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Artificial intelligence analysis 
of videos to augment clinical 
assessment: an overview

Observation is a fundamental part of the practice 
of clinical medicine. Observation of movement 
is particularly important for the neurologist. 
Conditions such as Parkinson’s disease, multiple 
sclerosis, stroke, epilepsy, and many others affect 
a person’s movement in characteristic ways. In 
some conditions, changes in the patient’s voice 
can be included in this – changes in sound caused 
by changes in the movements of speech. The 
clinician’s detection of a characteristic abnormality, 
and their judgment of its severity, plays a central 
role in both diagnosis and the assessment of 
prognosis or response to treatment. However, 
that practice depends upon a limited resource of 
experienced experts. In addition, these experts are 
limited by human visual judgment, which cannot 
reliably or precisely detect and measure small 
or subtle changes in movement (Williams et al., 
2023).

Researchers have previously attempted to address 
these limitations by developing a range of sensors 
for measuring the changes in movement that 
occur in neurological conditions. These include the 
accelerometer, gyroscope, and full motion capture. 
Each allows measurement of motor function and 
has been shown, in multiple studies, to provide an 
accurate assessment of motor signs (Memar et al., 
2018). However, all are limited in that they require 
special equipment. Such equipment would be 
expensive at the scale required, and so is not part 
of routine care, nor available in many global health 
contexts. Additionally, specific sensors are limited 
to measuring limb motor function, and cannot 
easily detect more subtle clinical indicators such as 
changes in facial expression and voice.

A promising solution to these problems is to 
assess patient movement using visual and audio 
information from smartphone video using artificial 
intelligence (AI) methods - a mixture of computer 
vision and audio signal processing methods that 
we refer to here as Video AI. This has the potential 
to extract clinically useful information that can 
augment and improve diagnosis and assessment. 
Unlike other sensors, smartphones are commonly 
used by the general public across the globe, in 
both developed and low- and middle-income 
countries. Videos are non-contact, and may 
therefore be suitable in situations with higher risk 
of infection. Videos can also be recorded remotely, 
without the presence of a trained clinician or 
technician, and may be useful within mobile 
health applications. This nascent technology has 
the potential to fundamentally shift the practice of 
clinical neurology.

Examples of video-based AI for augmenting 
c l i n i c a l  a s s e s s m e nt  a n d  m o n i to r i n g  o f 
neurological conditions: Here, we provide three 
examples of how such technology has been 
proposed for monitoring and measuring disease 
symptoms and progression and explain how it 
might be used in different parts of the clinical 
pathway for common neurological conditions. The 
examples were chosen to illustrate some of the 
principles and potential of video-based artificial 
intelligence methods, in common neurological 
conditions.

Recognition and quantification of hand tremor: 
Hand tremor is a common sign of neurological 
conditions such as Essential Tremor, Parkinson’s 
disease, or Functional Neurological Disorder.  
To assess the cause and severity of a tremor, a 
clinician observes its amplitude and frequency for 
different hand positions and actions. Video can be 

used to objectively measure both of these features 
of tremor: the amplitude and the frequency. Using 
neural networks that have been trained to identify 
and locate objects, we can track hands and 
individual digits within a video over time (Figure 1). 
Such networks are typically trained on very large 
data sets, and the resulting models have been 
released publicly. Examples include Openpose, 
DeepLabCut, and Mediapipe. These publicly-
available models are sometimes retrained on a 
local dataset, a process known as transfer learning. 
Such methods have been shown to be robust to 
lighting conditions and physical environment, 
such that they could be used in real-life situations 
(Huang et al., 2022). By tracking the motion of 
landmarks on the hand over time, we can measure 
hand tremor frequency by quantifying periodic 
movements using Fourier analysis. For video 
recordings of patients with tremors, Williams et al. 
(2021) show that video measurement of tremors 
has a near-perfect agreement with accelerometer 
measurements. 

Hand motion video data are insufficient, by itself, 
to measure tremor amplitude as it is impossible 
to distinguish between hands that are large or 
close to the video camera. However, by assessing 
the distance between the hand and camera, for 
instance, by using the smartphone’s in-built depth 
camera, tremor amplitude can also be measured in 
distance units (Bungay et al., 2023). Bungay’s pilot 
data showed agreement within 1.2 cm in most 
cases, in comparison to a ruler that measured to 
the nearest 0.5 cm. This approach is limited, as 
tremor is assumed to be a fixed distance from the 
camera (i.e., in the image plane). Full 3D hand 
point tracking using smartphones ought to be 
possible, given that the most recent smartphone 
depth cameras can record at a high frame rate 
(60 fps) and resolution (1080 p). This would allow 
more faithful measurement of Parkinsonian 
tremors that can include rotational, as well as 
lateral, motion.

Automatic classification of finger-tapping 
bradykinesia: Bradykinesia is the cardinal motor 
sign of Parkinson’s disease, present in every 
person with the condition. It is defined as slowness 
of movement and decrement in amplitude 
or speed (or progressive hesitations/halts) as 
movements are continued. Bradykinesia is tested 
by observation of repetitive movement, such as 
finger-thumb tapping, in which the patient is asked 
to tap finger and thumb together as quickly and 
as big as possible. The neurologist must visually 
judge whether bradykinesia is present, but also 
its severity. In research settings, including trial 
outcomes, finger-tapping bradykinesia severity 
is graded on a five-point rating scale using the 
Movement Disorder Society-sponsored revision of 
the Unified Parkinson’s Disease Rating Scale (MDS-
UPDRS). Based on observation of 10 consecutive 
taps, the score ranges from 0 (no bradykinesia) to 
4 (severe bradykinesia), depending on the degree 
of slowing, number of hesitations/halts, or how 
early a decrement in tapping amplitude or speed 
occurs.

Just as a neurologist will observe the relative 
motion of the thumb and forefinger, one can use 
the same finger tracking method used in tremor 
measurement to track the thumb and index 
finger tips during the tapping test. By plotting 
the distance between thumb and finger, one can 
derive metrics of the size, speed, rhythm, and 
decrement in rhythm (Williams et al., 2020; Zhao 
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et al., 2020) corresponding to the components of 
bradykinesia. The correlation between the mean 
of these metrics and the MDS-UPDRS score was 
0.69, indicating moderate convergent validity of 
the computer vision method.

Morinan et al. (2023) have recently extended 
this concept by analyzing multiple clinical tests 
from multiple limbs, per participant, over a much 
larger multi-site data set. They showed that the 
combination of information from these tests 
can be used to estimate a score of whole-body 
bradykinesia. The score was calculated as the sum 
of individual limb tests, each scored using 0–4 
MDS-UPDRS categories, for a total scale between 
0 and 40 (Morinan et al., 2023). In comparison 
between clinician-assessed and computerized 
scores, they report an interclass correlation of 0.74, 
and that in 84% of assessments, disagreement 
between the clinician and the model was within 
± 7 of the true score, which is considered to 
be the threshold for a large clinically important 
difference.

Although we have discussed examples involving 
hand tracking, this general approach involving 
markless tracking has been explored for other 
body parts. For instance, whole-body tracking has 
been explored to assess Parkinsonian gait and face 
markers could be used to determine facial muscle 
control.

Parkinson’s disease progression from voice 
recordings: Video data contains both visual and 
audio signals. The audio signal may capture clinical 
information that cannot be adequately captured 
in just the visual signal. For instance, Parkinson’s 
disease affects speech in multiple ways, including 
articulation, phonation, and speech fluency. 
These abnormalities are collectively referred to 
as hypokinetic dysarthria. One approach has used 
sound recordings of people sustaining the /ah:/ 
vowel sound (Tsanas et al., 2021). By extracting 
key characteristics of the sound, such as change in 
pitch, Tsanas et al. (2021) developed a model that 
could predict overall Parkinson’s severity according 
to the Unified Parkinson’s Disease Rating Scale 
(UPDRS) score to within 3.5 points, in comparison 
to clinical gold standard assessment.

The approaches used in each of the three 
described examples f irst extract pertinent 
information from the raw video, guided by clinical 
insight. For instance, in the case of finger-tapping 
bradykinesia, the rhythm and speed of the thumb 
and forefinger are first extracted. However, we 
have seen, in other clinical situations, how modern 
deep-learning approaches are able to derive 
clinical insights directly from the raw data. Such 
methods have not been feasible until recently, 
as they require large quantities of video data for 
model training, but we highlight this as a potential 
approach for further improvements (Figure 1).

Potential clinical usage: We envision these 
technologies having multiple possible uses 
throughout all stages of clinical care.

Prior to diagnosis, video AI methods may be useful 
in assisting screening and triage for onward referral 
at the primary care level. Most symptoms, such 
as a problem with gait, or a tremor, have multiple 
potential causes. Video AI could help primary care 
physicians more accurately judge the urgency or 
necessity of onward referral to a neurologist. For 
example, it might be possible to characterize a 
tremor as low risk for Parkinson’s disease based 
on its visual features and a combined analysis of 
finger tapping and other video. This would be 
useful in primary care, where clinicians are less 
likely to have regular experience with specific 
neurological tests. 

If quantitative measures of visible signs are 
sufficiently discriminatory between conditions, it is 
also possible they could move beyond assistance 
with triage and more directly aid with diagnosis 
in secondary care. Whilst current attempts at 
differential diagnosis from user-entered symptoms 
have so far been unreliable (Fraser et al., 2018), 
the use of detailed visual and audio information, 
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in combination with patient-reported information, 
better reflects the information available to a 
clinician and has the potential to aid more accurate 
and reliable diagnosis.

Once a neurological disorder has been diagnosed, 
it is important to monitor progression or change 
over time. This enables prompt recognition of 
the need for treatment initiation or escalation, 
the effectiveness of a treatment change, and an 
idea of prognosis based on change over time. 
In current clinical practice, this type of post-
diagnostic assessment is limited to intermittent 
face-to-face appointments, and relies on both 
subjective patient-reported measures and clinical 
observations. Instead, it would be possible to 
record video metrics to augment existing patient 
symptom diary apps.

Video AI may also be used to augment video 
consultations, helping to reduce the burden of 
unnecessary travel in patients that often suffer a 
degree of mobility impairment. We note that the 
uptake of video consultations has thus far been 
poor, as they are perceived to offer little practical 
value over telephone consultations (Greenhalgh 
et al., 2022). However, the approaches described 
necessitate the use of both audio and visual 
information only available via video.

Many neurological  research tr ia ls  involve 
neurological  examination s igns as part  of 
outcome measures. The researchers apply clinical 
rating scales, in which they must make a visual 
judgment, for example, the amplitude of tremor 
or the severity of bradykinesia according to five-
point rating scales (TETRAS, MDS-UPDRS finger-
tapping score, etc). Video AI offers the potential to 
automate this outcome measurement, potentially 
providing more sensitive and reliable means to 
detect early or subtle effects that direct treatment 
development.

Implementation challenges: Although video-based 
methods hold high promise, embedding these 
into clinical practice is non-trivial. All of the use 
cases described here are related to direct patient 
care, and any resulting system would be deemed 
to be Software as a Medical Device in the US and 
UK. Any system would need to show evidence 
that it is sufficiently accurate for the task at hand.  
The methods described above have, for the most 
part, been developed in relatively small cohorts, 
and there remain uncertainties about their use in 
real-world conditions, or diverse populations, for 
instance, with different skin tones.

We note that collecting appropriate video data in 

trials is itself a challenging task, due to both the 
size of the data and the difficulty in anonymizing 
it. Indeed, approaches that use whole-body or 
face videos especially need to consider patient 
acceptability, in addition to any legal requirements, 
of recording and storing readily identifiable 
information.

In addition, such technology can be considered 
a complex intervention involving mult iple 
stakeholders and existing clinical pathways. Such 
interventions are prone to failure due to a lack of 
consideration of the wider clinical landscape into 
which it is embedded. For instance, the use of 
this technology within a patient self-monitoring 
mobile health application would need to consider 
whether the target population are suitably trained 
and supported. 

Recent guidance from the DECIDE-AI collaborative 
(Vasey et al., 2022) highlights the importance 
of evaluations that include analysis of existing 
processes and infrastructure as well as the human-
computer interaction between clinician and 
technology. Any patient-facing use cases, such 
as remote monitoring, must also consider the 
additional patient-clinician and patient-technology 
interactions. For instance, this may include 
providing technical support for patients, a role 
that may not exist under existing clinical pathways. 
DECIDE-AI’s accompanying checklist provides 
guidance on the multiple facets that ought to be 
considered, evaluated, and reported in the initial 
stages of AI technology rollout. 

Conclusion: We have highlighted several ways 
in which smartphones, in combination with AI 
analysis, have been used to measure and analyze 
the signs of neurological disease. Although there 
remain challenges in integrating these methods 
into routine clinical care, the ubiquity of the 
smartphone addresses one significant hurdle 
towards large-scale adoption. In the near term, 
they have the potential to objectively measure 
symptom characteristics so that subtle changes 
can be detected or monitored over time. Such 
objective measurements could augment clinical 
judgment in a way that produces more consistent 
clinical decision-making, potentially leading to 
better long-term management and outcomes for 
patients.
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Figure 1 ｜ An example pipeline showing how coordinates of pre-determined clinically relevant points can be 
tracked and extracted in two dimensions from video, or in three dimensions if a camera with a depth sensor is used. 
The time series of points is then used to either (A) directly provide objective measurements, (B) as inputs to a machine 
learning model to predict some clinical outcome. (C) Alternatively, raw video can be used to train deep learning models 
to predict a clinical outcome. The figure was drawn using Microsoft PowerPoint, and graphs were plotted in Python 
using Pyplot.
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