measurements of graph node centrality. Capabilities are a higher-level

representation of the functionality of an application and include: the ability to download

a file, ability to upload a file, ability to encrypt a hard drive etc. Capability features

were extracted using the Mandiant CAPA tool. This is a tool that has rules designed to

identify specific malware capabilities.

Analysis proves that this methodology can be used to identify malware clusters using

a static approach. This is an effective augmentation to the dynamic approach. While the

dynamic approach exposes what happens during malware execution, it does not expose

what could happen. The benefits of this approach lie in its cost saving, in terms of dollar

cost and required processing power, and the identification of latent functionality.

3 Methods

This study follows a systematic process for malware sample analysis, which involves

the collection of malware samples, feature extraction, dataset formation, and

subsequent clustering. A ground truth dataset is established by collecting malware

5

George et al.: Static Malware Family Clustering

Published by SMU Scholar, 2023

samples from VX-Underground, MalwareBazaar, and VirusTotal. Within these

databases, crowd-sourced and automatic labeling is applied. Ground truth is established

through the validation of these family labels by processing all malware samples with

configuration extraction utilities designed for each specific family. Features from the

ground truth samples are then extracted using Radare2, CAPA, and the PageRank

algorithm. Once the dataset is established, clustering analysis is leveraged to verify the

established methodology by way of the labels provided by the ground truth collection.

The methodology applied in this research is delineated in the following subsections:

3.1 Sample Collection

Malware samples were obtained from community databases, namely VX-

Underground, MalwareBazaar, and VirusTotal. These malware samples are collected

through a variety of sources, and the databases provide a mechanism whereby samples

can be submitted and tagged by contributors. In general, the tags enable identification

and family association of the samples within these databases. However, malware

families contain multiple variants and components which obscure the relationship

between a sample, the sample's purpose, and the family. Thus, the samples must

undergo additional processing to identify those which truly represent the family.

After collecting the samples, the extraction scripts try to extract configuration data

from the sample by running YARA rules and configuration extraction utilities. These

tools are specifically designed to identify and extract configuration data from the

malware family. As the primary focus of this study is on samples that are an actual

representation of the family in which they were tagged, the research team has brought

together multiple publicly available configuration extraction tools and tested them

against each sample. These identification and extraction utilities attempt to extract the

malware settings, and, as such, are “keys” for a specific malware family. If the key does

not work, it is not a clean representation of the malware family.

The research team used the PEiD packer detection library to remove all samples

identified as having a packer or obfuscation applied to them. Packed samples are

deemed not useful as the packer is a separate application than the malware sample. As

such, all features extracted would not be representative of the malware family, but

rather, would be describing the characteristics consistent with the packer application.

Conceptually, software packers are akin to Matryoshka dolls.

3.2 Feature Collection

Similar to the EMBER, UCI Repository (Anderson and Roth, 2018, ALGorain and

Clark, 2022), the research team identified features related to the Portable Executable

(PE) file format. These features describe external aspects of PE applications and have

been used in malware classification and categorization research. However, most

features collected by the research team describe internal aspects of PE applications.

6

SMU Data Science Review, Vol. 7 [2023], No. 2, Art. 4

https://scholar.smu.edu/datasciencereview/vol7/iss2/4

These features can be separated into two groups: those that describe the application's

structure and those that describe its functionality.

To characterize the structure of an application, the research team focused on

collecting features from the top 100 functions which were identified by building an

adjacency matrix of the interprocedural control-flow-graph (the graph representing the

relationships between functions, CFG). This matrix was used to generate scores from

the PageRank algorithm, a Google innovation that ranks the importance of web pages

returned in search engine results (Murrugarra, David, et al., 2016).

Describing the functionality of an application requires a higher-level understanding

of the various components within, and the relationship between, them. To that end, the

research team utilized CAPA, Mandiant’s open-source tool for describing the tactics,

techniques, procedures (TTP), and capabilities present within an application. CAPA

provides a mechanism to list known capabilities present within the malware sample and

map them to the MITRE adversarial tactics, techniques, and common knowledge

(ATT&CK) framework and the malware behavior catalogue (MBC).

3.3 Data Description

The dataset for this study contains 854 features with 318 depicting malware

capabilities, 503 describing the internal structure of the application, and 35 features

which represent the external shape of the malware. For example, “

capa_check_for_sandbox_and_av_modules” is a feature that describes a capability, while

“function_0_func_size” describes the size of a function in the malware code. The size is a

property of the malware structure.

This study tests whether the features used for clustering will work. Figure 1 is used

to describe the rationale behind the methods.

7

George et al.: Static Malware Family Clustering

Published by SMU Scholar, 2023

Figure 1. Y-axis: The number of times “capa_check_for_sandbox_and_av_modules”

was executed. X-axis: The malware family.

Observe in Figure 1 that the cybergate family executed

“capa_check_for_sandbox_and_av_modules” twice. There are 45 records in this

dataset where this feature is executed twice. The research team believes that if a human

can make such a discovery using one feature, a machine can cluster malware samples

into families with great accuracy, using all the features in the dataset.

3.4 Clustering

Before clustering malware samples, dimensionality reduction was used to find the

most important features. Traditionally, linear dimension reduction techniques like

Principal Component Analysis are used but a nonlinear and non-deterministic method

was more appropriate and produced better clustering results later. So instead of using

Principal Component Analysis, Uniform Manifold Approximation and Projection

8

SMU Data Science Review, Vol. 7 [2023], No. 2, Art. 4

https://scholar.smu.edu/datasciencereview/vol7/iss2/4

(UMAP) was used. UMAP is an alternative dimensionality reduction technique that

uses Riemann geometry instead of constructing orthogonal vectors like PCA. Stratified

shuffle split was used to validate the model and tune the hyperparameters for UMAP,

where 80% of the data was used for training the model and 20% was set aside for

testing. After dimensionality reduction, the clustering algorithm used was HDBSCAN.

The difference between HDBSCAN and DBSCAN is that HDBSCAN can immediately

determine the optimal number of clusters needed and can work with clusters of different

densities. Originally, K-Means clustering was used but after tuning the number of

clusters with the elbow method, the accuracy, precision, and recall were poor.

HDBSCAN is a clustering method that finds clusters of varied sizes without having to

specify a distance threshold first and can be used to predict future cluster membership,

unlike DBSCAN. For this use case, optimal hyperparameters for HDBSCAN were

identified as min samples of 2, min cluster size of 3, excess of mass cluster selection

method, the Manhattan distance metric, and a cluster selection epsilon of 0.01.

4 Results

4.1 Metrics

Family Name Quantity

sodinokibi 464

darkcomet 224

njrat 156

remcos 71

nanocore 66

limerat 51

dcrat 38

systembc 35

gh0strat 24

quasarrat 22

asyncrat 16

orcusrat 15

redline 13

blackshades 10

Table 1: Family Distribution

Test Mean

Accuracy
Test Weighted Mean

Precision

Test Weighted Mean

Recall
Mean Percent

Classified

97% 97% 97% 96%

Table 2: Overall Metrics

9

George et al.: Static Malware Family Clustering

Published by SMU Scholar, 2023

Figure 2: Multiclass Test Precision

10

SMU Data Science Review, Vol. 7 [2023], No. 2, Art. 4

https://scholar.smu.edu/datasciencereview/vol7/iss2/4

Figure 3: Multiclass Test Recall

For each cluster it is desirable to have high accuracy. Specifically, high cluster

family homogeneity. If, for example, a sample is not in the asyncrat family but is

clustered into a grouping mainly comprised of that family then an error would have

occurred. Using 5-fold stratified 80/20 shuffle split, the mean accuracy on the test set

was 97% with, on average, 96% of the samples successfully clustered. The mean cluster

size obtained by this methodology is 7.57, reducing the 1205 total samples down to 152

clusters.

11

George et al.: Static Malware Family Clustering

Published by SMU Scholar, 2023

4.2 Cluster Visualization

Figure 4: Malware Samples Colored by Family

After performing dimensionality reduction, the first and second UMAP components

are plotted as x and y respectively. Notice the many different clusters in Figure 4. This

is a 2-dimensional representation of multi-dimensional data. It is not possible to

visualize more than three dimensions. However, the usefulness of this plot is that

samples that are alike are near each other. The location and color of each sample

within a cluster are important. Observing the clusters reveals that most of the points are

near other points of the same color.

12

SMU Data Science Review, Vol. 7 [2023], No. 2, Art. 4

https://scholar.smu.edu/datasciencereview/vol7/iss2/4

Figure 5. Malware Sample ‘sodinokibi’ Family

Zooming in on a specific cluster, Figure 5, reveals that the malware samples form

lines. This is an interesting result that occurs across multiple families. More

investigation is required to understand why these lines are formed; anecdotal evidence

indicates that this visual representation of a change in the malware family with respect

to time. However, the main point of interest for this study is that the samples are

clustered accurately and there is strong visual evidence.

13

George et al.: Static Malware Family Clustering

Published by SMU Scholar, 2023

4.3 Capabilities

Malware

Sample

Execute anti-

debugging

instructions

Check for

Unmoving

mouse

cursor

Check

HTTP status

code

Encode

data using

Base64

Encode

data using

XOR

648 0 1 1 1 1

649 1 0 0 1 13

Table 3 Malware Samples from the ‘sodinokibi’ Family

Table 3 shows two malware samples from the dataset with five of the many CAPA

rules. These rules are actions that malware samples can execute. The numbers in the

CAPA rules columns represent the number of times the rule was observed in the

sample. Although these samples did not trigger the same rules, they are clustered into

the same family. This is evidence that the robustness of the methodology enables

clustering even though exact matching is not present.

5 Discussion

The research conducted and the literature reviewed so far presents a comprehensive

understanding of how malware files can be analyzed and classified based on their

similarities and unique characteristics. The advent of advanced static analysis tools such

as CAPA is radically changing the approach data science teams take in analyzing and

classifying malware. An intrinsic advantage of these advancements is the ability to

identify clusters of malware samples which have similarities in external shape, internal

structure, and capabilities. This represents a significant stride towards understanding

both the scope and intent of various malware types that pervade across the digital

landscape.

These sample clusters provide us with groups of malwares that display high

similarity within their nature and functionalities. Through this clustering approach, we

can decipher what these grouped samples are designed to accomplish, whether it

involves downloading or uploading a file, encryption of a hard drive, or other potential

functionalities. Clustering also provides insights into their unique objectives such as

executing unauthorized system commands, encrypting data, or infringing upon user

privacy. These capabilities directly correlate to the potential damage these malware

files can inflict upon execution.

Through understanding these clusters, we gain a critical insight into the severity of

the potential damage these malware files can cause. For instance, if a cluster of malware

14

SMU Data Science Review, Vol. 7 [2023], No. 2, Art. 4

https://scholar.smu.edu/datasciencereview/vol7/iss2/4

files can encrypt a hard drive or have system control capabilities, it signifies a serious

threat to data security and system integrity. With this knowledge, we can prioritize the

development and deployment of countermeasures targeted at these specific threats.

Examples of this can include improving system defenses, implementing more robust

data backup, and bolstering intrusion detection systems. Moreover, increased

awareness of such threats would allow for targeted user education and understanding

of digital hygiene practices.

Another pivotal advantage is the efficiency that clustering introduces to malware

analysis. Considering a scenario where 50 malware files are grouped into a cluster

based on similar functionality, an in-depth analysis of a single representative file could

offer insights into the behavior and objectives of the entire group. This saves

considerable time and computational resources while avoiding unnecessary duplication

of work, leading to an accelerated response time in combating threats.

Despite its effectiveness, we must acknowledge that this clustering approach has its

limitations. In the constantly evolving landscape of cyber threats, malware creators

continue to innovate obfuscation and encryption techniques to bypass detection

systems. Consequently, our static analysis tools and methodologies must continually

adapt and, to maintain their reliability in detecting and classifying these threats, should

be integrated into pre- and post-processing components of a hybrid analysis pipeline.

This would decrease overall analysis costs and facilitate more flexible and adaptive

strategies that can keep up with the advancements in malware technology.

6 Conclusion

The aforementioned methodology shows promise. Although no industry standard

ground truth dataset with familial labels exists, this research hopes to have provided an

outline that the research community at large can use. Furthermore, the goal of extracting

features from malware samples, generating a ground truth dataset, and performing

cluster analysis on that dataset with a high level of accuracy was achieved.

Additionally, the data science team was able to perform this analysis without executing

any of the malware samples, raising the bar for what can be accomplished through static

analysis.

Clustering malware samples using this methodology, with the accuracy levels

mentioned under Results, the research shows that for a given cluster, everything within

the cluster can be generalized to the same malware family with 97% accuracy.

Generally speaking, this methodology may be applied to cluster any binary code of

sufficient size. Future work may involve adding more CAPA rules, structural features,

and extending this approach to binary code formats for different operating systems.

15

George et al.: Static Malware Family Clustering

Published by SMU Scholar, 2023

References

1. ALGorain, Fahad T., and John A. Clark (2022). Bayesian Hyper-Parameter

Optimisation for Malware Detection. Electronics (Basel), vol. 11, no. 10, 2022,

p. 1640–, https://doi.org/10.3390/electronics11101640

2. Anderson & Roth (2018). EMBER: An Open Dataset for Training Static

Malware Machine Learning Models. ArXiv:1804.04637v2 [cs.CR] 16 Apr 2018

3. Chee Keong Ng, Frank Jiang, Leo Yu Zhang, Wanlei Zhou. (2019). Static

malware clustering using enhanced deep embedding method.

https://doi.org/10.1002/cpe.5234

4. Chinmay Siwach, Gabriele Costa, Rocco De Nicola (2021). Enhancing Malware

Classification with Symbolic Features. ITASEC’21: Italian Conference on

5. Cybersecurity, April 07–09, 2021, all-digital conference.

chinmay.siwach@imtlucca.it (C. Siwach); gabriele.costa@imtlucca.it (G.

Costa); rocco.denicola@imtlucca.it (R. D. Nicola)

6. Database and Network Journal (2022). Over 30 Million New Malware Samples

Found in 2022 as Cyber Threats Evolve. Database and Network Journal, vol.

52, no. 2, Apr. 2022, p. 25. Gale Academic OneFile,

https://link.gale.com/apps/doc/A703171095/AONE?u=txshracd2548&sid=boo

kmark-AONE&xid=60203499

7. Ghouti, Lahouari, and Muhammad Imam (2020). “Malware Classification

Using Compact Image Features and Multiclass Support Vector Machines.” IET

Information Security, vol. 14, no. 4, 2020, pp. 419–29,

https://doi.org/10.1049/iet-ifs.2019.0189.

8. Jusoh, Rosmalissa, et al (2021). “Malware Detection Using Static Analysis in

Android: a Review of FeCO (features, Classification, and Obfuscation).” PeerJ.

Computer Science, vol. 7, 2021, p. e522–, https://doi.org/10.7717/peerj-cs.522.

9. Kim, Sangwon, et al (2022). “Sumav: Fully Automated Malware Labeling.” ICT

Express, vol. 8, no. 4, 2022, pp. 530–38,

https://doi.org/10.1016/j.icte.2022.02.007.

10. Michael R. Smith, Armida J. Carbajal, Ramayaa, Nicholas T Johnson, Bridget

I. Haus, Christopher C. Lamb, W. Philip Kegelmeyer, Joe B. Ingram, Eva

Domschot, Stephen J. Verzi (2017). Mind the Gap: On Bridging the Semantic

Gap between Machine Learning and Malware Analysis Murrugarra, David, et

al (2016). “Estimating Propensity Parameters Using Google PageRank and

Genetic Algorithms.” Frontiers in Neuroscience, vol. 10, 2016, pp. 513–513,

https://doi.org/10.3389/fnins.2016.00513.

12. PEiD (2023). https://www.aldeid.com/wiki/PEiD (Last accessed, February

2023)

13. Rizvi, Syed Khurram Jah, et al (Jan. 2022). “PROUD-MAL: Static Analysis-

Based Progressive Framework for Deep Unsupervised Malware Classification

of Windows Portable Executable.” Complex & Intelligent Systems, vol. 8, no.

1, 2022, pp. 673–85, https://doi.org/10.1007/s40747-021-00560-1.

14. Silvia Sebastian, Juan Caballero (Oct. 2020). AVclass2: Massive Malware Tag

Extraction from AV Labels. arXiv:2006.10615V2 [cs.CR] 28 oct 2020

16

SMU Data Science Review, Vol. 7 [2023], No. 2, Art. 4

https://scholar.smu.edu/datasciencereview/vol7/iss2/4

https://doi.org/10.3390/electronics11101640
https://doi.org/10.1002/cpe.5234
mailto:chinmay.siwach@imtlucca.it
mailto:gabriele.costa@imtlucca.it
mailto:rocco.denicola@imtlucca.it
https://link.gale.com/apps/doc/A703171095/AONE?u=txshracd2548&sid=bookmark-AONE&xid=60203499
https://link.gale.com/apps/doc/A703171095/AONE?u=txshracd2548&sid=bookmark-AONE&xid=60203499
https://doi.org/10.1049/iet-ifs.2019.0189
https://doi.org/10.7717/peerj-cs.522
https://doi.org/10.1016/j.icte.2022.02.007
https://doi.org/10.3389/fnins.2016.00513
https://www.aldeid.com/wiki/PEiD
https://doi.org/10.1007/s40747-021-00560-1

17

George et al.: Static Malware Family Clustering

Published by SMU Scholar, 2023

	Static Malware Family Clustering via Structural and Functional Characteristics
	Recommended Citation

	tmp.1691287819.pdf.RfgZU

