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Abstract: There have been sustained efforts toward using naturalistic methods in developmental 19 

science to measure infant behaviors in the real world from an egocentric perspective because 20 

statistical regularities in the environment can shape and be shaped by the developing infant. 21 

However, there is no user-friendly and unobtrusive technology to densely and reliably sample life 22 

in the wild. To address this gap, we present the design, implementation and validation of the 23 

EgoActive platform, which addresses limitations of existing wearable technologies for 24 

developmental research. EgoActive records the active infants’ egocentric perspective of the world 25 

via a miniature wireless head-mounted camera concurrently with their physiological responses to 26 

this input via a lightweight, wireless ECG/acceleration sensor. We also provide software tools to 27 

facilitate data analyses. Our validation studies showed that the cameras and body sensors 28 

performed well. Families also reported that the platform was comfortable, easy to use and operate, 29 

and did not interfere with daily activities. The synchronized multi-modal data from the EgoActive 30 

platform can help tease apart complex processes that are important for child development to further 31 

our understanding of areas ranging from executive function to emotion processing and social 32 

learning. 33 

Keywords: infant; child; wearable sensors; egocentric view; head-mounted camera; ECG; body 34 

movement; naturalistic research methods; real-world big data; multimodal measures. 35 

 36 

1. Introduction 37 

One fundamental desideratum of developmental science is to formulate theoretical 38 

models that can explain phenomena occurring in infants’ and children’s everyday life. For 39 

instance, how children befriend other children, an infant’s utterance of the first word, how 40 

infants and children use social information (e.g. facial expressions) in order to learn about 41 

the world around them. Beholding such a desideratum makes developmental research 42 

ecologically committed, and its ecological validity needs to be tested with reference to the 43 

natural environment. That environment has regularities, or natural statistics, such as 44 
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frequency of particular words spoken or occurrence of faces in an infant’s field of view, 45 

that can shape and be shaped by the developing infant [1]. Historically, there has been 46 

consensus that the ecological validity of developmental theories and models is important 47 

(e.g. [2-6]). However, the majority of the developmental research still relies on lab-based 48 

research, on the assumption that the lab phenomena resemble those encountered in the 49 

real world. Recent evidence indicates that often these assumptions can be wrong (e.g. 50 

young infants tend to have faces frequently in their view), and can have detrimental 51 

consequences for scientific progress [4,7]. While laboratory based methods are of 52 

uttermost importance in testing with high precision the causal inferences and what could 53 

potentially happen in children’s lives if specific conditions or combinations of factors 54 

occur, they cannot show what actually does happen in everyday life [4]. For this purpose, 55 

the recommendation is to take a naturalistic approach and use methods that capture the rich 56 

diversity of a child’s spontaneous responses in their natural environment, as well as the 57 

distribution of children’s experiences (e.g. [2-4]). 58 

For the past decade, there has been a sustained effort towards increasing the use of 59 

naturalistic methods (e.g. [8-12]). These efforts confirmed on one hand that the naturalistic 60 

approaches are much needed, but on the other hand they also revealed that, to a great 61 

extent, the necessary tools are massively lagging behind (e.g. [13]). Traditionally, 62 

naturalistic methods were predominantly focused on observations of behaviour and 63 

environmental factors conducted by a researcher physically present in the infants and 64 

children’s environment, sometimes equipped with a video camera or an audio recorder. 65 

While useful in capturing some aspects of children’s behaviour and the aspects of the 66 

environment to which they may be related, these approaches do not provide the degree 67 

of precision and sensitivity necessary for capturing the complexity of the mechanisms 68 

supporting the wide diversity and fastly changing behaviors, cognitive and emotional 69 

abilities. Furthermore, they lack the ability to densely capture with precision the dynamic 70 

changes of the auditory-visual input that is likely to contribute to infants’, toddlers’ and 71 

children’s cognitive and emotional development. Through the actual presence of the 72 

researcher, these approaches also tend to be fairly intrusive and change the environment. 73 

In this paper we present the design, implementation, and validation of a platform 74 

(EgoActive) with integrated wireless wearable sensors and associated software which aims 75 

to overcome this major methodological limitation. 76 

 77 

1.1. Importance of wearable sensors for developmental research in the wild 78 

Development is the result of many nested processes that take place and interact with 79 

each other over multiple time scales (e.g. [11,14-16]). In order to explain the complexity of 80 

developmental processes in the real world, technologies are required that can capture the 81 

emergence of a wide array of cognitive and socio-emotional functions, motor 82 

development, as well as the recurrent mutual interactions with the internal and external 83 

factors relevant for their emergence. Particularly relevant are technologies that do not rely 84 

on elaborate motor and language modalities of response, and can be easily deployed in 85 

the natural environment, with little interference to everyday life. To a large extent, the 86 

existent theories of development are predominantly relying on data from Western, 87 

Educated, Industrialized, Rich and Democratic (WEIRD) countries, and very little is 88 

known about the extent to which these models explain the socio-emotional and cognitive 89 

development of children worldwide (e.g. [17,18,133]). From this perspective, the 90 

technologies required for the naturalistic approach need to be scalable, and easy to deploy 91 

in a wide range of cultural and socio-economical environments. The EgoActive platform 92 

proposes to integrate measures of autonomic nervous system (ANS) function, in 93 

particular measures of cardiac activity, and body movement, with measures of the visual 94 

and auditory environment as it appears in infants’, children’s and caregivers’ egocentric 95 

perspective.  96 
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The motivation for measuring the dynamic patterns of the ANS rests on the fact that 97 

it is one of the outputs of the central nervous system [19,20] which underlies many 98 

behaviors, from emotional expressions, to vocal productions [20-24]. ANS activity 99 

measurements has been fruitful in understanding both typical and atypical development, 100 

with atypical ANS shown in autism manifestations of spectrum disorders [25,26], 101 

attention deficit and hyperactivity disorders (ADHD, [27]), conduct disorders [28], as well 102 

as the emergence of other neuropsychiatric conditions [29]. Therefore, towards our aim of 103 

developing technologies that can accurately capture the complex and multifaceted nature 104 

of the developmental process occurring in the natural environment, measures of ANS 105 

activity are an ideal candidate.  106 

Amongst the many ANS indices, of high importance are the demonstrated links 107 

between specific patterns of heart rate (HR) changes and cognitive functions, such as 108 

attention (e.g. [30-33]), as well as changes in arousal and emotion regulation abilities 109 

[34,35]. For example, during periods of sustained attention, the HR registers increased 110 

deceleration in tandem with overall quietness of the body movement [36-41]. Higher HR 111 

deceleration during sustained attention is associated with less distractibility [42,43] and 112 

enhanced neural processing of the attended information (e.g. [44,45]). Attention is a 113 

crucial cognitive function which registers rapid developments during the first year of life. 114 

It is essential for many adaptive processes throughout the lifespan, as well as a building 115 

block for the development of many complex cognitive abilities, such as the executive 116 

functions (e.g. [46-54]). The early development of attention, as well as the cognitive 117 

functions it supports, set the infants to fare better in many aspects of life in subsequent 118 

years (e.g. [55]).  119 

The specific variations in the HR which occur as a function of the respiration cycle 120 

under heavy control from the parasympathetic nervous system (respiratory sinus 121 

arrhythmia (RSA), [56]) are also important for understanding development [57-59]. For 122 

example, accumulating evidence suggests that individual differences in children's 123 

baseline RSA are associated with their emotion regulation abilities (e.g. [57,60-67]) and the 124 

quality of social interactions [68]. Importantly, measures of infant and children’s baseline 125 

RSA are sensitive to environmental factors, such as caregiver’s mental health, and 126 

caregiving behaviors (e.g. [60,69]), and are predictors of several developmental outcomes. 127 

Feldman et al. [70] have found that infants with high baseline RSA manifest attenuated 128 

stress response, have more organized sleep and better cognitive control at the age of 10-129 

years[70]. On the other hand, low baseline RSA has been linked to the emergence of 130 

anxiety disorders, aggression (e.g. [57]), and oppositional defiant and callous-131 

unemotional behaviors [71]. 132 

Alongside measures that can provide insights into different internal cognitive 133 

functions and affective states, it is also very important to measure the environmental 134 

factors and the diversity of experiences that contribute to their development [72-76]. 135 

Research within the last decade has shown that the visual and auditory events that occur 136 

in infants’ and toddlers’ egocentric perspective are dramatically different from what 137 

adults experience [7,77,78]. Furthermore, what infants see from their own perspective 138 

changes dramatically throughout the first years of life, with various factors contributing 139 

to these differences. As developing organisms, infants tend to actively seek the 140 

information required for their further development [79], and thus their sensory and 141 

cognitive abilities at different points during development influences the type of 142 

environmental information they can attend [79,80]. Infants’ socio-emotional and cognitive 143 

development is also likely to change the characteristics of their environment. Extensive 144 

research shows that adults modulate their facial and vocal expressivity towards infants to 145 

match their sensorial and cognitive abilities, in order to facilitate the processing of relevant 146 

information [81,82]. Infants’ own motor development also influences the environmental 147 

information they can access [7,83]. As infants gain motor independence, from being able 148 

to maintain a stable head position to crawling and walking, visual and auditory objects, 149 

including people, will be perceived from more varied angles and distances [7,83,84]. 150 
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Head-mounted cameras have been shown to be ideal for capturing the diversity of visual 151 

and auditory information that appears in infants’ and toddlers’ views in the natural 152 

environment [7,72,77,78], as well as how this changes at different time scales, from 153 

variations during short term activities, to changes throughout the day, weeks and months. 154 

For example, in their seminal study using head-mounted cameras in the ‘wild’, Jayraman 155 

and colleagues [77,78] have shown that while human faces are more frequent in young 156 

infants’ views, hands and other parts of the people’s bodies are more often contained in 157 

the environmental scenes available to older infants and toddlers. 158 

  159 

1.2 Limitations of existing wearable sensors for developmental research in the wild 160 

For the last decades, the advances in consumer-directed wearable biosensing devices 161 

have shown that the measurement of egocentric views, cardiac activity, and body 162 

movement in the wild is not only possible, but that the general public is open to adopt 163 

such technology for everyday monitoring of physical health and activity (e.g. [85-87]), but 164 

also in various professional settings (e.g. [88-90]). Although such technology has been 165 

predominantly developed for adults, its ubiquitousness suggests that similar technologies 166 

for infants and young children could be received with a fair degree of openness for 167 

researching development in the ‘wild’. However, creating wireless wearable solutions for 168 

developing populations, particularly for research in the ‘wild’ without the direct 169 

supervision of a specialist, presents important challenges. Flexibility, safety, 170 

unobtrusiveness and accuracy are some of the key challenges.  171 

Many of the previously developed wearable devices, both head-mounted cameras 172 

and body sensors, that have the necessary accuracy to be used for research purposes 173 

involve wires, are fairly bulky, and are difficult to operate by a non-specialist. For 174 

instance, in terms of recording the cardiac activity and body movement, options such as 175 

those created by Biosignalsplux and Biopac involve wet electrodes connected by wires to 176 

a data acquisition hub. The hub in itself can be fairly bulky and heavy, particularly for the 177 

younger infants which interferes with their body movement, and together with the wires 178 

present safety issues and are intrusive for everyday routines. Most of the head-mounted 179 

cameras present similar issues (e.g. [9,91,92]). For instance, the solution presented by Long 180 

et al. [9] involves the need of a bulky helmet and fairly large GoPro Hero 10 Bones camera. 181 

Many of these devices, particularly those for recording cardiac activity and body 182 

movement, are also usually difficult to operate by a non-specialist [13] which makes long 183 

term deployment in the natural environment impossible or extremely difficult. Other 184 

options, such as the sensing vest created by Maitha et al. [13], although it is largely 185 

wireless and has been described as easy to operate by non-specialists, is fairly heavy for 186 

young infants (i.e., it weighs ~400g). The vest also contains to a large extent rubber, it 187 

covers most of the infant upper torso, and it needs to be fitted pretty snugly around the 188 

body for good signal quality [13]. This leads to overheating, which is a significant issue 189 

for its use in warmer climates or where air conditioning is not available. Therefore it is not 190 

ideal for being deployed at scale in a wide range of socio-economical environments. A 191 

limitation of many of the head-mounted cameras used for research in the ‘wild’ that are 192 

on the lighter side is the fairly narrow field of view (e.g. Looxcie - 69 x 41° [H x V]), which 193 

limits the accuracy for capturing what is likely to be visually fixated by the wearer. They 194 

also tend to have fairly poor video resolution (e.g. 720 x 480 pixels) which creates 195 

difficulties for automated methods for extracting the relevant data [9,91]. This is 196 

particularly important since dense sampling of naturalistic experiences leads to big data 197 

sets which cannot be analysed without automated algorithms for meaningful data 198 

extraction (e.g. [93,94]). Importantly, none of these devices, usually advertized as spy or 199 

active cameras, have been specifically designed for infants and young children, and 200 

require custom mounts to be worn by developing populations (e.g. [9,91,92]). They also 201 

have very limited battery life, usually under an hour, and hence do not allow 202 

uninterrupted dense data recording. 203 



Sensors 2023, 23, x FOR PEER REVIEW 5 of 50 
 

 

For recording cardiac activity and body movement, commercially available wireless 204 

options, such as the Gabi Smartcare armband, have been specifically designed for young 205 

infants, and meet more easily the criteria for wearability and unobtrusiveness. However, 206 

many of these options rely on photoplethysmography which is prone to noise caused by 207 

motion, environmental light, loose contact with the skin, and also poses issues for dark 208 

skin (e.g. [13,95]). In many cases, such as the Gabi Smartcare armband, the devices are not 209 

validated on infants and young children during active states [96]. Furthermore, many of 210 

these commercially available options tend to have the raw signal and the data storage 211 

under a paywall. This limits their affordability, makes it difficult to correct and verify the 212 

data, and also difficult to test new developments in the raw signal processing [13].  213 

Crucially, to our knowledge, there are no technological solutions that allow the 214 

synchronized recording of the egocentric view and autonomic activity across multiple 215 

individuals in the ‘wild’. The integration and joint analysis of these streams of data is 216 

essential for understanding the complex and recurrent mutual interactions between the 217 

development of infants’ cognitive and socio-emotional functions on one hand, and the 218 

environment experienced by them on the other (e.g. [33,97,98]).  219 

 220 

1.3 The EgoActive platform 221 

In the following sections we present the design, implementation and validation of 222 

the EgoActive platform, which addresses many of the limitations of wearable technologies 223 

for developmental research. 224 

The process of designing the platform was guided by a series of high level 225 

requirements prescribed by the aims of the ecologically valid developmental research 226 

approaches, as indicated above. More specifically, we focused on the following: to be 227 

suitable for infants, young children, and individuals throughout the lifespan; to present 228 

the robustness and precision required for scientific research; to be able to temporally 229 

synchronize streams of data generated by multiple devices and individuals; to be scalable 230 

to a wide range of socio-economical and geographical environments, and affordable; to 231 

be easy to use by individuals with a wide range of expertise, from tech-savvy to those 232 

with very little experience of using technical devices; to have an open design and access 233 

to raw signal and data in order to maximize its use and further development by the 234 

scientific community.  235 

In order to satisfy these high level requirements, we identified a number of more 236 

specific physical and operational requirements that guided the implementation of the 237 

design. 238 

Physically, we require that the wearable devices are comfortable and of sufficiently 239 

low weight that an infant is largely unaware they are wearing them and their behaviour 240 

is unaffected. The devices must be safe to ensure that no participants are harmed by taking 241 

part in data collection activities and to meet regulatory requirements. They should be 242 

unobtrusive, i.e. small and as out of sight as possible when worn, such that participants 243 

behave naturally and do not react to the presence of the devices on other participants. 244 

They should be easy to manufacture, using off-the-shelf parts and widely available 245 

materials as far as possible, in order to keep costs low and simplify the process of other 246 

researchers replicating their construction. 247 

There are also requirements relating to the operation of the devices and system as a 248 

whole. Since the data capture process requires significant time investment from the 249 

participants and the data itself has high scientific value, the robustness of the data storage 250 

is paramount. We therefore require robustness and redundancy in data storage in order 251 

to minimize data loss. This is reflected in the inclusion of a data backup capability within 252 

our system and to minimize data loss when wearable devices are turned off or lose power 253 

during recording. In order to minimize how often the participants must recharge or switch 254 

devices, we require wearable devices to have extended continuous recording capability 255 

both in terms of battery life but also the capacity of data storage media within the devices. 256 
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The resolution, temporal for body sensor and spatio-temporal for cameras, must be 257 

sufficient to capture the events of interest. For the body sensor this relates to the rate of 258 

change in heart rate during attention onset and offset. For the camera, the spatial 259 

resolution must enable extraction of visual information comparable to that extracted by 260 

the participant’s visual system. There is a related requirement that the field of view of the 261 

camera should be adequate to capture all, or the majority, of the scene contents to which 262 

the participant’s visual system is attending. We also require that the time series data 263 

collected from all devices is temporally aligned. This necessitates some form of temporal 264 

synchronization procedure between devices. Our goal is to retain the simplicity of the 265 

devices by minimising addition of extra sensors for synchronization (utilising existing 266 

sensing capability where possible) and for the synchronization process itself to be simple 267 

to execute without errors. Finally, we anticipate the devices collecting significant volumes 268 

of data. If a single participant collects tens of hours of video data, this quickly becomes 269 

challenging to store, manage and process. Our ultimate operational requirement is that 270 

the processing required to transform the raw data into usable time series is automatic and 271 

computationally efficient, therefore successfully scaling to big data. 272 

In Section 2, we present the design and implementation of the hardware and software 273 

parts of the EgoActive platform. The hardware comprises three parts: 1) Charging, 274 

synchronization, and data back-up station; 2) Head-mounted cameras (HMCs); and 3) 275 

ECG and acceleration body sensors. In Section 3, we present the software to support 276 

different functions of the hardware, and to implement signal pre-processing steps 277 

required prior to the extraction of more meaningful features. Specifically, the software we 278 

developed comprises of: 1) Android application for device synchronization and 279 

temporary data back-up; 2) open-source software for extracting and processing the 280 

synchronization codes from the audio-video and ECG time series, as well as for 281 

temporally aligning them; 3) open-source software for extracting HR from the raw ECG 282 

signal; and 4) open-source software that automatically detect which portions of the video 283 

and ECG data are of sufficient quality to be usable. 284 

 285 

2. Platform hardware design, fabrication and validation 286 

 287 

2.1 Overview 288 

The sensing part of the EgoActive platform was developed in order to allow 289 

recording for extended periods of time of the egocentric perspective of wearers (infants, 290 

children, and their caregivers), temporally aligned with measures of cardiac activity (i.e., 291 

ECG) and body movement in the natural environment.  292 

Towards these aims, the sensing part of the EgoActive platform includes wireless 293 

head-mounted cameras (HMC), with different options for the lens Field of View (FOV), 294 

that can be worn simultaneously by infants, children and adults (Figure 1). 295 

 296 
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Figure 1. The EgoActive head-mounted camera (HMC) worn by a 6-month-old infant (a) and an 298 
adult (b). The HMC dimensions are tailored to fit the head circumference of young infants (6- to 8-299 
months old), older infants and toddlers (9-months-old and older), and adults. The HMC for younger 300 
infants integrates a narrow FOV lens, while the HMC for older individuals integrates a wide FOV 301 
lens. In all cases, the HMC is very light (52g for the narrow FOV version, and 58g for the wide FOV). 302 
(c) HMC and the EgoActive body sensor worn together by a 6-month-old infant.  303 

 304 

 305 

For recording cardiac activity and body movement, the EgoActive platform includes 306 

integrated wearable body sensors that record ECG via wet electrodes and body movement 307 

via a triaxial accelerometer (Figure 2). The integrated sensor also includes a photo sensor 308 

used for temporal synchronisation with other devices in the platform (e.g. HMC). 309 

 310 

 311 

Figure 2. EgoActive Body Sensor positioning on a 6-months-old infant (a) and an adult (b). The 312 
EgoActive body sensor has a small footprint and it is light. (c) A sample EgoActive Body Sensor 313 
recording of an infant. The ECG and three-axis accelerometer signals are recorded simultaneously 314 
(at 250Hz for the ECG, at 65Hz for the accelerometer). The QRS complex in the ECG can be seen 315 
clearly repeated in this signal. While the precise morphology of the QRS complex can vary (e.g. 316 
depth of the Q and S troughs), the R-peak is a consistent feature necessary for later analysis. 317 

 318 

The dimensions of the devices are tailored to fit the head and body size of infants of 319 

different ages, as well as older children and adults. When used concomitantly, the devices 320 

have continuous recording autonomy of up to 2 hours 10 minutes, which facilitates 321 

habituation to the device and spontaneous behaviour. With the inclusion of multiple 322 
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devices for each individual, the platform also gives the possibility to record continuously 323 

for longer than 2 hours 10 minutes by swapping devices when the battery runs out.  324 

The devices can be used either independently, or related to each other. For the more 325 

complex scenarios where the research questions require the analysis of the data recorded 326 

by the head-mounted camera to be temporally aligned with that recorded by the body 327 

sensor (from one or multiple individuals), the precise temporal cross-device 328 

synchronization is a major challenge. Cross-device synchronization entails sensing a 329 

signal from a shared source on all devices. Our devices sense different modalities of data: 330 

the camera captures video and audio while the body sensors capture ECG and 331 

acceleration. This presented two options. One was to augment one of the devices with an 332 

additional sensor such that a single synchronization source could be used by all devices, 333 

the other was to use a different synchronization source for the two types of device (e.g. 334 

vibration for the body sensor and sound for the camera). We chose the first option, more 335 

specifically to use a coded light signal. This can be recorded directly by the cameras while 336 

we augment the body sensors with a light sensor. This adds very little to the cost or 337 

complexity of the body sensor and we store only a binarized light signal adding very little 338 

to data storage requirements. This solution simplifies the generation of the 339 

synchronization signal and reduces a possible source of error by avoiding the need to 340 

ensure the two synchronization signal sources are themselves synchronized.  341 

The functioning of the sensing hardware components is supported by a base unit that 342 

implements their synchronization, charging, and temporary data backup. Figure 3 343 

illustrates the base unit with its components and the connectivity diagram. All 344 

components are compactly contained in a suitcase style box, in a layout that is intuitively 345 

accessible to a wide range of users. The key elements of the base unit are represented by 346 

the Android Samsung A8 tablet and the powerbank. The tablet's main functions are to 347 

support the temporal synchronization of the head-mounted cameras and body sensors, as 348 

well as the temporary data back-up for the duration of deployment in the natural 349 

environment via a custom Android application (see Section 3). 350 

 351 

 352 

 353 

Figure 3. The EgoActive platform: (a) Schematic diagram of the connections between components. 354 
(b) Display of platform with components including the body sensors (BSs), head-mounted cameras 355 
(HMCs), and the electronic devices and accessories involved in synchronization, data back-up, and 356 
charging. (c) Arrangement of component connection. 357 
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2.2 Head-mounted camera 359 

The design goals for the head-mounted camera were to produce a device able to 360 

record visual scenes from the wearers’ egocentric perspective, as well as the associated 361 

sound for an extended continuous recording. In order to capture most visual information 362 

that the wearer is likely to fixate, the captured visual scenes were required to approximate 363 

as much as possible the human FOV. In order to meet our criteria for comfort, safety, and 364 

unobtrusiveness, the physical device was required to be small, lightweight, and to adapt 365 

to the differences in head circumference across different age groups. Of particular 366 

importance was to achieve a small footprint relative to the small head of infants given that 367 

all previous head-mounted cameras used for research with infants are large [9]. We also 368 

aimed to achieve a minimum 2 hours of battery life that can support continuous recording 369 

without the need to operate the device. Alongside comfort and small footprint, this would 370 

ensure that once the camera is placed on the head and recording, the wearer will habituate 371 

to it and his/her behaviour will be less likely influenced by it.  372 

These requirements posed many challenges, which largely stem from the need of 373 

achieving a small footprint for the entire device and comfort to wearer, and the fact that 374 

the majority of the operational requirements involve large components. Many of the 375 

existing head-mounted camera designs involve containing the optical units/lenses, circuit 376 

board and battery in a single case. This tends to lead to a fairly bulky device, which often 377 

is difficult to align with the wearer's line of sight. These bulky devices (e.g. GoPro Hero 378 

Bones, Looxcie, Veho Muvi Pro) need a special head mount and tend to be worn fairly 379 

high on the forehead and head. Through their sheer size they can represent a safety risk 380 

for younger children, and are a major intrusion to the appearance of both children and 381 

adult wearers. We therefore distributed the components (circuit board, lens, battery) 382 

alongside a head-band like mount, which can wrap around the wearer’s forehead. In this 383 

design, the circuit board occupies the flat surface above the right ear. We further used two 384 

smaller batteries located above the left ear, rather than a single large battery, which allows 385 

the headset to flexibly fit around the head but allows for extended continuous recording. 386 

This distributed design not only led to a smaller footprint of the parts that are directly in 387 

sight, but also a better alignment of the lens with the centre of the wearer’s FOV (Figure 388 

4). 389 

 390 

2.2.1 Hardware design  391 

Circuit board. The circuit board was specifically customised to meet the functional 392 

and operational requirement by an external company. It was developed around a JX-F23 393 

2.0MP image sensor with MIPI CSI2 and dual-data lane serial interfaces (Silicon 394 

Optronics, Inc). The JX-F23 consists of 1932 x 1088 active pixel sensor array, where each 395 

pixel is 2.8 x 2.8 μm, with on-chip 10-bit ADC, programmable gain control, and correlated 396 

double sampling in order to reduce fixed pattern noise. The sensor has an electronic 397 

rolling shutter, sensitivity of 3300mV/lux-sec, and RGB Bayer pattern for the colour filter 398 

array. The image sensor is coupled with a Goke GK7202 processor. GK7202 has low power 399 

consumption, supports multi-stream encoding capabilities, and efficient video 400 

compression ratio. Prior to video encoding, frames at full HD (1920 x 1080 pixels) 401 

resolution are centre-cropped from the pixel data recorded by the sensor. The video 402 

encoder uses a variable frame rate which averages 30 frames per second.  403 

The circuit board also integrates a real time clock (RTC) which enables the alignment 404 

of the entire platform to the actual time via a temporal synchronization signal described 405 

in Section 3.1.1. The RTC can be set by a text file in the SD card. In order to maintain the 406 

continuous function of the RTC, the circuit board was designed to include a 3mAh 407 

rechargeable lithium-ion coin battery exclusively dedicated to power the RTC. Whenever 408 

the camera is charged, the RTC battery will be recharged as well. For audio recording, the 409 
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circuit board also integrates a microphone. Audio is recorded in stereo at 32KHz and 32 410 

bits per sample and encoded as MPEG AAC audio. 411 

Optical unit(s). Two optical units/lenses were considered for the head-mounted 412 

camera, one which has a wide field of view (FOV, diagonal 106.6°, horizontal 89.3°, 413 

vertical 58.1°) and one with a narrower FOV (diagonal 73.4°, horizontal 62.8°, vertical 414 

38.0°). FOV was measured via a geometric calibration performed using the Matlab 415 

Camera Calibrator tool (see Appendix B for additional details). While the wide FOV 416 

captures a larger part of the natural infant and adult FOV, it is physically fairly large 417 

which would lead to a forehead section that is bulky relative to the small head dimensions 418 

of infants, particularly the younger ones (5-6 months-old). The wider FOV also exhibits 419 

more significant fisheye distortion (larger radial distortion parameters in intrinsic 420 

calibration parameters). If required for subsequent processing, the calibrated distortion 421 

parameters can be used to undistort the images prior to processing. A larger head-set 422 

would be more obtrusive, and also potentially pose safety risks. In order to overcome 423 

these limitations, we chose to evaluate a smaller FOV optical unit as well. The validation 424 

studies we conducted (see Section 2.5) indicate that the narrower FOV lens reliably 425 

captures the majority of the fixations made by the 6-months-old infants, while the wider 426 

FOV is required for a similar performance for older infants, children and adults. In light 427 

of these findings, it was decided to design versions of the head-mounted camera that 428 

include the narrow FOV for the younger infants (6-7-months), and the wider FOV for 429 

older infants (> 7-months-old), children and adults. The lenses are connected to the circuit 430 

board via a surface mount, flexible printed circuit (FPC) connector. 431 

 432 

 433 

 434 

 435 

 436 

 437 

 438 

 439 

Figure 4. a) The HMC circuit board with the optical units (narrow and wide FOV), and the 350mAh 440 
3.7V lithium ion batteries; b) the circuit board and its key elements. The circuit board measures 35.00 441 
mm in length, 25.00 mm in height and .50 mm deep. 442 

 443 

For both types of lenses, the HMC device has an average current consumption of 444 

320mA at 3.7V supply potential. In order to enable a minimum of 2 hours continuous 445 

recording as per our requirements while maintaining a flexible and small footprint, two 446 

fairly small 350 mAh lithium ion batteries (24.0 x 25.0 x 6 mm, 3.7V 350mAh) were 447 

connected in parallel. The voltage versus current curves (Figure 5) show how the 2 448 

batteries share the load evenly during both the recording and charging cycles, supplying 449 

roughly 160mA each during the camera recording period and for over 1 hour 40 minutes 450 

with the measurement equipment connected. However, when disconnected from the test 451 

equipment, a fully charged 700mAh battery pack was observed to keep the HMC actively 452 

recording for roughly 2 hours 10 minutes.  453 
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Figure 5. The HMC power consumption showing a steady current consumption of 160mA per 465 
battery for nearly 2 hours. 466 

Video format. Video data is written to a 128GB micro SD card in 5 minute 467 

consecutive blocks. After recording, these blocks can be stitched into a continuous video 468 

of the full session length. In the event that the power is removed by switching off the 469 

device then any data held in the device’s internal memory will be lost. Therefore, in the 470 

worst case up to 5 minutes of recording could be lost. In the context of extended real-471 

world recordings, this was considered to be a reasonable tradeoff. In practice however, 472 

temporary files are written while the 5 minute block is being recorded. If power is lost and 473 

recording later resumed, this partial block continues to be written to until 5 minutes of 474 

video has been recorded. We can automatically identify these split blocks by finding 475 

consecutive frames with large gaps between their presentation timestamps. We can split 476 

the video file at this point and restore the partial block to the end of the previous session. 477 

The videos are stored in MP4 format, compressed using the H.264 codec with a 1920 x 478 

1080 pixel resolution, and MPEG-AAC codec for audio with stereo channels, sample rate 479 

of 32kHz and 32 bits per sample. 480 

Temperature management. For a wearable device, the temperature is relevant for 481 

comfort and safety. We aimed at maintaining the temperature of the functioning device 482 

below 43°C in line with the more conservative safety standards for audio/video 483 

information and communication technology equipment (BS EN IEC 62368-484 

1:2020+A11:2020). Towards this aim, we designed a temperature management system. 485 

First, the microprocessor was located on the external surface of the circuit board (facing 486 

away from the body). Second, to facilitate the dissipation of the temperature away from 487 

the body, an aluminium heat sink was attached with a layer of high thermal conductivity 488 

foam (5W/m-K) on the surface of the microprocessor, while the internal side of the circuit 489 

board (facing the body) was covered with a layer of thermally insulating foam (.8W/m-490 

K). In addition, the liquid silicone wrap of the casing (see section 2.2.2) was intended to 491 

add an extra layer (1mm thick) of thermal insulation at the point of contact with the body.  492 

To test the efficiency of this system, the temperature sensor from Biosignalsplux 493 

(PLUX – Wireless Biosignals) was used to measure temperature of the HMC head-set 494 

section containing the circuit board at the point of contact with the skin. We chose to 495 

measure the temperature at this location given that it is the only part likely to record 496 

changes in temperature during functioning. The temperature sensor was a NTC 497 
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thermistor element (2.04mm diameter) which has an operational range between 0°C and 498 

50°C. We measured the temperature of both the HMC head-sets incorporating the wide 499 

(N = 5) and narrow (N = 5) FOV lenses. The temperature was recorded continuously for a 500 

minimum of 1 hour 50 minutes, while the camera was worn on the head by an adult as it 501 

would typically be for research purposes, at an average room temperature of 25.29°C (SD 502 

= 0.60°C). The average recording length (time on) was 118.0 minutes (SD = 17.2 minutes). 503 

Both the HMC with the wide and narrow FOV lenses recorded an average temperature 504 

below 40°C (Figure 6), hence within approximately 3°C of the usual body temperature. 505 

Figure 6. The HMC temperature overtime: a) An example temperature recording (2 hours, 9 506 
minutes) for a narrow FOV camera. The maximum and mean temperature was calculated from 10 507 
minutes from recording onset. b) The average maximum and mean temperature for Narrow FOV 508 
(N = 5) and Wide FOV (N = 5) cameras. Error bars represent the standard error of the means. 509 

 510 

2.2.2 Head-set case design 511 

The head-set case design was one of the most challenging aspects of the platform to 512 

achieve. The housing of the circuit board, optical unit, batteries, and wiring was required 513 

to be both rigid and flexible. Rigidity was needed to protect the batteries, circuit board 514 

and optical unit, whilst flexibility was a must for allowing the entire setup to naturally 515 

follow the contour of the head and to be comfortable when worn. Furthermore, the 516 

materials had to be adequate for extended contact with the skin. Particularly for the young 517 

infants, comfort and the possibility to wear the HMC in contact with the skin was of 518 

uttermost importance. Discomfort during psychophysiology recordings is well known to 519 

lead to high attrition rate in infancy research [99,100,134,135].  520 

In order to satisfy the mechanical properties imposed by our requirements, we 521 

decided to adopt a 2-part design strategy that combines rigid and flexible materials. 522 

Within this new innovative design (Figure 7), the battery and circuit board are housed in 523 

rigid casings made from a thermoplastic material, which is further enclosed by a web-like 524 

casing made from an elastomer. The wrap-like casing acts as a carrier to combine all the 525 

electrical components, housing the cabling, battery, circuit board, and optical unit. The 526 

design feasibility and material compatibility were verified using 3D printing. For the rigid 527 

cases, 3D printing via Multi Jet Fusion was used because it produces functional, end-use 528 

production parts that would enable us to have true verification in terms of mechanical 529 

properties and design feasibility. Multi Jet Fusion uses an inkjet array to selectively apply 530 

fusing and detailing agents across a bed of nylon powder, which are then fused by heating 531 

elements into a solid layer. For testing the prototypes of the wrap-like casing, Polyjet 3D 532 

printing with digital photopolymer was used. The Polyjet 3D printing builds multi-533 
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material prototypes with flexible features which works well in simulating components 534 

made to have elastomeric features. It uses a jetting process where voxels of liquid 535 

photopolymer are sprayed from multiple jets onto a build platform and it is cured in layers 536 

that form elastomeric parts. In our particular case, the material of choice was 3DP Silicone 537 

because it has similar characteristics to the true liquid silicone rubber (LSR), such as 538 

reproducibility after deformation or stress and elasticity.  539 

The final design encloses all unnecessary access points, except the USB charging 540 

socket, SD card, the on/off switch, and the lens. The design also includes a recess for the 541 

SD card to prevent it from accidentally being ejected while still maintaining the ability to 542 

remove the card for reading its data; a recess for the slide switch to prevent any small 543 

parts breaking away and becoming exposed outside the case. 544 

 545 

Figure 7. The EgoActive HMC casing relies on a 2-part design that combines rigid and flexible 546 
materials in order to satisfy the mechanical properties imposed by the requirements. The wrap-like 547 
structure is made of soft and flexible liquid silicone rubber, while the batteries and circuit board 548 
cases are made of rigid impact copolymer polypropylene. The entire camera, electronics and casing, 549 
weighs 52g for the narrow FOV lens version and 58g for the wide FOV lens version. The lens 550 
enclosure measures 8mm in height for the wide FOV lens, and 4mm in height for the narrow FOV 551 
lens. The depth of the circuit board and battery casings with the silicone wrap is 12mm. 552 

 553 

For the final manufacturing of the HMC head-set case, we used plastic injection 554 

moulding. For the circuit board and battery cases, an Impact Copolymer Polypropylene 555 

was chosen. This material exhibits high melt flow rate which allows it to achieve a very 556 

thin casing, whilst also having very high impact resistance and very good thermal 557 

stability. As a specific material type and brand, we chose INEOS PP 500-GA20. According 558 

to the manufacturer’s data sheet, this material is recommended for toy manufacturing, 559 

food containers, and safe to be in contact with human skin. It is also widely available. For 560 

the web casing, we used LSR at ShoreA 60. During prototyping, we established that Shore 561 

60 balances well between the requirement of having a soft and comfortable head-set, and 562 

the ability to maintain the shape required for accurate positioning on the head. 563 

Furthermore, LSR is also known to have electrical and heat insulating properties, which 564 

are relevant in terms of safety and comfort. As a specific material type and brand, we 565 

chose Elastosil 3003 (Shore 60 A/B) because, according to the manufacturer’s datasheet, it 566 

has a good biocompatibility profile, it is recommended to be used for products that are in 567 

extended contact with infant and adult skin, and for products that are in contact with food. 568 

The PM-T2 finish gives a pleasant soft touch feel. 569 

The head-set is held in position on the infant head by two straps. For both the infant 570 

and the adult, the back strap adjusts the length of the entire head-set to the individual’s 571 

head circumference. For the infant, the top strap is primarily meant to prevent the head-572 

set sliding down while in use. The straps are manufactured from a soft elastic neoprene 573 

material. Due to the use of LSR Shore 60, which is flexible but maintains shape, neither 574 



Sensors 2023, 23, x FOR PEER REVIEW 14 of 50 
 

 

the infant nor the adult head-set require a tight fit around the head in order to maintain 575 

the desirable location of the lens (i.e., above the eyebrows and roughly aligned with the 576 

nose). 577 

 578 

2.3 Body sensor 579 

The design goals for the body sensor were to produce a small and lightweight device able 580 

to record reliable heart rate and body movement data over a period of 3 to 4 hours (Figure 581 

8). The recorded data would need to be time coded in such a way that it could be 582 

accurately synchronized during post processing to a video recorded using a HMC. It 583 

should also be low cost, comfortable, safe, meet relevant regulations and be easy to 584 

reproduce on a small scale production run.  585 

 586 

 587 

 588 

 589 

 590 

 591 

 592 

 593 

Figure 8. EgoActive Body Sensor measures 54.00mm in length, 36.80mm in height and 11.90mm 594 
deep, while weighing 21.0g. 595 

 596 

2.3.1 Hardware design 597 

The body sensor is built around an Adafruit Feather M0 AdaloggerTM which features 598 

a Microchip Technology Inc. ATSAMD21G18 ARM Cortex M0+ low power embedded 599 

microcontroller, running at its default system speed of 48MHz. The Adalogger provided 600 

a ready made solution for basic SD card interfacing and USB battery charging circuits. The 601 

Feather’s small form factor provided the perfect size, weight and processing power as well 602 

as having a library of support functions, available within the firmware development 603 

toolset, for logging data to an SD card.  604 

To complement the AdaloggerTM, a bespoke featherwing-compatible circuit board 605 

was designed (Figure 9) which contained the interface from the body measurement 606 

sensors (ECG, movement) and a photo sensor back to the Adafruit Feather M0 607 

AdaloggerTM microcontroller. 608 

ECG Interface. For the ECG interface an Analog Devices AD8232 single-lead heart 609 

rate monitor preamplifier was selected because of its suitability in conditioning noisy 610 

biopotential signals. It can be configured for either two or three electrode placements, with 611 

the third electrode being used as a right leg drive amplifier to reduce the common mode 612 

rejection of the system. We chose to use the two electrode configuration for the simplicity 613 

offered to the end user when positioning the device on the body. The circuit around the 614 

AD8232 allows for a simple two pole high pass filter to help block the DC component from 615 

the input signal while also allowing the lowest cutoff frequency. The AD8232 also includes 616 

a ‘leads off’ detection circuit whose output is read and logged along with the recorded 617 

ECG signal data and although it is not currently used it is available as a secondary check 618 

for ECG validation during post processing. The ECG signal is sampled by the 619 
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microcontroller’s analogue to digital conversion peripheral (ADC) at a rate of 250Hz. The 620 

250Hz sampling rate for the ECG is recommended as the minimum to accurately capture 621 

the R-wave [101] and also for more advanced heart rate variability analysis (including 622 

RSA) [102]. 623 

 624 

 625 

 626 

 627 

 628 

 629 

 630 

 631 

 632 

 633 

Figure 9. EgoActive Body Sensor Circuit Board mounted on the back of an Adafruit AdaloggerTM.  634 

 635 

Accelerometer. An Analog Devices ADXL355 three axis accelerometer was selected 636 

to act as the body movement detection sensor. Although not the cheapest option, its low 637 

power, low offset drift, ultralow noise, 20 bits binary output conversion and simple digital 638 

serial peripheral interface made it an ideal choice for this application. The accelerometer’s 639 

three-axis output data is sampled and recorded by the microcontroller at a rate of 65Hz. 640 

These calibrated three-axis signals are combined into a single resultant signal during 641 

processing.  642 

Photo sensor for temporal synchronization. The body sensor does not include a RTC 643 

implementation and therefore cannot record a unique time stamp either contained within 644 

the file structure or recorded within the data itself. In order to address the requirements 645 

for temporal synchronization, the body sensor contains a Kingbright KPS-3227SP1C 646 

ambient light photo sensor whose output is digitally sampled at a rate of 250Hz. This 647 

ambient light photo sensor allows recording a 10-bit coded light sequence provided by 648 

the Samsung Android tablet via the bespoke software application. During post 649 

processing, this light signal is used to realign the time of acceleration and ECG signal to 650 

the RTC of the head-mounted camera. The photo sensor (luminosity), acceleration, and 651 

ECG signals are all recorded concurrently. 652 

 653 

2.3.2 Firmware Design 654 

One of the design goals was that the final device supports 3 to 4 hours of continuous 655 

recording. Power consumption and therefore battery life were an important parameter to 656 

measure during the design cycle and firmware development, which had to be embedded 657 

with the requirement of maintaining a small footprint and hence finding a small battery. 658 

As with the HMC, the body sensor data is stored locally on a micro SD card and 659 

during the first iterations, the firmware was structured in a way which prioritised data 660 

preservation by storing each and every new data sample to one of two human readable 661 
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text files on the SD card, one for heart rate measurements and the other for the 662 

accelerometer body movement measurements. However, running the firmware in this 663 

way resulted in the device consuming an average of 320mA due to a nearly continuous 664 

SD card activity. This would have required a sizable 1.3Ahr (ampere-hour) battery to meet 665 

the 4 hour usage time of the design specification which was not suitable in terms of the 666 

small footprint requirement. The ECG and ACC sampling rate was also limited due to the 667 

amount of time the processor needed to wait for the SD card's internal processes to finish, 668 

and thus restricting the speed of the main processing loop.   669 

The average current consumption was reduced dramatically to 40mA by 670 

restructuring the firmware, writing data in 512 byte blocks and thus reducing the number 671 

of individual data transfers to the SD card. Data read from the sensor interfaces is held 672 

within the microcontroller's internal memory until there is enough data to efficiently write 673 

a 512 byte block to an open file on the SD card. This stores both the ECG to a significance 674 

of three decimal places (SD = 3.297), and the accelerometer data to a significance of three 675 

decimal places (range: +2g to -2g). After the 5 minute block of data has been transferred 676 

to the currently open file and the data transfer is committed, the file is closed and a new 677 

file is opened ready to accept further data. 678 

Data transfer rates were improved further by storing the local data in a machine 679 

readable, raw format and off loading the process of converting the data into a human 680 

readable format to the post processing scripts which run on more powerful desktop PCs 681 

(i.e., converting the .dat files to .txt files). Reducing the amount of time the device was 682 

waiting for an SD card data transfer and also removing the process of converting the raw 683 

sensor data to a human readable format meant that we could use this free time to increase 684 

the sampling rate of the ECG signal to 250Hz. These efficiencies in data handling resulted 685 

in the device consuming only 12mA average current (Figure 10), resulting in the selection 686 

of a fairly small lithium ion battery (46.0 x 9.0 x 4.5 mm, 3.7V 150mAh), meeting the 687 

requirement of a small footprint. The fully charged 150mAh battery was observed to keep 688 

the body sensor actively recording for roughly 10 hours. 689 

 690 

 691 

Figure 10. EgoActive Body Sensor mid-session power consumption, showing the battery voltage at 692 
3.9V with typical current consumption 12mA (40.8mA spikes). 693 

With the efficiency gain from storing the raw sensor data, rather than human 694 

readable text strings, a 32Gb SD card can hold up to 4028 hours worth of data in total. The 695 
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data is stored in individual files holding 5 minutes worth of data at a time. In the event 696 

that the power is removed by switching off the device then any data held in the devices 697 

internal memory will be lost; this would be a maximum of 5 minutes worth. In the context 698 

of the extended real-world recordings, this was considered to be a reasonable tradeoff. 699 

 700 

2.3.3 Case design  701 

The body sensor case was designed to meet the requirements of maintaining a small 702 

footprint for the device, comfort during use, protection of the electronics, and to provide 703 

user safety. Similar to the HMC, a prototype was designed, and the design feasibility and 704 

material compatibility verification was performed using 3D printing via Multi Jet Fusion. 705 

The final small footprint design (Figure 7) allows minimal exposure of the device internal 706 

circuit components to the user. It encloses all unnecessary access points, except the USB 707 

charging socket, SD card and the on/off switch. The design also includes a recess for the 708 

SD card to prevent it from accidentally being ejected while still maintaining the ability to 709 

remove the card for reading its data; a recess for the slide switch to prevent any small 710 

parts breaking away and becoming exposed outside the case, and sufficient radius of 711 

external edges to achieve comfort.  712 

In terms of the manufacturing of the final design, after factoring the casing design 713 

requirements in terms of material choice, quantity, and relatively low complexity; plastic 714 

injection moulding was selected. For the material, an Impact Copolymer Polypropylene 715 

was chosen (INEOS PP 500-GA20). This material exhibits high melt flow rate which allows 716 

it to achieve a very thin casing, whilst also having very high impact resistance and very 717 

good thermal stability. According to the manufacturer’s data sheet, this material is 718 

recommended for toy manufacturing, food containers, and hence safe to be in contact with 719 

human skin. 720 

The mounting of the sensor on the human body is via the two ECG electrodes 721 

attached to the chest. We developed and tested our sensor design using the Ambu Blue 722 

Sensors given their offset fitting that has been shown to reduce the signal noise during the 723 

data acquisition. The offset fitting also allows the sensor to be attached and reattached 724 

without the need to apply pressure on the body, which is particularly relevant for 725 

preventing infant distress. Furthermore, as per manufacturer’s instructions, these 726 

electrodes can be worn for extended periods of time. All these aspects are important in 727 

terms of achieving high quality data during recordings in the natural environment. 728 

 729 

2.4 Base unit  730 

The base unit provides a station with which to charge, synchronize, backup and 731 

transport the HMCs and body sensors. It comprises predominantly off-the-shelf hardware 732 

components, and a small proportion of custom made elements (e.g. the foam layer that 733 

maintains the electronics in place, the screen that covers the tablet). All components and 734 

materials are widely available, giving the possibility to anyone interested to build their 735 

own. We now describe the physical design and construction along with the specific 736 

hardware components used in the base unit. 737 

The base unit is housed within a WAG TEKNO 2007 polypropylene carry case 738 

(external dimensions: 340mm x 275mm x 83mm). For further information regarding how 739 

different components are secured in the box, please see Appendix C and Figure 18.   740 

We chose to use the Samsung A8 tablet for synchronization and backup purposes. 741 

The specific hardware model is important due to its ‘on the go’ functionality, which is 742 

required for the transfer of files between multiple external drives (the cameras) and 743 

internal storage via its USB-C port as well as simultaneously charging over the same port. 744 

It also supports large capacity SD cards (512GB) which we use as the backup location. 745 

Although the head-mounted cameras, body sensors, and tablet can be charged via 746 

regular USB cables from any power source, we designed the base unit to provide a backup 747 

power supply and also to act as a power distribution hub. The base unit includes a Varta 748 
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57977 15,000mAh power bank charged via the micro USB input, which is connected to a 749 

flush mount micro USB port in the back of the carry case, allowing power input from a 750 

USB AC adapter. Importantly, the power bank supports pass-through charging meaning 751 

that it can be simultaneously charged and used, allowing the base unit to be left connected 752 

to mains power over the period of use. The power bank provides two USB-A outputs 753 

which are used to charge the body sensors. The power bank USB-C power delivery (PD) 754 

output is connected to the PD input of an RS PRO 4 Port USB 3.0 USB C Hub. This serves 755 

two purposes: first, it connects the Samsung A8 tablet to four USB-A cables to which the 756 

HMCs can be connected for data backup; second, it supplies power to the tablet and 757 

HMCs for charging. The power bank allows some autonomy from the main electricity 758 

source, which facilitates deployment in environments where electricity is scarce or 759 

inconsistent, and gives a certain degree of portability to the entire platform (e.g. can be 760 

used outdoors during a day out). 761 

 762 

2.5 Validation and user experience of the EgoActive hardware 763 

The criteria for the design of the EgoActive hardware were based on factors such as 764 

suitability for a wide age range (i.e., from infants to adults) and ease of use by families 765 

with varied technical skills. To ensure that these criteria did not impact the quality of the 766 

information recorded by the camera lens and ECG sensors, we conducted a series of 767 

validation studies that compared our sensors to other commercially available systems. 768 

Furthermore, to assess user experience, we recruited 7 families with 6-months-old infants 769 

from the UK to use the EgoActive Platform in their homes, while carrying out their daily 770 

routines and activities. The caregivers were asked to record approximately 4 h/day, both 771 

the infant and the caregiver simultaneously wearing the devices, for a period of one week. 772 

We used subjective reports from the caregiver to assess whether infants and caregivers 773 

had a positive experience wearing and operating the HMC and Body Sensor, and whether 774 

wearing both devices interfered with daily routines and activities. 775 

The following sections present the results of the validation studies for the HMC and 776 

Sensor, and users’ experiences of the EgoActive platform. 777 

 778 

2.5.1 Validation studies of EgoActive head-mounted camera 779 

2.5.1.1 Suitability of the FOV  780 

We tested whether the camera’s field of view (FOV) was sufficiently wide to spatially 781 

capture the range of fixations made by infants and adults during a naturalistic situation 782 

in the lab. For this purpose, we recorded infants’ and adults’ egocentric perspective 783 

concurrently from a head-mounted eye-tracker (Positive Science [103]) and our EgoActive 784 

HMC. The eye-tracker measured the spatial location of fixations with high accuracy (2⁰ 785 

[103]) which allowed us to estimate whether fixated locations fell within our HMC’s FOV. 786 

We chose to integrate the EgoActive HMC with a head-mounted eye tracker because the 787 

latter allowed wearers to conduct naturalistic behaviors such as free play for infants or 788 

making tea for adults. Figure 11 illustrates the general approach. 789 
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 790 

Figure 11. Positioning of equipment and visual example from the validation of the Head-Mounted 791 
Camera (HMC) wide field of view (FOV) alongside the Eye-Tracking (ET) system. 792 

The Positive Science head-mounted eye-tracker (the Tethered Laboratory Unit) 793 

consists of two cameras mounted on a headband: one which records the scene in front of 794 

the observer (located above the right eye; FOV: horizontal 81.80°, vertical 67.78°, diagonal 795 

95.30°) and one which records the right eye (Figure 11). The scene camera captures a large 796 

proportion of the infants’ FOV [103]. In addition, we incorporated our EgoActive camera 797 

into the headset, aligned to the centre of the forehead. Both our and the eye-tracking scene 798 

cameras were adjusted to have a field of view aligned with the infants’ line of sight. 799 

Participants. For the purpose of validating the HMC for capturing what is likely to 800 

be fixated from the infant (6- and 12-months) and toddler (24- and 36-months) view, we 801 

recorded a period of free play between the infant/toddler and their caregivers (N = 32). 802 

For validating the HMC for adults (N = 9), we recorded a period of typical everyday 803 

behaviour (i.e., making a cup of tea). Table 1 indicates the sample size included in the 804 

analysis for each age range and type of HMC. 805 

 806 

Table 1. Age distribution across the HMC with narrow or wide FOV. Values show the mean across 807 
participants in months and days. 808 

 809 

  Narrow FOV HMC Wide FOV HMC 

Age N Mean age N Mean age 

(months, days) (months, days) 
6-months 10 6m, 8d NA NA 

12-months 8 12m, 15d 8 11m, 28d 
24-months 10 24m, 28d 6 25m, 2d 
36-months 5 37m, 5d 4 38m, 2d 

Adults 9 306m, 28d 9 361m, 9d 
     

 810 

Procedure. For the infant and toddler play, the caregiver was instructed to play with 811 

their child as they would normally do at home, using the toys and other objects present 812 

in the lab’s playroom. For the adult activity, the participants were invited to make a cup 813 

of tea in a dedicated area in the lab. 814 
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Given the dynamic changes of the visual environment in which the eye-tracking took 815 

place, an off-line eye-tracking calibration procedure was adopted, as recommended for 816 

this type of situation [104]. This procedure was implemented in two stages. First, a series 817 

of pseudo-calibrations were conducted prior to the play for infants and prior to the tea-818 

making activity for adults. They are similar to the typical online protocols (e.g. peek-a-boo 819 

game), and designed to allow the calibration of the eye-tracker for capturing fixations in 820 

different sections of the visual field, including variations in depth. For infants, all pseudo-821 

calibrations were 5-points, while for adults a combination of 9- (for fixations in depth) and 822 

5- (for fixations in the lower visual field). Second, after the recording session was 823 

completed, Positive Science Yarbus software was used to determine the point of gaze and 824 

superimpose the eye video with the scene video. This enabled offline calibration using the 825 

points from the pseudo-calibration as a reference. 826 

Data processing and results. For the purpose of validating the HMC FOV we 827 

extracted a 5 minutes segment from the recording session for each infant, toddlers and 828 

adult. The scene video superimposed with the point of gaze was temporally aligned with 829 

the HMC video. Custom-built Matlab scripts were used to label each frame of the HMC 830 

video in terms of whether it contains the object that is visually fixated as indicated by the 831 

head-mounted eye tracker. We further calculated the proportion of frames from the total 832 

number of frames of the HMC video recording that captured the objects from the scene 833 

fixated by the infants, toddlers and adults. Overall, the narrow FOV HMC captured a 834 

smaller proportion of the fixated spatial locations in the participants’ view (M = 0.60, SD 835 

= 0.33), relative to the wider FOV HMC (M = 0.93, SD = 0.10), and this was particularly the 836 

case for the older infants, toddlers, and adults (Figure 12). For the 6-months-old infants, 837 

the narrow FOV HMC captured over 80% of the fixated spatial locations. 838 

 839 

 840 

 841 

 842 

 843 

 844 

 845 

 846 

 847 

 848 

Figure 12. Proportion of fixations captured by the narrow and wide FOV HMC relative to the head-849 
mounted eye-tracker as a function of age. The error bars reflect the standard error of the mean. 850 

 851 

2.5.1.2 User experience 852 

The majority of the caregivers (97%) rated their experience with the HMCs as being 853 

positive, and 100% that it was easy to operate. Most caregivers also reported that they 854 

tended to forget that they were wearing the HMC (33% were not aware of its presence, 855 

44% were somewhat aware of its presence). The majority of wearers reported that the 856 
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HMC did not interfere with daily routines and activities (81%). Furthermore, the majority 857 

of the caregivers (67%) reported that the infant’s HMC was accidentally removed only 858 

infrequently. Taken together, these results indicate that the HMCs are comfortable enough 859 

that, at least based on the adults' reports, the users tend to have little awareness of their 860 

presence, and that they are integrating fairly well with their daily routines and activities. 861 

This in part reflected by the fact that participants (infant and adult) tend to record with 862 

the HMCs for relatively long periods of time (M = 25 hours 10 minutes/week, SD = 5 hours 863 

35 minutes, from the target of 28 hours). Infants wore the HMC whilst this was recording 864 

for an average of 3 hours 52 minutes/day (SD = 1 hour) out of a total average recording of 865 

3 hours 58 minutes/day (SD = 1 hours 1 minute). During the period of time when the HMC 866 

was intended to be worn by infants for recording, it was removed on average 3 times (SD 867 

= 3 times) per day or not being worn for 6 minutes (SD = 7 minutes) on average per day. 868 

This indicates that the infants comply fairly well with the procedure for using the HMC. 869 

The fact that the infant HMC is only infrequently removed during use, also suggests that 870 

its physical features, including the temperature, are unlikely to cause discomfort. 871 

 872 

2.5.2 Validation studies of EgoActive body sensor 873 

 874 

We carried out three validation studies to evaluate different aspects of the EgoActive 875 

Sensor, using complementary methodological approaches. First, we tested the reliability 876 

with which the EgoActive Sensor records ECG relative to a commercially available 877 

wearable sensor during naturalistic social interactions. Second, we assessed the 878 

effectiveness of the EgoActive Sensor in accurately recording ECG and acceleration for 879 

long periods of time, in line with its intended use in the home environment, relative to an 880 

ECG simulator. Third, we used subjective reports from the caregiver to assess whether 881 

infants and caregivers had a positive experience wearing and operating the sensor during 882 

their daily routines and activities. 883 

 884 

 885 

2.5.2.1 Comparison with commercially available wearable sensors. Short recordings 886 

 887 

This study examined the EgoActive Sensor's capability to record ECG and 888 

acceleration data during social interactions in a naturalistic setting. Caregivers and infants 889 

were invited to play as they would do at home for 20 minutes (range 14 - 24 minutes) in 890 

the lab playroom. Participants were able to play with any toy or objects they wished from 891 

those available in the playroom.  892 

We compared our EgoActive sensor to the commercially available Biosignalsplux 893 

wearable sensor (BiosignalspluxTM). Our interest was in testing the device on infants since 894 

their developing motor skills present the risk of a wider range of noise that can occur 895 

within the ECG. In this study, we focused on a short period of play in the lab rather than 896 

longer durations in the home environment, predominantly due to the characteristics of 897 

the Biosignalsplux wearable sensor (BiosignalspluxTM). It is fairly bulky for an infant, and 898 

involves several wires that connect the electrodes to the hub. Although the Biosignalsplux 899 

sensor has some limitations as a wearable, it stands out for its high sampling rate (up to 900 

1000Hz) and capability to integrate multiple sensors. As a result, it is a good resource for 901 

assessing real-life situations and gathering valuable information. Additionally, in our 902 

experience, a free play period in the lab playroom exposes several situations that can 903 

impact ECG signal quality, similar to the home environment. A sampling rate of 500Hz 904 

was chosen for the Biosignalsplux wearable sensor in order to provide a high resolution 905 

heart rate to allow for accurate alignment with the EgoActive Sensor. 906 

Participants. The sample included 3-, 6-, 12-months-old infants and 24- and 36-907 

months-olds toddlers (Total N = 30; Table 2). 908 

 909 
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Table 2. Age distribution. Values show the mean across participants in months and days. 910 

Age N Mean age 

months (m),  days(d) 
3-months 6 3m, 27d 
6-months 5 6m, 41d 
9-months 3 8m, 85d 

12-months 8 13m, 0d 
24-months 3 25m, 18d 
36-months 5 37m, 71d 

   

 911 

Procedure. Before attaching the Biosignalsplux wearable sensor (BiosignalspluxTM) 912 

and EgoActive sensors to the infant’s chest, they were synchronized using a light signal 913 

from the base unit. The Biosignalsplux wearable sensor (BiosignalspluxTM) was placed on 914 

the left side of the chest, while our EgoActive sensor was placed on the right side. This 915 

configuration allowed both devices to measure the same underlying source for ECG and 916 

heart rate. The heart rate was extracted from both devices, aligned with the 917 

BiosignalspluxTM sensor, and then the difference between the two signals was calculated 918 

at each time point for the BiosignalspluxTM signal. It is worth noting that while some minor 919 

differences in noise level and ECG morphology arise from the different sensor locations, 920 

the biomechanics underlying the pumping heart arise from the same source for both 921 

locations. These similar biomechanics lead to only small expected discrepancies between 922 

the two heart rates (as shown in [105], where 2ms was the maximum standard deviation 923 

of R-R intervals calculated between different measurement locations). The overall quality 924 

of the match between heart rates was measured by the proportion of the heart rates that 925 

fell in agreement within 5bpm, as defined by Equation 1. The 5bpm were chosen as similar 926 

to the mean absolute error between wearable devices and ambulatory ECG recordings 927 

over a 24-hour period [106], and was a way to exclude incorrect R-peak detections in a 928 

dynamic recording setting, while still preserving those R-peaks that matchup between the 929 

two devices, yet allowing for some minor deviations between the two. 930 

 931 𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑠𝑖𝑔𝑛𝑎𝑙 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡 =  # 𝐻𝑅𝑃𝑙𝑢𝑥 𝑏𝑒𝑎𝑡𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 5𝑏𝑝𝑚 𝑜𝑓 𝐻𝑅𝐸𝑔𝑜𝐴𝑐𝑡𝑖𝑣𝑒 𝑏𝑒𝑎𝑡𝑠𝑇𝑜𝑡𝑎𝑙 # 𝐻𝑅𝑃𝑙𝑢𝑥 𝑏𝑒𝑎𝑡𝑠  (Equation 1) 932 

 933 

Data processing and results. We obtained concurrent ECG recordings from 30 934 

participants (MOverlapLength = 27 minutes, MinOverlapLength = 15 minutes; MaxOverlapLength = 43 935 

minutes). The ECG signal from the two devices were aligned via a two-parameter 936 

optimization: shift and stretch of the ECG signal from the EgoActive sensor. The stretch 937 

parameter corresponds to the relative clock speed (see Section 2.5.2.2), while the shift 938 

parameter primarily captures the time offset between the two devices being turned on. 939 

The average signal agreement within 5bpm was 95.4% (Min = 81%; Max = 100%), with 940 

26/30 sharing more than 90% of the signal and 19/30 sharing over 95% of the signal. There 941 

was no statistically significant correlation with age (r = -0.24, p = 0.21), suggesting that the 942 

age of the participant was not a factor in signal quality (Figure 13). 943 
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Figure 13. Proportion of signal agreement (within 5bpm) between the BiosignalspluxTM 944 

and EgoActive wearable sensors as a function of age (in weeks). Each dot represents data 945 

from a participant. The color-coding of the dots corresponds with age in order to allow 946 

cross-reference with Figures 14 and 15. 947 

 948 

In order to justify the 5bpm limit and also to quantify the combined effect of the reduced 949 

sampling rate of the EgoActive sensor and the differing sensor locations, the average 950 

signal within 5bpm was compared against the proportion of total signal within 5bpm. The 951 

mean absolute difference for those regions within 5bpm was calculated for each 952 

participant, and is shown in Figure 14. The mean of these measurements was 0.906bpm 953 

(Min = 0.58; Max = 1.67bpm), and 23/30 of the recordings had a mean difference <1bpm 954 

for these regions. These measurements displayed a significant negative correlation (r = -955 

0.55, p = 0.002), with noisier signals displaying less agreement within 5 bpm and higher 956 

average deviations within 5bpm. However, removal of the five signals with the lowest 957 

proportion of matching signals reveals that the identified negative linear association is not 958 

present in the remaining twenty-five signals (r = -0.26, p = 0.21, M = 0.836bpm). This serves 959 

as a rough estimate for the difference in detected heart rate due to differences in device 960 

location and sampling rate. 961 

 962 

 963 

Figure 14. Relationship between average difference of signal agreement (measured by the devices 964 
within 5bpm) and corresponding average absolute difference in heart rate. Each dot represents data 965 
from a participant. The color of the dot represents the participant’s age (in weeks), with darker colors 966 
representing older participants (see Figures 13 and 15). 967 

 968 

Figure 15 shows that there was no correlation between the average difference in heart rate 969 

(for areas <5 bpm difference) and age for the participants studied (r = 0.045, p = 0.81). This 970 
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shows that the EgoActive device has the same level of effectiveness relative to the Plux 971 

device across the ages measured.  972 

 973 

 974 

Figure 15. Relationship between average difference of signal in agreement (measured by the devices 975 
within 5bpm) and age (in weeks). Each dot represents data from an infant or toddler. The color-976 
coding of the dots corresponds with age in order to allow cross-reference with Figures 13 and 14 977 

 978 

2.5.2.2 Comparison with ECG simulator. Long recordings 979 

 980 

A set of validations evaluating the effectiveness of long-term EgoActive sensor 981 

recordings was also carried out. The sensor is designed for long naturalistic recordings, 982 

but relies on an internal clock for time keeping. As such, it is important to assess the 983 

accuracy of this clock, and whether any drift occurs over time. Furthermore, while the 984 

comparison with the BiosignalsPlux device is important as detailed above, it is limited by 985 

the absence of the ground truth for both devices. For example, both the BiosignalsPlux 986 

and EgoActive sensors could be subject to incorrect recordings from high motion and 987 

other sources of infant noise. In order to address this limitation and investigate the 988 

performance of our sensor over long periods of time, a simulator, TechPatient Cardio 989 

Version 4 (HE Instruments LLC), was used. 990 

Procedure. The simulator was set to generate a uniform 150 bpm ECG signal, and 991 

five recordings between 2 and 10 hours were carried out (M = 4.5 hours, SD = 3.1 hours) 992 

on five separate EgoActive Sensors.  993 

Data processing and results. The accuracy of the sensor was then tested by dividing 994 

the expected mean time gap between ECG peaks (0.4s) by the recorded mean time gap 995 

between ECG peaks for every half hour. Unlike the naturalistic signal in the previous 996 

study, the ECG simulator is essentially not noisy and provides the ground truth for 997 

comparison purposes. As stated in section 2.3.2, the sensor writes data to a .dat file every 998 

5 minutes. This process took no longer than 0.08s on any recordings (a duration long 999 

enough to miss the ECG peak) and the only missed peaks occurred during the data 1000 

transfer process, i.e., while converting to .dat files. All other ECG peaks were fully 1001 

detected and as such, no further signal quality analysis will occur here.  1002 

The calculated instantaneous heart rate was batched into averages for each half hour. 1003 

This provides an accurate representation of the internal clock during that time. Any 1004 

significant change in half-hour-averages will highlight the consistency of the recording 1005 

(i.e. variation and drift of the clock). Figure 16 shows both the average relative clock speed, 1006 

and the distribution of clock speeds across the recordings. The overall average relative 1007 

clock speed was around 0.9999, i.e. the clock would be 0.1s ahead of a real time clock after 1008 

1000s of recording, or alternatively the device would record a 150 bpm heart rate as 1009 

149.985bpm. We therefore apply a 0.9999 correction to any output time-series in order to 1010 
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minimize inaccuracies further. There are some minor variations within a recording, but 1011 

no clear trend of drift for the clock speeding up or slowing down for a given sensor. Three 1012 

recordings trended down, two trended up, and the average absolute drift was only a shift 1013 

of 2.3x10-6 in relative clock speed per half hour. 1014 

 1015 

 1016 

 1017 

 1018 

 1019 

 1020 

 1021 

 1022 

Figure 16. The average relative clock speed is shown as the height of the bar charts, and the relative 1023 
clock speed for each half hour is shown as a scatter plot for each sensor. The slight increase for 1024 
UOY66B occurs after 8 hours of recording. 1025 

 1026 

2.5.2.3 User experience 1027 

Similar to users’ experience with the HMC, a very high percentage of users rated their 1028 

experience with the EgoActive sensor as positive (89%) and easy to place on both adults 1029 

(100%) and children (78%) despite their inexperience with the devices and the electrodes. 1030 

Parents reported that it was fairly easy to remove the sensing pads and body sensor from 1031 

their body (78%) and their child’s body (56%), and that wearing the body sensor did not 1032 

interfere with their or their child’s daily activities (100%). In fact, participants (infants and 1033 

adults) tend to frequently record with the Body Sensor for long periods of time (M = 23 1034 

hours 58 minutes/week). We identified ECG signals on infants wearing the body sensor 1035 

for M = 3 hours 52 minutes/day (SD = 1.18). These results indicate that the Body Sensor is 1036 

a wearable device that can comfortably be worn for extended periods of time by adults 1037 

and infants as young as 6 months. 1038 

1039 

3. Software 1040 

We now describe the software developed for the EgoActive platform. This falls into two 1041 

categories. First, we have developed an Android app in Java (described in Section 3.1) 1042 

which runs on the base unit tablet and which provides synchronization and data 1043 

management functionality. This app is used by participants while the platform is 1044 

deployed during data collection. Second, we have developed a number of software tools 1045 

in Python for automatic preprocessing of the raw data captured by our devices prior to 1046 

further extraction of meaningful features. This is run after a round of data collection is 1047 

complete on dedicated processing servers. Specifically, these preprocessing tools must: 1. 1048 

extract the synchronization codes from data recorded by each device so that we can match 1049 

and temporally align the different modalities of data (Section 3.2.1); 2. extract heart rate 1050 

from the raw ECG signal (Section 3.2.2); 3. Preprocess the accelerometer data into a usable 1051 

form (Section 3.2.3); and 4. automatically detect which portions of the HMC video data 1052 

are of sufficient quality to be usable (Section 3.2.4). 1053 
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 1054 

3.1 Android app for device synchronization and data backup 1055 

The Android application was developed to enable the synchronization of the devices 1056 

through the display of a 10-bit binary pulse at the beginning of a recording session; and 1057 

in order to backup the data from the HMCs and Sensors onto the Android tablet. The 1058 

application's overall layout is depicted in Figure 17. The "Admin Room" is completely 1059 

isolated from the rest of the application and inaccessible from the "User Home" area. 1060 

Moreover, the "Admin Room" is safeguarded by a password, making it unlikely for 1061 

unauthorized access. Inside the "Admin Room," there is a section dedicated to allocating 1062 

camera and Sensor URIs, effectively designating them as "Safe foreign devices" for data 1063 

transfer. Only devices handled by the specific researchers assigned to each box are marked 1064 

as safe. Appendix B includes a detailed description of a single run through the app.  1065 

The software was developed for and tested on the Samsung A8 with Android 11 that 1066 

we use in our base unit. In principle, the application could work on other devices or 1067 

versions but this has not been tested. The version of Android is important due to its 1068 

security implementations and stopgaps. Android 11 utilizes Uniform Resource 1069 

Identifier’s (URI) as the internal file handler of choice. URI’s exist to securely move files 1070 

between internal/external folders, in order to deal with the critique of previous android 1071 

versions debug permissions (ADB) [107]. 1072 

 1073 

 1074 

 1075 

Figure 17. Data flow diagram of the EgoActive App showcasing the layout and navigation of the 1076 
Android application. 1077 

 1078 

We also modified the tablet settings to prevent users from leaving the app and 1079 

accessing the home screen. This mitigates the risk of accidental app closure or unintended 1080 

user actions through the use of the ‘home bar.’ This ensures the stability and reliability of 1081 

the application while also ensuring users do not get lost while using it. Figure 18 shows 1082 

how a combination of the UI of the app and the modifications made to the hardware 1083 

encourages users to interact with the application as we intended. 1084 

We now describe the design and implementation of the two key features of the 1085 

application: synchronization and data backup. 1086 
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Figure 18. An annotated sample image from the application and an example of how the application 1087 
works in combination with the hardware modifications to make use cases clear. 1088 

 1089 

3.1.1 Design of the synchronization signal  1090 

The synchronization signal serves three purposes. First, it enables matching between 1091 

recording sessions from different devices using the synchronization bitcode. Second, once 1092 

correspondence between sessions has been established, it enables precise temporal 1093 

synchronization between time series data captured by all devices. Third, since the body 1094 

sensor is not equipped with a RTC, by encoding date and time information into the 1095 

synchronization code we are able to augment body sensor recordings with this 1096 

information. For the first purpose, we require that the generated synchronization codes 1097 

are sufficiently distinct that, when combined with the additional information from a 1098 

camera’s RTC and the ordering of recorded sessions on the body sensor, allow 1099 

unambiguous matching between sessions. This must include robustness to user error so 1100 

that we can detect and (if possible) recover from scenarios such as following the 1101 

synchronization procedure for only a subset of the devices or running the synchronization 1102 

process multiple times in quick succession.  1103 

For usability, we wish to minimize the time required to record the synchronization 1104 

signal. However, we are limited by the effective sample rate of the camera. While the 1105 

camera averages 30Hz, this can drop as low as 20Hz during normal performance. This is 1106 

further compounded by the rolling shutter capture, automatic exposure and white balance 1107 

adjustment of the camera. These add noise to the signal and make it non-trivial to later 1108 

decode to a binary signal. For this reason we limited the synchronization signal to 5Hz 1109 

which we found could be reliably decoded from video data in practice. 1110 

The synchronization signal consists of a sequence of 10 temporally consecutive 400ms 1111 

periods generated by the EgoActive App, representing a 10-bit code (see Figure 19). The 1112 

value of each bit is represented by the intensity within that period. An “on” bit is 1113 

represented by a 200ms high-intensity pulse, followed by a 200ms low-intensity period. 1114 

An “off” bit is represented by a 400ms low-intensity period. The first 3 bits encode the 1115 

synchronization date (0-7, specifically the day of the month modulo 8). The next 5 bits 1116 

encode the synchronization hour (0-23). The final 2 bits are a counter that encode the 1117 

number of synchronizations initiated within a single hour. This counter disambiguates 1118 

situations in which users synchronized devices more than once within a single hour (up 1119 

to a maximum of 4). Thus the tablet date and time, and counter can generate a unique 1120 

synchronization code across all devices for a recording session. In its current 1121 
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implementation, unique synchronization codes are generated if the total recording period 1122 

is 8-days or less and users do not synchronize more than 4 times within a given hour.  1123 

To facilitate locating the 10-bit code recorded by the HMC or sensor, we generated a 1124 

base sequence before and after the synchronization signal. The beginning of the 1125 

synchronization signal was preceded by a 2000ms low-intensity period, followed by a 1126 

high-intensity pulse, low-intensity period, high-intensity pulse sequence (400ms each). 1127 

The end of the synchronization signal was then followed by a low/high/low/high-intensity 1128 

sequence (400ms each; see solid blue line in Figure 19). Finally, a full green screen was 1129 

presented for 1000ms. This indicated to users that the synchronization process was 1130 

completed. The green screen further facilitated locating the 10-bit code in videos (see 1131 

Section 3.2.1). 1132 

 1133 

 1134 

Figure 19. Examples of the 10-bit synchronization signal that generates a unique code to temporally 1135 
align different devices. The solid blue line represents the constant base sequence used to locate the 1136 
synchronization signal. The dashed coloured lines represent the synchronization signal that encodes 1137 
the date (magenta), hour (red) and counter (grey). (a) The unique code is: 1111111111 (all 10-bits 1138 
“on”). (b) The unique code is: 1011001111. 1139 

We playback the synchronization pattern on the tablet screen by setting the screen 1140 

colour to black (R=G=B=0) for 0, white (R=G=B=255) for 1 and green (R=B=0, G=255) for the 1141 

post-signal period. In practice, to avoid having to generate the synchronization patterns 1142 

on-the-fly (and therefore relying on the timing of the device), instead we precompute all 1143 

2^10=1,024 synchronization codes and save them as animated GIF format images. When 1144 

the synchronization process is initiated by the user, the date and time of the tablet clock 1145 

along with its internal 2 bit counter is used to select which GIF should be retrieved and 1146 

presented. Since GIF display is not natively supported on android, we use the 1147 

MavenCentral android GIF viewer [108]. 1148 

 1149 

 1150 
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3.1.2 Data backup 1151 

The application also has the function to backup the HMC recordings onto the Android 1152 

tablet. When the HMCs are connected to the base unit via their charging cables, the backup 1153 

function within the app can be initiated. This automatically transfers all new video files 1154 

(i.e. those that have not yet been backed up) to the internal SD card in the tablet via a URI 1155 

transfer. This provides redundancy in case the HMC SD cards are subsequently damaged 1156 

but also provides some initial structuring of the data: video files from all four cameras are 1157 

now stored in a single location with separate folders for each camera, date and hour. By 1158 

leveraging the built-in security measures of an Android device, the application provides 1159 

a safe and reliable backup solution. At the end of a data collection phase when the base 1160 

unit is returned to the researchers, the backup process is run a final time to ensure all 1161 

camera files have been copied to the tablet. Then the researchers need only copy data from 1162 

the tablet SD card (and body sensor SD cards) to a central file store. 1163 

To implement the data transfer process itself we use SimpleStorageAPI [109], an 1164 

open-source API responsible for representing the files as URIs for the purpose of mobility 1165 

between devices. SimpleStorage is simple and secure, and the fact that the API is open-1166 

source means safety can be verified through analysis of the code. Each file is associated 1167 

with a specific Multipurpose Internet Mail Extension (MIME) type. In the Android 1168 

operating system, MIME types are further categorized into ten subtypes known as URIs. 1169 

For our application, this means that only files conforming to the correct MIME/URI 1170 

structure are transferred during the backup process. In our case, video files transmitted 1171 

by the designated cameras within the password-protected "Admin Room." 1172 

 1173 

3.2 Software for preprocessing raw data 1174 

In the current implementation of the EgoActive platform, data from the HMC and 1175 

Sensors are stored as 5-minute data files (MP4s for HMC videos, and custom binary files 1176 

for Sensor data). Thus as part of the platform, we provide a set of software tools 1177 

implemented in Python to help users preprocess the raw data files that can facilitate 1178 

analyses of the wealth of multi-modal data. In particular, we describe our tools for 1179 

extracting the synchronization signal from devices, extracting heart rate from ECG, 1180 

accelerometer preprocessing and HMC video quality labelling to identify potentially 1181 

unusable segments. 1182 

 1183 

3.2.1 Software for temporal synchronization of HMC and body sensor data 1184 

We aim to build a fast and computationally efficient solution to accurately locate and 1185 

decode the 10-bit synchronization signal recorded by the HMCs and body sensors. This 1186 

decoding generates a unique code that can be used to temporally align different devices.  1187 

The same algorithm is used to locate and decode the synchronization signal in both 1188 

data modalities, however there are some minor differences in preprocessing video versus 1189 

the luminosity signal recorded by the body sensor. These are described first. 1190 

Body sensor luminosity signal preprocessing. The body sensor stores the recorded 1191 

luminosity as a binary signal sampled at approximately 250Hz. This signal is not 1192 

uniformly sampled in time and so we uniformly resample at 500Hz using nearest 1193 

neighbour interpolation to maintain a binary signal. 1194 

Video preprocessing. The video data is also nonuniformly sampled in time (the 1195 

video encoder in our HMC uses variable frame rate encoding). First, we uniformly 1196 

resample the videos to 30Hz using nearest frame interpolation and downsample 1197 

resolution by a factor of 0.5 to 960 x 540 pixels. Since video data is written in 5 minute 1198 

blocks, we also identify consecutive video files and stitch them into a single continuous 1199 

file. This resampling and stitching is done efficiently using FFmpeg [110] running on a 1200 

GPU. The resampled and stitched videos are saved for later processing. To extract the 1201 
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synchronization signal from these videos, we convert to a 1D time series representing the 1202 

mean intensity. In order to perform this process efficiently, we implement this as spatial 1203 

global average pooling in PyTorch and perform the processing on the GPU operating on 1204 

batches of frames in parallel. This provides a signal for each colour channel. From this, we 1205 

extract two signals:  1206 

1. The ‘greenness’ signal is defined as max(0,G-R-B). This signal (see Figure 20(a)) has 1207 

a large value when the mean colour of the frame is green, i.e. when the average value 1208 

over pixels is significantly larger in the green channel than red and blue, otherwise it 1209 

is zero. 1210 

2. The average intensity signal is simply the average over the three colour channels (see 1211 

blue curves in Figure 20(c)). 1212 

The average intensity signal from video frames is continuous (not binary) and 1213 

significantly noisier than the luminosity signal from the body sensor. For this reason, for 1214 

the videos we run an initial coarse search to locate candidate segments within the video 1215 

that may contain a synchronization signal. This exploits the additional information of the 1216 

green screen presented at the end of the synchronization signal. To do so, we simply 1217 

search for points of transition from zero greenness to high greenness. This is implemented 1218 

efficiently as a PyTorch 1D convolution layer with a single fixed filter (shown in Figure 1219 

20(a) in red) and executed on the GPU. This gives a large response (see Figure 20(b)) when 1220 

the transition from the -1 segment to +1 segment aligns with the increase in greenness. 1221 

The filter is zero padded at the front such that the position of the filter when encountering 1222 

a peak response provides a frame index that occurs before the start of the synchronization 1223 

signal. Finally, we run a peak finding algorithm on this signal to provide the candidate 1224 

segments to search for synchronization signals. We constrain the peak finding such that 1225 

the minimum distance between peaks is 500 frames (16.7s). This time was determined as 1226 

the minimum required for a user to run two consecutive synchronization processes in the 1227 

app and avoid detecting the same synchronization signal twice if there is noise in the 1228 

greenness signal. 1229 

Synchronization signal location. After preprocessing, both the body sensor 1230 

luminosity and video data provide 1D, uniformly sampled time series. We now search 1231 

these two time series for the precise location of any synchronization signals. Exactly the 1232 

same algorithm is used in both cases, the only difference being that, for the videos, we 1233 

only search the already-identified candidate segments whereas for the body sensor 1234 

luminosity we search the entire sequence. For the video signals we also upsample to 1235 

100Hz using linear interpolation. To locate synchronization signals, we slide a template 1236 

signal over the raw signal and compute the normalized cross correlation (NCC). Since the 1237 

10-bit code is unknown, we do not know whether the actual signal contains zeros or ones 1238 

in this portion of the signal. Hence, in the template, we set the possible high parts of the 1239 

10-bit code signal to a half value (see Figure 20(c), red curve). This can be seen as the 1240 

average of all possible 10-bit codes and therefore the best choice for searching as the 1241 

‘expected’ signal. The location of synchronization signals is given as the local maxima of 1242 

the NCC response. We record the position of these detections to use later for temporal 1243 

alignment. We apply an additional threshold to the NCC maxima and only retain those 1244 

whose NCC value is above the threshold. This removes spurious detections caused by 1245 

noise in the signal. The threshold is set conservatively enough to deal with 0.4s of 1246 

incorrectly transmitted synchronization signal. For the body sensor, this is wide enough 1247 

to deal with a signal which was recorded during the data transfer (the conversion of data 1248 

to a .dat file, which occurs every 5 minutes), the main source of corruption that could 1249 

potentially occur during the process for the body sensor.  1250 

We validated the synchronization signal detection algorithm on a dataset of 1,444 1251 

time series, of which 1,152 contained at least one synchronization signal for a total of 1,218 1252 

synchronisation signals in total. All signals were successfully detected and only three false 1253 

detections occurred in all the time series analysed. This implies that the synchronization 1254 
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signal is sufficiently structured to avoid being activated by random noise, while the 1255 

threshold is also low enough to ensure all genuine signals are detected. 1256 

 1257 

 1258 

Figure 20. An overview of the synchronization signal detection and decoding process for video data. 1259 
The initial raw video frame data (top) is converted to a 1D greenness signal (a) which is used to 1260 
coarsely locate candidate segments by convolution with a filter providing a response (b) which is 1261 
maximal when the filter detects the transition to the post-signal green frame. Precise location is 1262 
found by sliding a template signal (c - red) over the mean intensity signal (c - blue) and computing 1263 
the normalized cross correlation (position of maximum response shown for two detected segments). 1264 
Finally, the 10-bit code is extracted by thresholding the mean of the signal within the “high” periods 1265 
of the 10-bit signal (bottom). 1266 

 1267 

Synchronization signal decoding. Having located synchronization signals in the body 1268 

sensor luminosity or video time series, we extract the 10-bit code by finding the mean of 1269 

the recorded signal over each part of the signal that could contain a “high” signal. 1270 

Specifically, we decode the ith bit through Equation 2. 1271 𝑏𝑖 = 1𝑒𝑖−𝑠𝑖 ∑𝑒𝑖𝑗=𝑠𝑖 𝑥𝑗 > 𝑡 (Equation 2) 1272 

si and ei are the start and end positions of the high segment of the ith bit, x is the measured 1273 

signal and t is a threshold. For the (binary) luminosity signal we use a threshold of 0.5 and 1274 

in practice implement this by taking the median value over the segment. For the 1275 

(continuous) video signal we use a threshold of 0.3. This lower value is required since a 1276 

white screen is usually recorded as an intensity less than 1. 1277 

 1278 

Synchronization signal matching. Having extracted synchronization codes from body 1279 

sensor and video data, we are able to find matches between different time series both 1280 

within and between the different modalities of data. The 10-bit binary code can be 1281 

converted to a decimal representation for easier matching. Once matches are identified, 1282 

the devices are temporally aligned by setting time = 0 to the start of the synchronization 1283 

signal (i.e., start of bit 1 in the 10-bit code; Figure 20). Note that synchronization signals 1284 
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might be recorded by some but not all of the devices. Hence, we cannot guarantee a one-1285 

to-one match between all detected synchronization signals. Synchronization codes and 1286 

hence matches should be unique in all but pathological cases (where >4 user-initiated 1287 

synchronizations are run within a single hour). In these rare cases, we can still 1288 

disambiguate the matches. Recordings on all devices are ordered by time and the 1289 

sequence of matched detections must preserve this temporal ordering. In addition, since 1290 

the HMCs are equipped with real-time clocks, date/time information in body sensor 1291 

synchronization codes can be used to select HMC recordings at a similar time. Having 1292 

established a match and with the corresponding locations of the signal within the original 1293 

time series, we can define all time series with respect to the reference synchronization time 1294 

providing the final synchronized time series data. Where a time series contains multiple 1295 

synchronization signals, we use the latest one as the start of the time series. 1296 

 1297 

3.2.2 Body sensor ECG processing 1298 

The raw ECG signal captured by the EgoActive sensor is processed in two stages, each 1299 

encompassing several steps: first the raw ECG is processed into a heart rate (HR) signal 1300 

(the main steps are detailed algorithmically in the top row blue boxes of Figure 21); 1301 

second, the HR undergoes a process of cleaning in order to yield reliable HR signal 1302 

stretches to be used in subsequent analyses, along with noise and artefact identification 1303 

for unreliable HR signal stretches (the main steps appear in the bottom row red boxes of 1304 

Figure 21). 1305 

 1306 

Figure 21. Proposed pipeline for processing recorded raw ECG signal into usable heart rate (HR) 1307 
signal. ECG processing steps in top row (blue), HR processing steps in bottom row (red). 1308 

 1309 

ECG processing and R-peak detection. In an ECG, a detection algorithm seeks to identify 1310 

the QRS complex, a characteristic feature of the ECG with an R-peak in the centre [111]. 1311 

The set of detected R-peaks is then converted into the instantaneous heart rate (calculated 1312 

in beats per minute) by using the formula in Equation 3 below. Here, tpeaks refers to the set 1313 

of time indices (in seconds) corresponding to the labelled R-peaks and Δ denotes the 1314 

differencing operator which calculates the inter-peak gaps. 1315 

 1316 𝐻𝑅(𝑏𝑝𝑚) = 60𝛥𝑡𝑝𝑒𝑎𝑘𝑠 (Equation 3) 1317 

 1318 

 1319 
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Initial preprocessing is required to filter noise out and to allow for the QRS complex 1320 

detection [112], the source of characteristic R-peaks within the ECG. With adult ECG, a 1321 

high-pass filter of 0.5Hz is used in combination with a notch filter at the mains-electricity 1322 

frequency (e.g. 50Hz or 60Hz). The 0.5Hz threshold along with a notch filter is the default 1323 

setting in the Neurokit2 open source Python library for ECG peak detection [113] and in 1324 

other studies (e.g. [114]), while also being the same lower bound used for monitor-quality 1325 

ECGs [115]. The Neurokit2 peak detection method (default settings) was used to detect R-1326 

peaks on the preprocessed ECG signal [113], where the QRS complexes are identified 1327 

based on the steepness of the absolute gradient of the ECG, and the local maxima are 1328 

identified as the R-waves. 1329 

Infants have a higher heart rate than adults [116] and as such have a different 1330 

frequency content within the signal. In comparing bandpass filtering ranges for 1331 

preprocessing of infant ECG, a 1-17Hz bandpass was found to approximately halve the 1332 

R-wave peak compared to the 0.05-150Hz option [117]. In order to preserve the R-wave 1333 

peak in children, we experimentally verified the optimal set of filters on a hand-labelled 1334 

dataset of infant ECGs (N = 88, age range: 5-42 months, mean duration: 33 minutes). A 1335 

15Hz high-pass filter (HPF) with a notch filter at the mains-electricity frequency was 1336 

found to be the most effective approach, and so was adopted (Figure 22).  1337 

The specificity (true negative rate), sensitivity (true positive rate), and positive 1338 

predictive values (precision) were used as measures of success. While the ability to detect 1339 

peaks (sensitivity) is highly valued, it is arguably more important to not predict peaks 1340 

where none exist (specificity, positive predictive value) as it is easier to recover small 1341 

amounts of lost signal than to reject incorrectly labelled beats. Fortunately, the 15Hz HPF 1342 

+ Neurokit2 approach was the best across all metrics, and so no tradeoff had to be made. 1343 

A novel local correction relative to the unfiltered signal was then carried out in order 1344 

to counteract the shifting-peaks effects of frequency filtering. This correction iteratively 1345 

searches for the largest peak ±0.01s either side of the peak location on the processed ECG, 1346 

to check for a larger local peak within the raw unprocessed ECG.  1347 

 1348 

 1349 

 1350 
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 1352 
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 1361 
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Figure 22. A demonstration of the improved performance of the 15Hz HPF compared to other HPF 1362 

options and three pre-existing methods: the HeartPy package approach [118], Rodrigues et al. [119] 1363 
and the Neurokit default pipeline. These comparisons all include the local novel correction. The 1364 
specificity (true negative rate) measures successful non-detection of incorrect peaks, the sensitivity 1365 
(true positive rate) measures successful detection of correct peaks, and the positive predictive value 1366 
(precision) measures the proportion of correct peaks detected to all peaks detected for a given 1367 
method. 1368 

Heart rate processing. Missing R-peaks translate into artificially low heart rates. If the 1369 

heartbeat was uniform, the heart rate due to the missing peak would register as precisely 1370 

half the value of the neighbouring heart rates. However, since heart rates exhibit constant 1371 

variation, a more sophisticated algorithm is needed to automatically detect missing R-1372 

peaks in a ground truth. Conversely, an additionally detected peak would inflate the heart 1373 

rate artificially. Beat-to-beat comparisons are reported in the literature to identify 1374 

mislabelled R-waves, e.g. setting thresholds for detecting longer or shorter times between 1375 

subsequent R-waves as missing or incorrect R-waves, respectively [120]. As the realtime 1376 

necessity for beat-to-beat comparisons ceases for post-processing, our approach is to 1377 

apply a threshold over a wider beat-window in order to robustly account for noise, hence 1378 

missing/additional R-peaks were found by significant deviations from a local median. The 1379 

optimal parameters were chosen to minimize the average residual heart rate between the 1380 

processed heart rate and a labelled ground truth in an infant dataset (N = 88) (see Figure 1381 

23, where a filter width of 31 and acceptance threshold of 1.3 led to the lowest average 1382 

heart rate residual of 0.334bpm). Any R-peaks that fall outside that region are removed 1383 

and the gap is filled by linear interpolation from the nearest R-peaks that fall within the 1384 

local median range. 1385 

Figure 23. Graph showing the choice of optimal parameters for detection of missing and/or 1386 
additional beats in the heart rate. FW is the width of the median filter, AT is the multiplicative factor 1387 
to define the acceptance threshold. 1388 

 1389 

Wrongly located R-peaks can still be undetected by the median filter approach. A useful 1390 

observation is that an early-labelled beat will lead to a much greater heart rate rise and 1391 

then a much steeper heart rate drop than would typically appear within a natural signal 1392 

(Figure 24). A late-labelled beat will do the opposite. This motivates our proposal to search 1393 

for the alignment of three consecutive sign changes concurrently with a large variation in 1394 

the heart rate difference (>15bpm for the first and third heart rate gaps, >25 bpm for the 1395 

middle gap), thus identifying the mislabelled beats within a signal, provided the 1396 

neighbouring beats are correct. 1397 
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Figure 24. The bottom figure shows the raw ECG, the top figure shows the derived heart rate using 1406 
Equation 3. The effect of an early (blue +) or late (red circle) label on the heart rate when compared 1407 
to a typical beat (black x). 1408 

Methods for assessing HR quality reported in the literature include checking for non-1409 

stationary signal, viable heart-rate range, and high signal-to-noise ratio (SNR) [121], or 1410 

extracting shapes and behaviors of the signal and grouping the samples by an 1411 

agglomerative clustering approach [122]. Kramer requires the user to accept/reject the 1412 

signal in full, an approach which is not efficient for long naturalistic recordings. 1413 

Rodrigues’s approach required periods of noise and signal, and became computationally 1414 

inefficient for longer recordings. For the newly developed sensor, a custom algorithm was 1415 

designed to detect areas of good quality heart rate signal within long recordings in a 1416 

computationally efficient manner. 1417 

The beat correction algorithm for missed/additional beats was used as an initial 1418 

measure of signal quality. Figure 24 highlights that correctly labelled R-peaks will 1419 

typically fall inside the expected bounds, whereas incorrectly labelled R-peaks are likely 1420 

going to either cause a steep increase or decrease in heart rate (for additional or missing 1421 

labels respectively). By calculating the proportion of “wrong” labels within a given filter 1422 

width, a rolling measure of heart rate signal quality is calculated, hereby referred to as the 1423 

“signal quality index” (SQI). An SQI vector was created and used to identify signal 1424 

locations where less than 75% of the recorded beats within a sliding window width of 31 1425 

beats deviate by more than 1.3 from the local median. This vector works as an indicator 1426 

of unreliable regions (i.e., the local median indicates the existence of poor signal within 1427 

the measured region). In order to make the indicator more specific, various manipulations 1428 

were used. The regions of good SQI were then grown according to whether specific beats 1429 

at the boundary fell inside the local median range. Conversely, any continuous regions 1430 

>3.5s long of recordings outside the local median were set to zero SQI, as were any gaps 1431 

in heart rate longer than 2.5s. Additionally, any good regions <5s long were set to zero 1432 

SQI in order to only leave segments of a reasonable size. These parameters could be 1433 

tailored depending on how long of a heart rate region is useful for a given academic 1434 

question.  1435 

 1436 

3.2.3 Acceleration processing 1437 

The three calibrated orthogonal axes signals from the use of the body sensor 1438 

accelerometer are presented in gravitational units (g). Data were collected for the 29 1439 

infants and toddlers aged between 3 and 36 months (14±10 months). Periods of no signal, 1440 

and the 5-points before and after, were identified and removed as <0.001 g from a 5-point 1441 

moving standard deviation. Further, the bottom and top 0.05% of data points were 1442 

removed as potential outliers. The absolute peak acceleration across all three axes was 1443 
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1.56±0.24g. Simultaneous data were obtained using the Plux ACC accelerometer, and 1444 

provided good agreement with 1.88±0.49g. With the EgoActive device, for three 1445 

participants there were occasional peak values exceeding the accelerometer limits of ±2g. 1446 

As absolute values above 2g were infrequent, an accelerometer range of ±2g is suitable for 1447 

6-36 month old infants in a free-moving environment when the device is located on the 1448 

left lateral superior chest that will dampen body accelerations through its position 1449 

proximal on soft tissue away from skeletal bony landmarks. Combining the three axes 1450 

provided resultant accelerations of 2.03±0.40g (EgoActive) and 2.47±0.55g 1451 

(Biosignalsplux). These peak resultant accelerations during a free-moving environment 1452 

are greater than those found when supine without toys, under a play gym or in a car seat 1453 

of approximately 0.5±0.2g found for infants aged 5.2±2.3 months with the accelerometer 1454 

placed on the ankle [123].  1455 

 1456 

3.2.4 HMC quality control processing 1457 

Since we rely on non-expert users to operate the devices and since data is captured 1458 

in uncontrolled, natural environments, there are several ways in which unusable or 1459 

uninformative video data can be captured. Unusable video occurs when video is captured 1460 

in an inadequately lit environment. In this scenario, even with the camera’s autoexposure 1461 

set to maximum, the signal to noise ratio of the captured video is too low to extract any 1462 

meaningful signal. Uninformative video occurs when the camera is not being worn. For 1463 

example, at the beginning or end of a recording session, the user might put the camera 1464 

down while it is still recording. Hence, we need to detect periods of no camera motion. 1465 

We label, but preserve, unusable periods. This means absolute timestamps are preserved 1466 

throughout the video while still enabling extracted data to be ignored during the unusable 1467 

periods. To provide both a means to store these time segment labels but also to provide 1468 

an intuitive visualization, we log unusable/uninformative periods in a subtitle file (SRT 1469 

format) accompanying each video file. This means that an operator can playback the video 1470 

and see informative labels for periods that will be excluded from analysis. Finally, it is 1471 

possible to wear the adult camera upside down. When this accidentally occurs, we need 1472 

to detect the video inversion and correct it before attempting to extract any information 1473 

from the videos. We now describe how we automatically detect each of these cases. 1474 

 1475 

Dark period detection. During search for the synchronization signal, we already compute 1476 

mean intensity per frame and colour channel. This is done efficiently using global average 1477 

pooling on the GPU so has very low computational cost. We further average over colour 1478 

channels providing a scalar time series indicating the mean average brightness over the 1479 

video. To detect dark periods, we simply threshold this signal and label frames where the 1480 

mean brightness is below the threshold. The threshold value is chosen by manually 1481 

selecting dark and light periods and finding the optimal separation between the two. In 1482 

practice, we threshold on a value of T=0.15 (with intensities normalized between 0 and 1). 1483 

 1484 

Static period detection. A static camera can occur when the infant is sleeping, or when 1485 

the HMC has been removed and left recording on a stationary surface. A static camera 1486 

means that static scene elements do not move in the image, though dynamic scene 1487 

contents may still move (for example people walking in front of the camera). To detect 1488 

static scenes we compute dense optical flow between adjacent frames with a light version 1489 

of the RAFT neural network [124], in which each frame is sampled once per second of the 1490 

session recording. Scenes with a static camera are generally characterized by a lack of 1491 

motion at the image boundary, where motion due to dynamic objects is minimal. 1492 

Therefore, we extract only the image boundary of the optical flow (defined as a 5 pixel 1493 

border around the image frame), which we split into 20 equally-sized segments, to 1494 

evaluate boundary motion. Subsequently, we compute the mean absolute value of the 1495 

flow magnitude in these segments, and find the number of segments where this value is 1496 
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below a predetermined threshold value (which we set to 2 pixels), signifying a lack of 1497 

motion. If the number of these segments is greater than or equal to 5 segments, then we 1498 

classify the image pair as being static. We use a validation set of over 8k frames to achieve 1499 

>98% classification accuracy. 1500 

 1501 

Inversion detection. Due to user error, videos can be inverted due to participants wearing 1502 

HMCs upside-down. Usually, entire videos are inverted though occasionally a user 1503 

corrects the orientation part way through. It is vital to detect inverted videos since any 1504 

subsequent processing for tasks such as face detection are likely to be more degraded since 1505 

face detection networks are not usually trained on inverted faces. Our assumption is that 1506 

inversion should be evident from scene contents visible in most frames (for example 1507 

regions recognized as floor or objects on the floor should be below walls, people and 1508 

ceiling). We use a convolutional neural network (CNN) to recognize such scene contents 1509 

and their arrangement. The CNN is trained to take an image as input and to output a 1510 

single scalar probability indicating the probability that the frame is inverted. For training, 1511 

we manually identify a set of inverted and non-inverted videos captured in diverse and 1512 

natural environments. From these videos, we form a dataset of 16k labelled frames, of 1513 

which half are inverted and half are normal orientation. For our CNN architecture we use 1514 

the B0 variant of the EfficientNet model [125]. We use a model that was pre-trained for 1515 

ImageNet classification such that we only need to fine-tune it for our task. We replace the 1516 

final classification layer with a fully connected layer with a single output and sigmoid 1517 

activation. We perform the fine-tuning using binary cross entropy loss, the Adam 1518 

optimizer, a batch size of 16 and downsample video frames to size 224 by 224 prior to 1519 

input. We train for 5 epochs. We use an unseen validation set comprising an additional 4k 1520 

frames (evenly balanced between inverted and non-inverted) on which we achieve >99% 1521 

classification accuracy and >99% precision and recall. Within our pipeline, we use this 1522 

model to classify one frame per second over a session as either inverted or normal 1523 

orientation. We log the session as wholly inverted if it is greater than 80 percent inverted 1524 

from this sampling. Sessions with a high, but <80%, predicted inverted frame rate are 1525 

tagged for later verification by a human. 1526 

 1527 

4. Discussion 1528 

Child development involves complex and interactive processes that occur over multiple 1529 

time scales (e.g. [11,14-16]). These processes require a deeper understanding of how 1530 

infants actively explore their environment. As infants develop their cognitive, social, 1531 

language and motor capabilities, they interact with their environment, carers and other 1532 

people from their unique (and developing) egocentric perspective. This interaction, in 1533 

turn, dynamically changes the information that they attend to and acquire as they develop 1534 

(for a review, see [7]). Although a strength of non-natural lab-based studies is tight 1535 

experimental control, they fail to capture the wealth of data that can help researchers 1536 

understand infants’ trajectory for critical developmental areas ranging from executive 1537 

function to emotion processing and social learning. Thus a naturalistic approach, in which 1538 

large amounts of multi-modal data are collected in the wild, is needed to advance 1539 

developmental science. However, to date, there is no user-friendly and unobtrusive 1540 

technology to densely and reliably sample life in the wild. 1541 

 1542 

4.1 New tools for developmental research 1543 

To address this gap, we developed the EgoActive platform which provides wireless 1544 

and wearable sensors to measure infants’ and carers’ egocentric auditory and visual 1545 

experiences concurrently with their ongoing cardiac activity and body movements. The 1546 

head-mounted cameras to record egocentric perspectives were designed to be lightweight 1547 

and small so that they can be used across a large age range from infants (as young as 5-6-1548 
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months) to adults. Despite this important small-form factor for the naturalistic approach, 1549 

the lens has a sufficient FOV to capture the visual environment, and the camera records 1550 

high resolution images at 30Hz continuously for several hours. A similar design 1551 

philosophy was taken for the body sensors to record ECG and acceleration across a large 1552 

age range. We used a two-electrode configuration to ensure ease of use with infant-1553 

friendly electrodes while allowing for reliable ECG sampling at 250Hz continuously for 1554 

several hours. This sampling rate can accurately capture R-peaks, and allow for more 1555 

advanced HR variability analyses [101,102]. Acceleration is accurately recorded by a 1556 

calibrated accelerometer at 65Hz. The casing material for the HMCs and body sensors are 1557 

lightweight and comfortable for users, particularly infants, yet durable enough to insulate 1558 

and protect camera lens, circuit boards, batteries and internal cables. The EgoActive 1559 

platform includes a portable base unit to synchronize different devices, and act as a 1560 

charging station and data backup. Lastly, we developed open source software tools to 1561 

facilitate critical pre-processing stages for the raw data, including temporally aligning 1562 

data from different devices and data cleaning (see Appendix A for a list). 1563 

We validated the EgoActive platform (see Section 2.5) to ensure that our custom 1564 

designed wearable sensors unobtrusively and reliably capture infants’, toddlers’ and 1565 

adults’ egocentric perspective and physiological states during daily activities (e.g. play or 1566 

tea time). For the HMC, we showed that the camera lens’ FOV captured more than 80% 1567 

of user fixations recorded by a head-mounted eye tracking system [103]. Although our 1568 

EgoActive HMC only measures the scene as a function of head direction, the comparison 1569 

with the eye-tracking data in our validation study suggests that the scenes captured by 1570 

the HMC include the majority of fixations that users are likely to make. However, this is 1571 

a limitation that should be considered for specific studies. For ECG and acceleration, we 1572 

measured data concurrently from our EgoActive device and the BiosignalpluxTM device 1573 

which has been used in previous studies with adults (e.g. [126-128]). Our device 1574 

performed comparably to the BiosignalpluxTM device. We also used an ECG simulator to 1575 

demonstrate that the EgoActive sensor had reliable recordings over a long period relative 1576 

to a ground truth. Finally, we asked families to use the EgoActive platform for one week 1577 

to gauge user experience. A majority of the caregivers reported that the platform was easy 1578 

to use and operate, comfortable and did not interfere with their daily activities. The 1579 

caregivers also reported that 6-month-old infants infrequently removed the devices. Thus 1580 

following our specification, other researchers can construct the EgoActive platform for 1581 

use in their research without further need for validation. 1582 

 1583 

4.2 Challenges for the EgoActive platform 1584 

We designed the EgoActive platform to be well suited for developmental research ‘in 1585 

the wild’. However, there remain challenges in using our platform for the naturalistic 1586 

approach. First, despite its user-friendliness (see Section 2.5), our platform may still 1587 

require that users are comfortable with technology and that they have some minimum 1588 

level of technical competency. Here, we think that researchers can improve overall 1589 

usability; for example, by familiarizing users with the platform, and providing training 1590 

with the sensor devices (as we did). Second, there can be challenges with infants (and 1591 

adults) interacting with the sensors beyond their intended use (e.g., older infants may 1592 

remove the sensors). We provide software solutions to help detect these periods (see 1593 

Section 3.2) and will continue to improve on these solutions. Third, there can be challenges 1594 

with maintaining the different components. We designed the platform to use off-the-shelf 1595 

components where possible, and otherwise readily available materials. The technology 1596 

used to manufacture the components at a relatively small scale is also widely available. 1597 

Lastly, there can be privacy concerns as the platform records video and audio from their 1598 

everyday environment (e.g., home). Researchers should therefore have good ethical 1599 

protocols in place in line with their institution recommendations and country legislation 1600 

concerning data privacy and reporting issues. 1601 

 1602 
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 1604 

4.3 Summary and research potential 1605 

To summarize, the EgoActive platform allows researchers to measure dynamic 1606 

changes to individuals’ natural environment from their egocentric perspective 1607 

synchronized to corresponding changes to their physiological states. The synchronized 1608 

data from our platform can be used to tease apart the complex processes that are 1609 

important for development. For example, changes to heart rate have been shown to relate 1610 

to infants’ attentional states (e.g. [30-33]). The synchronized video and ECG data allows 1611 

researchers to determine whether different stimuli in the environment (e.g. faces, toys or 1612 

people) can predict heart-rate fluctuations and possibly these attentional states. Given that 1613 

the platform is easy to use, infants can be tested longitudinally to quantify changes to their 1614 

egocentric experiences of the environment as they develop more motor coordination. The 1615 

capacity to record concurrently from infants and caregivers will allow researchers to study 1616 

parent-child interactions with richer data collected in natural situations and with any 1617 

unintended influences by researchers mitigated (e.g. [65,129,130]).  1618 

The data collected in the wild can complement lab-based experiments, e.g. EEG 1619 

studies that provide measures of neural development [131]. Lastly, as noted above, 1620 

researchers can collect large and rich multi-modal data using our platform. This wealth of 1621 

data can be used to quantify statistical regularities in infants’, toddlers’ and children’s 1622 

auditory and visual environment. The multi-modal data can also contribute to improving 1623 

the output of mathematical models and machine-learning systems that aim to 1624 

automatically process auditory or visual input for specific tasks (e.g. detect facial emotions 1625 

or detect certain sounds such as crying), particularly from infants’ egocentric perspective. 1626 

Most existing training data are based on data scraped from the internet and may therefore 1627 

not generalise to natural situations. Furthermore, little to none of this data contains 1628 

information actively sampled by infants and children from their environment. 1629 

We highlight that the EgoActive platform can be easily deployed, as illustrated in 1630 

Figure 25. This important design feature means that researchers can also systematically 1631 

test and compare populations from a wide range of cultural and socio-economical 1632 

environments, beyond the WEIRD countries. Indeed very little is known about the extent 1633 

to which existing developmental models, based on lab data collected in WEIRD countries, 1634 

explain the cognitive and socio-emotional development of children worldwide (e.g. 1635 

[17,18,132]). These newly developed tools for the naturalistic approaches are crucial for 1636 

achieving step changes in understanding child development across longer age spans 1637 

through larger scale studies. 1638 

 1639 

 1640 
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Figure 25. A flow diagram illustrating one possible deployment option of the EgoActive platform 1652 
for research. In the research lab, the equipment is prepared, including the HMCs, body sensors, base 1653 
unit, electrodes and instructional materials. The platform can be delivered to a home or picked up 1654 
from the lab, and a researcher can instruct caregivers on its use. The caregiver and infant wear the 1655 
HMC and sensor for several hours per day sampling life in the wild, using the base unit to 1656 
synchronize all four devices per recording session and for data backup. The platform is then 1657 
returned to the research lab. Software tools provided with the platform are used to temporally align 1658 
the data from the devices, and then pre-process and clean the temporally aligned HMC, ECG and 1659 
acceleration data for further analyses to address specific research questions. 1660 
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Appendix A 1691 

The following additional resources will be made available to researchers upon request: 1692 

 1693 

1. A sample dataset comprising a raw video and body sensor recording and the resulting 1694 

synchronised time series after applying our preprocessing pipeline. 1695 

2. Python source code for: 1696 

a) Video resampling, stitching and synchronisation signal detection 1697 

b) Detection of dark/static/inverted videos or video segments 1698 

c) Conversion of raw .dat body sensor files into human-readable .txt files 1699 

d) Extraction, processing, and quality assessment of heart rate from raw ECG signal 1700 

e) Extraction and processing of accelerometer files 1701 

3. AutoCAD designs for base unit foam insert layers 1702 
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4. Java source code for Android tablet backup and synchronisation app 1703 

5. Body Sensor manufacturing files: 1704 

a) KiCAD project files for the Body Sensor circuit board design. 1705 

b) Bill of Materials. 1706 

c) Arduino sketch, the program code which drives the body sensor processor. 1707 

d) Python script to read and convert the raw binary .dat files into human-readable 1708 

.txt files for heart rate & accelerometer data. 1709 

e) CAD files for the body sensor case design (injection moulding and 3D printing). 1710 

6. HMC manufacturing files 1711 

a) System diagram 1712 

b) Bill of Materials 1713 

c) CAD designs for the HMC casings (injection moulding and 3D printing) 1714 

d) Instructions for assembling the HMC 1715 

 1716 

 1717 

 1718 

 1719 

Appendix B 1720 

 1721 

Camera calibration results 1722 

We performed a geometric calibration of both the wide and narrow FOV lenses using 1723 

a pinhole perspective model with two radial and two tangential distortion parameters. 1724 

For each lens, we moved the camera around a fixed calibration target to capture the target 1725 

from different perspectives. This target was a planar black and white checkerboard 1726 

pattern with 7 rows and 10 columns (35 black and 35 white squares). We then extracted 1727 

12 frames which captured the target from 12 different perspectives with the camera’s 1728 

native resolution of 1920 x 1080 pixels. We show visual results in Figures A1 and A2 for 1729 

the wide and narrow FOV lens, respectively. In (a) we show the 12 captured images In (b) 1730 

we show the mean reprojection errors per image for the checkerboard corners. For both 1731 

cameras, the calibration has subpixel level accuracy (mean error approximately 0.3 pixels). 1732 

In (c) we show the estimated poses of the calibration target relative to the camera. This 1733 

shows the range of poses used within the calibration. 1734 

The calibration provides the following estimates for the intrinsic parameters of the 1735 

cameras: 1736 

 1737 

 Wide FOV lens Narrow FOV lens 

Focal length (x) 972.3 pixels 1571.5 pixels 

Focal length (y) 971.7 pixels 1569.6 pixels 

Principal point (x) 967.3 pixels 946.3 pixels 

Principal point (y) 525.8 pixels 512.0 pixels 

Radial distortion 1 0.0638  0.0462 

Radial distortion 2 -0.0979 -0.0768 

Tangential distortion 1 -3.3806e-04  -5.4206e-04 

Tangential distortion 2 -8.7499e-05 3.0137e-04 

 1738 
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 1739 

 1740 

As expected, the wide FOV of the adult camera is reflected in the shorter focal length. The 1741 

resulting increased fisheye distortion is reflected in the larger magnitude of the radial 1742 

distortion coefficients. 1743 

 1744 
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 1765 

 1766 

Figure A1: Camera calibration results for the wide FOV lens: (a) captured calibration images, (b) 1767 
mean reprojection error for each image, (c) estimated positions of the calibrated target relative to 1768 
the camera. 1769 

 1770 

 1771 
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 1777 
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 1783 
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Figure A2: Camera calibration results for the narrow FOV lens: (a) captured calibration images, (b) 1784 
mean reprojection error for each image, (c) estimated positions of the calibrated target relative to 1785 
the camera. 1786 

 1787 

Appendix C 1788 

Single run through of the app 1789 

The experience of using the android application varies depending on the roles of 1790 

setup, user, and researcher. The setup process involves the initial configuration of the 1791 

application on a new Android device. 1792 

 1793 

Role Process Actions 

Administrators Initial set-up ● Perform typical Android setup Procedure 
● Insert SD card 
● Install application from Github 
● Give application full administrator rights in 

settings 

Administrators Data collection 
preparations 

● Receive the box 
● Retrieve Cameras/Body sensors from inside box 
● Enter ‘Admin Room’ in application 
● Initialise cameras 
● Create save location on tablet 
● Exit admin room 
● Enter user home 

End users Data collection in the 
natural environment 

● Receive box 
● Receive short training by administrators 
● Initialise the synchronisation process to begin 

recording 
● Record data 
● Backup data 
● Repeat until time to give box back 

 1794 

 1795 

 1796 

● Time/Counter verification 1797 

 1798 

To  select the GIF displayed on synchronisation, the time and date are encoded into 1799 

binary 1800 

``` 1801 

int day3bits = day % 8; 1802 

String daybin = String.format("%3s", Integer.toBinaryString(day3bits)).replaceAll(" ", "0"); 1803 

Log.i("Daybin: ", daybin); 1804 

// Convert the hour of the day to binary - will be 5 bits 1805 

String hourbin = String.format("%5s", Integer.toBinaryString(hour)).replaceAll(" ", "0"); 1806 

Log.i("hourbin: ", hourbin); 1807 

// Create 8 bit code by concatenating 1808 

String bin = daybin + hourbin; 1809 

Log.i("bin: ", bin); 1810 

// Convert back to decimal 1811 
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//dec1 = Integer.parseInt(bin, 2); // Use this value to choose GIF 1812 

//Log.i("Dec1: ", String.valueOf(dec1)); 1813 

return bin; 1814 

``` 1815 

This will then return an 8-bit binary string, which is combined with a 2-bit string 1816 

representing a counter, resulting in 1024 possible results (the day of the week + the hour 1817 

of the day + the counter 1-4) which is then used to select a synchronisation GIF from the 1818 

list. 1819 

 1820 

 1821 

● Timer/Delay (Discussing the several minute requirement through sync to stop 1822 

overlapping files) 1823 

 1824 

The application relies heavily on the public API simplestorage to work due to the 1825 

nature of file transmission within Android, the file transfer speed can vary from device to 1826 

device, however it takes an average of 30 seconds to transfer a 5gb file, however, within 1827 

some extreme circumstances during testing it could take up to 15 minutes to transfer a 1828 

file, depending on the efficiency of the hardware/how full the device was. For this reason 1829 

there is an in-built warning regarding the transfer of files and requiring up to 30 minutes. 1830 

Within testing, should a new transfer be started before the previous finished, it would 1831 

create overlapping folders which overall caused the application to run incredibly slowly 1832 

and resulted in missing data. 1833 

 1834 

  1835 

Appendix D 1836 

CAD designs for the four foam insert layers and perspex cover for the base unit case 1837 

(see Section 2.4) 1838 

The base unit is housed within a WAG TEKNO 2007 polypropylene carry case (external dimensions: 1839 
340mm x 275mm x  83mm). The bottom of the case contains the hardware components while the lid 1840 
provides storage and carry space for four HMCs and two body sensors. To provide a rigid mounting 1841 
surface, we screw and glue 24mm x 28mm wooden inserts along the two sides of the case with a 1842 
chamfered edge to fit the curved internal corners of the case. The electronic components are held in 1843 
place and cushioned by four layers of polyethylene closed cell foam which we laser cut according 1844 
to custom designs (see below). These are glued to the case and the layer below, bringing the top of 1845 
the final foam layer flush with the wooden inserts. Everything is held in place by a perspex sheet 1846 
which is screwed to the wooden inserts, providing cut outs for the tablet screen, charge and backup 1847 
cables and access to the tablet power button. Importantly, the perspex sheet also has cutouts 1848 
specifically sized for the HMCs and Sensors to ensure ease and reliability of synchronising the 1849 
devices (Figure 18 main text). 1850 
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