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Abstract

Quasicrystals (materials with long range order but without the usual spatial peri-

odicity of crystals) were discovered in several soft matter systems in the last twenty

years. The stability of quasicrystals has been attributed to the presence of two promi-

nent length scales in a specific ratio, which is 1.93 for the twelve-fold quasicrystals most

commonly found in soft matter. We propose design criteria for block copolymers such

that quasicrystal-friendly length scales emerge at the point of phase separation from

a melt, basing our calculations on the Random Phase Approximation. We consider

two block copolymer families: linear chains containing two different monomer types in

blocks of different lengths, and ABC star terpolymers. In all examples, we are able

to identify parameter windows with the two length scales having a ratio of 1.93. The

models that we consider that are simplest for polymer synthesis are, first, a monodis-

perse ALBASB melt and, second, a model based on random reactions from a mixture

of AL, AS and B chains: both feature the length scale ratio of 1.93 and should be

relatively easy to synthesise.
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Introduction

Quasicrystals are crystals that have long range order, and so have sharp X-ray diffraction

spectra, and yet do not have the spatial periodicity usually associated with crystals.1 They

often have rotation symmetries that are incompatible with spatial periodicity. The first

examples were in metal alloys and had icosahedral symmetry.2 Subsequently Zeng et al.3

reported quasicrystals in micelles made from wedge-shaped dendrimers: these examples were

quasicrystalline, with twelve-fold rotation symmetry in two dimensions and periodic in the

third. Twelve-fold quasicrystals have recently been reported in systems as simple as oil–

water–surfactant mixtures.4 An earlier discovery by Hayashida et al.5 was an example with

the same dodecagonal rotation symmetry in a three-component ABC star terpolymer blend

of polyisoprene, polystyrene and poly(2-vinylpyridine). In this case, the bulk properties were

as if the three components were immiscible, forming tiles composed the A, B and C block

copolymers in two dimensions, with the junction points aligned in the third. The small-angle

X-ray scattering pattern of the quasicrystal sample had two circles of wavevectors with twelve

peaks on each circle, demonstrating dodecagonal rotation symmetry and the presence of two

length scales, roughly in a ratio of 1 : 1.93.

Block copolymers offer versatility in the structures they can form owing to the wide

variety of different monomers, the different ways that the monomers can interact, and the

control of the lengths of the monomer chains.6 Several recent papers use this versatility to

choose polymers in such a way as to form quasicrystal approximants, for example by choosing

different monomer types in diblock micelles,7,8 in giant surfactants,9 in polymer liquid crystal

systems,10 and in ABC triblock copolymers.11 The potential diversity of resultant mesoscale

structures in block copolymer systems is explained in detail in the review by Huang et al.12

These structures offer the potential of developing materials with unusual photonic bandgap

behavior13,14

There is experimental evidence that quasicrystals are associated with the presence of two

length scales in the system5,12 in a wide range of examples going beyond soft matter and
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materials science (for example, fluid dynamics15–17 and nonlinear optics18). The presence of

different length scales is qualitatively clear in the structure of the components for several of

the soft-matter systems that form QCs, including micelles with a soft corona3,19 and star

copolymers with arms of different lengths.5,20 The connection between having two length

scales and the stability of QCs is supported by a large body of theoretical work, including

from the fields of fluid dynamics and pattern formation,1,15,21–26 phase field crystals,27–34

classical density functional theory of interacting particles,35–41 molecular dynamics,42,43 and

self-assembly of hard particles44,45 and hard particles with shoulder potentials.46,47 At the

most basic level, the theoretical work attributes the stability of QCs to the nonlinear three-

wave interaction of waves of density fluctuations on the two length scales. For example, when

the ratio of those length scales is 2 cos 15◦ ≈ 1.93, the nonlinear interactions between two

waves of one length scale and one of the other favor density waves that are spaced 30◦ apart

in Fourier space,15–17,25,48,49 giving twelve-fold symmetry. These arguments suggest that the

length scales should usually be within a factor of two of each other to encourage QCs, with a

ratio of 1.93 for twelve-fold QCs and 1.618 for ten-fold or icosahedral QCs,1,22,24,29,49,50 with

other ratios stabilizing other quasicrystals.51 Nevertheless, stable QCs can also be found

with larger ratios, for example, an eight-fold quasipattern was found in a reaction–diffusion

problem with a length scale ratio of 4.26

The theoretical arguments attribute the stability of QCs to the presence to two length

scales, but this presence is not sufficient for the formation of QCs: even with two length

scales, hexagons, lamellae or other structures of different sizes can be stable. Nor is the

presence of two length scales necessary for the formation of QCs: in fluid dynamics, there are

examples of quasipatterns in Faraday wave experiments52 whose stability can be explained

in the context of a single length scale.21,49 Nonetheless, the presence of two length scales in

an appropriate ratio is strongly associated with the stability of QCs,31 though some tuning

of parameters is usually needed to ensure that QCs are favored over competing crystalline

phases such as hexagons and lamellae.38
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In this paper, we focus on what features in the polymer design can lead to two length

scales in the instability towards phase separation. We will work in the weak segregation

limit, and use the Random Phase Approximation (RPA) to characterize the length scales

that emerge, concentrating on the point of phase separation of block copolymer melts. This

complements other theoretical approaches to this problem, for example using self-consistent

field theory.53–55 The advantage of using the simpler RPA theory is that it allows a rapid

search through parameter space for likely candidates of two length scale phase separation.

The disadvantage is that the theory does not predict which structure will ultimately be

stable.

Prior work in this area56–58 considered a limited range of architectures giving rise to

two length scales. Here we extend their work by (i) working within the same classes of

architecture but increasing the explored parameter space, (ii) extending the investigation to

include copolymers formed by random reaction, and (iii) considering three component star

polymers of the form investigated by Hayashida et al.5 One focus, especially within themes

(i) and (ii) above, has been to find structures that are as simple as possible to synthesise

whilst retaining the two length scale feature.

We consider two classes of polymer architectures, both chosen to allow two length scales

to emerge, see Figure 1, and ask whether there is one or two length scales, and in the latter

case, how can the ratio of these length scales be controlled? The first class has two types of

monomer (A and B), while the second has three (A, B and C). Each example is specified

by the proportions of the different components and the strengths of the interactions between

them. The selection of length scales during phase separation involves a balance between

the entropy of stretching the polymer chain and the energy penalty of having incompatible

monomers interacting. Qualitatively, the phase separation lengthscales are set by the size of

subsections of the chain that repel one another. To achieve phase separation simultaneously

at two lengthscales requires fine tuning of the relative degrees of repulsion via composition

and interaction parameters. Typically, one requires greater average repulsion (per monomer)

4



(a) (b)

Figure 1: Schematic models for the block copolymers. (a) AL(BAS)n with A in black and
B in gray, and L and S indicating the long and short A blocks. The length fraction (of
the total polymer length) of the long A block in part I is fA, and within part II, φA is the
length fraction of the short A blocks within each of the n BAS diblocks. (b) ABC star block
copolymer with A in black, B in light gray and C in mid-gray, having length fractions fA,
fB and fC respectively.

to drive phase separation at the short lengthscale, because the stretching energy is larger;

conversely, less repulsion is needed at the longer lengthscale. These qualitative features are

present in all examples explored below.

Linear block copolymers are much easier to manufacture compared to branched block

copolymers, so our first class of polymer (Figure 1a) explores the design of linear block

copolymers. Block copolymers that are manufactured will normally exhibit polydispersity,

but we start with a discussion of idealized monodisperse models before introducing some

aspects of polydispersity via random assembly of the blocks. A similar architecture was

considered by Nap,56 but they restricted their investigation to cases where the AS and

B blocks are of equal length; here we show that relaxing that constraint leads to greater

flexibility in the design space and the possibility of easier synthesis. The monodisperse chains

have a long section AL of A-type monomers followed by n alternating BAS diblocks, with

shorter stretches of B-type and A-type monomers linked back to back. Microphase separation

of the long AL block and the (BAS)n tail gives one length scale, while the incompatibility

between A and B sub-blocks within the tail can lead to microphase separation on a second
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length scale. The presence of A monomers in the BAS tail reduces the incompatibility

between it and the AL section. Polydispersity is achieved by starting with a mixture of AL,

AS and B blocks. These are allowed to react in such a way that each B block links to an A

block at either end, the AS blocks link to B blocks at either end, while the AL blocks only

react with B blocks at one end. The result is a mixture of polymers of different lengths,

starting and ending with AL blocks but with different lengths of BAS . . . ASB blocks in

between, consistent with the proportions in the initial mixture.

The second class of polymers (Figure 1b) is an ABC-star structure, with different lengths

of the A, B and C arms, inspired by the polymers used by Hayashida et al.5 Here, two length

scales can emerge if one arm (A) is longer than the other two (B and C), with microphase

separation between A and B with C together leading to the long length scale, and microphase

separation between B and C leading to the short length scale. Again, this class has been

explored in the literature;59 the new perspective here is the focus on phase separation with

two length scales.

In each case, we explore the parameter ranges in which two length scales emerge, and

we indicate the parameters for which the ratio between the two length scales would favor

twelve-fold quasicrystals. This work is part of a long-term effort to develop design criteria

for polymers that will robustly and spontaneously form quasicrystals.

Our main tool is the Random Phase Approximation (RPA) for polymer blends, which is

the truncation of the free energy functional at the quadratic term in density fluctuations.60,61

The theory describes the point at which there is a transition from a polymer melt to a phase

separated structure, near the point of the initial segregation. As a result, the theory does

not identify the final stable phase. The method uses coarse-graining of monomers into

monomer units with effective bond length (or Kuhn length) b, which allows the polymer

to be considered as consisting of flexible and freely rotating units that can be described

as a random walk. Microphase separation occurs when there are density fluctuations that

decrease the free energy of the homogeneous melt, and the wavenumber of these fluctuations
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gives the preferred length scale of the resulting phase separated structure. The melt phase

is (meta-)stable when a (small) density fluctuation of any wavenumber increases the free

energy.

In the case of an incompressible melt with two monomer types A and B, and in the

absence of any specific interaction between the monomer types other than incompressibil-

ity interactions, the RPA is concerned with the non-interacting structure factor S0(q) of

the homogeneous and isotropic melt. This non-interacting incompressible structure factor

depends on wavenumber q and is expressed in terms of correlations between small random

composition fluctuations, as described in more detail below.

Interactions between the monomer units are parameterised by the Flory interaction pa-

rameter χAB, which is related to the interaction energies between the different monomer

types. Including these interactions leads to additional composition correlations that are de-

scribed in terms of the structure factor S(q). This structure factor also gives the form of

the expected results of scattering in experiments that detect composition fluctuations in the

melt.

In an incompressible two-component (A and B) copolymer, consisting of lengths of A

units joined to lengths of B units, possibly with repetition or branching, and with a Flory

interaction parameter χAB, the structure factor S is related to the non-interacting structure

factor S0 by62

S(q) =

(

1

S0(q)
−

2χAB

Ωρ

)

−1

, (1)

where Ω is the system volume and ρ is the monomer unit density, so Ωρ is the total number

of monomer units. When there are no interactions (χAB = 0), the two structure factors are

the same. The non-interacting structure factor S0(q) is positive and may have a maximum

at a particular wavenumber, so S0(q)
−1 may have a positive minimum. As interactions are

introduced (as χAB increases), S(q) goes to infinity at the value of χAB for which the term

in brackets in eq (1) first goes to zero, and so phase separation occurs on the length scale

corresponding to the wavenumber at which S0(q) is maximum. If S0(q) has two maxima of

7



equal height at different wavenumbers, eq (1) indicates that phase separation will happen

simultaneously at both wavenumbers.

There are more general expression for compressible systems and for copolymers with

more than two types of monomer. In these cases, the RPA is formulated by writing the

free energy as a quadratic functional of the composition fluctuations, with multiple Flory

interaction parameters. For the melt to be stable, this quadratic form needs to be positive

definite, so phase separation occurs when eigenvalues of the quadratic form change sign.

Read63 formulated a method to find the noninteracting structure factor for an arbitrary

block copolymer melt, using ‘self-terms’, ‘coterms’ and ‘propagator terms’ to describe the

architecture of the block copolymer, tracing the arrangement and connections between blocks

in the chain. Here, the self-terms describe the density correlations between monomer units

within a single block, and the coterms describe the density correlations between monomers

units from two different blocks on the same polymer. The chain between two different

blocks may have other blocks in between, depending on the architecture of the polymer, and

the propagator terms specify how the correlations (given by coterms) are modified by the

presence of the intermediate blocks. We use this method to compute the structure factor for

our two classes of copolymer architecture.

Two component linear chain with fixed architecture

In our two component block copolymer system shown in Figure 1(a), we index each polymer

chain within the system by α, so 1 ≤ α ≤ nc, where nc is the number of chains. Within

each chain α, we index the location of each monomer unit by l, with 1 ≤ l ≤ N , where

N is the number of monomer units in each chain, assumed (in this section) to be the same

for each chain. The location of the monomer unit is thus rα
l , and each monomer unit is of

type A or type B. The density of A monomer units in physical space is then a sum of delta

functions, summed over all chains and all locations on each chain of the A monomer units,
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and similarly for B. The Fourier transforms of these two density distributions are then

ρA
q
=

∑

A

exp(iq · rα
l ),

ρB
q
=

∑

B

exp(iq · rα
l ),

(2)

where q is the wavevector, and the sums are taken over the locations of the A and B

monomer units. The structure factors for the A and B monomer units in the absence of any

interactions are given by the correlations in the densities of the two types, which in Fourier

space can be written as

SAA
0 (q) = 〈ρA

−q
ρA
q
〉0,

SAB
0 (q) = 〈ρA

−q
ρB
q
〉0 = SBA

0 (q),

SBB
0 (q) = 〈ρB

−q
ρB
q
〉0,

(3)

where the angle brackets with subscript 0 represent the average over all possible configu-

rations of the polymers in the absence of any interactions between monomers, within the

constraints of the polymer architecture.

The incompressibility constraint requires ρA
q
= −ρB

q
= ρq, so we need only use ρq in place

of ρA
q
and −ρq in place of ρB

q
. Using the RPA,61 we can express the incompressible structure

factor in the absence of interactions as:

S0(q) =
SAA
0 SBB

0 − (SAB
0 )2

SAA
0 + SBB

0 + 2SAB
0

(4)

and the free energy functional up to second order in density fluctuations (in units of kBT )

as:

F{ρq} =
1

2

∑

q

ρqρ−q

(

1

S0(q)
−

2χAB

Ωρ

)

. (5)

If the term in brackets in eq (5) is positive for all wavenumbers, the melt is (meta-)stable,

while if this term changes sign, the melt is unstable. So, as in the discussion of eq (1), the

length scale of phase separation is associated with a maximum of S0(q).
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Figure 2: We index each polymer chain within the system by α, and γ and γ′ are two blocks
within the chain (these could be AL, AS or B).

In eq (5), Ωρ is equal to the total number of monomer units, and with nc chains each

having N monomer units, we have Ωρ = ncN . We see below that S0(q) is proportional

to ncN
2, so by treating the Flory interaction parameter χAB in combination with N , all

dependence on N can be isolated into NχAB.

We use the method of Read63 to calculate the term SAA
0 (q), SAB

0 (q) and SBB
0 (q) in the

absence of any interaction between the monomers, for the AL(BAS)n structure, previously

considered by Nap,56 and shown in Figure 1(a). The method treats each polymer chain α

by splitting it into different blocks, with each block being of a single monomer type. We

illustrate this in Figure 2, with γ and γ′ indicating two different blocks. Each block is

associated with a ‘self-term’ Jγ, a ‘coterm’ Hγ and a ‘propagator term’ Gγ.
63 The self-term

for an individual block γ gives the contribution to the structure factor from that block,

and comes from summing over monomer pairs within that block. The contribution from

the interaction between two blocks γ and γ′ is the coterm for block γ multiplied by the

propagator terms of all the blocks on the unique connecting path between γ and γ′ (see

Figure 2), and finally multiplied by the coterm for block γ′ at the end. This contains all

pairwise monomer interactions between monomers in the two blocks γ and γ′. The structure

factor for a given polymer chain α is then a combination of the sum of the self-terms for

each block and a double sum of the product of coterms with appropriate propagators over

all non-identical pairs of blocks in that chain.

Each block γ has its own normalised wavenumber Qγ, dependent on the number of
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monomer units Nγ in the block:

Q2
γ =

Nγb
2

6
q2, (6)

where q = |q|. This wavenumber is scaled by the effective bond length b; for the sake of

simplicity we take same length b for all blocks. Each of the self-, co- and propagator terms

are functions of these normalized wavenumbers Qγ for each block γ. These terms are all

based on Debye functions60 and are given by63

self-term: Jγ = N2
γ j(Q

2
γ) where j(Q2) =

2

Q4
(exp (−Q2)− 1 +Q2),

coterm: Hγ = Nγh(Q
2
γ) where h(Q2) =

1

Q2
(1− exp (−Q2)),

propagator term: Gγ = exp(−Q2
γ).

(7)

Turning now to the specific AL(BAS)n architecture, the polymer chain is considered in

two parts. Part I is the AL block with length fraction fA, and part II is the tail (BAS)n,

comprising n BAS diblocks, with length fraction 1− fA. Within each BAS diblock, the AS

block has a length fraction of φA and hence length fraction of the B block is 1− φA. If the

total number of monomer units in a chain is N then the number of A and B units in each

block of the polymer chain can be written down:

Number of A monomer units in the AL block in part I : NAL
= fAN ;

Number of A monomer units in each AS block in part II : NAS
=

1

n
(1− fA)φAN ;

Number of B monomer units in each B block in part II : NB =
1

n
(1− fA)(1− φA)N.

(8)

We note that the two types of A chain have the same lengths when NAL
= NAS

, or

φA = n
fA

1− fA
. (9)

For the specific AL(BAS)n polymer, the three normalised wavenumbers QAL
, QAS

and QB
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are given by

Q2
AL

= fAQ
2,

Q2
AS

=
1

n
(1− fA)φAQ

2,

Q2
B =

1

n
(1− fA)(1− φA)Q

2,

(10)

where Q2 = Nb2

6
q2.

To calculate the structure factor, we start by treating parts I and II separately, and we

illustrate the calculation for the case n = 2 before discussing the case of general n.

In part I, there is only the ALAL self-term:

J I
AA = JAL

= N2
AL

j(Q2
AL

) = N2f 2
A j(fAQ

2). (11)

There are no J I
BB and J I

AB self-terms. We have given the explicit dependence on NAL
and

QAL
, and on N and Q, in this case, but we will suppress this below. We note that, here and

below, all terms and the final expressions can written as functions of the scaled wavenum-

ber Q, and that the self-terms, and the coterm–propagator term–coterm combinations, will

be proportional to N2.

In part II, we work out composite self-terms for the (BAS)2 = BASBAS chain: J II
AA, J

II
BB

and J II
AB. For J

II
AA, each AS block can interact with itself, yielding a self-term JAS

multiplied

by 2 since there are two of these. Each AS block can also interact with the other AS block:

for this ASAS interaction, we use a coterm (HAS
at each end) and a propagator term (GB)

to jump across the B block. There is a factor of 2 since the interaction since either AS block

could be the starting point. Putting these together results in

J II
AA = 2JAS

+ 2HAS
GBHAS

. (12)

Similarly, J II
BB is calculated by considering the two self-terms JB and the coterm–propagator

12



term–coterm chain in each direction:

J II
BB = 2JB + 2HBGAS

HB. (13)

The last term within part II is J II
AB, starting with an AS block and ending with a B block.

In this case, we have coterms HAS
HB for every instance of adjacent AS and B blocks, and

we have coterm–propagator term–propagator term–coterm chains for the AS and B blocks

separated by the other AS and B blocks:

J II
AB = 3HAS

HB +HBGAS
GBHAS

. (14)

There is an equal expression for J II
BA, starting with a B block and ending with an AS block.

Finally, we consider interactions between parts I and II. The AL block has the self-term

JAL
and coterm HAL

, and will interact with the AS blocks and B blocks in part II. The AA

interactions lead to contributions 2HAL
GBHAS

and 2HAL
GBGAS

GBHAS
, with the factor 2 in

each case since the AA interactions can start with AL or AS. The AB interactions, starting

with AL and ending with B, are HAL
HB and HAL

GBGAS
HB.

These contributions are combined to give the three terms:

SAA
0 = nc

(

J I
AA + J II

AA + 2HAL
GBHAS

+ 2HAL
GBGAS

GBHAS

)

,

SAB
0 = nc

(

J II
AB +HAL

HB +HAL
GBGAS

HB

)

,

SBB
0 = ncJ

II
BB,

(15)

where we have multiplied by the number of chains nc.

In the case of general n, the part I term remains the same. For the other terms, we end up

with longer expressions involving additional powers of GAS
GB propagator terms. After some

combinatorics, and summing the resulting finite geometric series, the general n composite
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self-terms for part II are

J II
AA = nJAS

+ 2H2
AS

GB

(

n (1−GAS
GB)− (1− (GAS

GB)
n)

(1−GAS
GB)

2

)

,

J II
BB = nJB + 2H2

BGAS

(

n (1−GAS
GB)− (1− (GAS

GB)
n)

(1−GAS
GB)

2

)

,

J II
AB = HAS

HB

(

(2n+ 1) (1−GAS
GB)− 2 + (GAS

GB)
n + (GAS

GB)
n+1

(1−GAS
GB)

2

)

.

(16)

There is an equal expression for J II
BA = J II

AB. Then, the three terms in the total structure

factor, for nc chains, are:

SAA
0 = nc

(

J I
AA + J II

AA + 2HAL
HAS

GB

(

1− (GAS
GB)

n

1−GAS
GB

))

,

SBB
0 = ncJ

II
BB,

SAB
0 = nc

(

J II
AB +HI

AHB

(

1− (GAS
GB)

n

1−GAS
GB

))

.

(17)

These three terms are proportional to ncN
2 and are functions of the scaled wavenumber Q.

The three terms are then combined to give the overall noninteracting incompressible struture

factor S0(q) using eq (4), also proportional to ncN
2 and a function of Q.

Typically, for phase separation on one length scale, the structure factor plot will have a

single dominant peak. We have chosen the architecture AL(BAS)n in order to allow phase

separation with two length scales, which will manifest as two maxima, at scaled wavenumbers

Q1 and Q2 in the structure factor plot. An example of the resulting structure factor S0 is

plotted in Figure 3 with fA = 0.39225, φA = 0.85 and n = 5. In this example, the structure

factor has two maxima at the same height, and the wavenumbers at these two maxima are

in the ratio 2.70. The two maxima will in general have different heights, with the higher one

indicating the wavenumber that will appear first in phase separation. We define the ratio of

wavenumbers Qr = Q2/Q1, with Q1 < Q2.

Whether there is one maximum or two maxima, and their heights and values of the

wavenumbers at the maxima, depends on the model parameters fA, φA and n. We have
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Figure 3: The incompressible structure factor S0 (scaled by ncN
2) from eq (4) as a function

of scaled wavenumber Q for fA = 0.39225, φA = 0.85 and n = 5. The two maxima in the
plot indicate the two length scales of phase separation. In this example, the wavenumbers
at the maxima are Q1 = 2.53 and Q2 = 6.85, which have a ratio of 2.70, and the maxima
are at the same height.

computed the structure factor for all possible combinations of fA and φA, with 1 ≤ n ≤ 10. A

summary of the results is presented in Figure 4. As happen in other systems with transitions

between one and two length scales, the boundary between the regions in parameter space

separating one from two length scales are cusp-shaped.56,58,64 Within the cusps (shaded),

there are two maxima in the non-interacting structure factor and hence two length scales in

the phase separation.

The architecture with n = 1, ALBAS, does not give any two length scale phase separation.

The smallest model in the AL(BAS)n family that gives a cusp is that with n = 2 (Figure 4b),

which is a linear chain with only 5 blocks. From Figure 4(b,c,d), we see that the area of

the cusps increases with n, and the maximum ratio between the two length scales increases

as well. This is because the short length scale is set by the size of the BAS blocks, while

the long length scale is set by the overall size of the polymer, which increases with n. The

smallest linear chain with two components that gives two length scale phase separation is

ALBASB, indicated by n = 1.5 in Figure 4(a), with the structure factor computed along

the same lines as described above.

We also show in Figure 4 the lines given by eq (9), where the two A blocks have the same
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Figure 4: Regions of a single maximum (white) and two maxima (shaded), as a function of
fA and φA with n = 1.5, 2, 5 and 10. In the shaded regions, the darker (resp. lighter) areas
are where the maximum with the smaller (resp. larger) wavenumber is higher. The solid
contour line across the cusp indicates a wavenumber ratio Qr = 3.5, with dashed, dash-dot
and dotted lines indicating wavenumber ratios of 2.5, 2.0 and 1.5 respectively. The teal line
indicates parameter where the wavenumber ratio is 1.93. The maroon line is where the two
types of A blocks have the same length, using eq (9).

lengths. We note that these lines do not intersect the cusps, which shows that having A

blocks of different lengths is needed to have two length scales at the point of phase separation.

Two component linear chain with random assembly

The polydisperse model involves the random assembly of AL, AS and B blocks using the

Markov chain method proposed by Read.63 In this model, the AL blocks have one reactive

end, the AS blocks have two reactive ends, and the B blocks also have two reactive ends.

The A reactive ends combine with B reactive ends to form linear chains. At the end of
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Figure 5: Schematic representation of the polydisperse model. Starting with a mixture of
AL, AS and B (top), the final mixture (bottom) will contain polymer chains of architecture
ALBAL, ALBASBAL, etc.

polycondensation, assuming a complete reaction and stoichiometry, the mixture will contain

only chains that have AL blocks at both ends and different lengths of BAS . . . ASB blocks

in between, for example, ALBAL, ALBASBAL, etc., as illustrated in Figure 5.

The polycondensation process starts with initial block fractions βAL
, βAS

and βB for AL,

AS and B blocks respectively, with βAL
+βAS

+βB = 1. In the reaction, all the B type ends

will react with A type ends, so the initial mixture must contain the same number of each

type. Thus

2nblocksβB = nblocksβAL
+ 2nblocksβAS

, (18)

where nblocks is the total number of blocks. Eliminating βB, the condition for complete

reaction is

3βAL
+ 4βAS

= 2. (19)

In order to use the RPA for this system, we need the number of monomer units in each

block. We use the number of monomer units in the AL block (NAL
) to scale the numbers in

the AS and B blocks (NAS
and NB), using scaling factors νAS

and νB:

NAS
= νAS

NAL
,

NB = νBNAL
.

(20)
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Thus the three parameters that describe the model are βAL
, νAS

and νAS
.

Polymerization of such a mixture is by random assembly. At each stage in the polymer-

ization, an A reactive end is always followed by a B block, while a B reactive end combines

with A reactive ends from AL or AS blocks with probability given by the proportion of the

two types. In terms of the model parameters, the probability that a B block will be followed

by an AL block is PALB =
βAL

2βB
, and that a B block will be followed by an AS block is

PASB =
βAS

βB
, so from eq (18), we have PALB + PASB = 1. The probabilities that a B block

follows AL or AS blocks are both 1, and the probabilities of other combinations (for example,

AS followed by AL) are zero.

This is a Markov process, where the block that gets attached depends only on the last

block, and the structure factor can be computed by the methodology of Read.63 The ideas

are an extension of those discussed above, but with infinite rather than finite geometric

series. For example, for the contribution to the SAA
0 part of the non-interacting structure

factor from the AL to AL interactions, there are two coterm HAL
factors for each end,

as well as sums of propagator terms corresponding to all the possible chains that can go

between the two ends, weighted by the probability of that chain. So, a single B block

contributes PALBGB, a BASB chain contributes PASBGBGAS
PALBGB, a BASBASB chain

contributes (PASBGBGAS
)2PALBGB, and so on. The infinite geometric series, with common

factor PASBGBGAS
, can readily be summed, for this and for the other interactions.65 The
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outcome of these calculations is

SALAL
= NAL

Ωρ
βAL

βAL
+ νAS

βAS
+ νBβB

(

jAL
+ h2

AL

PALBGB

1− PAS
BGAS

GB

)

,

SALAS
= NAL

Ωρ
νAS

βAL

βAL
+ νAS

βAS
+ νBβB

hAL
hAS

PASBGB

1− PASBGAS
GB

,

SALB = NAL
Ωρ

νBβAL

βAL
+ νAS

βAS
+ νBβB

hAL
hB

1

1− PASBGAS
GB

,

SASAS
= NAL

Ωρ
ν2
AS

βAS

βAL
+ νAS

βAS
+ νBβB

(

jAS
+ 2h2

AS

PASBGB

1− PASBGAS
GB

)

,

SASB = NAL
Ωρ

νAS
νBβAS

βAL
+ νAS

βAS
+ νBβB

2hAS
hB

1

1− PASBGAS
GB

,

SBB = NAL
Ωρ

ν2
BβB

βAL
+ νAS

βAS
+ νBβB

(

jB + 2h2
B

PASBGAS

1− PASBGAS
GB

)

.

(21)

The overall structure factors SAA
0 , SBB

0 and SAB
0 are

SAA
0 = SALAL

+ 2SALAS
+ SASAS

SBB
0 = SBB

SAB
0 = SALB + SASB

(22)

These are combined into the non-interacting structure factor expression in eq (4).

Thus, the non-interacting structure factor S0(q) is determined as a function of the nor-

malized wavenumber and the three parameters: the block fraction βAL
and the monomer

fractions νAS
and νB. For fixed βAL

, the regions of (νAS
, νB) where there are two maxima in

the structure factor are once again cusp-shaped (see Figure 6 for βAL
= 0.2 and βAL

= 0.45).

The lines across the shaded part of the cusps indicate the ratio between the wavenumbers

where the two peaks occur. When βAL
is 0.2 (with βAS

= 0.35 and βB = 0.45), there are

more AS and B blocks that AL block, so the polymer will form longer chains, and the region

for two length scale phase separation is larger than with βAL
= 0.45 (βAS

= 0.1625 and

βB = 0.3875). In both these cases, the length scale ratio corresponding to 12-fold symmetry

is indicated by the teal line.
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Figure 6: Top row: regions of single maxima (white) and two maxima (shaded) as a function
of νAL

and νB with βAL
= 0.2 and 0.45, for the two component linear chain with random

assembly. In the shaded regions, the darker (resp. lighter) areas are where the maximum
with the smaller (resp. larger) wavenumber is higher. The solid contour line across the cusp
indicates a wavenumber ratio Qr = 3.5, with dashed, dash-dot and dotted lines indicat-
ing wavenumber ratios of 2.5, 2.0 and 1.5, respectively. The teal line indicates where the
wavenumber ratio is 1.93. Bottom row: we plot the results for the monodisperse versions
with (c) n = 5 and (d) n = 2 in terms of equivalent values of νAL

and νB.

Direct mapping between the monodisperse fixed n and polydisperse random assembly

versions of the two component linear chain models is not possible, because of the range

of chain lengths possible in the second case, and because of the difference in architecture.

But, roughly speaking, βAL
is inversely proportional to the number of AS and B blocks

available in the polydisperse model, which is related to the number n of BAS diblocks in the

monodisperse case. However, for fixed n in the monodisperse case, it is possible to convert

the parameters from (fA, φA) in that case to (νAS
, νB), but with keeping the n the same.

The two length scale regions in the polydisperse case (Figure 6, top row, with βAL
= 0.2

20



and βAL
= 0.45) are comparable to the two length scale regions in the monodisperse case

(Figure 6, bottom row, with n = 5 and n = 2). This supports the hypothesis that longer

chains and the presence of AS blocks encourage two length scale phase separation.

Three component ABC star

For a polymer system with three components and with Fourier transformed monomer densi-

ties ρA
q
, ρB

q
and ρC

q
for A, B and C monomer units respectively, the procedure for calculating

the partition function is similar to the two component system, though imposing the incom-

pressibilty condition is more involved. The non-interacting (compressible) structure factor

matrix Mq is a three-by-three matrix whose components are SAA
0 , . . . , SCC

0 :

Mq =













SAA
0 SAB

0 SAC
0

SAB
0 SBB

0 SBC
0

SAC
0 SBC

0 SCC
0













= ncN
2













sAA
0 sAB

0 sAC
0

sAB
0 sBB

0 sBC
0

sAC
0 sBC

0 sCC
0













, (23)

where, as discussed in the case of the two component system, the SIJ
0 terms are proportional

to ncN
2 = ΩρN . With this scaling, the structure factor terms sIJ0 depend only on the scaled

wavenumber and on parameters that describe the architecture of the polymer.

We need the inverse of this matrix, which we write as

M−1
q =

1

ΩρN













ΓAA ΓAB ΓAC

ΓAB ΓBB ΓBC

ΓAC ΓBC ΓCC













. (24)
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Then, the free energy functional is:

F
(

{ρA
q
, ρB

q
, ρC

q
}
)

=
1

2

∑

q

[

ρA
q

ρB
q

ρC
q

]













M−1
q +

1

Ω













VAA VAB VAC

VAB VBB VBC

VAC VBC VCC





































ρA
−q

ρB
−q

ρC
−q













, (25)

where the three-by-three matrix of VAA etc. expresses the interaction potential between the

different monomer types, and will be written in terms of N times the Flory interaction

parameters below.

The incompressibility in the system provides the constraint

ρC
q
= −(ρA

q
+ ρB

q
), (26)

which can be used to reduce the three-by-three matrices in the free energy to two-by-two:

F
(

{ρA
q
, ρB

q
}
)

=
1

2

∑

q

[

ρA
q

ρB
q

]

Wq







ρA
−q

ρB
−q






. (27)

Here, Wq is a 2 × 2 matrix that contains all the non-interacting structure factor terms and

the interaction potentials between different types of monomers, and is defined by

ΩρNWq =







ΓAA + ΓCC − 2ΓAC ΓAB − ΓBC − ΓAC + ΓCC

ΓAB − ΓBC − ΓAC + ΓCC ΓBB + ΓCC − 2ΓBC






+

N







−2χAC χAB − χBC − χAC

χAB − χBC − χAC −2χBC






.

(28)

Here, the Flory interaction parameters χ for the monomer pairs of A, B and C blocks are
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defined by

χAB = −
ρ

2
(VAA + VBB − 2VAB) ,

χBC = −
ρ

2
(VBB + VCC − 2VBC) ,

χAC = −
ρ

2
(VAA + VCC − 2VAC) ,

(29)

where the χAB, χBC and χAC describe the interaction between pairs of monomer types.

For the ABC star architecture, the SAA
0 , SAB

0 , . . . terms in the Mq matrix in eq (23)

are computed using Read’s method,63 though only self-terms and coterms are needed as the

polymer architecture is simpler than in the two component system. For the ABC star block

copolymer system with N monomer units, we write the length fractions of the A, B and C

arms as fA, fB and fC respectively, with

fA + fB + fC = 1. (30)

The number of monomer units in each arm is then

Number of monomer units in the A block : NA = fAN ;

Number of monomer units in the B block : NB = fBN ;

Number of monomer units in the C block : NC = fCN = (1− fA − fB)N.

(31)

The non-interacting structure factor terms corresponding to the ABC star architecture are

SAA
0 = JA = N2

AjA,

SBB
0 = JB = N2

BjB,

SCC
0 = JC = N2

CjC ,

SAB
0 = HAHB = NANBhAhB,

SBC
0 = HBHC = NBNChBhC ,

SAC
0 = HAHC = NANChAhC .

(32)
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Figure 7: The two eigenvalues λ of WQ as functions of the wavenumber Q. The two minima
of the smaller eigenvalue (solid line) give the two length scales at phase separation. In this
example, the wavenumbers are Q1 = 2.1096 and Q2 = 3.3754, with the ratio between the two
wavenumbers being Qr = 1.60. The other parameters are fA = 0.66775, fB = fC = 0.166125,
NχAB = NχAC = 39.335 and NχBC = 95.070.

Here, jA, jB, jC , hA, hB and hC are the self-terms and coterms for the A, B and C branches

as in eq (7). These are functions of the normalized wavenumbers QA, QB and QC :

Q2
A = fAQ

2,

Q2
B = fBQ

2,

Q2
C = fCQ

2 = (1− fA − fB)Q
2,

(33)

where Q2 = b2N
6
q2 as before. With this, now writing wavenumber dependence in terms of Q,

and taking incompressibility into account, the matrixWQ (and its eigenvalues) is proportional

to 1
ΩρN

= 1
ncN2 , and can otherwise be expressed a function of the scaled wavenumber Q, the

polymer block fractions fA and fB, and the interaction parameters NχAB, NχBC and NχAC .

With WQ defined, the quadratic form in eq (27) is positive definite when the eigenvalues

of WQ are both positive, and phase separation occurs when the smallest eigenvalue of WQ

changes from positive to negative. The wavenumber(s) at which this occurs gives the length

scale(s) at phase separation. We compute the eigenvalues of WQ as functions of the scaled

wavenumber Q: see Figure 7 for an example where the smaller eigenvalue of WQ has two
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minima at zero, and so is on the verge of phase separation with two length scales in a ratio

of 1.6.

For the three component model, the Q-dependent eigenvalues of WQ depend on 5 pa-

rameters: fA, fB, NχAB, NχBC and NχAC , with fC = 1 − (fA + fB). Hence, achieving

instability to phase separation simultaneously at two lengthscales depends both on the ra-

tios of the interaction parameters and on the molecular composition (this is in contrast to

the two component case, where polymer composition alone determines the lengthscales of

instability). We explore this parameter space at several fixed values of the ratio of χAC to

χAB, defining
χAC

χAB
= ξ. The first step is to select a desired ratio of wavenumbers Qr (for

example, Qr = 1.6) and a value of ξ (for example, ξ = 1), taking fB = fC as a starting

point. If λ(Q) is the smaller of the two eigenvalues, and the two minima of λ(Q) are at

wavenumbers Q1 and Q2 = QrQ1, the four equations for a zero double minimum of λ(Q), as

illustrated in Figure 7, are:

λ(Q1) = 0; λ(Q2) = 0;

dλ

dQ

∣

∣

∣

Q1

= 0;
dλ

dQ

∣

∣

∣

Q2

= 0.
(34)

We solve these four equations for Q1 and the values of the parameters fA, χAB and χBC ,

with χAC = ξχAB and fB = fC = 1
2
(1 − fA). This allows us to identify, for the choice of

Qr, for the choice that fB = fC and for the chosen ratio between χAB and χAC , the other

parameters at which phase separation occurs. We then keep the choice of Qr and the ratio

between χAB and χAC fixed, but allow fB 6= fC to compute nearby solutions to the same

four equations. In this way, we build up curves in the (fA, fB, fC) space on which phase

separation occurs at two length scales simultaneously. We choose other values of Qr to get

several curves in that space, as illustrated in Figure 8, for three choices of ξ.

In Figure 8, we focus on the case where the A block has the longer arms, so we take fA > 1
3
.

There will be other curves of two length scale phase separation in the other corners of the

triangle. The outer contour in the petal shaped regions of two length scale phase separation
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Figure 8: Curves of constant wavenumber ratio Qr, shown as contour plots in (fA, fB, fC)
diagrams, for three choices of ξ: ξ = 1, 0.7 and 1.3. The outer contour in the petal shaped
regions is Qr = 1.2, with Qr increasing to 2.4 in steps of 0.2 in the ξ = 1 case and to 2.5 in
steps of 0.1 in the other two cases. The purple contour is Qr = 1.93.

is Qr = 1.2, with Qr increasing on the inner contours, with the larger Qr corresponding

to fA closer to 1. In the case ξ = 1, when B and C have the same interaction potential

with A, the petal region is symmetric under reflections in the fB = fC diagonal (dotted line).

With smaller ξ (χAC < χAB) the petal bends upwards towards the C region with larger fC .

Similarly, with larger ξ, the petal region bends downwards towards the B region. The region

of having two length scales is quite narrow, and is located in the parameter region where A

is long and the other two are of similar sizes. Although we have only computed the contours

up to Qr = 2.5, we expect that larger length scale ratios would be possible for fA closer to 1.
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Conclusion

We have investigated the length scales that emerge at the point of phase separation in

two classes of block copolymer models. The first has alternating lengths of polymers of

two different types, and the second has three different monomer types in a terpolymer star

configuration. In both cases, we find that as well as having a single length scale at phase

separation, it is possible to design the polymers so that two length scales emerge. The

transition from one to two length scales occurs at a point (a cusp) in the parameter space

when the length scale ratio is one. Beyond this cusp, the length scale ratio can be made much

larger than one. In principle, the ideas and techniques developed here apply to arbitrary

configurations of different types of monomers: we have explored only the simplest examples.

We have identified experimentally accessible architectures that have phase separation at

the length scale ratio 1.93 that favors twelve-fold quasicrystals. In the AL(BAS)n case, the

smallest molecule has n = 1.5, and the parameters are (fA, φA) ≈ (0.7, 0.9) (Figure 4a), which

corresponds to an ALBASB structure, with AL being 70% of the length of the chain, the two

B’s are about 2.7% each and the AS is 24.6%. For molecules with more repeating BAS units,

the parameters that have phase separation with two length scales have larger proportions

of B and smaller proportions of AL, but these will be harder to manufacture. In the case

of random assembly, an example choice of parameters is a mixture that is 20% AL, 35% AS

and 45% B, where the lengths of the three chains are in a ratio AL : AS : B = 1 : 0.39 : 0.14

(see Figure 6a). Of course, attention will also need to be paid to the values of Nχ that are

needed at the point of instability, and the relative heights of the peaks in the structure factor.

Prior work in this area56 took φA = φB; our work covers parameter values that would allow

considerably easier synthesis of the polymers, in regimes that ought to favor the formation

of quasicrystals.

Up until now, experimental observations in linear block copolymer melts have mainly

found only relatively simple structures, such as hexagons and lamellae, or hierarchical two

length scale structures, such as lamellae-within-lamellae with several layer thicknesses.66,67
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There are indications that more complex structures can be stable: self-consistent field theory

studies of linear ABAB tetrablock copolymers68 report structures including a lamella–sphere

phase and a gyroid phase. Cylindrical 12-fold quasicrystal approximants in linear ABCB

terpolymer melts have also been found in self-consistent field theory calculations,69 and the

Fourier transform images reported in that paper have two length scales in the characteristic

1.93 ratio.

To our knowledge, ours is the first presentation of phase separation with two length

scales in the ABC star terpolymer system. This is a system where quasicrystals and close

approximants have been found experimentally.5 As in the AL(BAS)n case above, values of

the three Nχ parameters are quite large, suggesting that self-consistent field theory or strong

segregation theory would be an appropriate next step.

Of course, our RPA calculations are only the first step: these reveal the length scales

but not the final stable structures. Subsequent steps, involving weak segregation theory,70

self-consistent field theory,53,54,68,69,71 strong segregation theory,72 etc., have been carried

out by several authors, but finding quasicrystals has been challenging, partly because the

calculations in all these cases are quite demanding. The final structure will be influenced by

the length scale ratio and the heights of the peaks in the structure factor or values of the

eigenvalues in the dispersion relation. The examples in Figures 3 and 7 are where these are

equal at the two length scales, but the shaded regions in Figures 4 and 6 indicate where one or

other peak height is larger. In some (phase field crystal) models of soft matter quasicrystals,

fully developed quasicrystals are found where the peaks have the same or similar heights,29,31

while in other (density functional theory) models, quasicrystals are found where the peaks

have quite different heights.36,37 In the models, the stability of fully developed quasicrystals

depends not only on the eigenvalues at the two length scales but also on the (negative)

eigenvalues at other length scales that might feature in regular crystalline orderings that

compete with quasicrystals.38 Our work provides this information and so should provide

useful starting parameter values with two length scale phase separation, which should be a
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good place to start a search for quasicrystals or their approximants, experimentally or using

more sophisticated theoretical methods.
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