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A B S T R A C T

Cyberattacks are a growing concern for companies and public administrations. The literature shows that
analyzing network-layer traffic can detect intrusion attempts. However, such detection usually implies studying
every datagram in a computer network. Therefore, routers routing a significant volume of network traffic do
not perform an in-depth analysis of every packet. Instead, they analyze traffic patterns based on network flows.
However, even gathering and analyzing flow data has a high-computational cost, and therefore routers usually
apply a sampling rate to generate flow data. Adjusting the sampling rate is a tricky problem. If the sampling
rate is low, much information is lost and some cyberattacks may be neglected, but if the sampling rate is high,
routers cannot deal with it. This paper tries to characterize the influence of this parameter in different detection
methods based on machine learning. To do so, we trained and tested malicious-traffic detection models using
synthetic flow data gathered with several sampling rates. Then, we double-check the above models with flow
data from the public BoT-IoT dataset and with actual flow data collected on RedCAYLE, the Castilla y León
regional academic network.
1. Introduction

Detecting malicious traffic and analyzing complete network packets
is a problem currently addressed using different methods. Studying
packets’ payload is ideal but unrealistic scenario in core routers since
studying packets’ payload in real-time is highly CPU-demanding and
the volume of traffic in these routers is huge. Therefore, these routers
use flow data-based analysis instead of packet-based to detect network
anomalies.

A flow is defined as a set of IP packets passing an observation point
in the network that share a set of common properties such as source
and destination IP address, and source and destination port number [1].
Network flow data generated by routers does not store packets payload,
only features relevant to the whole flow.

There are different flow network protocols such as sFlow, CFlowd
and NetStream. One of the most widespread is NetFlow, designed by
Cisco Inc. to collect, aggregate and record traffic flow data in their
routers [2]. NetFlow collects features such as the number of packets
in the flow, the IP protocol type, the protocol flags, and the time
stamp. NetFlow does not store packet payloads, losing most information
in network communication but reducing the computational cost of

∗ Corresponding author.
E-mail addresses: acamv@unileon.es (A. Campazas-Vega), icrem@unileon.es (I.S. Crespo-Martínez), am.guerrero@unileon.es (Á.M. Guerrero-Higueras),

calvaa@unileon.es (C. Álvarez-Aparicio), vmato@unileon.es (V. Matellán), camino.fernandez@unileon.es (C. Fernández-Llamas).

analyzing it. NetFlow has been instrumental in the development of
the Internet Protocol Flow Information Export (IPFIX) [3], protocol
by the Internet Engineering Task Force (IETF) [4]. IPFIX serves as
an established industry standard for exporting comprehensive network
flow information. This protocol enables the systematic collection of
data pertaining to network traffic in a structured manner, facilitating its
transmission to a centralized collector or analyzer for in-depth analysis.
IPFIX is considered an evolution of NetFlow.

It has also been shown in the literature that it is possible to detect
malicious traffic on flow data using machine learning. For instance,
authors in [5] successfully detected application-layer Distributed Denial
of Service (DDoS) attacks on NetFlow data – specifically Slow Read
attacks – using up to six classification algorithms. Also, in [6], different
types of malicious traffic are detected in other flow-based datasets using
a decision tree-based model. We have also proven [7] that it is possible
to detect SQL Injection attacks on NetFlow flows collected without
packet sampling.

However, some routers manage such a significant volume of net-
work traffic that even gathering flow data is too CPU-demanding [8].
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These routers sample the traffic when generating flow information
to avoid overloading. In this context, ‘‘sampling rate’’ refers to the
number of sequential data packets pass before one sample is collected
to generate the flow information.

Router manufacturers recommend low sampling rates. For instance,
Juniper recommends sampling rates lower than one of every one thou-
sand packets (1/1000).1 But it is up to the network managers to tune
this parameter. Determining the compromise between the detection of
malicious traffic capability versus the load of the routers, is one of the
goals of the work described in this paper.

1.1. Research motivation

This research arises from the need to detect malicious traffic in
networks that use flow-based protocols and packet sampling specifically
in networks using NetFlow V5 protocol to mitigate the computational
burden on the routers. We focus on networks that use high sampling
rates. Unfortunately, there are very few proposals for this problem.
In particular, the primary motivation of this work was to provide
network managers with a rationale of how sampling rate value could
influence the ability to detect cyberattacks and which machine learning
techniques could work better for detecting the attacks depending on the
sampling rate used. Additionally, it aims to provide evidence of these
studies by providing public datasets and tools that could be used to
replicate the results or improve them.

This paper also intends to demonstrate that it is possible to detect
attacks in sampled network flow data using machine-learning tech-
niques. Finally, this work shows that the DOROTHEA tool [9] – Our tool
developed to generate datasets based on network flows – can generate
NetFlow datasets with different sampling thresholds that can be used
to train algorithms for their use on real traffic.

In order to validate the proposals described, some of our experi-
ments have been carried out using real network traffic from the regional
academic network of Castilla 𝑦 León (RedCAYLE), part of the national
Spanish academic and research network (RedIRIS [10]), which provides
advanced communication services to the scientific community and to
the Spanish universities affiliated to the network. RedCAYLE serves
nine universities, several university hospitals, and more than 1360
schools across one of the largest regions in Europe. RedCAYLE traffic
is managed mainly by two routers in two different cities, plus a set of
auxiliary routers distributed throughout the region. Finally, the BoT-
IoT dataset2 has been used to validate our models against a well-known
dataset.

In summary, this paper presents three main contributions:

1. We show that it is possible to detect malicious traffic in network
infrastructures that gather flow data with a sampling threshold
of 1 out of 1000 packets. We do not believe this has been
demonstrated in the literature so far.

2. We determine the best algorithm for malicious traffic detection
depending on the sampling rate used to collect flow data.

3. We empirically demonstrate that systems fitted with datasets
generated by DOROTHEA could be successfully transferred to
detect malicious traffic in real scenarios.

Additionally, this work includes the collection and publication of
seven datasets comprising packet-sampled flow data. These datasets are
made available under a free-use license, allowing other researchers to
utilize them for verifying the results and claims presented in this paper.

The remainder of the paper is organized as follows. Section 2
describes the current state of the art in malicious traffic detection.
Section 3 describes the tools, the experiments carried out, and the

1 See \textit{TrafficSampling,Forwarding,andMonitoringOverview} on Ju-
iper TechLibrary.

2 https://research.unsw.edu.au/projects/bot-iot-dataset
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methodology used to evaluate our proposal. Section 4 shows the re-
sults obtained in the above experiments. The results are discussed in
Section 5. Finally, conclusions are posed in Section 6.

2. Related work

Numerous proposals exist in the literature to detect malicious traffic
by analyzing network packets. Machine learning-based detection mod-
els specifically supervised learning-based models, are highly popular.
In [11], the authors carry out a literature review map to establish the
most common algorithms and datasets used to detect network attacks.
For instance, in [12], the authors obtain a 94.36% accuracy score using
an Averaged One-Dependence Estimator (AODE), a 92.70% accuracy
score using a Bayesian Network-based model, and a 75.73% accuracy
score using a Naive Bayes (NB)-based model. The above models were
trained and tested with the UNSWNB15 dataset. Similar work was
carried out in [13]. Here, the authors not only focused on the model’s
effectiveness but also on its efficiency. Using the same dataset, the
authors conclude that AODE is the best algorithm, with a 97.26%
accuracy score and a running time of about 7 s. Using a more complex
approach, the authors in [14] propose a hybrid model using bagging
and rotation forest techniques, obtaining an 85.8% accuracy score.
In [15], the authors propose a graphical features-based method, getting
a 98.54% accuracy score with a K-Nearest Neighbors (KNN) model.
In [11], the authors conclude that the best algorithms for detecting
network attacks are KNN, Decision Tree (DT), and NB.

However, there is not much research in the literature that attempts
to detect malicious traffic in network flows collected by applying packet
sampling. In [16], the performance of a DT-based model for detecting
malicious traffic in packet-based data is studied on a NetFlow-based
dataset. The results show that the adapted model obtains similar accu-
racy when using network packets and when dealing with flow-based
data without packet sampling. However, accuracy highly decreases
when applying a sampling rate. For example, for a sampling rate of
1/100, the authors achieve an overall accuracy of 85%. However, with
a sampling threshold of 1 out of 1000 packets, the authors still need to
obtain an accuracy greater than 50%.

Authors in [17] propose the Smart Detection system, an online ap-
proach for DoS/DDoS attack detection. This software uses the Random
Forest (RF) algorithm to classify network traffic on samples obtained
from network devices using the sFlow protocol.3 Results show an online
detection rate above 96% using a 20% sampling rate. The work in [18]
explores the impact of packet sampling on the performance of machine
learning-based network intrusion systems using three sampling rates
– 1/10, 1/100, and 1/1000 –. In their experiments, the authors use
a Convolutional Neural Network (CNN), DT, and RF algorithms on
datasets gathering DoS and brute-force attacks. Results show that 50%
of the malicious flows are not detected even with a 1/10 sampling rate.
Authors in [19], use a CNN for port scan detection on sampled NetFlow
Version 5 data. The authors generate a graphical representation of flow
data to train and test the system. They obtain a 94.15% of accuracy
with a sampling rate of 1/500. However, with a sampling rate of
1/1000, the accuracy decrease to 50%.

The work carry out in [20] analyze the flow-based CIDDS-001
dataset using KNN and k-means algorithms.

In [9], we present DOROTHEA. This tool allows deploying complex
network architectures to subsequently collect network flows. we used
DOROTHEA to generate 2 datasets to detect port scanning attacks. The
classification models used were trained with port scanning attacks and
validated with a second dataset containing slow port scanning attacks.
The results show that the network flows contain enough information to
detect port scanning attacks.

3 https://sflow.org/

https://www.juniper.net/documentation/us/en/software/junos/sampling-forwarding-monitoring/topics/concept/policy-traffic-sampling-forwarding-traffic-sampling-monitoring-overview.html
https://research.unsw.edu.au/projects/bot-iot-dataset
https://sflow.org/
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Fig. 1. Benign traffic generation scheme.
As mentioned above, detecting malicious traffic on flow data is pos-
sible without packet sampling. In addition, some works have obtained
good results in detecting malicious traffic with a small packet sampling
threshold. However, they fail when the sampling threshold increases to
values similar to those used in real networks [16].

3. Tools and methods

This section presents the tools used and the experiments carried
out. First in Section 3.1 we describe the technical specifications of
the computer where the models were trained and tested. Secondly,
we briefly describe DOROTHEA and the flow data collection process
in Section 3.2. Next, we describe RedCAYLE’s architecture and the
flow-data gathering in a state-of-the-art environment in Section 3.3.
Section 3.4 describes the BoT-IoT dataset and the flow data gath-
ering from the network packets in the dataset. Data processing is
analyzed in Section 3.5. Then, we describe Model Evaluator (MoEv),
the tool we used to generate our machine learning-based detection
models in Section 3.6. Finally, in Section 3.7, we present the evaluation
methodology.

3.1. Experimental setup

The experiments carried out in this work were performed using a
desktop computer. The system had 32 GB of RAM, a 3.60 GHz Intel
Core i5 8600K processor with 6 cores, an Nvidia GeForce GTX 1050Ti
graphics card, a 500 GB hard drive and was running the Ubuntu 20.04
operating system.

3.2. DOROTHEA

DOROTHEA [21] is a Docker-based framework for gathering Net-
Flow data. Thanks to the flexibility and scalability provided by Docker,
DOROTHEA allows deploying different complex network architectures
in order to generate and collect flows in NetFlow v5, v9 and IPFIX
format. DOROTHEA deploys a NetFlow sensor, which generates flows
from network packets passing through a given network interface. Fur-
thermore, the generation of malicious traffic and the generation of
benign traffic are executed on distinct, mutually isolated frameworks.
Consequently, the tool enables unambiguous labeling of the traffic it
generates.

The benign traffic generation framework simulate the usual network
traffic that can be generated by a set of users in a company or a
public organization. To do so, the tool uses several scripts written in
Python that generate network traffic corresponding to web browsing,
SSH connections, and sending emails. DOROTHEA is a modular tool
that allows users to modify existing scripts or even incorporate new
scripts. Network traffic is managed by a gateway that performs two
main tasks. On the one hand, it routes the generated packets to the
Internet. On the other hand, it sends 1 out of  packets – where  is
the sampling threshold set by the user – to a NetFlow data generation
node. Fig. 1 shows the benign traffic generation process.

The framework that generate malicious traffic are isolated from
the Internet. This ensures that all generated network flows correspond
to network attacks. The scheme of the malicious traffic generators is
shown in Fig. 2. As with the benign traffic generators, attacks are
3

Table 1
NetFlow V5 features [7].

Feature Description

sysuptime Current time in milliseconds since the export device started
unix_secs Current count of seconds since 0000 UTC 1970
unix_nsecs Residual nanoseconds since 0000 UTC 1970
engine_type Flow switching motor type
engine_id Slot number switching engine flow
exaddr Flow exporter IP address
srcaddr Source IP address
dstaddr Destination IP address
nexthop IP address of the next hop router
input SNMP index of the input interface
output SNMP index of the exit interface
dpkts number of packets contained in the flow
dockets Total number of bytes of layer 3 in the packets of the flow
first Sysuptime at start of flow
last Sysuptime when the last packet in the flow was received
srcport TCP/UDP source port number
dstport TCP/UDP destination port number
tcp_flags TCP flags
prot IP type of protocol (e.g., TCP = 6; UDP = 17)
tos IP type of service (ToS)
src_as Autonomous system number of the source
dst_as Autonomous system number of the destination
src_mask Source address prefix mask bits
dst_mask Destination address prefix mask bits

launched using Python scripts, which can be customized by users. The
gateway works as explained above by routing packets and collecting
sampled flow data. DOROTHEA is available under an open license.4

Data collection with DOROTHEA. We created up to six flow datasets
with DOROTHEA [22], three for training the models – 1–3 – and the
remaining for testing them – 4–6 –. These datasets were collected
by applying different packet sampling thresholds: 1/250; 1/500; and
1/1000.

Table 1 shows the features we collect in 1–6 datasets before
preprocessing. They correspond to the NetFlow version 5 fields. Al-
though DOROTHEA works with several NetFlow versions, version 5
was chosen because that is the version RedCAYLE uses, as shown later
in Section 3.3. Unlike other well-known datasets such as NSL-KDD
and UNSW-NB15, which gather network packets, or CIDDS-001, which
collects flow data without applying any sampling rate, our datasets
contain flow data generated at different sampling rates.

1–6 includes both benign and malicious traffic. In our case,
malicious traffic is generated by carrying out port scanning attacks.
Both training and test sets collect flow data with different sampling
thresholds: 1 out of 250 packets, 1 out of 500, and 1 out of 1000. All
datasets gathered are balanced in terms of the amount of malicious
traffic and benign traffic they contain. The percentage of malicious
and benign traffic is around 50% to prevent classifiers from always
predicting the majority class. Benign flow data is labeled ‘‘0’’, and
malicious flow data ‘‘1’’.

In order to include malicious traffic on the training sets, port
scanning attacks were carried out using Nmap by running the following
TCP and UDP scan types: TCP SYN; TCP Connect; UDP; TCP NULL, FIN,

4 https://github.com/uleroboticsgroup/DOROTHEA

https://github.com/uleroboticsgroup/DOROTHEA
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Fig. 2. Malicious traffic generation scheme.
and Xmas-tree; TCP ACK; TCP Window; and TCP Maimon scanning,
see [23]. The attacks ran on 100 nodes that scanned 65,536 ports
on 200 victim nodes. The IP address space was 182.168.1.1/24 for
benign- and malicious-traffic-generation nodes. For the victim nodes,
the address space was 126.52.30.0/24.

Regular port-scanning attacks were carried out for generating the
training sets, and slow port-scanning attacks for the test sets. Specif-
ically, port scan requests were launched with a 5- to 10-second slack
time between them. The introduction of slack time between each packet
results in a significant increase in the duration of the attack, primarily
due to the substantial volume of packets being transmitted. Networks’
IP address spaces were also different in the test and training sets.
On test sets, the IP address space was 152.148.48.1/24 for benign
and malicious traffic generation nodes and 140.30.20.1/24 for victim
nodes.

DOROTHEA requires separating the benign-malicious traffic gener-
ation process for empirically labeling flows as benign or malicious, so
traffic is not simultaneously gathered, which is one of its drawbacks
since it impacts the nature of the sampling process. Thus, proposed
models are also double-checked with other datasets not affected by this
issue, as described in the following sections.

3.3. RedCAYLE

In order to evaluate the systems fitted with synthetic datasets pro-
duced by DOROTHEA, real NetFlow flows were obtained from the
RedCAYLE network’s routers. RedCAYLE provides their affiliated insti-
tutions – educational centres, University hospitals, scientific infrastruc-
tures, and technological facilities – with a high-capacity communica-
tions backbone network infrastructure, thus allowing access to research
network resources and the Internet. In the educational community
alone, the network supports more than 380,000 students and teachers
from Castilla 𝑦 León.

RedCAYLE provides a wide variety of services: 10 Gbps point-to-
point transport service, Internet connection, IP addressing, incident
management, and service monitoring. The monitoring service allows
the affiliated institutions to analyze and diagnose the status of their
network services. To do so, RedCAYLE uses NetFlow version 5 for its
network analysis. The NetFlow implementation allows for a statistics-
based approach, as exhaustively examining each packet within the
network is infeasible due to computational limitations. In order to
computationally analyze the traffic handled by the network, it is not
sufficient to use network flows. It is imperative to employ a sampling
rate. According to the guidelines provided by the manufacturer of
RedCAYLE’s router, a sampling threshold of 1 packet per 1000 is
advised.

Data collection from RedCAYLE. To double-check our detection models
fitted with DOROTHEA and to demonstrate that they work in a real
environment, flow data from RedCAYLE [22] – 7 – is used. Since
RedCAYLE uses NetFlow version 5, the features collected are the same
depicted in Table 1. To generate the malicious traffic, we carried out
new port scanning attacks against nodes within the network range of
RedCAYLE. The attacks were made from a known IP address range, so
all the flows that have an IP address from such range correspond were
considered malicious traffic and labeled as ‘‘1’’. Flows corresponding to
benign traffic, labeled as ‘‘0’’, were randomly collected from the flow
4

data generated in RedCAYLE. Every flow collected in this dataset has
been generated with a 1/1000 sampling rate. Regarding the algorithm
used by the routers to select the packet that will become part of a flow,
Juniper does not provide information about their sampling algorithms.

It is crucial to emphasize that although the dataset used in this work
was collected on routers manufactured by Juniper, the collected data
are in NetFlow v5 format. This format is a standardized protocol for
flow data export, and it is implemented not only by Juniper routers
but also by other manufacturers such as Cisco [24] and Enterasys
Switches [25]. Therefore, the insights and findings derived from the
analysis of this dataset collected on Juniper routers can be considered
applicable and relevant to other network devices that utilize NetFlow
v5.

3.4. BoT-IoT

In addition to the datasets collected with DOROTHEA, and the one
gathered from RedCAYLE life traffic, the models have also been tested
with flow data from the BoT-IoT dataset [26]. The BoT-IoT dataset
include 470,655 packets specifically associated with port scans. This
high number was the criteria used to choose this dataset because a large
amount of information gets lost when sampling is applied. Therefore,
a large number of packets is necessary to obtain meaningful results.

Data collection form BoT-IoT. This dataset comprises network packets.
In order to get sampled flow data, it must be transformed. Network
packets were sampled by selecting 1 out of 1000 packets, then flows
have been generated using Softflowd [27]. The resulting dataset is
named 8.

3.5. Data curation

Data curation has been carried out to improve the performance
and to reduce the bias that the models may have due to the nature
of the data. First, datasets are checked to eliminate flows that were
not generated correctly – some feature of Table 1 was not collected
correctly –. Next, we extract features with a variance score of 0. Specifi-
cally, features ‘exaddr’, ‘engine_type’, ‘engine_id’, ‘src_mask’, ‘dst_mask’,
‘src_as’, and ‘dst_as’ have been removed. Additionally, time-related
features – ‘unix secs’, ‘unix_nsecs’, ‘sysuptime’, ‘first’, and ‘last’ – are also
removed to remove the time bias. Finally, the features associated with
specific IP addresses have also been removed to prevent the models
from generating biases depending on the IP address in the training
set. Specifically, ‘srcaddr’, ‘dstaddr’, and ‘nexthop’ features have been
removed.

After data curation, the remaining features are ‘dpkts’, ‘dockets’,
‘input’, ‘output’, ‘srcport’, ‘dstport’, ‘prot’, ‘tos’, and ‘tcp_flags’.

3.6. Model fitting

We used MoEv [28] to prepare our detection models. MoEv is
a wrapper for the Scikit-learn [29] API that allows for automati-
cally building classification models from labeled datasets. MoEv allows
performing multiple tasks on the datasets it receives such as clean-
ing, dimensionality reduction or scaling. For model training, MoEv
allows performing hyperparameter optimization using GridSearchCV.
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In addition, MoEv uses the Dask library [30] to parallelize the re-
quested tasks. MoEv generates a report with multiple indicators such
as Accuracy, False Alarm Rate (FAR), Matthews correlation coeffi-
cient, Cohen’s kappa coefficient, Precision, Recall, and F1 score. It
is used in different research areas such as jamming attack detection
on real-time location systems [31] and students’ academic success
prediction [32]. Furthermore, in [7,9], MoEv has been successfully used
to build malicious-traffic detection models on unsampled flow data.

As the objective of the models is to predict a category for each
network flow – (0) for benign traffic and (1) for malicious traffic – a
priori classification algorithms are more suitable for this task than algo-
rithms based on regression or clustering. However, it has been shown
that in complex problems more value is placed on the data than on
the type of algorithm used [33,34]. Therefore, both classification and
regression-based algorithms have been evaluated. MoEv was used to fit,
tune hyperparameters – the hyperparameters obtained for each model
are shown in Section 4 –, and test the detection models. Specifically,
the following algorithms were computed: KNN [35], Logistic Regression
(LR) [36], Linear Support Vector Classification (LSVC) [37], LSVC
with Stochastic Gradient Descent (SGD) [38], Multi-layer Perceptron
(MLP) [39] and, RF as a collection of decision trees [40].

3.7. Evaluation

To evaluate the experiment, several KPIs were calculated from the
confusion matrix generated by each model. First, the accuracy score of
the models was calculated as shown in Eq. (1), where 𝑇𝑃 is the number
f malicious samples correctly identified as malicious. 𝑇𝑁 points to the
umber of harmless or benign samples correctly identified as benign
raffic. 𝐹𝑃 is the number of benign flows misclassified as malicious.
inally, 𝐹𝑁 points to the number of malicious flows misclassified as
enign traffic.

ccuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
(1)

Furthermore, the following Key Performance Indicators (KPIs) have
been considered: FAR, Matthews correlation coefficient (𝜙), Cohen’s
kappa coefficient (𝜅), Precision (), Recall (), and F1 score (1).

False Alarm Rate (FAR) represents the proportion of benign flows
erroneously classified as malicious flows, as shown in Eq. (2).

FAR =
𝐹𝑃

𝑇𝑁 + 𝐹𝑃
(2)

𝜙 is often used to measure the quality of binary classifiers. 𝜙 is a
more reliable statistical rate which produces a high score only if the
prediction obtained good results in all of the four confusion matrix
categories (true positives, false negatives, true negatives, and false
positives), proportionally both to the size of positive elements and the
size of negative elements in the dataset [41], as shown in Eq. (3).

𝜙 =
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

√

(𝑇𝑃 + 𝐹𝑃 )(𝑇𝑃 + 𝐹𝑁 )(𝑇𝑁 + 𝐹𝑃 )(𝑇𝑁 + 𝐹𝑁 )
(3)

 measures the accuracy of the positive predictions, as shown in
Eq. (4).

 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(4)

, also called sensitivity or true positive rate, indicates the pro-
portion of positive examples that are correctly identified by the model
among all real positives, as shown in Eq. (5).

 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(5)

It is often convenient to combine Precision and Recall into the F1
score, particularly if a simple way to compare two classifiers is needed.
1 relates Recall and Precision, being the harmonic mean of both
values. While the regular mean treats all values equally, the harmonic
5

Table 2
Accuracy,  , , and 1 obtained in [9] for malicious-traffic detection models
on not-sampled flow data.

Algorithm Accuracy   1

KNN 0.964 0.965 0.964 0.964
LR 0.948 0.951 0.948 0.948
LSVC 0.932 0.938 0.932 0.932
LSVC+SGD 0.921 0.929 0.921 0.921
RF 0.902 0.914 0.902 0.901

mean gives much more weight to low values. It computes as shown in
Eq. (6).

1 = 2 ×
 +

(6)

Cohen’s kappa coefficient (𝜅) [42] measures the agreement between
two raters who classify 𝑁 items into 𝐶 mutually exclusive categories.
To compute 𝜅, we need the relative observed agreement among raters,
and the hypothetical probability of chance agreement, using the ob-
served data to calculate the probabilities of each observer randomly
seeing each category. If the raters are in complete agreement, then
𝜅 = 1. If there is no agreement among the raters other than what would
be expected by chance, then 𝜅 = 0. The statistic can be negative if there
is no relationship between the ratings of the two raters, or to reflect a
real tendency of the raters to give differing ratings [43].

Since our models are binary classifiers – i.e. 𝐶 = 2 –, we can
compute 𝜅 as shown in Eq. (7).

𝜅 =
2 × (𝑇𝑃 × 𝑇𝑁 − 𝐹𝑁 × 𝐹𝑃 )

(𝑇𝑃 + 𝐹𝑃 ) × (𝐹𝑃 + 𝑇𝑁) + (𝑇𝑃 + 𝐹𝑁) × (𝐹𝑁 + 𝑇𝑁)
(7)

The results obtained in this study from the analysis of sampled
etwork flows were statistically compared with the detection models
escribed in [9], which were trained with unsampled flow data.
n addition, a performance comparison between the model provided
n [19], and our detection models was carried out.

. Results

Table 2 summarizes the results previously shown in [9] for
alicious-traffic detection models on not-sampled flow data. Specif-

cally, the table shows the Accuracy,  , , and 1 for KNN-, LR-,
SVC-, LSVC+SGD-, and RF-based models. These results are compared
ith the ones obtained by the malicious-traffic detection models on

ampled flow data proposed in this work. The MLP model has not been
ompared because it was not evaluated in [9].

The malicious-traffic detection models on sampled flow data were
rained using the previously-described 1–3 datasets. Then, models
ere tested with 4–8. Table 3 summarize the aim, the source, the

ampling rate, the number of samples, and the benign-malicious traffic
atio for each dataset. As explained in Section 3, 1 was used to train
etection models on flow data with a sampling threshold of 1 out of
50 packets. 4 was used to test them. Next, 2 was used to train
etection models on flow data with a sampling threshold of 1 out of
00 packets. 5 was used to test them. Finally, 3 was used to train
etection models on flow data with a sampling threshold of 1 out of
000 packets. 6, 7 and 8 was used to test them.

A Jupyter Notebook that allows for replicating the evaluation car-
ied out in this work is available online in a Binder-ready repository.5

All datasets used in this research are uploaded to the datasets folder
within the repository and are also available on Zenodo [22].

After tuning, the following hyperparameters were selected for each
model (visit the Jupyter Notebook for details):

5 https://github.com/uleroboticsgroup/MoEv/tree/Sampling

https://github.com/uleroboticsgroup/MoEv/tree/Sampling


Computer Networks 235 (2023) 109951A. Campazas-Vega et al.
Table 3
Dataset volumetry.

Dataset Source Aim Sampling rate Samples Benign-malicious ratio

1 DOROTHEA Train 1/250 10,416 50%
2 DOROTHEA Train 1/500 2,996 50%
3 DOROTHEA Train 1/1,000 2,894 50%
4 DOROTHEA Test 1/250 18,292 50%
5 DOROTHEA Test 1/500 5,454 50%
6 DOROTHEA Test 1/1,000 2,646 50%
7 RedCAYLE Test 1/1,000 920 50%
8 BoT-IoT Test 1/1,000 7,653 50%
Table 4
Accuracy, FAR, 𝜙, 𝜅,  , , and 1 of KNN-, LR-, LSVC-, LSVC+SGD-, MLP-, and RF-based detection models on sampled flow data collected in DOROTHEA.

Sampling rate: 1/250.

Algorithm Accuracy FAR 𝜙 𝜅   1

KNN 0.957 0.014 0.916 0.915 0.959 0.957 0.957
LR 0.945 0.000 0.896 0.891 0.951 0.946 0.946
LSVC 0.917 0.000 0.847 0.835 0.918 0.918 0.918
LSVC+SGD 0.998 0.000 0.997 0.997 0.998 0.998 0.998
MLP 0.968 0.025 0.937 0.930 0.968 0.968 0.968
RF 0.913 0.045 0.829 0.825 0.916 0.912 0.912

Sampling rate: 1/500.

Algorithm Accuracy FAR 𝜙 𝜅   1

KNN 0.955 0.003 0.914 0.911 0.959 0.955 0.955
LR 0.631 0.000 0.389 0.263 0.788 0.632 0.574
LSVC 0.661 0.404 0.438 0.323 0.797 0.662 0.618
LSVC+SGD 0.925 0.000 0.859 0.849 0.935 0.925 0.924
MLP 0.939 0.024 0.881 0.878 0.941 0.939 0.939
RF 0.922 0.013 0.852 0.845 0.929 0.922 0.922

Sampling rate: 1/1000.

Algorithm Accuracy FAR 𝜙 𝜅   1

KNN 0.971 0.000 0.943 0.941 0.974 0.974 0.974
LR 0.520 0.479 0.040 0.040 0.520 0.520 0.520
LSVC 0.755 0.328 0.000 0.000 0.836 0.755 0.739
LSVC+SGD 0.767 0.314 0.595 0.534 0.831 0.767 0.755
MLP 0.911 0.049 0.826 0.822 0.914 0.911 0.911
RF 0.921 0.028 0.847 0.842 0.926 0.921 0.920
• KNN. We used twenty-five neighbors for the neighbor queries. As
a weight function, we used the Euclidean distance.

• LR. We used a regularized version of linear regression, specifically
Ridge regression.

• LSVC. We used a linear kernel function. The regularization pa-
rameter (C) is set to 1.0. As a loss function, we used Hinge.

• LSVC+SGD. We used the same parameters as LSVC but applied
stochastic gradient descent.

• MLP. We used a neural network with 10 hidden layers. The
activation function of these layers is the logistic sigmoid function:
𝑆(𝑥) = 1

1+𝑒−𝑥

• RF. We trained with 20 trees in the forest. The minimum num-
ber of samples required to split an internal node is 2, and the
minimum number of samples required to be at a leaf node is 1.

Fig. 3 shows the confusion matrices of malicious-traffic detection
models obtained after testing on sampled flow data. According to the
confusion matrices in the figure, Table 4 shows Accuracy, FAR, 𝜙, 𝜅,
 , , and 1 of KNN-, LR-, LSVC-, LSVC+SGD-, MLP-, and RF-based
malicious-traffic detection models on sampled flow data.

In order to double-check our malicious-traffic detection models and
demonstrate that they work in real environments, we also tested our
models on flow data from RedCAYLE – 7 – and BoT-IoT dataset – 8
–. Fig. 4 shows the confusion matrices obtained. According to the above
confusion matrices, Tables 5 and 6 show the Accuracy, FAR, 𝜙, 𝜅,  ,
, and 1 of our detection models after testing on 7 and 8.

Finally, the performance of the models has been evaluated in terms
of execution time or computational efficiency. The time taken by the
models to predict a single sample was evaluated. Therefore, the perfor-
mance of the models remains linear regardless of the number of flows
processed in a production environment. Section 3.1 shows the config-
uration of the machine on which the experiment was performed. This
evaluation provides insight into the practical feasibility of the proposed
models for real-time deployment in network security systems. Table 7
presents the execution time per sample, measured in microseconds μs,
6

for the models utilized in this study.
5. Discussion

One issue that can be observed in Table 3 is that as the sampling
rate decreases, the number of flows of the datasets also decreases. This
is due to the fact that as the sampling rate decreases more packets are
required to generate a flow.

Focusing on the accuracy scores shown in Table 2, we can see
that all the malicious-traffic detection models computed achieve an
accuracy higher than 90% on not-sampled flow data. Table 4 shows
the performance obtained by detection models on sampled flow data.
All malicious-traffic detection models achieve an accuracy higher than
90% on flow data with a 1/250 packet sampling rate. For a packet sam-
pling rate of 1/500, the LSVC and LR models drastically reduce their
detection capability with an accuracy less than 64%. The remaining
four models – KNN, LSVC+SGD, MLP, and RF – keep their detection
capability with an accuracy higher than 90%. Using a sampling rate
of 1/1000, LSVC+SGD also loses its detection capability. Only three
models keep an accuracy higher than 90%. KNN is the best model with
an accuracy score of 97%.

According to the above, we can claim that if the routers computa-
tionally could afford a sampling rate of 1/250, all the algorithms used
in our experiments would have a good detection capability and thus
improve network security. As the sampling rate decreases, some models
lose their detection capability, e.g. LR and LSVC with a 1/500 sampling
rate. As shown in Table 4, just KNN-, MLP-, and RF-based models keep
an accuracy score above 90% with a 1/1000 sampling rate. Therefore,
using a 1/1000 sampling rate, as most commercial routers do, makes
KNN-, decision tree-, or deep learning-based models the most suitable
algorithms to detect malicious traffic on sampled flow data.

It is important to point out that although some models keep similar
accuracy with extremely high sampling thresholds, it does not mean
that the network’s security will be the same. For instance, with a
1/1000 sampling rate, a much larger amount of information is lost than
using a sampling of 1/500 or 1/250. Therefore, the probability that a
malicious flow is gathered and later detected is lower. Thus, decreasing

the sampling rate will always decrease the network’s security.
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Table 5
Accuracy, FAR, 𝜙, 𝜅,  , , and 1 of KNN-, LR-, LSVC-, LSVC+SGD-, MLP-, and RF-based detection models trained with the dataset
3 – collected in DOROTHEA–, and testing on 7 – collected in RedCAYLE–. Both datasets with a sampling rate of 1/1000.

Algorithm Accuracy FAR 𝜙 𝜅   1

KNN 0.971 0.036 0.944 0.943 0.972 0.972 0.972
LR 0.560 0.386 0.137 0.122 0.577 0.560 0.536
LSVC 0.656 0.407 0.431 0.313 0.796 0.656 0.610
LSVC+SGD 0.643 0.416 0.409 0.287 0.792 0.643 0.592
MLP 0.922 0.076 0.843 0.843 0.922 0.922 0.922
RF 0.908 0.154 0.831 0.817 0.923 0.908 0.907
Table 6
Accuracy, FAR, 𝜙, 𝜅,  , , and 1 of KNN-, LR-, LSVC-, LSVC+SGD-, MLP-, and RF-based detection models trained with the dataset
3 – collected in DOROTHEA–, and testing on 8 – BoT-IoT dataset–. Both datasets with a sampling rate of 1/1000.

Algorithm Accuracy FAR 𝜙 𝜅   1

KNN 0.834 0.004 0.707 0.668 0.874 0.834 0.829
LR 0.584 0.422 0.169 0.169 0.585 0.584 0.584
LSVC 0.470 0.532 −0.059 −0.059 0.470 0.470 0.470
LSVC+SGD 0.637 0.388 0.281 0.274 0.644 0.637 0.632
MLP 0.836 0.045 0.696 0.672 0.860 0.835 0.832
RF 0.835 0.043 0.695 0.670 0.860 0.836 0.833
Table 7
Execution time measured in microseconds of the models performing predictions per sample on the validation datasets
4–8.

Algorithm 4 5 6 7 8

KNN 45.113 μs 34.610 μs 34.263 μs 30.642 μs 39.158 μs
LR 0.923 μs 0.828 μs 0.843 μs 1.485 μs 1.038 μs
LSVC 0.319 μs 0.302 μs 0.598 μs 1.284 μs 0.343 μs
LSVC+SGD 0.142 μs 0.290 μs 0.696 μs 2.218 μs 0.298 μs
MLP 3.863 μs 0.976 μs 1.023 μs 1.178 μs 0.891 μs
RF 0.375 μs 0.906 μs 0.783 μs 2.020 μs 0.474 μs
o
a
t
a
r

t
r
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Regarding FAR, it behaves the same as the accuracy score. It tends
o approach 0 when the models get a high accuracy score and to
ncrease when their accuracy score decreases. Therefore, the best FAR
core is obtained by the KNN-based model, followed by the RF- and
LP-based models. 𝜙, 𝜅,  , , and 1 work inversely to FAR, increas-

ng when the accuracy score increases and decreasing otherwise. Fig. 5
ntuitively illustrates such a tendency with all the sampling thresholds
tudied. The figure also includes the performance of the models trained
ith not-sampled flow data proposed at [9] and summarized in Table 2.

As depicted above, our malicious-traffic detection models on sam-
led flow data were trained using the previously-described 1–3
atasets. Then, models were tested with 4–6. Next, to double-check
hem, they were also tested on 7, the dataset collected in RedCAYLE.
s shown in Table 5 the KNN-, MLP-, and RF-based models generalize
orrectly, showing an accuracy score of 97.1%, 92.2%, and 90.8%,
espectively. As with 6, the LSVC-, LSVC+SGD-, and LR-based models
o not detect malicious traffic in flow data with a 1/1000 sampling
ate. The remaining KPIs follow the same trend. The above results
emonstrate that the KNN, MLP and RF models trained with the
atasets collected in DOROTHEA allow detecting malicious traffic in
ampled flow data in real environments, improving network security.

In addition to testing with RedCAYLE’s flow data, we also evaluated
he generalization capability of our malicious-traffic detection models
ith flow data – 8 – obtained from an external dataset, BoT-IoT.
able 6, shows the Accuracy, FAR, 𝜙, 𝜅,  , , and 1 scores. The
lgorithms that get the best performance in 8 are, one more time,
NN, MLP, and RF. However, even obtaining promising results, all the
PIs were worse by between 10% and 20% concerning the performance
btained in the testing with RedCAYLE’s flow data. This loss of per-
ormance is due to two fundamental factors. On the one hand, the
acket sampling has not been performed in a router or using a NetFlow
ensor – see Section 3.4 –. On the other hand, if network packets in the
7

riginal BoT-IoT dataset are analyzed in-depth, we see that it is not
completely clean dataset. While it is true that the vast majority of

he packets labeled as port scanning attacks correspond to port scans,
small portion contains other sorts of network traffic, such as DNS

equests/responses.
In relation to the performance of the models in terms of execution

imes – see Table 7 –, out of the three models that exhibit satisfactory
esults in malicious traffic detection – KNN, MLP, and RF –, the KNN
odel demonstrates the poorest performance, exceeding 30 μs for all

test datasets. Conversely, both the MLP and RF models showcase signifi-
cantly improved execution times compared to the KNN model. The MLP
model achieves execution times of less than 3.9 μs, while the RF model
achieves execution times below 2 μs for all test datasets. The disparity
in execution times between the KNN model and the other two models
can be attributed to the inherent limitations of the KNN algorithm
in terms of scalability. The KNN model requires access to the entire
training dataset during classification, which becomes problematic when
dealing with large datasets. Furthermore, the model computes the
distance between the K nearest neighbors, which leads to increased
runtime in proportion to the dataset’s size. In fact, when considering
deployment in production environments, the MLP and RF models may
be more suitable choices compared to the KNN model, despite the KNN
model exhibiting slightly higher detection capabilities. The limitations
of the KNN model in terms of scalability and computational efficiency
make it less practical for real-time deployment in network security
systems.

Finally, as mentioned above in Section 1, no previous research in the
literature aims to detect malicious traffic in 1/1000 sampled flow data.
The best-performing proposal is [19], where the authors built images
from flow data to train a ResNet-18 model. Table 8 illustrates the
comparison between the ResNet-based model and our detection models.
As shown in the table, all models get similar results with a 1/500
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Fig. 3. Confusion matrices of KNN-, LR-, LSVC-, LSVC+SGD-, MLP-, and RF-based
detection models on sampled flow data: 1/250 (a–f), 1/500 (g–l), and 1/1000 (m–r).

Table 8
Comparison of KNN, MLP, and RF Accuracy score vs. ResNet-18 [19].

Sampling rate KNN MLP RF ResNet-18 [19]

1/500 0.955 0.939 0.922 0.941
1/1,000 0.971 0.912 0.921 0.501

sampling rate. However, with a 1/1000 sampling rate, the ResNet-
based model gets a 50% accuracy score versus the 97% accuracy
score of our KNN-based model, the 91% accuracy score of our MLP-
based model, and the 92% accuracy score of our RF-based model. This
difference may be due to the technique used in [19] to build the images
from flow data, i.e. due to the different features in our proposal. Finally,
authors in [19] did not double-check their proposal, as we do with
RedCAYLE’s and BoT-IoT’s flow data.
8

Fig. 4. Confusion matrices of KNN-, LR-, LSVC-, LSVC+SGD-, MLP-, and RF-based
detection models tested on 7 (a–f) and 8 (g–l).

6. Conclusions

Machine learning-based models are commonly used to detect mali-
cious network traffic by analyzing packet payloads. However, payload
analysis is not feasible on wide-area networks where the amount of
network traffic is significant. Such networks often use lightweight flow-
based protocols like NetFlow to gather network traffic statistics. Flow
data can also be used to detect malicious traffic, but collecting flow
data is CPU demanding, so a sampling is usually applied. The research
presented in this paper shows that machine learning-based models can
also be used to detect malicious traffic in sampled flow data.

To demonstrate this, we collected flow datasets with different sam-
pling thresholds using DOROTHEA: 1 out of 250, 1 out of 500, and
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Fig. 5. Accuracy (a), 𝜙 (b), 𝜅 (c),  (d),  (e), and 1 (f) comparison of malicious-traffic detection models tested on sampled and not-sampled flow data.
1 out of 1000 packets. Machine learning-based models were trained
and tested with the above datasets – specifically, KNN-, LR-, LSVC-
, LSVC+SGD-, MLP-, and RF-based models –. Besides, to check that
our malicious-traffic detection models generalize correctly in a realistic
environment, we double-checked them on flow data collected from
RedCAYLE, and with flow data from the well-known dataset, BoT-IoT.

We can conclude from the above experiments that malicious traffic
may be detected in sampled flow data using machine learning-based
detection models. However, the results change significantly depending
on the sampling rate. With a sampling threshold of 1 out of 250 packets,
all the algorithms tested achieved high detection rates. For a sampling
rate of 1/500 packets, only the KNN, LSVC+SGD, MLP, and RF kept
high detection rates. Finally, with 1/1000, the algorithms that show
promising results are KNN, RF, and MLP. Specifically, the KNN-based
one is the best model in terms of detection capability at all thresholds,
but also the worst in execution performance. This consolidates the MLP
model and RF model as more balanced options for deployment. It can
also be concluded that the KNN-, MLP-, and RF-based models keep their
detection capability even if the sampling rate significantly decreases.
Our model’s generalization was double-checked on actual flow data
from RedCAYLE and the BoT-IoT dataset, empirically demonstrating
that our detection models have good generalizability.

The aforementioned conclusions provide valuable insights into the
performance of machine learning algorithms for detecting malicious
traffic on sampled flow data, considering varying sampling rates. This
knowledge is crucial for enhancing the security of important societal
institutions like hospitals or universities.

DOROTHEA has been empirically proven to be a valuable tool
for gathering flow datasets. Therefore, as future work, we intend to
create new datasets collecting sampling flow data from further network
9

attacks such as brute force, Denial of Service, or SQL Injection and also
from other protocols such as IPFIX. we plan to use it to generate new
detection models that improve the security of wide-area networks.

Acronyms
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DDoS Distributed Denial of Service
DT Decision Tree
FAR False Alarm Rate
KPI Key Performance Indicator
KNN K-Nearest Neighbors
LR Logistic Regression
LSVC Linear Support Vector Classification
MLP Multi-layer Perceptron
MoEv Model Evaluator
RedCAYLE Red de Ciencia y Tecnología de Castilla y León
RedIRIS Red Académica y de Investigación Española
RF Random Forest
SCAYLE Supercomputación Castilla y León
SGD Stochastic Gradient Descent
WAN Wide Area Networks
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