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Abstract. In recent years, various new Machine Learning and Deep Learning 

algorithms have been introduced, claiming to offer better performance than 

traditional statistical approaches when forecasting time series. Studies seeking 

evidence to support the usage of ML/DL over statistical approaches have been 

limited to comparing the forecasting performance of univariate, linear time series 

data. This research compares the performance of traditional statistical-based and 

ML/DL methods for forecasting multivariate and nonlinear time series. 

1 Introduction 

Time series modeling is important in many applications in science, including medicine, 

economics, and engineering. In the real world, most time series data are nonlinear, and 

their accurate forecasting is highly valuable for a wide range of studies such as GDP, 

EEG, ECG, epidemiological data, etc. 

Over the last twenty years, there has been an explosion in new time series methods 

that leverage the power of Machine Learning computing for forecasting time series 

(Crone et al., 2011). Since these novel modeling techniques use more complex 

algorithms with higher computational requirements, they are regularly assumed to be 

superior to traditional methods. Frequently, these novel techniques tend to be 

introduced as having better forecasting performance than traditional approaches. 

However, in many cases, this conclusion is based on results produced with a small 

number of samples and datasets, focusing predominantly on short-term forecasting 

horizons and without a benchmark comparison against statistical methods (Makridakis 

et al., 2018). In the past, several studies have found that these newer Machine Learning 

models have worse forecasting performance than traditional statistical approaches 

(Makridakis et al., 2018), casting doubt on the assumption that these newer methods 

are better than established, traditional techniques. 

Additionally, previous open forecasting competitions, such as the M3 and NN3 

competitions, found no conclusive evidence that Machine Learning models 

outperformed statistical approaches in time series forecasting (Crone et al., 2011). 

Moreover, these events were often dominated by statistical approaches, with Machine 

Learning methods showing comparatively poor performance. 

In recent years, advances in Machine Learning (ML) have significantly improved 

the performance of Deep Learning (DL) techniques compared to traditional methods. 
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These newer and more sophisticated ML models have been found to produce more 

accurate predictions than traditional statistical models (Makridakis et al., 2022). 

However, these studies have focused on comparing traditional and Machine Learning 

methods using univariate, linear data; more extensive analysis is needed to compare 

forecasting performance for multivariate, nonlinear datasets (Hewamalage et al., 2021). 

The lack of multivariate time series forecasting in past research studies and 

forecasting competitions limits the generalization of their results. In some industry 

cases, the additional information that is contained in variables other than the main time 

series can increase the accuracy of a model’s forecasts. These additional variables, 

which can include hierarchical relationships, categorical features, and even additional 

time series, can sometimes add more value to the model’s forecast than the time series 

data (Fry & Brundage, 2020). Further studies are needed to properly compare the 

performance of statistical approaches to ML models when forecasting multivariate time 

series. 

This study focuses on comparing traditional statistical time series methods to 

Machine Learning techniques using multivariate, linear, and nonlinear data. The study 

aims to find if there is a statistically significant difference in forecasting performance 

between these two approaches, which justifies the use of more complex and 

computationally expensive modeling methods. 

As noted by Hewamalage et al. (2021), the fact that these studies have focused on 

comparing the forecasting performances of different methods using solely univariate 

time series is problematic. This represents a gap in knowledge since multivariate time 

series forecasting might be currently being done without empirical evidence that 

compares the performance of these different methods, which would provide support for 

using one method over the other depending on the type of time series. 

This research aims to provide empirical evidence that supports the use of Machine 

Learning methods over traditional statistical methods (or vice versa) for forecasting 

multivariate, linear, and nonlinear time series. The study will focus on comparing 

statistical methods to ML/DL methods, by creating forecasts over multiple horizons for 

each model and evaluating their performance based on error metrics associated with the 

forecasted predictions of each method. 

2 Literature Review 

The literature review focuses on this study's main areas of concern: Previous research 

comparing statistical and ML models; multivariate (bivariate) time series; generating 

nonlinear, bivariate time series; time series models. 

2.1 Time Series Models  

Although most research and applications focus on implementing linear time series 

modeling and forecasting, it is often the case that simple linear time series models can 

leave some of the complexity of the data unexplained (Zivot & Wang, 2006). Handling 
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higher complexity time series data often requires using methods that can properly and 

effectively model nonlinear and/or multivariate behaviors. 

Some of the most widely implemented nonlinear forecasting models include 

Threshold AR (TAR), Self-Exciting Threshold AR (SETAR) and Smooth Transition 

Threshold AR (STAR). SETAR and STAR are variants of the TAR model which was 

originally introduced by Tong (1978). These are a type of statistical time series models 

which can be used with nonlinear time series data. TAR and its variants SETAR and 

STAR are a type of regime-switching model that finds separate AR functions to model 

nonlinear time series behavior based on different thresholds (Godahewa et al., 2022). 

For time series modeling, regime-switching is based on the concept that the time series 

data exhibits different patterns at different time periods, the TAR model thresholds are 

the values which delimit these separate time series behaviors. Although these models 

are considered statistical methods, estimating the thresholds is a computationally 

expensive task, which in the past limited the implementation of these methods in 

practice. 

The TAR model uses the threshold value to divide the time series data into separate 

piece-wise regimes, each with a different linear structure. Though most conventional 

TAR models contain a single threshold variable, two or more thresholds can be applied 

resulting in a larger number of regimes (Chen et al., 2012). The SETAR model is an 

extension of the TAR model, which uses the lag-dependent variable as the threshold 

variable (Tong, 1990). 

The STAR model implements smooth transition functions allowing regime 

switching without hard threshold cutoffs, as is the case with TAR models (Zivot & 

Wang, 2006). Two of the main implementations of STAR are logistic and exponential 

STAR, which implement logistic and exponential functions respectively as the smooth 

threshold functions. These functions act as a continuum threshold, where the weight of 

each regime varies over time. 

Another widely used statistical time series forecasting method is the Integrated 

Nested Laplace Approximation. This is a statistical method for Bayesian inference, 

which was originally proposed by Rue et al. (2009). The INLA method utilizes a 

hierarchical structure approach, making it suitable for modeling high-complexity time 

series such as multivariate and nonlinear data (Ravishanker et al., 2022). This model 

calculates the Laplace approximations for the posterior distributions with highly 

efficient computational time as compared to the fully Bayesian inference 

implementations. 

In recent years, Artificial Neural Networks (ANNs) have become a popular tool for 

forecasting time series, including nonlinear and multivariate data. A main advantage of 

ANNs for time series forecasting is that they can model any type of data, meaning no 

prior assumptions of linearity and underlying data relationships are required (Zhang & 

Qi, 2005). 

Additionally, Recurrent Neural Networks have become a particularly popular ANN 

for competitive time series forecasting based on the results of the M4 competition. The 

advantage of these networks lies in the feedback loop of the recurrent cells that can 

identify the time lag and the dependency in a time series realization (Hewamalage et 

al., 2021). The neural networks contain a recurring feedback, which accounts for the 

previous step and input data before generating the new output (Makridakis et al., 2018). 
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The two main types of RNN units for time series modeling are Long Short-Term 

Memory (LSTM) and Gated Recurrent Unit (GRU). 

The DeepAR, or Deep Autoregressive model, is an autoregressive, recurrent neural 

network for forecasting time series, which is trained on all data from a time series by 

fitting a global model (Salinas et al., 2019). Since this forecasting method learns a 

global model from all the time series data, it is able to generate forecasts for series with 

little to no available data based on similarity to other available data. The model is both 

autoregressive and recurrent, since the observation of the last time step is taken as an 

input, and each output produced becomes an input for the subsequent step. 

Transformers are another type of Machine Learning model which has gained 

significant attention over the past few years. These models were first implemented in 

the fields of Natural Language Processing and computer vision, on which they achieved 

superior performance over established methods (Devlin et al., 2019). The interest 

generated based on the success of Transformers in NLP and other fields and their 

suitability for capturing long-range dependencies has led to the proposals of variations 

of Transformer for a variety of time series applications (Wen et al., 2023). Many 

variations of Transformers have been applied to time series data with various measures 

of success, these address challenges like forecasting, anomaly detection, and 

classification. However, using transformers to model short and long-range time 

dependencies with seasonality remains a challenge. 

Two of the main Transformers variations categories implemented for time series 

forecasting are module-level and architecture-level variants (Wen et al., 2023). Module-

level variants are slight variations of the basic Transformer model with time series 

learning assumptions. Architecture-level variants implement a different architecture 

from the basic Transformer model which utilizes different frameworks. 

Wen et al. (2023) proposed a basic taxonomy of Transformer based models for time 

series applications. This taxonomy has two major components that group the time series 

modeling from the Network Modification and Application Domains perspective. The 

network modification entity describes the modifications made to the Transformer 

architecture to address special time series characteristics. The application entity creates 

distinct application groups to which time series Transformers can be applied to. 

2.2 Generating Nonlinear, Bivariate Time Series  

Time series data differs from most of the data sets used for traditional Machine or 

Statistical Learning methods. Time series data is not randomly sampled since the 

observations are not independent and time series data exhibits a variety of behaviors, 

such as stationarity, or the lack thereof, periodicity and seasonality. The simplest form 

of time series data is univariate which only consists of a single dimension that has been 

measured repeatedly over time. In practice, the interest is to forecast quantities like cost, 

margin, or volume, etc. that are dependent on multiple other dimensions and the past 

behaviors of these variables. A linear function of input variables plus a noise component 

can model linear data. In other words, the problem can be approximated by a straight 

line or in a multidimensional space with a hyperplane. 

Well known parametric statistical methods used to model univariate or multivariate 

linear time series models are Autoregressive (AR), Moving Average (MA), or the 
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combination of the two (ARMA), as well as Vector Autoregressive models (VAR) for 

multivariate models. A slight nonlinearity in the data can invalidate these linear 

methods and produce a less accurate forecast. 

Although there are variety of real-life nonlinear time series datasets, artificially 

generated (synthetic) time series data offers advantages for research (Nielsen, 2019, 

chapter 4). The reason synthetic data is attractive is that there is no limitation on 

volume, given that as much data can be generated as needed; the research team controls 

the generation of the data, therefore, it can be adjusted to the scope of the study, and it 

supports hypothesis testing and model performance comparisons. Furthermore, 

synthetic data allows researchers to eliminate data contamination, which is usually 

present in real-life data, where an early-stage error can propagate through subsequent 

stages and hinder objective measures. Synthetic data should be generated so that it is as 

free of bias as possible. 

There are multiple methods available for generating linear univariate time series 

data, e.g., gen.arma.wge function in the TSWGE R package. To the contrary, there is 

little research available on generating multivariate nonlinear time series datasets (Kang 

et al., 2019). A major challenge with generating nonlinear time series data is to develop 

mathematical or statistical models that can approximate the dynamics that are observed 

in real-life data, such as economic time series. 

Two techniques are prevalent in generating nonlinear multivariate time series data. 

One approach uses more traditional statistical methods described in NTS: An R 

Package for Nonlinear Time Series Analysis (X. Liu et al., 2020). The second approach 

uses Time-series Generative Adversarial Networks introduced by several recent papers 

(Li et al., 2022; Seyfi et al., 2022; Yoon & Jarrett, n.d.). 

The NTS package has been developed to address a gap present for nonlinear time 

series modeling (X. Liu et al., 2020). Besides modeling and forecasting, the R package 

implements methods to generate univariate and multivariate nonlinear time series data. 

The mTAR.sim function is used to generate multivariate SETAR process with two-

regimes. The function has several input parameters, enabling the generation of 

multivariate nonlinear datasets using Vector Autoregressive (VAR) coefficients. 

The function outputs a multivariate nonlinear dataset with n number of observations, 

with the threshold value for the TAR process, and with the difference between an 

observed value at time 't' and the optimal forecast value based on a prior datapoint at 

time 't-1' (Innovation) and with the delay for threshold variable. 

The NTS package provides a comprehensive set of tools for non-linear time series 

modeling. The threshold estimation algorithms implemented in NTS utilize recursive 

least squares and are less resource intensive than the least squared algorithms 

implemented in the tsDyn package (Narzo et al., 2023, Stigler, 2020).   

Time-series Generative Adversarial Network is proposed as a method for 

"generating realistic time-series data that combines the flexibility of the unsupervised 

paradigm with the control afforded by supervised training" (Yoon & Jarrett, n.d., p. 1). 

This TimeGAN model builds on the GAN concept for sequence generation but 

combines it with the advantages of sequence predictions from the AR models. The main 

idea for data generation is to use four network components which are responsible for 

learning to encode the features, generating new time series representations, and iterating 

across time (Yoon & Jarrett, n.d.). The generator part of the model uses two types of 

training input, one is a synthetic embedding from the model previous output to its 
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embedding space. The second input is a time series realization from real-life data. These 

inputs enable the model to generate realistic time series data with the characteristics of 

the training dataset which may originate from different domains. 

Generating nonlinear, multivariate time series data requires the training dataset to 

bear the same characteristics. An assessment of training data linearity is recommended 

before generating synthetic time series data. One of the most popular tests for 

nonlinearity is the BDS test which "can be used to detect remaining dependence and 

the presence of an omitted nonlinear structure" (Zivot & Wang, 2006, p. 654). This 

hypothesis test helps determine if the dataset is linear (Null hypothesis) or nonlinear 

(Alternative hypothesis). 

Nonlinear, multivariate time series data generation is currently in a research state 

without established industry standards today. However, simulating time series data is 

an important discipline as it yields high value when it comes to modeling datasets which 

are difficult or even dangerous to collect (Nielsen, 2019, Chapter 4). 

2.3 Multivariate (Bivariate) Time Series 

Though much research has been focused on univariate time series, forecasting of 

multivariate time series is often what is seen in practice with time series such as sales 

or costs which are influenced by other variables in addition to the past behavior of the 

dependent variable (Woodward et al., 2022). Using only the time-delay terms, as in 

univariate forecasting, without incorporating the other explanatory variables can cause 

difficulties in revealing details such as the nonlinearity in financial time series (Niu et 

al., 2020). 

Even though multivariate time series are commonly found in real world applications, 

their forecasting is still a challenge, given their nonlinear and non-stationary properties, 

as well as their spatial-temporal characteristics. The forecasting methods used for 

multivariate time series can generally be grouped into classical and Machine Learning 

approaches (Long et al., 2022). 

More traditional statistical models for multivariate time series typically rely on a 

small number of samples (Niu et al., 2020). Deep Learning models require large sample 

sizes to train successfully. Without a high number of trainable parameters or with small 

sample sizes, Deep Learning models can be susceptible to overfitting and low 

generalization to the data (Li et al., 2022). 

Hewamalage et al. (2021), posit that many users of the traditional univariate 

techniques lack the expertise needed to make use of complex models such as recurrent 

neural networks. This is likely to cause these users to apply easy-to-use-and-deploy 

models like the ones they use in production on univariate time series. 

 Y. Liu et al. (2020) concluded that three main challenges need to be addressed to 

improve the long-term prediction of multivariate time series, “representing and learning 

(1) the spatial correlations between different attributes at the same time, (2) the spatio-

temporal relationships between different attributes at different times, and (3) the 

temporal relationships between different series” (p. 11). Their paper proposed two dual-

stage two-phase attention based recurrent neural network (DSTP-RNN) models which 

achieved better performance in both short-term and long-term predictions but failed to 
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statistically improve the short-term predictions for small datasets over current state of 

the art methods. 

Niu et al. (2020) proposed a two-stage feature selection model integrated with a Deep 

Learning model (consisting of a multivariate LSTM-LSTM-GRU) with error correction 

that showed advantages over 16 competing models, including traditional and Machine 

Learning methods. Their research found the performance to be sensitive to the choice 

of the optimizer and its learning rate. 

A common theme found across research of multivariate time series is the lack of 

real-world data sets for use by researchers. In contrast to other multiple feature domains, 

such as computer vision and natural language processing, where numerous data sets are 

found publicly across the internet; multiple time series often involves physical and 

biological processes, such as those involving human subjects (Li et al., 2022). 

Regulations and security concerns can prevent data sets such as those involving power 

systems from being made public. These concerns have led to the creation of large-scale 

synthetic simulation models which are made available for analysis. Nonetheless, gaps 

still exist between the simulation models and real-world systems, limiting real-world 

time series data exploitation for research purposes (Zheng et al., 2022). 

2.4 Comparing Statistical and ML Models 

With the advancements in Machine Learning over the last several years, and the recent 

increase in the number of models available for forecasting time series, several studies 

have aimed to compare the performance of these new methods to those of traditional 

statistical approaches. However, despite the fact that most real-life time series data is 

multivariate, these studies have largely focused on comparing forecasting performance 

for univariate time series datasets. 

The M-competitions, and their derivatives, provide researchers an opportunity to 

assess forecasting performance of different methods available at the time of the event, 

which serves as empirical evidence of how Machine Learning methods compare to 

statistical approaches (Crone et al., 2011). The results from competitions before 2020 

highly favored statistical approaches over Machine Learning techniques for forecasting 

the univariate time series datasets that were a part of the competition (Crone et al., 2011; 

Makridakis et al., 2018). 

The NN3 competition from 2006-2007, which had its origins on the M3 competition 

of the past, was aimed at expanding on the M3 findings with a focus on ML methods 

such as Neural Networks. The NN3 datasets were a subset of the M3 time series 

datasets, including series with short and long, seasonal and non-seasonal, and 

short/medium/long horizons. A study conducted on the results of the NN3 competition 

was unable to find conclusive evidence that ML approaches could outperform 

established statistical methods, however, they did not find statistically significant 

differences between the two approaches, and as such, provided empirical evidence that 

ML approaches were no longer completely outclassed by statistical methods (Crone et 

al., 2011). 

A study conducted in 2018, which utilized a large subset of the M3 competition time 

series data, aimed to identify and address concerns with respect to statistical and 

Machine Learning methods for time series forecasting (Makridakis et al., 2018). A main 
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concern identified by the study is the lack of empirical evidence which supports the 

claims that Machine Learning methods outperform traditional statistical methods in 

forecasting time series. The study compared several of the most popular Machine 

Learning methods at the time with eight statistical methods and found that Machine 

Learning methods were largely outperformed by statistical methods based on both 

MASE and sMAPE metrics, moreover, the six most accurate methods (ETS, ARIMA, 

Damped, Comb, Theta, and SES) were all statistical in nature (Makridakis et al., 2018). 

A 2021 study aimed at assessing the current state of Recurrent Neural Networks 

(RNN) for time series forecasts found that RNN models are not inherently superior to 

statistical based approaches, but have clear benefits over statistical methods in 

forecasting specific types of time series (Hewamalage et al., 2021). Researchers 

compared the two competing approaches using publicly available datasets from 

competitions, including the M3, M4, and NN5 competitions. The authors of the study 

acknowledged that while statistical methos are easier to implement, neural networks 

are more sophisticated and require additional steps to fit a model, they proposed 

guidelines and a best practices framework for leveraging these tools efficiently. A key 

concern raised by the authors, was that the study was focused entirely on univariate 

time series data, the authors suggested that further studies should be performed aimed 

at comparing statistical methods with RNNs using multivariate time series data. 

The results of the M4 competition in 2020 provided empirical evidence that Deep 

Learning methods were able to outperform traditional statistical methods in many cases. 

A study conducted in 2020, following the results of the M4 competition, was aimed at 

giving an update on the 2018 paper by Makridakis et al. (2018) by comparing new Deep 

Learning ML models developed using the Gluon Time Series toolkit to the statistical 

and ML models compared in the 2018 study using all the time series from the M3 

competition. The study compared four DL models (DeepAR, Feed-Forward, 

Transformer, and WaveNet), two statistical models (ARIMA and ETS), as well as the 

ML models from Makridakis et al. (2018), over short, medium, and long forecasting 

horizons. The methods used included training 50 different DL models of each DL 

model type, creating an ensemble for each group, and an overall Ensemble-DL of all 

200 models; an Ensemble-S (for ARIMA and ETS) was also formed. The study found 

Ensemble-DL performed generally better than ARIMA, ETS, and Ensemble-S, even 

though these statistical approaches usually outperformed individual DL methods; 

except for short horizon forecasts, for which ARIMA, ETS, and Ensemble-S tended to 

perform better (Makridakis et al., 2022). The results showed DeepAR to have the best 

performance of all DL methods, but the Ensemble-DL model tended to perform better 

overall. Researchers proposed that the better performance of statistical approaches over 

short horizon forecasts is due to the fact that the errors calculated for fitting these are 

based on minimizing the one-step forecasts, whereas the DL models look at all the data 

simultaneously, therefore being better at modeling longer step forecast than statistical 

models. 

The comparative studies and the time series forecasting competitions have limited 

their scope to univariate linear time series data. This current research aims to find a 

statistically significant difference in forecasting performance between the traditional 

statistical-based and ML/DL methods for modeling multivariate, linear and nonlinear 

time series data. 

8

SMU Data Science Review, Vol. 7 [2023], No. 2, Art. 2

https://scholar.smu.edu/datasciencereview/vol7/iss2/2



3 Methods 

3.1 Data 

Synthetic, bivariate, linear, and nonlinear data of different sizes was generated to 

compare the different modeling methods. 

Synthetic Bivariate Nonlinear Time Series. A custom function was developed to 

generate synthetic bivariate data based on a nonlinear autoregressive model. This data 

was inspired by the Threshold AR approach, limited to two regimes, using a 

mathematical equation. 

The function generated random noise, ε, and iteratively generated time series for x 

and y  using a custom set of equations (Eq. 1, Eq. 2). The equations generate bivariate 

time series data that incorporates nonlinear lags for each variable, nonlinear lag 

dependencies between variables (Figure 1), and includes an Autoregressive (AR) order 

of 1. The functions consist of the following parameters: n (length of the time series), α 

(AR coefficient for x), β (AR coefficient for y), r (threshold value for switching between 

the two regimes), ε (random noise), σ (standard deviation of the random noise term), γ 

(scaling factor for both regimes), and f (frequency of the time series). 

𝑓(𝑦) = {
𝛽 ∗  𝑦𝑖−1  −  𝛼 ∗  𝑥𝑖  +  ∑ (1 − 𝜀𝑖)

𝑖

1
,        𝑦𝑖−1 ≤ 𝑟

−𝛽 ∗  𝑦𝑖−1  +  𝛽 ∗  𝑥𝑖−1  +  𝛾 ∗  (1 − 𝜀𝑖),        𝑦𝑖−1 > 𝑟

 (1) 

𝑓(𝑥) = {
10 + 𝛼 ∗  𝑥𝑖−1 + (4 ∗ 𝜀𝑖 ∗ (1 − 𝜀𝑖)),        𝑦𝑖−1 ≤ 𝑟

𝛼 ∗  𝑥𝑖−1  +  𝛾 ∗  4 ∗ 𝜀𝑖 ∗ (1 − 𝜀𝑖),        𝑦𝑖−1 > 𝑟
(2) 

 

Fig 1. Synthetic bivariate nonlinear time series sample 
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Time series of different lengths were generated, with a set of ten short-term time 

series (n=50), ten mid-term time series (n=500), and ten long-term time series 

(n=2000). For each iteration, a random value of γ was generated within the range of -

0.5 to 2. The use of a random scaling factor, γ, introduced variation which resulted in 

different time series for each iteration. 

Synthetic Bivariate Linear Time Series. A custom function was built to generate 

short-term (n=50), mid-term (n=500) and long-term (n=2000) time series using 

mathematical equations that incorporate an AR of order 2 lag for both variables (Eq. 3, 

Eq. 4). 

𝑥𝑡  =  3 +  0.8 ∗  𝑥𝑡−1  −  0.5 ∗  𝑦𝑡−1  −  0.2 ∗  𝑥𝑡−2  +  0.3 ∗  𝑦𝑡−2 (3) 

𝑦𝑡  =  4.5 +  0.4 ∗  𝑥𝑡−1  +  0.3 ∗  𝑦𝑡−1  −  0.4 ∗  𝑥𝑡−2  +  0.1 ∗  𝑦𝑡−2 (4) 

The time series realizations were generated by combining the linear model with 

scaled normally distributed noise using the simulate function. For each observation 

length, ten time series were generated using a randomly generated scaling factor within 

the range of 0.5 to 2, matching the range of the nonlinear time series data. 

The generated time series data show a linear relationship between observations for 

the current time point (t) and observations for time lagging two steps behind (t-2) 

(Figure 2). 

 
Fig 2. Synthetic bivariate linear data sample 
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3.2 Methods 

To compare the performance of statistical and ML methods, a total of six different 

models were used. These models included 2 statistical models, Vector Autoregressive 

(VAR) and Integrated Nested Laplace Approximation (INLA); and 4 ML models, Long 

Short-Term Memory (LSTM), Deep Vector Autoregressive (DeepVAR), Neural Basis 

Expansion Analysis Time Series (NBEATS), and Transformer. 

The models were trained on a training set consisting of all but the last h observations, 

where h corresponds to the forecasting horizon for each time series length. The 

forecasting horizons used correspond to h values of six, eight, and eighteen for the short, 

medium, and long-term time series lengths, respectively. 

VAR. The VAR model is primarily designed for modeling linear time series. However, 

for this study, VAR was also utilized on the nonlinear time series data to compare its 

performance against models explicitly designed for nonlinear cases. 

The dataset was divided into training and testing set for each time series. With the 

training set consisting of 80% of the data, a holdout set equal to the forecasting horizon, 

reserved for final predictions, and a test set for validation during the training. 

To optimize the performance of these models, a sliding window method was 

implemented, tailored to the size of the dataset. For the dataset with 2000 observations, 

a window size of 100 was chosen. Similarly, a window size of 50 was implemented for 

the dataset with 500 observations, and a window size of 2 for the smallest dataset with 

50 observations. 

For each series, the VAR model was fitted using the VARselect function to 

determine the optimal lag order (p) based on the Akaike Information Criterion (AIC). 

The VAR model was then trained with  the optimal lag order, to predict the forecasting 

horizon for each time series length. 

INLA. The INLA model was trained by constructing a data frame of length equal to 

the time series length, consisting of a time variable (row index)  and variables x and y. 

To create the training set, the last values of x and y with length equal to the forecasting 

horizon were removed from the data frame and replaced with NAs. 

The missing values of x were then forecasted using a function that calculated x based 

on time implementing a random walk model ‘rw1’ with gaussian likelihood. The 

predictions were then obtained from the summary function and were used to replace the 

missing values for x on the training data frame. The process was then repeated for y, 

using time and x as predictor variables to forecast the response variable.  

LSTM. To train the LSTM model the input data was scaled within the range of 0 to 1, 

based on the minimum and maximum values of each variable. To optimize the training, 

the preprocessed data was subsequently divided into training and test sets, with 80% of 

the data allocated for training. A custom function was developed to create training and 

test data using a sliding window approach. This function transformed the time series 

data into a supervised learning dataset by generating lagged input-output pairs for the 

LSTM model, considering a specific number of time steps. The sliding window 

approach involved using a subset of previous time steps as input to predict the 

subsequent time step. 
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For each time series realization, the number of time steps and the size of the sliding 

window were set to predetermined values, determining the historical information 

incorporated into each prediction. 

The LSTM model architecture was constructed using the Keras library, comprising 

a sequential model with an LSTM layer followed by a dense layer. The LSTM layer 

was configured with 50 units, and the input shape was defined based on the dimensions 

of the training data. The model was then trained using the sliding window approach. 

The loop iterates over the training data, selecting each window of data, and fitting the 

model with one epoch at a time. The model was compiled using the mean squared error 

(MSE) as the loss function and the Adam optimizer, which aims to optimize the model's 

performance during training. 

To facilitate comparison between predictions and actual values, a denormalization 

function was implemented. This function restored the normalized values back to their 

original range, utilizing the minimum and maximum values from the original dataset. 

To evaluate the model's performance, the root mean squared error (RMSE) and the 

SMAPE (Symmetric Mean Absolute Percentage Error) were computed. 

DeepVAR. The DeepVAR model is an implementation of DeepAR, which utilizes a 

multivariate loss function. The time series data were split into a training set and a test 

set, with the test set consisting of the last observations, with length equal to the 

forecasting horizon for each series. The model was then trained on each bivariate train 

set, applying scaling within the DeepVAREstimator, with batch size of 40, 500 epochs, 

and a learning rate of 0.001. 

The forecasts were calculated by implementing the predict function of GluonTS, 

taking the median prediction for each time point.  

N-BEATS. To forecast multivariate time series using N-BEATS, the DARTS library 

was used to process the data into a flattened set of inputs to fit into a one-dimensional 

series that is then structured into a tensor of the appropriate dimensions. 

To train the model, the data was first split into a testing set and a validation set on a 

per-component basis using the scaler function within DARTS. Then, an instance of the 

NBEATSModel was called passing in several hyperparameters. The hyperparameter, 

‘generic architecture’, accepts a Boolean value to indicate whether to use a standard 

generic implementation of the model or an interpretable architecture that creates only 

two stacks to represent a seasonality component and a trend component. 

For the nonlinear time series, the generic architecture was chosen, whereas the 

interpretable architecture was chosen for the linear time series. Testing showed that 

these choices allowed the model to best fit the respective time series. 

An early stopping callback was implemented to stop the training when the training 

loss failed to reach a minimum improvement threshold over any 25 consecutive epochs. 

After fitting the model with the scaled data, predictions were made by calling the 

predict functions of the N-BEATS model to forecast the corresponding horizon of each 

time series length. These scaled predictions were then passed through an inverse 

transform function, restoring the predictions to the original scale of the time series. 

Transformer. The Transformer model was implemented using an encoder-decoder 

architecture. The time series data was split into training and testing sets, with a separate 
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hold out set for final forecasts. The split data was then scaled using the scaler function 

within DARTS. 

The model was trained using an instance of TransformerModel. Several 

hyperparameters were tuned during the training process, including different activation 

functions, and different epochs. The training process implemented an early stopping 

callback to stop the training when the loss reduction over 25 consecutive epochs was 

below a predetermined threshold. 

Predictions were then forecasted using Transformer’s predict function. These were 

then passed through an inverse transform, which restored the data to its original scale.  

4 Results 

4.1 Time Series Length 50 

For the linear time series of length 50, VAR achieved the lowest median forecasting 

errors, with a median RMSE of 0.745, and a median sMAPE of 12.3 over the ten time 

series. Transformer and DeepVAR achieved similar median results, with DeepVAR 

having a median RMSE of 0.935 and median sMAPE of 14.6, and Transformer having 

errors of 0.908 and 14.8, respectively. The boxplots of the errors for the linear forecasts 

show that all models appear to have achieved similar results in terms of both sMAPE 

and RMSE, with the exception of INLA which had significantly higher errors for both 

(Figure 3). The RMSE and sMAPE for the INLA model were consistently higher than 

other models over the ten time series, with four time series resulting in sMAPE values 

of 190 or higher (Figure 4). 

In terms of the nonlinear time series forecasts, DeepVAR achieved the lowest 

median RMSE (4.04) and second lowest sMAPE (94.6), with VAR having the lowest 

median sMAPE (93.2) and third lowest RMSE (4.56). The INLA predictions resulted 

in the highest median sMAPE (177), with LSTM having the highest median RMSE 

(8.49). 

 

 
Fig 3. Boxplot distributions for sMAPE (left) and RMSE (right) for time series of length 50 

The forecasting errors produced by the best performing statistical model, VAR, 

showed similar performance to the ML models for both the linear and nonlinear time 

series(Figure 4). 
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Fig 4. Prediction errors for time series of length 50 

4.2 Time Series Length 500 

For the ten linear time series of length 500, Transformer achieved the lowest median 

RMSE (0.988) and sMAPE (18.4) values. The VAR model achieved the second lowest 

RMSE (1.12), and DeepVAR the second lowest sMAPE (18.6). The errors produced 

by the INLA predictions had the highest median RMSE (5.90) and sMAPE (194.0). 

The nonlinear forecasting errors showed the lowest median RMSE for Transformer 

(3.97) and lowest median sMAPE for LSTM (42.1), however LSTM showed the largest 

variation in terms of sMAPE (Figure 5). INLA produced the highest median RMSE and 

sMAPE with values of 6.50 and 170, respectively. 

 
Fig 5. Boxplot distributions for sMAPE (left) and RMSE (right) for time series of length 500 

For both linear and nonlinear time series, VAR produced forecasting errors that are 

comparable to the errors produced by ML forecasts (Figure 6).  
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Fig 6. Prediction errors for time series of length 500 

4.3 Time Series Length 2000 

The forecasts for the linear time series of length 2000, showed similar performance for 

VAR, DeepVAR and Transformer in terms of sMAPE and RMSE. The VAR model 

had the lowest median sMAPE at 13.8 and lowest RMSE at 0.817, followed by 

DeepVAR, with sMAPE of 14.3 and RMSE of 0.881. Apart from INLA, all models 

showed similar distributions for both error metrics (Figure 7). 

 

 
Fig 7. Boxplot distributions for sMAPE (left) and RMSE (right) for time series of length 2000 

For the nonlinear time series, LSTM produced the lowest median sMAPE (38.2), and 

DeepVAR produced the lowest median RMSE (4.04). The model with the worst 

performance, INLA, resulted in a median RMSE of 6.27 and sMAPE of 167.0. 

The VAR model showed similar forecasting errors to the ML models across the 10 

linear and nonlinear time series (Figure 8). 
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Fig 8. Prediction errors for time series of length 2000 

5 Discussion 

5.1 Implications 

The study found no significant difference in performance between the best 

performing statistical approach, VAR, and the ML methods. The results of the study 

have significant implications for the usage of advanced ML methods when forecasting 

time series data and suggest that no assumption of better performance by ML methods 

should be made when forecasting time series. 

Based on the results, and given the lower computational requirements of VAR, a 

complete approach to modeling data should always include fitting a VAR model for 

multivariate linear, or nonlinear data. 

5.2 Future Work 

The data used in the comparison of the models consisted exclusively of bivariate 

time series data. While the results are intriguing, care should be taken not to draw 

conclusions that extend to time series with three or more variables. The modeling of the 

more complex variable interactions of these processes may result in significantly 

different results, and as such, future research is needed to compare statistical and ML 

methods in the forecasting of multivariate time series consisting of more variables. 

Further validation of the results could be achieved by comparing these models using 

real bivariate time series data, rather than generated data. Differences in performance 

might be observed in different fields depending on the types of interactions between the 

different variables that may be prominent for specific domains. Field specific studies, 
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comparing statistical and ML approaches using real data for specialized domains might 

be necessary. 

5.3 Ethical Considerations 

In this case study, the modeling process did not incorporate personally identifiable 

data as the dataset utilized was synthetically generated. It is crucial to emphasize that 

the models examined in this study are intended for application on real-world time series 

data, where ethics and privacy considerations should be given consideration. Examples 

of time series datasets that may contain personally identifiable information encompass 

financial transaction data, including transaction activity; spatiotemporal data that tracks 

individuals' locations and movements; and healthcare monitoring data collected from 

wearable devices or medical sensors. When working with such datasets, it is imperative 

to ensure the implementation of robust ethical safeguards to protect sensitive 

information and uphold privacy rights. 

6 Conclusion 

The statistical model, VAR, produced forecasts with errors that were consistent with 

those of ML models for both linear and nonlinear bivariate time series. While this model 

was designed to work with multivariate linear time series, the scrolling window 

approach with a train-test split that was implemented performed as well as the more 

sophisticated ML models, such as DeepVAR, at forecasting nonlinear bivariate time 

series of different lengths. 

Given the lower computational costs required to train VAR, and the similar 

forecasting performance, this method appears to be suitable for forecasting bivariate 

nonlinear time series when training time or processing power are limited. 
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