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Abstract: An efficient and more accurate millimeter-wave imaging algorithm, applied to a close-range
monostatic personnel screening system, with consideration of dual path propagation loss, is presented
in this paper. The algorithm is developed in accordance with a more rigorous physical model for
the monostatic system. The physical model treats incident waves and scattered waves as spherical
waves with a more rigorous amplitude term as per electromagnetic theory. As a result, the proposed
method can achieve a better focusing effect for multiple targets in different range planes. Since
the mathematical methods in classical algorithms, such as spherical wave decomposition and Weyl
identity, cannot handle the corresponding mathematical model, the proposed algorithm is derived
through the method of stationary phase (MSP). The algorithm has been validated by numerical
simulations and laboratory experiments. Good performance in terms of computational efficiency and
accuracy has been observed. The synthetic reconstruction results show that the proposed algorithm
has significant advantages compared with the classical algorithms, and the reconstruction by using
full-wave data generated by FEKO further verifies the validity of the proposed algorithm. Finally, the
proposed algorithm performs as expected over real data acquired by our laboratory prototype.

Keywords: concealed weapon detection; Fourier transform technique; method of stationary phase;
microwave imaging; national security

1. Introduction

Terrorist attacks around the world are still at a high level because regional and religious
conflicts have been intensifying [1]. Crowded places such as transportation hubs (airports,
railway stations, metro stations, etc.), entertainment venues, government agencies, and
schools are primary targets. These threats can result in not only loss of life and property,
but also social anxiety and panic. Therefore, it is extremely urgent and challenging to
ensure public security. It is critical that prohibited items such as weapons and explosives
are detected before they enter those crowded public areas.

Conventional approaches, including metal detectors, infrared detectors, and X-ray
systems [2], already exist. To some extent, these approaches are effective but suffer some
drawbacks in practical applications. Metal detectors can only detect metal targets. Mean-
while, many modern hazardous articles are now made using advanced technologies, such
as plastic, ceramics (e.g., knives), and liquid explosives, that cannot be detected by us-
ing metal detectors. Infrared detectors can realize imaging but are seriously affected by
the environment, and the image quality is inherently not high [3]. X-ray systems have
remarkable performance in terms of penetrability and image quality, so they are a good
detection method for carry-on luggage. However, even low-dose X-ray cannot be accepted
as a means of personnel security inspection, since X-rays are ionizing radiation and have a
cumulative effect.
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Millimeter waves are high-frequency electromagnetic waves with relatively short
wavelengths in the 1–10 mm range and offer good penetrability. They are capable of pro-
viding good spatial resolution and penetrating common clothing and packaging materials.
Moreover, millimeter waves are nonionizing. Thus, a millimeter-wave system is well suited
for personnel security screening.

In terms of imaging techniques, the back-projection (BP) algorithm is one of the most
accurate methods in the spatial domain [2,4–9]. Boag [8,9] attempted to speed up the BP
algorithm by using multilevel domain decomposition. Unfortunately, the demonstrated
acceleration was achieved at the cost of accuracy. As a matter of fact, at acceptable accuracy
for engineering practice, the demonstrated efficiency may even be worse than that of the
original BP algorithm. Therefore, its heavy computational burden is still a severe issue, and
it is impractical for real-time security checks. It is noted that the scattering data are the con-
volution of reflectivity function and Green’s function in spatial domain, which can be more
efficiently handled as the multiplication of their Fourier transforms in the wavenumber
domain and converted back through FFT technique. Therefore, many efficient wavenumber-
domain algorithms have been developed, such as the holographic algorithm [10–30], range
Doppler (RD) algorithm [31,32], chirp scaling (CS) algorithm [33,34], and range migration
algorithm (RMA) [35–37], among which the holographic algorithm has been being heavily
studied for its proven commercial potential. In particular, monostatic configuration is often
assumed for simplicity and efficiency. In this paper, this practice is also adopted.

Close-range imaging systems based on a monostatic configuration have been studied
in many works [7,11,13,16–29,32,36,38]. Most of the studies neglected the amplitude terms
of both incident and scattered spherical waves for simplicity [11,16–23,32,36]. Such negli-
gence might result in some severe issues because the propagation loss is very important
while the undulate scale of objects in security screening is comparable to the range of
distances in close-range millimeter-wave imaging [10,11,35,39,40].

A recent remedy partly took propagation loss into account [25,26]. The scattered signal
is treated as a spherical wave, which is closer to the actual physical model. Therefore, the
quality of the reconstruction image can be improved to some extent. Nevertheless, the
physical model is still not consistent with the actual physical model.

To eradicate the problem, the dual path propagation loss has to be adequately taken
into account [4,7,38]. It is straightforward for BP algorithm to compensate the dual path
propagation loss by directly including the factor R2 in its formulation [4,7]. However,
the computation burden is too heavy. A similar computationally inefficient approach is
observed in the range stacking algorithm, where the scattering data were transformed
into the slant range spatial domain and then multiplied by an amplitude factor R2 [38].
Surprisingly, a factor R4, inconsistent with electromagnetic theory, appeared in [27].

In research to date, the dual path propagation loss, 1/R2, has hardly been considered
in monostatic holographic algorithms. A close look at the mathematical formulation
reveals that the mathematical methods in holographic algorithms, such as spherical wave
decomposition [11] and Weyl identity [25], stop working if the term 1/R2 is involved.
The method of stationary phase (MSP) is therefore chosen to overcome this difficulty.
A holographic reconstruction algorithm for a monostatic system with full consideration
of dual path propagation loss for close-range millimeter-wave imaging is accordingly
proposed in this paper.

The proposed method treats incident waves and scattered waves as spherical waves
with more rigorous amplitude terms as per electromagnetic theory. That is to say, the
propagation loss is more accurately taken into account. Thus, the physical method is more
consistent with the actual scenario. Consequently, it can achieve a better focusing effect
for multiple targets in different range planes. The proposed algorithm is derived through
MSP. Meanwhile, FFT is also employed to transform spatial domain scattering data to the
wavenumber domain for efficient imaging. The proposed algorithm has been validated by
improved reconstructed images.
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It has to be pointed out that the dual path propagation loss in MIMO and bistatic
systems has already been addressed [35,41–43]. However, as far as the authors know, our
imaging formula is by no means a simple degeneration but a brand-new formulation. More
importantly, our algorithm significantly outperforms those degenerated algorithms when
the focusing effect plays a role. Due to page limitations, details will be published elsewhere
separately [44].

2. Theory

The geometry of the imaging system is shown in Figure 1. The transmitting and
receiving antennas are assumed to be positioned at (x′, y′, z′) on the plane of y = y′. An
arbitrary point on the target is represented as (x, y, z) with reflectivity function f (x, y, z).
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Figure 1. The geometry of imaging system.

In essence, a transmitter emanates a spherical wave, which will illuminate the object
and be reflected by the object. Each point on the object can be regarded as a secondary
source transmitting spherical waves. Consequently, the echo signal measured by the
corresponding receiver would be the superposition of all the spherical waves emanating
from all the points on the object.

Supposing that the scattering process satisfies the Born approximation according to
electromagnetic theory [13,45], the measured backscattered data is

s
(
x′, z′, k

)
=
∫ ∫ ∫

V
f (x, y, z)

exp(−j2kR)

(4πR)2 dxdydz (1)

where j =
√
−1, k = 2π/λ is the spatial wave number, and λ is the wavelength. The term

exp(−j2kR)/R2 stands for the strict spherical wave expression containing the incident
wave and scattered wave. It is noted that the constant term, 1/(4π)2, will be omitted for
convenience since the constant term has no effect on imaging results. The distance from the
transceiver to the object is

R =

√
(x− x′)2 + (y− y′)2 + (z− z′)2 (2)

The Fourier transform of the measured backscatter data s(x′, z′, k) can be expressed as

S(kx, kz, k) =
∫ ∞

−∞

∫ ∞

−∞
s
(
x′, z′, k

)
e−jkx x′ e−jkzz′dx′dz′ (3)

Substituting (1) into (3) yields

S(kx, kz, k) =
∫ ∫ ∫

V f (x, y, z)
·
∫ ∞
−∞

∫ ∞
−∞

exp(−j2kR)
R2 e−jkx x′ e−jkzz′dxdydzdx′dz′ (4)
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For the sake of simplicity, the double integral about x′ and z′ in (4) can be represented
as

E(kx, kz, k) =
∫ ∞

−∞

∫ ∞

−∞

exp(−j2kR)
R2 e−jkx x′ e−jkzz′dx′dz′ (5)

The asymptotic expansion of the integral of (5) can be obtained by the MSP as [36,41,45]

E(kx, kz, k) =
jπ
k

1
y− y′

e−j(
√

(2k)2−k2
x−k2

z(y−y′)+kx x+kzz) (6)

Please see the Appendix A for more details. Substituting (6) into (4), we have

S(kx, kz, k) =
∫ ∫ ∫

V
1

y−y′ f (x, y, z)

· jπk e−j(
√

(2k)2−k2
x−k2

z(y−y′)+kx x+kzz)dxdydz
(7)

Let
ky =

√
(2k)2 − k2

x − k2
z (8)

Then, (7) can be re-formulated as

k
jπ S(kx, kz, k)e−jkyy′

=
∫ ∫ ∫

V
f (x,y,z)

y−y′ e−j(kx x+kyy+kzz)dxdydz , F
(
kx, ky, kz

) (9)

where F
(
kx, ky, kz

)
is the Fourier transform of f (x, y, z)/(y− y′).

Thus, the object can be reconstructed as

f (x, y, z) = y−y′
jπ

·FT−1
3D

{[
k · FT2D [s(x′, z′, k)]|x′ ,z′ e−jkyy′

]
Interpolation

} (10)

where FT2D represents the 2-D Fourier transform and FT−1
3D represents the 3-D inverse

Fourier transform. It should be noted that y′ on the right-hand side of (10) is the transceiver
plane. Therefore, it is accurately known in both measurement of backscattered data and
device under test (DUT) profile reconstruction once the geometry of the imaging system is
fixed.

The proposed method takes into account the propagation loss of the spherical wave
in free space. Therefore, the proposed algorithm is based on a more precise physical
model, which will bring an improvement in the reconstruction results. It should also be
pointed out that (10) will be close to the traditional method if the DUT plane is parallel
to the image plane. However, a parallel DUT plane is ideal, so it is hardly possible for
practical personnel screening. Additionally, a DUT is intermediate rather than far in
practical personnel screening. Our algorithm will keep its advantage in practical personnel
screening when the wavy DUT distance plays an important role.

3. Results and Discussions

Numerical simulations and experiments are used to test the performance of the pro-
posed algorithm. Different kinds of test scenarios are purposely employed. A point target
simulation is used to test resolution. Three rectangle objects are used to test the performance
of the algorithm. The capability of 3-D imaging is presented by 3-D full-wave data. Finally,
reconstruction with real data also validates the performance.

In order to verify the improvement of our proposed method, Sheen’s method [11]
and Meng’s method [25] are chosen as competitors. All the algorithms are realized with
self-developed MATLAB codes. The computational platform is a desktop computer with a
regular Intel 64-bit 3.19-GHz CPU and 32 GB RAM.
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In the numerical experiments, the simulated scattered data were obtained through
(1). The system parameters used to generate the synthetic scattered data are presented in
Table 1

Table 1. Simulation parameters adopted in synthetic system.

Parameters Value

Center frequency 29.9 GHz
Frequency bandwidth 5.8 GHz
The number of sampling frequency points 220
The length of the aperture along x axis 360 mm
The sampling interval along x axis 5 mm
The length of the aperture along z axis 360 mm
The sampling interval along z axis 5 mm

3.1. Point Spread Function

The point spread function (PSF) quantifies the capability of a system to image an
arbitrary point scatterer. Meanwhile, it can also be considered as an essential approach to
evaluate imaging algorithms, since point scatterer simulations provide distinctive insight
into other aspects of image quality unavailable by realistic target.

A point scatterer is placed at (0 m, 0.4 m, 0 m) in front of the transceiver plane.
The transceiver plane is located at y = 0. In order to better address the point object, the
equidistant sample is 2 mm instead of 5 mm, which strictly satisfies the Nyquist sampling
theorems. Figure 2 shows the reconstructed PSF projected to the xz plane. It can be seen
that the energy of the scattered field is mainly focused on (0 m, 0 m) and that the spreading
phenomenon occurs.

Figure 2. The reconstruction results of point scatterer in scale normalized to the maximum. (a) The
reflectivity contour projected to xz plane. (b) The 3-D view of the reflectivity projected to the xz plane.

The normalized PSF along the x and z direction in the y = 0.4 m plane is shown in
Figure 3. The width of both of the amplitude lines at −4 dB [46,47] is 5.94 mm. The
normalized PSF along x = z in the y = 0.4 m plane is shown in Figure 4. The width of the
amplitude line at −4 dB is 4.35 mm. The PSF along y is shown in Figure 5. The width of
the amplitude line at −4 dB is 24.3 mm. The resolution of the PSF is thus 5.94 mm along x
and z, 4.35 mm along the diagonal at 45◦ relative to x, and 24.3 mm in the range direction.
Theoretically, the lateral resolution and range resolutions are about λc/2 ≈ 5 mm and
c/(2B) ≈ 25.8 mm [35,36,48]. Generally speaking, the numerical resolutions from PSF are
consistent with the theoretical ones.
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3.2. The Synthetic Data

Three identical rectangular objects, which are considered the objects under test, are
illustrated in Figure 6. The length and width of the rectangular objects are 24 mm and
48 mm, respectively. The centers of rectangles are placed at (−0.09 m, 0.3 m, 0 m), (0 m,
0.4 m, 0 m), and (0.09 m, 0.5 m, 0 m) from left to right, respectively. The reflection coefficient
of the object under test is 1.

The rectangles are reconstructed by Sheen’s method, Meng’s method, and the proposed
method. The normalized results are projected to xz plane as shown in Figure 7. All three
rectangles are well reconstructed by the three methods. From a visual point of view,
Figure 7a,b are quite similar, while Figure 7c is better than the other two. More specifically,
the reconstructed rectangles centered at y = 0.3 m are similar across all three methods, but
the reconstructed rectangles centered at y = 0.4 m and y = 0.5 m are better for the proposed
method than for the other two methods. The magnitude along the line z = 0 m is plotted in
Figure 8. It is evident that the reconstructed profiles of the two rectangles on the right by
the proposed method are closer to the true profiles, which means that the proposed method
can better focus when there are multiple objects within different ranges.
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In order to evaluate the algorithms’ performance fairly, the same quantitative perfor-
mance indicators, namely, the root mean square error (RMSE) and the structural similarity
index measure (SSIM), are selected as evaluation indexes. The RMSE is defined as

RMSE =

√
1
m

m

∑
i=1

[ freal(i)− fcal(i)]
2 (11)

where freal(i) and fcal(i) are the real and calculated values at the i-th pixel in the true and
recovered image, respectively.
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And the SSIM is evaluated as

SSIM = [l(i)]α · [c(i)]β · [s(i)]γ (12)

where l(i), c(i), and s(i) are the luminance comparison function, the contrast comparison
function, and the structure comparison function, respectively [49]. In addition, α, β, and γ
are 1 in this paper. When the recovered image is closer to the reference image, the SSIM is
closer to 1 and RMSE is closer to 0.

The RMSE and SSIM are computed as shown in Table 2. Hence, it can be concluded that
the more accurate physical model does yield a better performance of the proposed algorithm
in terms of imaging quality, especially RMSE. Meanwhile, computational efficiency of the
proposed algorithm drops only slightly as shown in Table 3. It is noted that there is a
significant improvement in Figures 7 and 8 but only very modest improvements in SSIM
and RMSE. That is because the area of the object is a small proportion of the total imaging
area.

Table 2. Comparison of SSIM and RMSE for synthesis data.

Sheen’s Method [11] Meng’s Method [25] The Proposed Method

SSIM 9.495 × 10−1 9.501 × 10−1 9.544 × 10−1

RMSE 5.957 × 10−3 5.921 × 10−3 4.316 × 10−3

Table 3. Computation time for synthesis data.

Method Time (s)

Sheen’s method 3.44
Meng’s method 3.54
The proposed method 3.61

3.3. The Full-Wave Data

In this section, the scattered electromagnetic field is computed by the commercial
electromagnetic computation software FEKO. The CAD model of the target is presented
in Figure 9. The target is assumed to be perfect electric conductors (PECs). The target is
composed of three metal blocks of thickness 20 mm. The length and width of the block
objects are 24 mm and 48 mm. The frontal center of the three block objects (namely A, B,
and C) are located at (−0.09 m, 0.3 m, 0 m), (0 m, 0.4 m, 0 m), and (0.09 m, 0.5 m, 0 m),
respectively.
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Figure 10. The front view of the reconstruction results. (a) Sheen’s method. (b) Meng’s method. (c) 
The proposed method. 

Figure 9. The CAD model of three blocks within different ranges.

The front, side, and top views of the reconstruction results are shown in Figures 10–12,
respectively. Overall, the quality of reconstruction results by the proposed algorithm is
better than those by the other two methods. Specific to each block, block A is the best
reconstructed of the three blocks by all three methods since it is closest to the transceiver
plane. The reconstruction results of block A are almost the same across all three methods.
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For blocks B and C, it is evident that the reconstruction results by the competing methods
become worse with the increasing distance between the blocks and the transceiver plane.
However, the proposed method is less sensitive to distance, so its reconstruction results
for blocks B and C are much better than those of the other two methods. Furthermore, the
normalized magnitude along z = 0 in Figures 10 and 11 is plotted in Figures 13 and 14.
Likewise insensitivity to distance, and accordingly better reconstruction results as shown in
Figures 13 and 14, are also very easy to observe. The proposed method better reconstructed
the farther parts than did the other two methods. The SSIM and RMSE values given in
Table 4 further confirm the superior performance of the proposed algorithm against its
competitors. Once again, the proposed algorithm only suffers very little deterioration in
computational efficiency as shown in Table 5.
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Figure 10. The front view of the reconstruction results. (a) Sheen’s method. (b) Meng’s method. (c) 
The proposed method. 
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(c) The proposed method.
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Figure 12. The top view of the reconstruction results. (a) Sheen’s method. (b) Meng’s method. (c) 
The proposed method. 
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Figure 11. The side view of the reconstruction results. (a) Sheen’s method. (b) Meng’s method.
(c) The proposed method.
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Figure 12. The top view of the reconstruction results. (a) Sheen’s method. (b) Meng’s method. (c) The
proposed method.
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Table 4. Comparison of SSIM and RMSE.

Sheen’s Method [11] Meng’s Method [25] The Proposed Method

SSIM 9.2118 × 10−1 9.218 × 10−1 9.270 × 10−1

RMSE 1.0753 × 10−3 1.0714 × 10−3 8.774 × 10−3

Table 5. Computation time for simulation.

Algorithm Time (s)

Sheen’s method 2.86
Meng’s method 2.93
The proposed method 2.94

3.4. Experimental Results

A millimeter-wave imaging prototype was built in the laboratory, which can collect real
data to test in-house-developed imaging algorithms. There are 157 equivalent sampling
points with the same spacing of 5 mm along the horizontal direction (x-direction) and
397 equivalent sampling points with 5 mm steps along the vertical direction (z-direction) in
the imaging area of 0.8 m × 2 m. The operation frequency ranges from 27 GHz to 32.8 GHz
with 220 equidistant sampling points. The acquisition time is only 2 s. The full details of
the prototype in the laboratory can be found in [25].

The target contains three groups of perfectly conducting strips of length 100 mm as
shown in Figure 15 Both the horizontal and diagonal groups have five sets of strips. The
space between neighboring sets is 50 mm. The widths of strips in each set are 10 mm, 7 mm,
6 mm, 5 mm, and 4 mm, and the space between any two neighboring strips in the same set
is the same as the strip width. However, the vertical group involves one more set of strips
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of 20 mm width and spacing. The test target is positioned in front of the transceiver plane
center at a distance of 0.4 m.
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Figure 15. Photograph of the target under test.

The reconstruction result is given in Figure 16, which shows only the object under
test for better visualization. The profiles along the red lines in Figure 16 are plotted in
Figures 17 and 18. It is evident that the strips of 5 mm and greater can be easily distin-
guished. Hence, the actual resolution of the proposed algorithm for the prototype is
about 5 mm.

Finally, another more complex real scenario is presented. A person who carried a
cleaver, a fruit knife, and a cellphone, all hidden under a down jacket, was scanned by the
prototype as shown in Figure 19. The distance between the volunteer and the antenna plane
is also 0.4 m. The reconstruction results are given in Figure 20, which are marked from the
circles and squares. All the concealed objects are detected and identifiably presented in the
reconstructed images. The SSIM between the reconstruction results by Meng’s method and
the proposed method is 0.8852.
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4. Conclusions

In this paper, an electromagnetic imaging algorithm for a close-range monostatic sys-
tem with dual path propagation loss has been presented for use in personnel screening for
security applications. In this application, the scale of objects under scrutiny is comparable
to the range of distances. The physical model treats incident waves and scattered waves
as spherical waves with more rigorous amplitude term as per electromagnetic theory. As
a consequence, the mathematical method in classical algorithms, such as spherical wave
decomposition and Weyl identity, cannot handle the mathematical model derived from the
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physical model. The proposed algorithm is derived through MSP and is more accurate than
the algorithms without dual path propagation loss. Consequently, the proposed method
can achieve a better focusing effect for multiple targets in different range planes.

To verify the proposed algorithm, simulations and experiments have been carried out.
PSF quantifies the algorithm resolution to be approximately 5.94 mm in the x and z direction
and 24.3 mm in the range direction. Although the proposed algorithm shows slightly worse
computing efficiency compared with Meng’s method and Sheen’s method, it outperforms
its competitors in terms of quantitative indicators. Good performance has been observed by
FEKO-simulated full-wave data from a three-dimensional target. The farther parts of the
object were better reconstructed by the proposed method than by its competitors. Finally,
millimeter-wave imaging using real data collected from our in-house-developed prototype
demonstrated that the proposed algorithm performs well, as expected.

Author Contributions: Conceptualization, X.N., C.L., A.Q. and J.K.S.; methodology, X.N., C.L., A.Q.
and I.D.R.; validation, X.N. and Y.M.; writing—original draft preparation, X.N.; writing—review and
editing, X.N., C.L., A.Q., J.K.S. and I.D.R. All authors have read and agreed to the published version
of the manuscript.

Funding: This work was supported in part by the Sichuan Science and Technology Program un-
der Grant 2023NSFSC0463; National Young Thousand Talent under Grant A0920502051826, Grant
YH199911041801, and Grant YX1199912371901; Foreign Talent in Culture and Education under Grant
110000207520190055; National Key Research and Development Plan under Grant 2018YFC0809500;
Stable-Support Scientific Project of China Research Institute of Radio Wave Propagation under
Grant A132003W02; and Fundamental Research Funds for the Central Universities under Grant
2682018CX20.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: Xinyi Nie and Anyong Qing would like to thank Timothy Amsdon, School of
Electronic and Electrical Engineering, University of Leeds, UK, for reviewing the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Here, the derivation of (6) by using MSP [36,41,45] is presented, which cannot be solved
by the mathematical methods in classical algorithms, such as spherical wave decomposition
and Weyl identity [11,25]. Let

E(kx, kz, k) =
∫ ∞
−∞

∫ ∞
−∞

exp(−j2kR)
R2 e−jkx x′ e−jkzz′dx′dz′

=
∫ ∞
−∞

∫ ∞
−∞ D(x′, y′) · ej2kΦ(x′ ,z′)dx′dz′

(A1)

where
D
(

x′, z′
)
=

1

(x′ − x)2 + (y′ − y)2 + (z′ − z)2 (A2)

Φ(x′, z′) = −
√
(x′ − x)2 + (y′ − y)2 + (z′ − z)2

− kx
2k x′ − kz

2k z′
(A3)

When k is large and Φ(x′, z′) reaches extreme value at a stationary point (xs, zs) in the
integrating range, the major contribution to the integral in (A1) comes from the integral
value at the neighborhood near stationary point (xs, zs).

At the stationary point, we have

∂Φ
∂x′

∣∣∣∣
xs ,zs

=
−(xs − x)√

(xs − x)2 + (y′ − y)2 + (zs − z)2
− kx

2k
= 0 (A4)
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∂Φ
∂z′

∣∣∣∣
xs ,zs

=
−(zs − z)√

(xs − x)2 + (y′ − y)2 + (zs − z)2
− kz

2k
= 0 (A5)

The stationary point can be solved as

xs = x− kx√
(2k)2 − k2

x − k2
z

(
y′ − y

)
(A6)

zs = z− kz√
(2k)2 − k2

x − k2
z

(
y′ − y

)
(A7)

Here, the negative roots are extracted for each case, and it has been assumed that
y′ − y < 0.

The asymptotic approximation to (A1) is therefore

E(kx, kz, k) = D(xs, zs)ej2kΦ(xs ,zs)

·
∫ ∞
−∞

∫ ∞
−∞ e

1
2 j2k[α(xs−x)2+β(zs−z)2+2γ(xs−x)(zs−z)]dxdz

= 2π jσ√
|αβ−γ2|

D(xs, zs)
ej2kΦ(xs ,zs)

2k

(A8)

where

D(xs, zs) =
(2k)2 − k2

x − k2
z

(2k)2(y− y′)2 (A9)

α =
∂2Φ
∂x′2

∣∣∣∣
xs ,zs

= − (2k)2 − k2
x

y′ − y
·

√
(2k)2 − k2

x − k2
z

(2k)3 > 0 (A10)

β =
∂2Φ
∂z′2

∣∣∣∣
xs ,zs

= − (2k)2 − k2
z

y′ − y
·

√
(2k)2 − k2

x − k2
z

(2k)3 (A11)

γ =
∂2Φ

∂x′∂z′

∣∣∣∣
xs ,zs

=
kxkz

√
(2k)2 − k2

x − k2
z

(y′ − y) · (2k)3 (A12)

σ =


+1 for αβ > γ2, α > 0
−1 for αβ > γ2, α < 0
−j for αβ < γ2

(A13)

Φ(xs, zs) = −

√
(2k)2 − k2

x − k2
z

2k
(
y− y′

)
− kx

2k
x− kz

2k
z (A14)

Eventually, substituting (A9)–(A14) into (A8), the asymptotic approximation expres-
sion is

E(kx, kz, k) =
jπ
k
· 1

y− y′
· e−j(

√
(2k)2−k2

x−k2
z(y−y′)+kx x+kzz) (A15)
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