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Abstract
The anonymity and high security of the Tor network allow it to host a significant amount of criminal activities. Some Tor
domains attract more traffic than others, as they offer better products or services to their customers. Detecting the most
influential domains in Tor can help detect serious criminal activities. Therefore, in this paper, we present a novel supervised
ranking framework for detecting themost influential domains. Our approach represents each domainwith 40 features extracted
from five sources: text, named entities, HTML markup, network topology, and visual content to train the learning-to-rank
(LtR) scheme to sort the domains based on user-defined criteria. We experimented on a subset of 290 manually ranked drug-
related websites from Tor and obtained the following results. First, among the explored LtR schemes, the listwise approach
outperforms the benchmarked methods with an NDCG of 0.93 for the top-10 ranked domains. Second, we quantitatively
proved that our framework surpasses the link-based ranking techniques. Third, we observed that using the user-visible text
feature can obtain comparable performance to all the features with a decrease of 0.02 at NDCG@5. The proposed framework
might support law enforcement agencies in detecting the most influential domains related to possible suspicious activities.

Keywords Supervised learning · Learning-to-rank · Influence detection · Feature extraction · Darknet · Tor Hidden services

1 Introduction

The onion router (Tor) network, known as one of the most
famous darknet networks, gives end users a high level of pri-
vacy and anonymity. The Tor project was proposed in the
mid-1990s by US military researchers to secure intelligence
communications. However, a few years later, as part of their
secret strategy, theymade the Tor project available to the pub-
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lic [1]. Currently, onion domains are proliferating rapidly,
and the latest statistics stated by the onion metrics website1

showa significant increase in the number of domains, exceed-
ing 500, 000.

There are many legal uses for the Tor network, such as
personal blogs, news domains, and discussion forums [2,
3]. However, due to its level of anonymity, Tor darknet is
being exploited by services traders, allowing them to promote
their products freely, including but not limited to child sexual
abuse (CSA) [4], drug trading [4–9], and counterfeit personal
identifications [10–12]. Moreover, the high level of privacy
and anonymity provided by the Tor network obstructed the
authorities’ monitoring tools from controlling the content
or even identifying the IP address of the hosts behind any
suspicious service. To address this problem, we collaborate
with the SpanishNational Cybersecurity Institute (INCIBE2)
to develop tools that can ease the task of monitoring the Tor
darknet and detecting existing or new suspicious content. The
proposed Tor monitoring framework is summarized in Fig. 1.

1 https://metrics.torproject.org/hidserv-dir-onions-seen.html
2 In Spanish, it stands for "Instituto Nacional de Ciberseguridad de
España"
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The first module of our Tor monitoring tool is an onion
domain classifier, which detects and isolates categories
of suspicious onion domains. For this task, we used the
supervised text classifier already presented in [12], which
categorizes hidden services (HS) into eight classes: pornog-
raphy, cryptocurrency, counterfeit credit cards, drugs, vio-
lence, hacking, counterfeit money, and counterfeit personal
identification, including driving-licence, identification, and
passport.

The second module, which is the focus of this study,
addresses the problem of ranking the HS that were classi-
fied as suspicious. Once they are ranked, a police officer can
prioritize the work by focusing on the most influential onion
domains. In our previous work [2], we presented ToRank,
a ranking algorithm to sort onion domains by analysing the
connectivity of their hyperlinks, a linked-based approach.
In this work, we propose a content-based approach for
ranking, including features extracted from the text, named
entities, HTML code, domain position, and visual content,
as explained in the following sections.

One of the difficulties we faced was defining the influ-
ence of a given onion domain. The literature is rich with
definitions of the term influencers. In the social network anal-
ysis (SNA) field, it denotes highly participating members
[13], key members [14], members who encourage others to

participate [15], or members who can change the perspec-
tive of others using a sentiment analysis algorithm [16]. In
the terrorist network analysis field, influencers refer to peo-
ple who have connectivity with the majority of the network
members, such as financial managers [17]. Furthermore, in
the viral marketing discipline, it stands for opinion leaders
who can persuade their audience to purchase or subscribe
to a product or a service [18]. In this paper, we borrow this
definition of influencers to refer to onion domains that can
attract customers to visit their websites and potentially buy
their products. The attractiveness of the onion domain web-
site is subjective, and it can be determined through its public
reputation among buyers, its confidentiality and reliability,
or even the service quality it offers [19]. However, ranking
onion domains considering these subjective factors is diffi-
cult because they depend heavily on customers’ opinions and
impressions [20].

This work overcomes this difficulty by presenting a super-
vised ranking approach to sort onion domains based on
various features extracted from the content and structure of
the onion domains. The ranking function learns how to map
between human opinion, i.e., the ground-truth order, and the
extracted features from the domains. Therefore, it assigns
each domain a score that reflects its influence, whereas the
higher the score is, the more significant influence it has.

Fig. 1 Overview of the Tor network monitoring tool. After crawling onion domains from the Tor network, the classification module [12] classifies
them according to their crime category, and the proposed ranking module sorts the domains per category following their influence level
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Thanks to the text classification module [12], the proposed
ranking framework works at the activity level of the domains
and detects the influential HS in each category of domains.
Hence, this paper aims to answer the following question:
What are the most influential onion domains in a determined
area of activity?

Answering this question can improve the capability of
LEAs to keep a close eye on suspicious domains that are
more influential by concentrating their efforts on monitor-
ing them. Moreover, if an LEA takes a suspicious domain
down, the proposed ranking module can recognize it even if
it was hosted under a new address if it still hosts the same
content. Additionally, when a new domain is released and
hosts suspicious content similar to a previously recognized
influential domain, our ranking module can capture it before
becoming popular among Tor users. Therefore, LEAs can
strike suspicious domains preemptively.

A straightforward strategy for detecting influential onion
domains is to sort them by the number of client requests, i.e.,
analysing the network traffic. However, the design of the Tor
network is oriented to preventing this behaviour [21]. Chaa-
bane et al. [22] conducted a deep analysis of Tor network
traffic by establishing six exit nodes distributed worldwide
with the default exit policy. Nonetheless, this approach can-
not assess the traffic of onion domains that are not reachable
through these exit nodes. Furthermore, it can be risky because
the Tor network users can reach any onion domain, regard-
less of its legality, through the IP addresses of the machines
dedicated to that purpose. Biryukov et al. [23] attempted to
exploit the concept of entry guard nodes [24] to deanonymize
clients of a Tor hidden service. However, this proposal will
not be feasible as soon as the vulnerability is fixed.

Another strategy reported in the literature to detect influ-
ential onion domains is using a link-based ranking algorithm
such as ToRank [2], PageRank [25], hyperlink-induced topic
search (HITS) [26], or Katz [27]. We explored link-based
ranking algorithms in our previous work [2] and concluded
that the main drawback of this approach lies in its depen-
dency on hyperlink connectivity between onion domains
[28]. Hence, if an influential but isolated domain exists in
the network, this technique cannot recognize it as an essen-
tial item.

This paper presents an alternative approach for detecting
influential onion domains by extracting features fromdomain
content to train a learning-to-rank (LtR) algorithm [29–31].
In particular, given a list of HSs, our model ranks onion
domains based on two key steps: content feature extraction
and onion domain ranking. First, we represent each onion
domain by forty element feature vectors extracted from five
different resources: 1) the textual content of the domain, 2)
the textual named entities (NEs) in the user-visible text such
as product names and organization names, 3) the HTML
markup code by taking advantage of specific HTML tags, 4)

the visual content such as the images exposed in the domain,
and finally, 5) the position of the targeted onion domain in
the Tor network topology. Second, the extracted features are
cleaned and normalized to train a ranking function using the
LtR approach to rank the domains and to propose the top-k
domains as the most influential.

The ranking problem addressed in this work is close to the
information retrieval (IR) field but with a significant differ-
ence. Both retrieve a ranked list of elements similar to how
search engines work. For example, the Google search engine
considers more than 200 factors to generate a ranked list of
websites concerning a query [32]. However, in the context of
our problem, we do not have a search term to order the results
accordingly. Instead, our objective is to rank the domains
based on a virtual query:What are the most attractive onion
domains in a determined area of activities? Therefore, this
model adopts IR to solve the problem of ranking and detect-
ing the most influential onion domain in the Tor network
without having an available search term.

Nevertheless, the proposed framework is not restricted to
ranking the onion domains of theTor network. It can be gener-
alized and adapted to different areaswith slightmodifications
in the feature vector, such as document ranking, web pages of
the surface web, or users in a social network, among others.

The main contributions of this work are as follows:

• We propose a novel framework to rank the onion domains
and detect the most influential domains. Our strategy
exploits five groups of features extracted from the Tor
network via a hidden service modelling unit (HSMU).
We used the extracted features to train the supervised
learning-to-rank unit (SLRU).Our approach outperforms
link-based ranking techniques, such as ToRank, PageR-
ank, HITS, and Katz, when tested on samples of onion
domains related to drug marketing (Fig. 2).

• We propose 40 features extracted from five resources: 1)
user-visible text, 2) textual NEs, 3) the HTML markup
code, 4) the visual content, and 5) features drawn from the
Tor network topology. In particular,we address the effects
of representing an onion domain by several variations
in features on the ranking framework. We identify the
most efficient combination of features compared to their
cost of extraction in terms of the prediction time and the
resources needed to build the feature extraction model.

• We evaluated our approach on a manually ranked dataset
of 290 domains extracted from the Tor network and ded-
icated to trading illegal drugs. Each onion domain was
judged by three members and received its influence score
based on the majority voting strategy.

The rest of the paper is organized as follows. Section2
summarizes the related work. Next, in Sect. 3, we present a
procedure followed to build the dataset. Section4 introduces
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Fig. 2 A general view of the proposed framework for ranking and detecting the influential onion domains in the Tor network. The dashed orange
arrows indicate the training pipeline of the system, while the solid blue arrows indicate the testing/production phase

the proposed ranking framework, including its main compo-
nents. Section5 describes the experimental settings and the
configuration of the framework units. Section6 addresses a
case study to test the effectiveness of the proposed framework
in a real-case scenario. Finally, Sect. 7 presents the main con-
clusions of this work and introduces other approaches that
we are planning to explore in the future.

2 Related work

Several researchers have analysed suspicious activities on
the darknet, including illicit drug markets [33–35], terrorist
activities [36, 37], arms smuggling, violence, and cybercrime
[6, 12, 38]. However, a few have focused on detecting the
most influential domains.

Somehave used social network analysis (SNA) techniques
to mine networks. Chen et al. [39] conducted a compre-
hensive exploration of terrorist organizations to examine the
robustness of their networks against attacks. They simulated
the attacks by removing the items with the highest in-degree
or betweenness scores [40]. Al-Nabki et al. [2] proposed an
algorithm called ToRank to rank and detect the most influen-

tial domains in the Tor network. ToRank represents the Tor
network by a directed graph of nodes and edges; the most
influential nodes are those whose removal would reduce the
nodes’ connectivity. However, link-based approaches fail to
evaluate isolated nodes that do not connect to the rest of the
community.

Choi et al. [41] built hand-crafted features to identify
key cyberbullies in social networks. They collected fea-
tures from various network centrality measures, including
degree centrality, betweenness centrality, closeness central-
ity, and PageRank, to analyse the connectivity of community
members. Additionally, they used the Losada ratio, a ratio
of positive-to-negative text sentiment, and a cyberbullying
index, a ratio of insulting words that appear in the text. Sim-
ilarly, [42] addressed the Twitter social network to identify
key actors using the same network centrality measures along
with sentiment analysis.

Anwar et al. [43] presented a hybrid algorithm to detect the
influential leaders of radical groups in darknet forums. Their
proposal is based on mining the content of the user’s profiles
and their historical posts to extract textual features represent-
ing their radicalness. Then, they incorporated the obtained
features in a customized link-based ranking algorithm based
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on PageRank [25] to build a ranked list of radically influential
users.

A different perspective was carried out by Biryukov et
al. [23], who exploited the entry guard node concept [24] to
deanonymize clients of an onion domain in the Tor network.
The popularity of onion domains in the Tor network is esti-
mated by measuring its incoming traffic; nevertheless, this
approach will not be feasible when the vulnerability is fixed.

TheLtR framework has been usedwidely in the IRdomain
[44–47]. Li et al. [48] proposed an algorithm to help software
developers deal with unfamiliar application programming
interfaces (APIs) by offering software documentation rec-
ommendations and training an LtR model with 22 features
extracted from four resources. Agichtein et al. [49] employed
the RankNet algorithm to leverage search engine results by
incorporating features from user behaviour. Wang et al. [50]
presented an LtR-based framework to rank input parameter
values of online forms. They used 6 categories of features
extracted from user contexts and patterns of user inputs.
Moreover, LtR was used for mining social networks [51–53]
or to detect and rank critical events in Twitter social networks
[54].

3 Dataset construction

Darknet Usage Text Addresses 10K (DUTA-10K) is a pub-
licly available dataset proposed by Al-Nabki et al. [2] that
contains 10, 367 onion domains from the Tor network dis-
tributed into 25 categories. In this paper, we consider the
domains of the category Drugs as a case study to rank its
domains using the proposed ranking framework. This cate-
gory contains drugmanufacturing, cultivation, andmarketing
topics, as well as drug forums and discussion groups. Out of
465 drug domains in DUTA-10K, we selected only English
language domains, which totalled 290 domains. This ranking
approach could be adapted to any collection of web domains,
but we selected the drug-related domains owing to their high
popularity in the Tor network. In addition, our approach is
more comprehensive than HS ranking. It can be extended to
document ranking or influence detection in social networks.

To annotate the dataset, thirteen people, including the
authors, manually ranked the 290 drug-related domains. To
secure consistent ranking criteria among the annotators, we
created a unified questionnaire of 23 subjective binary ques-
tions (Table 1) that the annotators answered for each domain.
The ground-truth is built in a pointwise manner, assigning an
annotator a value to each domain, coming from answering
every question with a 1 or 0, corresponding to Yes or No,
respectively.

We repeated the process three times, assigning each anno-
tator a new batch of approximately 23 domains every time.
Thus, each onion domain was judged three times by three

different annotators, and as a result, each domain was rep-
resented by three binary vectors of answers. Following the
majority voting approach, we unified these answers’ vec-
tors of every domain into a single vector of 23 dimensions
that corresponded with the number of questions. Finally, we
summed the answers of each domain to obtain a score value
for each domain, representing a ground-truth rank while
training. In this context, a higher score means a more sig-
nificant influence.

4 Proposed ranking framework

This work presents a ranking framework for automatically
ranking hidden services (HSs), i.e., the Tor networkwebsites,
according to user-defined criteria captured from a training
set (Fig. 2). Our design has two components: 1) the hidden
servicemodelling unit (HSMU) for extracting features from a
given website domain in the Tor network and 2) a supervised
learning-to-rank unit (SLRU) that trains a supervised ranking
model.

4.1 Hidden service modelling unit

Given a hidden service domain di ∈ D collected from the Tor
network D, which is represented in the HSMU by a feature
vector extracted from sources: 1) the text, 2) the NEs, 3) the
HTML code, 4) the visual content, and 5) the topology of D
and the position of di in D.

4.1.1 Text features

Given the text of di , we extract nine features from the fol-
lowing four sources.

Date and Time 1 binary feature to indicate whether di has
been updated recently. If the most recent date is close to
today’s date, it is marked as “updated" or “obsolete" oth-
erwise. Additionally, we count date patterns within a date
window to measure the number of recent changes in di .
We refer to these two features as recently_updated and
update_counts, respectively.

Website URL 1 URL address of an onion domain3 consists of
16 characters generated using a 1024-bit RSA key pair, and
the public key is hashed using the SHA-1 algorithm. Then,
the first 80 bytes of the hash are encoded using a Base32
encoder, and the suffix ".onion" is added. Therefore, most
generated onion domain URLs do not involve readable or
meaningful words and can be seen as a random sequence of

3 This paper uses onion domains of version 2 since the experi-
mented dataset is on the same version https://support.torproject.org/
onionservices/v2-deprecation/
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Table 1 Binary questionnaire used to build a ground-truth rank for the drug onion domains

Qestions

- Has a satisfactory FAQ? - Has a communication channel?

- Has a professional design? - Has real images for the products?

- Has a subjective title? - Sells between 2 to 10 products?

- Provides safe shipping? - Does the domain name has a meaning?

- Offers reward or discount? - Does the majority of the products are illegal?

- Sell more than 10 products? - Still accessible in the Tor network?

- Shipping worldwide service? - Sells at least one popular product?

- Reputation content? - Requires login/registration?

- Accepts only Cryptocurrency? - Recently updated?

- Can customers add a review/feedback? - Do you feel that this domain is trustable?

- Need text spotting for the products’ images - Are you satisfied with the product’s description?

- Has more than 10 subpages?

16 characters. However, there are open-source tools capa-
ble of generating customized addresses, such as Shallot.4

These tools allow the onion domain address to include attrac-
tive, catchy words, such as cocaine or LSD, for a hidden
service selling illegal drugs. The main challenge here is
the exponential time required to customize domain names;
for example, customizing seven characters takes one day of
machine time, while customizing 10 characters requires 40
years of processing. We used a probabilistic model based on
English Wikipedia unigram frequencies to extract the URL
features. The model splits concatenated letters into potential
words, thanks to theWordninja tool.5 For theURLwords, we
obtain two features: (i) the number of human-readable words
identified using the Nostril tool [55] and (ii) the number of
their letters. We name these features URL_word_count and
URL_letter_count, respectively.

Clone rate 1 refers to the number of HS that host the same
content under different addresses. In our previous work [2],
we recognized that some onion domains have identical or
semi-identical text hosted under different URLs, particularly
those with suspicious content. To detect duplication, we cal-
culate the MD5 hash [56] after preprocessing it by removing
numbers, special characters, date and time formats, and the
PGP signature. The clone_rate of di reflects the frequency of
its MD5 hash code.

Term frequency-inverse document frequency (TF-IDF)
vectorizer an algorithm comprised of two components, the

4 https://github.com/katmagic/Shallot
5 https://github.com/keredson/wordninja

term frequency (TF) and the inverse document frequency
(IDF). The TF counts the number of times a word is used in
a domain, while the IDF finds how important a word is in the
list of onion domains. It is calculated by dividing the number
of onion domains by the number of domains that contain that
word. Finally, the TF-IDF is computed as (Eq.1).

w(i,d) = T F(i,d) × log2
N

DFi
, (1)

where w(i,d) is the weight of word i in domain d, N is the
size of domain set D, T F(i,d) is the term frequency of word
i in d, and DFi is the document frequency of word i in D.

Typically, it is good practice to filter out infrequent words
by adjusting the max features parameter of the TF-IDF
algorithm.6 Hence, only a specific number of features are
considered. Following our previous work [12], we set the
max_ f eatures parameter to 10, 000 sorted by the TF-
IDF weight. The TF-IDF algorithm represents the text of
each onion domain by a feature vector of 10, 000 dimen-
sions. In addition, it returns a dictionary (TF-IDF_dict) of
length max_ f eatures that holds the keywords and their
weights. Applying the TF-IDF algorithm to a dataset of
drugsHS,we obtained the following top-10words (cannabis,
cocaine, quantity, kush, gram, crystal, heroin, psychedelic,
drug, and strain). We consider the common words between
the TF-IDF_dict and domain di as the domain keywords.

6 This behaviour is controlled using the max_ f eatures parameter in
the Scikit-Learn library.
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Consequently, we define the following four features: 1)
keyword_num: the number of keywords identified in di ,
2) keyword_TF-IDF_Acc: the accumulated TF-IDF key-
word weights, 3) keyword_avg_weight: the average keyword
weight, and 4) keyword_to_total: the number of the domain’s
keywords divided by the number of its words.

4.1.2 Named entities features

Anamed entity (NE) refers to a real proper name of an object,
including but not limited to persons, organizations, or loca-
tions. In the Tor network, most entities come from sparse text
without context, such as the product entity names mentioned
under the product image in a marketplace. Therefore, it is
vital to use a named entity recognition model that does not
depend heavily on the context. Hence, we used our previ-
ous work [57], which was designed especially for this case,
rather than contextualized-based models such as the bidi-
rectional encoder representations from transformers (BERT)
[58]. The named entity recognition (NER) model recognizes
six categories of named entities: persons (PER), locations
(LOC), organizations (ORG), products (PRD), creative work
(CRTV), corporations (COR), and groups (GRP). We map
the extracted NEs into the following five features:

NE number 1 counts the total number of entities in di regard-
less of the category; we name this feature NE_counter.

NE popularity 1 an entity is popular if its frequency is above
or equal to a threshold that we set to five, as explained in
Sect. 5.2.2. For every category identified by the NER model,
we use a binary representation to capture the existence of
popular entities in domain (1), or (0) otherwise. We refer to
this feature as popular_NEX, where X is the corresponding
NER category.

NE TF-IDF 1 accumulates the TF-IDF weight of all the detected
NE in di . This feature is denoted by NE_TF-IDF.

TF-IDF popular NE 1 accumulates the TF-IDF weight of the
popular NE, and it is named popular_NE_TF-IDF.

Emerging NE 1 the frequency of the emerging product enti-
ties in di .We used our previouswork [5] based on theK-Shell
algorithm [59] and graph theory to detect emerging entities
in HS. We denote this feature by emerging_NE.

4.1.3 HTMLmarkup features

Among the available HTML parsing techniques, we used
a regular expression pattern to detect hyperlinks because
we realized that some onion domain pages reference other
domains by mentioning their addresses within the text flow
without the < HREF > HTML tag. Hence, libraries such

as Beautiful Soup7 cannot detect them. For the rest of the
HTMLmarkup code of di , we used theBeautiful Soup library
to extract the following features:

Internal hyperlinks 1 counts the number of unique hyper-
links that share the same domain name as di . We denote
it by internal_links.

External hyperlinks 1 refers to the number of pages refer-
enced by di on the Tor network or Surface Web. We refer to
this feature by external_links.

Image tag count 1 corresponds to the number of images ref-
erenced in di . It is calculated by counting the < img >

HTML tag in the HTML code of di . We denote it by
img_count.

Login and password 1 a binary feature to indicate whether
the domain needs login and password credentials. We used a
regular expression pattern to parse such inputs. This feature
is called needs_credential.

Domain Title 1 a binary feature to check whether the <

t i tle >HTML tag has a textual value. We called it has_title.

Domain header 1 a binary feature that checks if the< H1 >

HTML tag has a header, and we named it has_H1.

Title and header TF-IDF 1 an accumulation of the TF-IDF
weight for the di title and header text. It is denoted by TF-
IDF_title_H1.

TF-IDF image alternatives 1 some websites use an optional
property called < alt > inside the image tag < img > to
hold a textual description for the image. This text becomes
visible to the end user to substitute the image in case it is not
loaded properly. This feature refers to the TF-IDF weight
accumulation of the alternative text and is denoted as TF-
IDF_alt.

4.1.4 Visual content features

The visual content can bemore attractive than the text to draw
the customer’s attention. A suspicious services trader might
incorporate authentic product images to create an impression
of credibility to customers. However, the interesting images
for LEAs can be confused with other noisy images, such as
banners and logo images. To isolate the interesting images,
we built a supervised image classifier that categorizes the
visual content into nine categories,where eight are suspicious
and one is others. The definition of these categories is based
on our previous works [2, 12]. For the image classifier, we
fine-tune the Inception-ResNetV2model [60]. The following
features represent the visual content:

7 https://www.crummy.com/software/BeautifulSoup/
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Image count 1 corresponds to the total number of images in
di , both suspicious and nonsuspicious, regardless of their cat-
egory. Suspicious stands for images that can contain illicit
content. We denote these features by total_count, suspi-
cious_count and noise_count, respectively.

Average classification confidence 1 represents the averaged
confidence score of multiple images per category. These fea-
tures are named avg_suspicious_conf and avg_normal_conf,
respectively.

Majority class 1 a binary flag to indicate whether the major-
ity of the images published in di are suspicious. This flag is
denoted by suspicious_majority.

4.1.5 Network structure features

We modelled the Tor network as a directed graph of nodes
and edges. The nodes refer to onion domains, and the edges
capture the hyperlinks between domains. This representation
allowed us to build the following features:

In-degree 1 the number of onion domains pointing to domain
di . It is called the in-degree.

Out-degree 1 the number of HS referenced by di , and it is
named out-degree.

Centrality measures 1 for each domain di in the Tor network
graph, we evaluated three node centrality measures: close-
ness, betweenness, and eigenvector [61, 62]. The closeness
metric computes the length of the shortest paths from di to
the network domains. The betweenness measures the extent
to which di lies on paths between other domains. Finally,
the eigenvector centrality reflects the importance of di based
on the centrality of its neighbours. Formally, given a graph
G = (V , E)with a set of V nodes and E edges, the closeness
centrality is calculated as the inverse of the sum of the short-
est path distances between a domain di and the remaining
|V | − 1 domains in G, and it is defined in Eq.2. as:

cls(di ) = |V | − 1
∑|V |−1

v=1 dis(di , dv)
, (2)

where cls(di ) is the closeness of di and dis(di , dv) is the
shortest path distance between domains di and d j .

The betweenness of domain di is the sum of the fraction
of all-pairs shortest paths that pass through di ; it is given by
Eq.3.

btwn(di ) =
∑

d j ,dk∈Vand(diσd j ,di �=dk )

σ (d j , dkd̄i )

σ (d j , dk)
, (3)

where btwn(di ) is the betweenness of di , σ(d j , dkd̄i ) and
corresponds to the number of shortest paths between domains

d j and dk that pass through node di , and σ(d j , dk) is the
number of shortest paths between domains d j and dk .

The eigenvector centrality score of domain di , denoted
by eigvec(di ), is proportional to the sum of the eigenvector
scores of all connected domains. Therefore, the relative score
of domain di is defined by Eq.4.

eigvec(di ) = 1

λ

∑

d j∈G,d j �=di

a(di ,d j )eigvec(d j ), (4)

It can be rewritten as Ax = λx , where λ is an eigenvalue
and a(di ,d j ) is the adjacency matrix of graph G. If there are
hyperlinks between domains di and d j , a(di ,d j ) = 1; oth-
erwise, a(di ,d j ) = 0. Matrix A has multiple eigenvalues,
but the components of A are all nonnegative. According to
the Perron-Frobenius theorem [63], there is only a unique
eigenvalue that satisfies a positive eigenvector of x. The
eigenvector centrality calculation is as follows: all the node
centralities are initialized to one and multiplied by A. The
resulting vectors are normalized, and the process is repeated
until convergence [64].

ToRank value 1 ToRank is a link-based ranking algorithm to
order the items of a given network following their central-
ity [2]. We applied ToRank to the Tor network to rank the
onion domains and used the assigned rank as a node feature.
Moreover, we used a binary flag to indicate whether di is in
the top-X domains of ToRank. We refer to those features as
ToRank_rank and ToRank_top-X, respectively.

After computing the features described (Table 2), we con-
catenate them to form a feature vector. However, given the
variety of the scales of the features, we normalize them by
removing the mean and scaling to unit variance.

4.2 Supervised learning-to-rank unit

We adopt the LtR approach widely used in the information
retrieval (IR) field. In a traditional IR problem, a training
sample has three components: the query ID, a ranked list
of answers to the query and their relevance score, which
can be either binary [50] or multiple levels of relevance
[65]. However, looking at our ranking problem, there are
two significant differences. First, we do not have queries; we
have a single abstract question:What are the most attractive
onion domains in a determined area of activities? Second,
the relevant, i.e., practising the same activity, thanks to the
classification component demonstrated in the Tor monitor-
ing pipeline (see Fig. 1). Simultaneously, the relevance score
cannot be multilevel because each domain has received a
numerical score calculated and assigned manually by human
annotators, as described in Sect. 3. These scores represent the
ground-truth while training LtR. Therefore, a training sam-
ple di has a feature vector and a score ri in R, where R refers
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to the ground-truth set. The feature vector of each sample di
can be modelled as V =< ri , di,1, di,2..., di,n >, n ∈ N ,
where di,n is the nth feature of the domain di and N is the
total number of ranking features, i.e., N = 40.

Our LtR schema aims to learn a function f that projects

a feature vector into a rank value (di,1, di,2..., di,n)
f−→ ri .

Therefore, the goal of an LtR scheme is to obtain the opti-
mal ranking function f that ranks D in a similar way to R,

i.e., D
f−→ R. The learning loss function depends on the LtR

architecture and is explained in the following three subsec-
tions.

4.2.1 Pointwise

The loss function of the pointwise approach considers only
a single instance of onion domains at a time [66]. It is a
supervised classifier/regressor that independently predicts
a relevance score for each query domain. The ranking is
achieved by sorting the onion domains according to yield
scores. For this LtR schema, we explore the multilayer per-
ceptron (MLP) regressor [67]. This approach estimates the
loss function based on a single item, i.e., onion domain, as
shown in Eq.5.

L( f ; D, R) =
|R|∑

i=1

( f (di ) − ri )
2 (5)

4.2.2 Pairwise

Pairwise transforms the ranking task into a pairwise classi-
fication task. In particular, the loss function takes a pair of
items at a time and attempts to optimize their relative posi-
tions by minimizing the number of inversions compared to
the ground-truth [68]. We use the RankNet algorithm [68],
which is one of the most popular pairwise LtR schemes. The
loss function of RankNet is given by Eq.6, as:

L( f ; D, R) =
|R|−1∑

i=1

|R|∑

j=1

θ( f (di ) − f (d j )), (6)

where θ is logistic function θ(z) = log(1 + exp−z).

4.2.3 Listwise

This approach extends the pairwise schema by looking at
the entire list of samples at once [69]. One of the most well-
known listwise schemes is the ListNet algorithms [70]. Given
two ranked lists, the human-labelled scores and the pre-
dicted scores, the loss function minimizes the cross-entropy
error between their permutation probability distributions.
The ListNet loss function is defined for all onion domains

in R by Eq.7, as:

L( f ; di , ri ) = −
|R|∑

j=1

Pdi ( j)logPf (ri )( j) (7)

where Ps( j) is a Plackett-Luce probability model [71] of j
according to s, which is given by Eq.8, as:

Ps( j) =
|R|∏

j=1

exp(s j j )
∑|R|

k= j exp(s j k)
(8)

5 Experimental settings

To evaluate the proposed ranking framework, we tailored the
experiments to answer three research questions:

• What is the most suitable LtR schema for ranking the
onion domains in the Tor network and detecting the influ-
ential domains?

• When is each ranking approach used: the content-based
and the link-based??

• What is the best combination of features for the LtR
model performance?

In the following, we discuss these questions, describe the
analytical approach we conducted in detail, and present our
findings.

5.1 Evaluationmeasure

The two most popular metrics for ranking an information
retrieval system are mean average precision (MAP) and nor-
malized discounted cumulative gain (NDCG) [72, 73]. The
main difference between the two is that the MAP assumes a
binary relevance of an item according to a given query, i.e.,
an item can be either relevant or nonrelevant. Additionally,
NDCG allows the use of a numerical relevance score. There-
fore, the NDCG is better suited for two reasons. First, thanks
to the onion domain classification component (see Fig. 1), all
domains are relevant, i.e., all have the same category, drug-
related domains, in this case. Second, the ground-truth and
the predicted rank score are numerical scores produced by
the LtR schemes.

To obtain the NDCG@K , we calculate the DCG@K
following formula (Eq.9).

DCG@K = G1 +
K∑

i=2

Gi

log2(i)
(9)
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Table 3 The image classification performance using the F1 score over
a test set of nine classes

Category Name F1 Score (%)

Counterfeit Credit Cards 92.45

Counterfeit Money 96.78

Counterfeit Personal Identification 95.16

Cryptocurrency 94.60

Drugs 91.60

Pornography 98.53

Violence 93.80

Hacking 97.63

Others 86.78

whereG1 is the gain score at the first position in the obtained
ranked list, Gi is the gain score of item i in that list, and K
refers to the first K items to calculate the DCG. To obtain
a normalized version of DCG@K , it is necessary to divide
it by I DCG@K , which is the ideal DCG@K sorted by the
gain scores in descending order (Eq. 10).

NDCG@K = DCG@K

I DCG@K
(10)

5.2 Module configuration

5.2.1 Hardware configurations

Our experiments were conducted on a 2.8 GHz CPU (Intel
i7) PC running Windows 10 OS with 16 GB of RAM. We
implemented the ranking models using Python3.

5.2.2 HSMU configurations

We set the feature vector length of the TF-IDF text vector-
izer to 10, 000 with a minimum frequency of 3, following
our previous work [12]. We used an NER model trained
on the WNUT-2017 dataset.8 To set the popularity thresh-
old of the popular_NEX feature, we examined four values
(3, 5, 10, 15), and we assigned it to 5 experimentally. Addi-
tionally, we set the threshold of the recently_updated feature
to three months earlier than the dataset scraping date. To
extract features from the HTML code, we used the Beau-
tifulSoup library.9 To construct the Tor network graph, we
used the NetworkX10 library.

For the image classifier, we fine-tuned the Inception-
ResNet V2 model [60] on a dataset of 11, 700, split as 9, 000
for training and 2, 700 for testing, and equally distributed

8 https://noisy-text.github.io/2017/emerging-rare-entities.html
9 https://pypi.org/project/beautifulsoup4/
10 https://networkx.github.io/

over nine categories, as shown in Table 3. We collected the
images from Google Images using a chrome plugin called
Bulk Image Downloader.

5.2.3 SLRU configurations

We used the dataset described in Sect. 3 to train and test the
three LtR models. Due to the small number of samples in
the drug domain, only 290 onion domains, we conducted
a 5-fold cross-validation following recommendations from
previous works [70]. On each iteration, three folds were used
for training the ranking model, one for validation and one for
testing. For the three LtR models, the number of iterations is
controlled by early stopping criteria, which is triggered when
there is no change in the validation set at NDCG@10 [74].

The three LtR schemes commented on in Sect. 4.2 share
the same network structure but differ in their loss functions.
The neural network has two layers, with 128 and 32 neu-
rons. For nonlinearity, a rectifier linear unit (ReLU) activation
function is used [75], and a ReLU layer is followed by a
dropout layer with a value of 0.5 [76] to avoid overfitting.

6 Results and discussion: drug case study

6.1 Learning to ranking schema selection

In Sect. 4.2, we explored three well-known LtR schemes,
namely, pointwise, pairwise, and listwise, and for each one,
we explored a supervised ranking algorithm:MLP, RankNet,
andListNet, respectively.Wewanted to know themost suitable
LtR schema for ranking the onion domains in the Tor network
and detecting the influential ones. Figure3 compares the three
LtR algorithms using the NDCG@k metric for 10 different
values of K = {1, 3, 5, 7, 9, 15, 25, 35, 45, 55}, whereas 55 refers
to the complete test set. The values of k are not equally sam-
pled, and we select five values between zero and ten, while
the other five values are greater than ten. This distribution
is chosen because a correct rank on the head of a ranked
list is more important than its tail [50, 77]. The superiority
of the listwise approach is evidence of its suitability among
the other methods (Fig. 3). The same figure shows that the
NDCG@1 of ListNet is equal to one, which means that dur-
ing the five folds of cross-validation, the algorithm ranked the
first domains in the test set correctly, exactly as the ground-
truth. It obtained NDCG@5 and NDCG@10 values 0.97
and 0.93, respectively. However, the lowest value was at
NDCG@25 of 0.88. Additionally, as shown in Fig. 3, the
pointwise approach, which is the MLP in our case, obtained
the worst performance, which agrees with the conclusion of
other researchers [65].
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Fig. 3 A comparison between
three LtR algorithms against
multiple values of averaged
NDCG@K over the five fold
cross-validation. The horizontal
axis refers to the K value, and
the vertical axis indicates the
NDCG scores of the algorithms
obtained at each value of K

The superiority of the ListNet scheme comes from its
ability to map a list of scores to a probability distribution,
whereas the loss is calculated using the cross entropybetween
the predicted probability distribution and a target probability
distribution. Therefore, we can say that ListNet considers the
complete list of ranked items, while pointwise and pairwise
ignore this structure.

Table 4 presents the top-10 drug domains nominated by
each ranking algorithm.

In addition to comparing the performance using NDCG@K ,
we register the total time required to train and test each LtR
model. More precisely, we compare these times from when
the model receives a list of domains encoded by the HSMU
(Sect. 4.1) until it produces the rank. On average, for the five
folds, the ListNet model took 8.30 seconds for training and
0.08 seconds for testing. The RankNet took 7.35 seconds
for training and 0.007 seconds for testing. Finally, the MLP
model was the fastest, requiring 3.34 seconds for training and
0.0009 for testing. This comparison shows that the ListNet
model is the slowest due to the complexity of its loss function
compared to the RankNet and MLP algorithms.

6.2 Link-based versus content-based ranking

Having two distinct ranking strategies raises a question:What is
the most suitable ranking approach, content-based or link-
based? To answer this question, we explore four link-based
algorithms: ToRank [2], PageRank [25], hyperlink-induced
topic search (HITS) [26], and Katz [27]. Ranking the onion
domains of the Tor network using a link-based approach
requires a directed graph representation. The graph nodes
represent onion domains, and the directed edges capture the
hyperlinks between domains. We compare these four link-
based algorithms against the best LtR model, i.e., ListNet,
which depends on the 40 features described in Sect. 4.1.

6.2.1 Comparison configuration

Unlike our supervised ranking approach [2], the link-based
approach does not require training data; it can be seen as
an unsupervised ranking. In contrast, LtR uses a portion for
training and another for testing. Therefore, to perform a fair
comparison between these two approaches, we use a five fold
cross-validation. We split the dataset into five parts, and each
time, one-fold is held out for testing, and the remaining four
folds are used to train LtR. Hence, both approaches are tested
on the same test set. Finally, we report the average NDCG
of both. We evaluated several configuration parameters for
the link-based algorithms and selected the parameters that
obtained the highest NDCG (Table 5).

Figure 4 shows that ListNet surpasses all the link-
based ranking algorithms. We observe that the weakest LtR
approach, i.e., MLP, which obtained an NDCG@10 of 0.71,
outperforms the best link-based ranking algorithm, ToRank,
which scored NDCG@10 of 0.69. This result emphasizes
the importance of considering the content of domains rather
than their hyperlink connectivity only. Nonetheless, the link-
based approach, such as ToRank, is still valid, with an
NDCG@10 of 0.69 without labelling cost.

6.3 Feature selection

In the previous sections, we concluded that ListNet outper-
formed the benchmarked techniques when a feature vector of
forty dimensions represented each hidden service. However,
the computational cost of these features varies. Someof them,
such as the visual content, require building a dedicated image
classification model, while other features could be extracted
merely using a regular expression. The cost is reflected in
the time necessary to obtain the features and build the rank-
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Table 4 An example of the top 10 ranking algorithm outputs sorted from the highest to the lowest influence. The rank is estimated only based on
the output of the first fold of the cross-validation. ListNet has the highest NDCG@10

Order Ground-truth ListNet RankNet MLP

1 coinrx6j4gqspquq.onion torpharmzxholobn.onion iv2w26wwal6tnnpl.onion tdupp6lmgnpex5ss.onion

2 torpharmzxholobn.onion coinrx6j4gqspquq.onion tdupp6lmgnpex5ss.onion gpostalfauulvzhs.onion

3 gpostalfauulvzhs.onion tdupp6lmgnpex5ss.onion newpdsuslmzqazvr.onion newpdsuslmzqazvr.onion

4 xdsa5xcrrrxxxolc.onion gpostalfauulvzhs.onion kbvbh4kdddiha2ht.onion smoke77v445xp3oc.onion

5 tdupp6lmgnpex5ss.onion xdsa5xcrrrxxxolc.onion smoke77v445xp3oc.onion newpdioehu3fhxph.onion

6 eeyovrly7charuku.onion rso4h34eooxjlg75.onion smokerhv5hlklzh2.onion nlgro7qqgwi2jjnv.onion

7 eupillu4np223oxe.onion eupillu4np223oxe.onion rso4h34eooxjlg75.onion smokerhv5hlklzh2.onion

8 pharmasuzik56e4l.onion smokerhv5hlklzh2.onion newpdioehu3fhxph.onion rso4h34eooxjlg75.onion

9 artsmankindxgcv5.onion eeyovrly7charuku.onion nlgro7qqgwi2jjnv.onion kbvbh4kdddiha2ht.onion

10 limaconzruthefg4.onion artsmanvesyngaz5.onion drugszun7tvsgsaa.onion pms5n4czsmblkcjl.onion

NDCG@10 0.90 0.62 0.65

ing model and the inference time. On average, per domain,
the prediction of the image classification model was the most
expensive. It took 109 seconds, followed by the NER model
with 22 seconds and the text features that required 12. Finally,
the HTML and graph features were the fastest to be extracted,
requiring 3 and 2 seconds, respectively.

Furthermore, we used asymptotic notation to general-
ize the processing time of features and compare their time
complexities. In particular, textual features have a time com-
plexity of O(nLlog(nL)), i.e., the complexity of computing
the TF-IDF feature vector, where n is the total number of
text sequences and L is the average length of these sequences
[78]. In contrast, the HTML feature has a time complexity
of O(n). Regarding the network structure features, ToRank
has a complexity of O(2n), and the remaining features have
a time complexity of O(n). Last, the complexity of the
neural network-based models, such as the image classifier
Inception-ResNet V2 or the NER model, depends on the
structure of the neural network, i.e., the number of convolu-

tion layers and kernels [79]. Because of this, visual content
features are the most time-consuming.

To answer the question: What feature or combination
of features produces the best LtR model performance? We
compare a ListNet ranker trained on different collections of
features, as shown in Fig. 5.

We found that the features extracted only from text,
denoted by text, achieved the highest NDCG@5 of 0.90.
The features extracted from the NEs came in the second
position, which obtained an NDCG@5 of 0.85. After that,
using only features extracted fromHTML, the ListNetmodel
obtained an NDCG@5 of 0.81. In contrast, the graph fea-
tures obtained the lowest NDCG@5of 0.65,which indicates
their weakness in ranking onion domains, unlike the fea-
tures extracted from the text, which showed a significant and
positive impact on the NDCG metric. Hence, the features
extracted from the user-visible text are more representative
than those from the visual content or the graph structure.

Fig. 4 A comparison between
the content-based versus
link-based ranking algorithms
concerning multiple values of
K . The horizontal axis refers to
the K value, and the vertical
axis indicates the NDCG
scores of the algorithms
obtained at each value of K
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Table 5 The evaluated
parameter for the link-based
ranking algorithms. Bold values
correspond to the selected
configuration with the highest
NDCG

Algorithm name Parameter Evaluated values

PageRank alpha 0.5, 0.70, 0.75.0.80,0.85,0.90

max_iter 10, 100, 1000, 10,000

ToRank alpha 0.50, 0.70, 0.80, 0.90, 1.00

beta 0.1, 0.2, 0.3, 0.4, 0.5, 0.6

HITS max_iter 10, 100, 1000, 10,000

Katz alpha 0.01, 0.1, 0.2, 0.3, 0.4, 0.6, 0.9

beta 0.1, 0.3, 0.5, 0.7, 0.9, 1.0

max_iter 10, 100, 1000, 10,000

Furthermore, we examined the impact of aggregating the
user-visible text features. Figure5 shows an increase in the
NDCG when the text, NER, and HTML features were com-
bined. They scored an NDCG@5 of 0.95 compared to 0.97
when all the features were used. Hence, the graph and the
visual features can be ignored with a 0.02 decrease in the
NDCG. However, at NDCG@10, user-visible text features
scored 0.88 and 0.93 for all the features, which means a
decrease of 0.05. This result emphasizes the ability of the
proposed ranking framework to rank onion domains regard-
less of whether they were isolated in the network or carried
visual content. Therefore, further exploration of textual fea-
tures, mainly textual semantic representation, such as BERT
[80], for onion domains will significantly boost the ranking
results.

6.4 Limitations of the content-based ranking

The content-based ranking approach has some limitations.
As it falls under the supervised learning umbrella, it requires
preranked data, which can be labour extensive. Moreover,
building a training set requires answering subjective ques-
tions based on the annotators’ opinions, such as “Do you
feel that this domain is trustable?" If the answers are not
normalized to a standard, more noise will be introduced in
the dataset. Furthermore, when a domain blocks the crawler
from exploring the content by requesting login credentials, a
content-based ranker will not be able to analyse the content
and produce the expected output.

Fig. 5 The effect of using different types of features along with their
combinations on the ListNet ranking model. The vertical axis refers to
the NDCG value, while the horizontal axis denotes the value of K .
Each curve refers to a source of features: textual (text), featured pro-

duced by a named entity recognition (NER), HTML markup features
(HTML), visual features (visual), graph features (graph), and all the
features fused, denoted as (All)
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7 Conclusions and future work

The Tor network hosts suspicious activities that LEAs might
be interested in monitoring. Ranking the onion domains
according to their influence inside the Tor network will help
LEAs prioritize the domains to leverage the monitoring pro-
cess.

In this paper, we benchmarked three supervised learning-
to-rank (LtR) algorithms, MLP, RankNet, and ListNet, to
detect and rank the most influential onion domains. The pro-
posed framework consists of two components: 1) a hidden
service modelling unit (HSMU), which represents an onion
domain by 40 features extracted from the domain user-visible
text, the HTML markup of the web page, the NEs in the
domain text, the visual content, and the Tor network struc-
ture; and2) a supervised learning-to-rankunit (SLRU),which
builds a ranking model.

We tested the effectiveness of our framework on a man-
ually ranked dataset of 290 onion domains related to drug
trading. We found that the ListNet algorithm outperforms
with an NDCG@10 of 0.93.

Furthermore, we analysed the impact of the feature col-
lections on ranker performance.We found that using only the
user-visible textual features extracted from the text, NEs, and
HTMLmarkup code, themodel achieves 0.95 at NDCG@5,
and it decreased to 0.88 at NDCG@10, in comparison to
0.97 and 0.93, respectively, when all the features were used.
Hence, using only features from the user-visible text allows
the model to perform comparably with less complexity.

In the future, we plan to boost the explored features with
a contextualized language model, such as BERT, to extract
semantic features from the onion domain text [80].
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