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ABSTRACT
We present a set of codes for calculating and displaying solutions to diverse problems within thermal convection

and magnetic field generation in rotating fluid-filled spheres and spherical shells. There are diverse programs for

the kinematic dynamo problem, the onset of thermal convection, and boundary-locked thermal convection, and

time-stepping codes for non-magnetic convection and the dynamo with either homogeneous or spatially varying

thermal boundary conditions. Where possible, all programs have been benchmarked against other codes and tested

by reproducing previously published results. Each program comes with the complete source code, a pdf instruction

manual, and at least one example run with a sample input file and all necessary files for describing an initial condition.

The only prerequisite for running most of the codes is a FORTRAN compiler. The plotting programs require in

addition the PGPLOT graphics library. All source code, examples, input files, solutions, and instructions are available

for download from github and Zenodo.
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1 INTRODUCTION

The processes in Earth’s outer core that generate the geomagnetic field are best understood through

numerical simulations. Over a quarter of a century has now passed since the first fully self-consistent

simulations of the geodynamo in which the induction equation, the heat equation, and the Navier

Stokes equation are solved simulateneously in rotating spherical geometry (e.g. Glatzmaier &

Roberts 1995; Christensen et al. 1998; Kono & Roberts 2002). Around this time, processing

capabilities had improved to the extent that it was possible for the first time to run a complete

simulation on very modest computational resources and ensemble calculations could be performed

to investigate the effect of changing parameters (e.g. Christensen et al. 1999). The Benchmark

★ E-mail: steven.gibbons@ngi.no (SJG)
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2 S. J. Gibbons et al.

Dynamo project (Christensen et al. 2001) provided a first baseline dynamo model by which new

codes could be validated. Subsequent studies (e.g. Jones et al. 2011; Marti et al. 2014; Jackson et al.

2014) have provided benchmark solutions for dynamo simulations for a broader range of models.

Many codes have since been developed that have simulated the processes at ever higher spatial and

temporal resolution (e.g. Matsui et al. 2016) with an increasing focus on high performance comput-

ing. Two geodynamo codes, XSHELLS (Schaeffer et al. 2017) and PARODY-PDAF (Fournier et al.

2013), were optimized further towards deployment on the next generation of supercomputers within

the EU-funded ChEESE Center of Excellence (Folch et al. 2023). The challenge is approaching

parameters relevant to Earth’s core, for which the decreasing temporal and spatial scales make

the computations increasingly expensive and demanding. Aubert (2023) presents recent progress

in geodynamo modelling towards Earth’s parameter regime. Like many previous studies, Aubert

(2023) mitigates the numerical difficulties by applying a hyperdiffusive treatment to the smallest

scales.

Since the full geodynamo problem couples all the governing equations, is strongly time-dependent,

and acts at a cascade of different spatial and temporal scales, the physical mechanisms that re-

sult in features such as geomagnetic reversals and core-mantle coupling can be difficult to isolate

among the full spectrum of processes occurring in a given simulation. Causality can often only

be suggested in a statistical sense over long durations of numerical simlations. It can therefore

be beneficial to understanding cause and effect by isolating components of the full geodynamo

problem and performing extensive sensitivity studies on the more limited systems. The kinematic

dynamo problem for instance explores the magnetic field generating properties of a given fluid

flow. Gubbins & Sarson (1994), for example, demonstrated how virtual geomagnetic poles during

a reversal in a kinematic model followed paths concentrated on longitudes where the magnetic flux

was concentrated. Calculations in the absence of a magnetic field can help us to understand the force

balance in the outer core (e.g. Long et al. 2020; Gastine et al. 2016) and provide clues as to how the

geodynamo will be influenced by a spatially varying heat-flux at the outer boundary. Gubbins &

Gibbons (2004), for example, demonstrated how a heat-flux pattern at the Core-Mantle-Boundary

(CMB) with anomalously low heat-flux below both Africa and the Pacific suppressed columnar

convection only below the Pacific, due to the length-scales of the heat-flux anomalies. The control

of the CMB heat-flux has since been investigated extensively also on full dynamo simulations (e.g.

Mound & Davies 2023). Properties observed in such more limited systems may of course not apply

to the full magneto-hydrodynamic system. However, a complete understanding of the parameter

space defining a geodynamo simulation is necessary. For example, would thermal convection take
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Convection and geodynamo codes 3

place in the absence of a magnetic field? How would the length-scale of convection change were

the magnetic field to collapse?

This paper presents a set of codes that address a number of topics related to the geodynamo. The

flagship codes were designed to perform complete geodynamo simulations, with special attention

paid to the influence of a laterally varying heat-flux at the CMB. At the same time, it was desired

that there should be codes utilizing the same basis of routines and the same numerical formulation

that addressed a number of the simpler systems. The language of choice was Fortran 77. This was

partly due to the fact that the legacy codes at the University of Leeds for the kinematic dynamo

were FORTRAN-based and partly in order to exploit most easily the BLAS and LAPACK libraries

and the then-recently released ARPACK code. While not exploiting an object-oriented language, a

special effort was made to modularize the code into far smaller units than had been used previously.

The common blocks which had characterized earlier codes were also avoided. On the one hand,

the new code contained a vast number of functions and subroutines: many with exceptionally long

argument lists. On the other hand, these routines could be unit-tested far more easily than before

and it was far easier to generate a new code from these building blocks. Although Fortran 77 seems

like an illogical choice in 2023, with more modern alternatives such as Python and Julia available,

the presented codes compile as readily now as they did 20 years ago with freely available compilers.

All codes address the problems of convection and/or magnetic field generation in fluid-filled

rotating spheres and spherical shells. The problems fall into five broad categories:

• The kinematic dynamo (5 codes),

• The onset of thermal convection (4 codes),

• Boundary locked (steady-state) convection (3 codes),

• The time-dependent non-magnetic convection problem, with or without spatially varying

heat-flux at the boundaries (2 codes), and

• The time-dependent dynamo problem, with or without spatially varying heat-flux at the

boundaries (5 codes).

The Boussinesq approximation applies to all models. An additional 10 codes generate and manip-

ulate the files defining the temperature, flow, and magnetic field variables. For example, if we want

to change the spatial resolution of a calculation, there are programs that interpolate the solutions

from one spatial specification to another. All of these 29 codes, described briefly in Sec. 3, are

written in near-standard Fortran 77 and compile readily using, for example, the gfortran compiler.

An additional set of 10 programs, utilizing the PGPLOT plotting library (Pearson 2011), generate
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4 S. J. Gibbons et al.

postscript plots of the specified fields with, optionally, arrows to indicate the direction and strength

of the fluid flow. The postscript files generated are vector graphics that are readily converted to

other formats, such as pdf and png. There are both free and commercial tools that will perform this

conversion and we have found that the free psconvert program of GMT will perform the job well

(see Data Availability statement). Two programs plot on surfaces of constant radius, 4 programs

plot meridian or equatorial sections, or sections of constant distance from the equatorial plane, and

4 programs plot spherical projections. These codes are discussed separately in Sec. 4.

We note of course that other codes are openly available to the community. XSHELLS is openly

available as is the SINGE code (Vidal & Schaeffer 2015; Monville et al. 2019). The links to both

of these codes are provided in the Data Availability section. Our aim with this paper is to explain

the scope and limitations of the programs presented here such that a user can determine whether

or not a given program is relevant to an application. The codes were used to generate results for a

sequence of publications (e.g. Gibbons & Gubbins 2000; Gubbins et al. 2000a,b; Christensen et al.

2001; Gubbins & Gibbons 2002, 2004; Gibbons et al. 2007; Gubbins & Gibbons 2009) at a time

when it was less usual than it is today to include or publish source code. This paper rectifies this

retrospecively. The descriptions of the individual codes explain which codes were used for which

studies.

Each of the programs has its own directory in the github/Zenodo distribution with a pdf instruction

manual, the full source code, a Makefile, at least one input file for an example run, and any state

files required as initial conditions. In addition, every subroutine has extensive comments in the

source code, describing in detail the input and output parameters. This should make it far easier

to recycle the code to form new applications. In this paper, we start by presenting the equations

that are solved and provide a brief overview of how the fields are stored (Sec. 2). In Sec. 3, we

present briefly each of the main programs and outline their applicability and the publications in

which they have featured. Readers wishing to know more about the numerical methods employed in

the various codes will find this information most comprehensively presented in the corresponding

publications. In Sec. 4, we present briefly the graphics programs, together with sample outputs.

This paper does not contain any operational instructions; a user manual is provided together with

each of the codes. We finally provide some general considerations.
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Convection and geodynamo codes 5

2 FORMULATION

This section gives a brief overview of the equations which are solved by the various programs and

how the solutions are represented numerically. The quantities in the different codes are steered by

seemingly arbitrarily named parameters. These are however consistent across the whole suite of

programs and are detailed here for convenience.

2.1 The heat equation

The equation defining the advection of heat (see Gubbins & Roberts 1987) is
𝜕𝑇

𝜕𝑡
+ 𝒖.∇𝑇 = 𝜅∇2𝑇 + 𝑞

𝐶𝑝𝜌
(1)

where 𝒖 is the fluid flow, 𝑇 the temperature, 𝜅 the thermal diffusivity (m2s−1), 𝑞 the rate of local

heating (Jm−3s−1), 𝐶𝑝 the specific heat capacity (Jkg−1K−1) and 𝜌 the density (kgm−3).

The convection codes assume that the temperature, 𝑇 , is expressed as follows:-

𝑇 (𝑡, 𝑟, 𝜃, 𝜙) = 𝑇0(𝑟) + 𝑇1(𝑡, 𝑟, 𝜃, 𝜙) (2)

where 𝑡, 𝑟, 𝜃, and 𝜙 are the time, radius, colatitude, and longitude respectively. The steady, basic-

state, temperature distribution, 𝑇0(𝑟), is given the form

𝑇0(𝑟) = −1
2
𝑏1𝑟

2 + 𝑏2

𝑟
+ 𝑏3 (3)

where 𝑏1, 𝑏2 and 𝑏3 are constants. Its purpose is to define the basic state temperature profile for

the sphere or spherical shell, incorporating any internal heating sources. It satisfies

∇𝑇0 = −
(
𝑏1𝑟 + 𝑏2𝑟

−2
)
𝒆𝑟 , (4)

where 𝒆𝑟 is the unit vector in the radial direction, and

∇2𝑇0 = −3𝑏1. (5)

If we substitute the definition (2) into Equation (1) and apply (4) and (5) we derive
𝜕𝑇1

𝜕𝑡
= 𝜅∇2𝑇1 − 3𝜅𝑏1 +

𝑞

𝐶𝑝𝜌
+ 𝒖.

(
𝑏1𝑟 + 𝑏2𝑟

−2
)
𝒆𝑟 − 𝒖.∇𝑇1 (6)

It is now clear that the constant 𝑏1 defines the sources of internal heating with

𝑏1 =
𝑞

3𝐶𝑝𝜌𝜅
. (7)

If there are no internal heating sources, then 𝑞 = 0 and hence 𝑏1 = 0. The constant 𝑏2 is chosen

appropriately for systems which have a simple temperature gradient from the inner to the outer

boundary.

For numerical simplicity, it is best to solve for temperature functions with homogeneous boundary
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6 S. J. Gibbons et al.

conditions. We therefore decompose 𝑇1, the perturbation from the basic state temperature,

𝑇1(𝑡, 𝑟, 𝜃, 𝜙) = Θ(𝑡, 𝑟, 𝜃, 𝜙) + 𝜀𝑇a(𝑟, 𝜃, 𝜙). (8)

Θ is the function which is solved for in all of the calculations. 𝑇a is an additional temperature which

is imposed if, for example, an inhomogeneous heat-flux at the outer boundary is required.

If we denote the radial component of the velocity 𝑢𝑟 , then applying Equation (8) to Equation (6)

gives us the heat equation as applied in all of the programs:

𝑐𝑎
𝜕Θ

𝜕𝑡
= 𝑐𝑑∇2(Θ + 𝜀𝑇a) + 𝑏1𝑢𝑟𝑟 + 𝑏2

𝑢𝑟

𝑟2 − 𝑐𝑐𝒖.∇(Θ + 𝜀𝑇a) (9)

The constants 𝑐𝑎, 𝑏1, 𝑏2, 𝑐𝑐 and 𝑐𝑑 are arbitrarily named, with no physical meaning attatched to

them. Their use simply allows for any scaling to be applied to the equations. In the codes, 𝑐𝑎 is

stored in the double precision variable CA; and similarly with 𝑏1 (CB1), 𝑏2 (CB2), 𝑐𝑐 (CC) and 𝑐𝑑

(CD). Many of the codes are restricted to uniform thermal boundaries and so only work for 𝜀 = 0.

Codes which are designed to implement inhomogeneous thermal boundaries usually denote 𝜀 with

the double precision variable SCAL.

2.2 The momentum equation

In the Boussinesq approximation, all density variations except those with respect to the buoyancy

force are considered to be negligible, and following the analysis of Gubbins & Roberts (1987), the

momentum equation is written
𝜕𝒖

𝜕𝑡
+ 𝒖.∇𝒖 + 2𝛀 × 𝒖 = −∇𝜔̃ + 𝛿𝜌

𝜌0
𝒈 + 𝑱 × 𝑩

𝜌0
+ 𝜈∇2𝒖, (10)

where 𝑱 and 𝑩 are respectively the electric current and magnetic field. The scalar function 𝜔̃

combines the pressure, 𝑝, and the centrifugal force such that

𝜔̃ =
𝑝

𝜌
− 1

2
|𝛀 × 𝒓 |2,

and can be removed from the problem by taking the curl of Equation (10). The density variation

𝛿𝜌 is expressed in terms of the thermal expansivity, 𝛼 (K−1), and 𝑇 , the temperature perturbation

from a well mixed state (𝜌 = 𝜌0), to give
𝛿𝜌

𝜌0
= −𝛼𝑇. (11)

The acceleration due to gravity, 𝒈 is written in terms of the radial vector 𝒓 as

𝒈 = −𝛾𝒓, (12)

for a constant 𝛾 (with units s−2). The linear dependence of 𝒈 on 𝑟 is a good approximation for

the core (see for example Dziewonski & Anderson (1981) or Anderson (1989)), but would not be

appropriate for the mantle. 𝜈 is the viscosity (m2s−1) and 𝛀 = Ω𝒌 is the rotation vector, in terms
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Convection and geodynamo codes 7

of the unit vector, 𝒌, perpendicular to the equatorial plane and oriented upwards at the origin given

counter-clockwise rotation. The electric current is related to the magnetic field by

∇ × 𝑩 = 𝜇𝑱 (13)

where 𝜇 is the magnetic permeability and assumed to equal 𝜇0, the magnetic permeability of free

space everywhere.

In order to eliminate the pressure gradient from the momentum equation, we take the curl of

Equation (10) and apply equations (11) and (12). If we denote the vorticity (the curl of 𝒖) by 𝝎,

then our vorticity equation becomes

𝜕𝝎

𝜕𝑡
= −∇ × (𝒖.∇𝒖) − 2Ω∇ × (𝒌 × 𝒖)

+𝛼𝛾∇ × (𝑇 𝒓) + 1
𝜌𝜇0

∇ × [(∇ × 𝑩) × 𝑩] + 𝜈∇2𝝎.
(14)

It is assumed here that the kinematic viscosity, 𝜈, is not a function of space. The basic state

temperature, 𝑇0, is a function of radius alone and therefore cannot contribute to the buoyancy term

in the vorticity equation. Giving arbitrarily defined names to the scalings which multiply the terms

in our equation (14), we write the curl of the momentum equation

𝑐𝑒
𝜕𝝎

𝜕𝑡
= −𝑐 𝑓∇ × (𝒖.∇𝒖) − 𝑐𝑔∇ × (𝒌 × 𝒖)

+𝑐ℎ∇ × [(Θ + 𝜀𝑇a)𝒓] + 𝑐 𝑗∇ × [(∇ × 𝑩) × 𝑩] + 𝑐𝑖∇2𝝎.

(15)

There are two vector quantities in the momentum equation, the velocity 𝒖 and the magnetic field

𝑩. 𝑩 must always satisfy the solenoidal condition

∇.𝑩 = 0 (16)

and similarly, for a Boussinesq fluid, 𝒖 must satisfy

∇.𝒖 = 0. (17)

We can therefore express both velocity and magnetic field in poloidal/toroidal decompositions

𝑩 = ∇ × ∇ ×
[

𝑃𝐵(𝑡, 𝑟, 𝜃, 𝜙) 𝒓
]

+ ∇ ×
[

𝑇𝐵(𝑡, 𝑟, 𝜃, 𝜙) 𝒓
]

(18)

and

𝒖 = ∇ × ∇ ×
[

𝑃𝑣(𝑡, 𝑟, 𝜃, 𝜙) 𝒓
]

+ ∇ ×
[

𝑇𝑣(𝑡, 𝑟, 𝜃, 𝜙) 𝒓
]
. (19)

Note that these definitions are different from those of, for example Bullard & Gellman (1954), who

use the unit radial vector, 𝒓̂, instead of 𝒓.
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8 S. J. Gibbons et al.

2.3 The induction equation

The equation describing the evolution of a magnetic field, 𝑩, in a conducting fluid with velocity 𝒖

is derived from the pre-Maxwell equations

∇ × 𝑬 = −𝜕𝑩

𝜕𝑡
, ∇ × 𝑩 = 𝜇𝑱 and ∇.𝑩 = 0 , (20)

and Ohm’s law

𝑱 = 𝜎(𝑬 + 𝒖 × 𝑩), (21)

where 𝑬 is the electric field and𝜎 the electrical conductivity. The pre-Maxwell forms are used since

the displacement current, 𝜕𝑬/𝜕𝑡, will be negligible for the relatively slow variations appropriate

for the Earth. Assuming the electrical conductivity to be a constant, taking the curl of Equation

(21) and applying the relations of (20) together with the vector identity

∇ × (∇ × 𝑽) = ∇(∇.𝑽) − ∇2𝑽,

gives the induction equation
𝜕𝑩

𝜕𝑡
= ∇ × (𝒖 × 𝑩) + 1

𝜇0𝜎
∇2𝑩. (22)

The generalised form of the induction equation, as used by the programs, is

𝑐𝑘
𝜕𝑩

𝜕𝑡
= 𝑐𝑚∇ × (𝒖 × 𝑩) + 𝑐𝑙∇2𝑩. (23)

As in equations (9) and (15), the constants 𝑐𝑘 , 𝑐𝑚 and 𝑐𝑙 are arbitrarily named with no physical

implications intended.

2.4 Numerical Representation

The parameters governing the scalings of the terms in the heat, momentum, and induction equations

are specified in equations 9, 15, and 23 respectively. We here describe very briefly how the solution

vectors representing the various fields are constructed and stored on file.

In equations 8, 18, and 19 we have five scalar functions of space and time, Θ, 𝑃𝑣, 𝑇𝑣, 𝑃𝐵, and 𝑇𝐵,

which can all be expressed in the form

𝑓 (𝑡, 𝑟, 𝜃, 𝜙) = 𝑓 0𝑐
0 (𝑟, 𝑡) +∑𝐿
𝑙=1 𝑓 0𝑐

𝑙
(𝑟, 𝑡)𝑃0

𝑙
(cos 𝜃) +∑𝐿

𝑙=1
∑𝑀 (𝑙)

𝑚=1 𝑓 𝑚𝑐
𝑙

(𝑟, 𝑡) cos𝑚𝜙𝑃𝑚
𝑙
(cos 𝜃) +∑𝐿

𝑙=1
∑𝑀 (𝑙)

𝑚=1 𝑓 𝑚𝑠
𝑙

(𝑟, 𝑡) sin𝑚𝜙𝑃𝑚
𝑙
(cos 𝜃)

(24)

where𝑃𝑚
𝑙
(cos 𝜃) is an associated Legendre function, here satisfying the Schmidt quasi-normalisation
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Convection and geodynamo codes 9

condition∫ 𝜋

0

[
𝑃𝑚
𝑙 (cos 𝜃)

]2 sin 𝜃𝑑𝜃 =
2(2 − 𝛿𝑚0)

2𝑙 + 1
. (25)

The entire solution can be described completely in terms of the radial functions 𝑓 𝑚𝑐
𝑙

(𝑟, 𝑡) and

𝑓 𝑚𝑠
𝑙

(𝑟, 𝑡) where the scalar 𝑓 can be each of Θ, 𝑃𝑣, 𝑇𝑣, 𝑃𝐵, and 𝑇𝐵. For a true three-dimensional

solution, the integer function 𝑀 is given by

𝑀 (𝑙) = 𝑙. (26)

However, there are many cases where it is valid to restrict the resolution in the 𝜙 direction. If the

energy spectra in 𝑚 decay much faster than in 𝑙, it may be appropriate to impose a maxmimum

value of 𝑚, 𝑀max for instance, such that

𝑀 (𝑙) = 𝑚𝑖𝑛(𝑙, 𝑀max). (27)

This can lead to significant time savings by reducing the size of the (𝑟, 𝜃, 𝜙) grid which needs

transforming, and especially in reducing the time spent in the Fast Fourier Transforms. Also, we

may impose a fundamental wavenumber, 𝑚0, such that only 𝑚 which are integer multiples of 𝑚0

are included in the solution. In some instances, this may actually be valid for the physical solution

which may display natural symmetry properties. An example of this is the dynamo benchmark

solution of Christensen et al. (2001) which displays a four-fold symmetry in 𝜙 and can therefore

be represented by a spherical harmonic expansion containing only 𝑚 which are integer multiples

of 4. A fully three-dimensional solution for the model parameters described in Christensen et al.

(2001) will integrate towards a solution which is zero for all 𝑚 which are not multiples of 𝑚0. Care

must of course be taken as the symmetry is likely to be broken when the physical parameters are

changed and other symmetries are excited.

Even for cases where the physical solution is not exactly described by a limited set of wavenum-

bers, much can be learned from solutions with a reduced resolution in the 𝜙-direction. Many

authors (for example Sarson & Jones (1999) and references therein) have obtained great insights

by restricting the solution to two azimuthal wavenumbers: 𝑚 = 0 and one non-zero wavenumber.

These have been termed 2.5D dynamos. Improvements in computational power since the 1990s

have of course limited the circumstances in which such measures are necessary, but exploiting

symmetry considerations may still permit far higher resolution in radius or latitude than would be

possible with full resolution in azimuth.

Only the temperature variable, Θ, has an 𝑙 = 0 term: this is absent from the other terms due to the

solenoidal condition (16) and the incompressibility condition (17). There are numerous additional

symmetry considerations described by Gubbins & Zhang (1993) which can further reduce the
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10 S. J. Gibbons et al.

number of radial functions in the expansions of the form in equation 24 needed to describe a

completely viable physical solution.

If 𝑁ℎ gives the total number of radial functions of the form 𝑓 𝑚𝑐
𝑙

(𝑟, 𝑡) and 𝑓 𝑚𝑠
𝑙

(𝑟, 𝑡) (c.f. equation

24) we need, and 𝑁𝑟 gives the number of points in radius, then a vector of 𝑁ℎ × 𝑁𝑟 numbers is

sufficient to store our solution. In addition, we need a single array of 𝑁𝑟 numbers giving the values

of radius to use and a set of five integers describing the nature of each of the 𝑁ℎ radial functions.

The first of these integers tells us which of Θ, 𝑃𝑣, 𝑇𝑣, 𝑃𝐵, or 𝑇𝐵 the radial function represents. The

second gives 𝑙 and the third gives 𝑚 for a cos𝑚𝜙 function or −𝑚 for a sin𝑚𝜙 function. The fourth

and fifth integers specify the boundary condition to be applied to the radial function at the inner

and outer boundary respectively.

Each solution is saved in three files. These can have any name the user wishes but we usually

label them [stem].ints, [stem].vecs and [stem].xarr. The ints file has in the first row the

number of radial functions (𝑁ℎ) and this is followed by 𝑁ℎ rows each containing the five integers

described above. The xarr file contains 𝑁𝑟 numbers defining the radial node locations (which are in

principle arbitrary, but must increase strictly) following a header line of two integers: NR and IFORM

(where the latter describes the format of the numbers). The vecs file contains 𝑁ℎ × 𝑁𝑟 numbers

providing the values of the radial functions themselves following a header line of four integers:

IORD NR,NH and IFORM. If IORD is 3 then the value of radial function 𝑖ℎ at node 𝑖𝑟 is stored at location

(𝑖𝑟 − 1)𝑁ℎ + 𝑖ℎ in the solution vector. (This ordering groups together the values of every spherical

harmonic coefficient at a given radial grid node, as is needed for all programs that form matrices

with interactions between different spherical harmonics. This is the case for the kinematic dynamo

and boundary-locked convection codes that need to maintain a banded structure of large matrices.)

If IORD is 4, it is stored at location (𝑖ℎ − 1)𝑁𝑟 + 𝑖𝑟 . (This ordering groups together the values of

all radial grid nodes for a given spherical harmonic function. This is the ordering necessary for the

time-stepping codes for which the matrices do not couple different radial functions.) It is possible

to switch from one ordering to another using the svpnsmap auxiliary program. The number IFORM

always takes the value 1 for the FORTRAN type format 5(1PD16.7); no other format was ever

considered, although this could easily be implemented.

For dynamo calculations where we have a conducting inner core and/or a conducting layer at the

base of the mantle, we represent the magnetic field in a separate set of files to the other functions (i.e.

six files in total). The radii for the outer core nodes must correspond exactly in both sets of xarrfiles.

The naming convention in the examples given is intsm, vecsm, and xarrm for the magnetic field

and intsv, vecsv, and xarrv for the remaining functions. A full overview of the mathematical and
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Convection and geodynamo codes 11

numerical formalism behind the codes is contained in the file DOC_fundamentals.pdf document

in the additional_documentation directory of the LEOPACK-2022-revision repository.

3 OVERVIEW OF MAIN PROGRAMS

This section provides a brief overview of the main codes arranged in groups of applications. An

at-a-glance overview is provided in Fig. 1 while the lists below provide a somewhat expanded

description of applicability.

3.1 The Kinematic Dynamo

All of these codes impose a prescribed and fixed velocity field and solve for the magnetic-field-

generating properties of this flow. Only two flows have been implemented: the flow of Dudley &

James (1989) in the code djiepgrf and the flow of Kumar & Roberts (1975) in all the other codes.

All of the codes solve an eigenvalue system using the Implicitly Restarted Arnoldi Method (Arnoldi

1951) as implemented in the ARPACK software (Lehoucq et al. 1998; Sorensen 1992). To specify

a different form of flow would necessitate creating a new code from one of these programs as

starting points.

The five codes are as follows:

• djiepgrf. Calculates the generally complex growth rates, 𝜎, of a magnetic field subject to the

flow of Dudley & James (1989) with different specifications of coefficients.

• kriepgrf. Calculates the generally complex growth rates, 𝜎, of a magnetic field subject to the

flow of Kumar & Roberts (1975) with different specifications of coefficients.

• krcmrnif. Calculates a critical magnetic Reynolds number, 𝑅c
𝑚, for which the real part of the

growth rate, 𝜎, is zero for the flow of Kumar & Roberts (1975). The procedure is iterative and not

guaranteed to find a value of 𝑅c
𝑚.

• krddmcmrnif. Calculates a critical magnetic Reynolds number, 𝑅c
𝑚, for which the real part

of the growth rate, 𝜎, is zero for the flow of Kumar & Roberts (1975) but where the scalings

of the different components of the flow are defined by the 𝐷 and 𝑀 parameters (controlling the

relative strengths of the differential rotation and meridian circulation respectively) as introduced

by Gubbins et al. (2000a). The procedure is iterative and not guaranteed to find a value of 𝑅c
𝑚.

This code was subsequently used to map out the parameter spaces in the studies of Gubbins et al.

(2000b), Gubbins & Gibbons (2002), and Gubbins & Gibbons (2009).

• krssgeps. Calculates a critical magnetic Reynolds number, 𝑅c
𝑚, for a strictly zero growth rate.
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12 S. J. Gibbons et al.

kriepgrf

krcmrnif

krddmcmrnif

krssgeps

djiepgrf linons1

linons2

sbrlinons1

sbrlinonsd

The Kinematic Dynamo Problem

The Dudley-James velocity

The Kumar-Roberts velocity

The Onset of Thermal Convection

Boundary-locked Convection

blscnlsc

blscnlsic

blscnlsic_evecs

Steady-state flows

Steady-state with instability analysis

Steady-state solutions
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Critical Rayleigh Number

... in a rotating frame of reference

Time-Stepping Codes

Uniform Thermal Boundaries Heterogeneous Thermal Boundaries

Non-magnetic
Convectiono2ubtctsc2 o2ibtctsc2

o2ubcdts2

Insulating Inner Core

cicubcdts2

Conducting Inner Core

cicibcdts2

cicmubcdts2

Conducting Inner Core and Layer at the Outer Boundary

cicmibcdts2

The full dynamo
Problem

Manipulation of
Solution Vectors

svpnsmap rsvfg

cicsvpnsmap

cicmsvpnsmap

iic2cicsc

msvip

itfvf

Generation of
Solution Vectors

cicm2ocdisplay

svenspec

Postprocessing

mfcanal1

Find from guess

Find in interval

Specify frame

Solve for frame

Figure 1. At-a-glance summary of the main programs listed in Sec.3.
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Convection and geodynamo codes 13

This program solves a generalized eigenvalue problem. The flow is of the form specified by Kumar

& Roberts (1975).

3.2 The Onset of Thermal Convection

There are four codes for solving for the critical Rayleigh number for the onset of thermal convection

in a rotating fluid-filled sphere or spherical shell. (The sphere is just a special case of the spherical

shell with the inner radius set to zero.) The exact definition of the Rayleigh number can vary so,

in these programs, we refer only to the parameter 𝑐ℎ specified in Eq. (15). All programs perform

essentially the same task. linons1 and linons2 differ only in that linons1 takes a single initial guess

for 𝑐c
ℎ

and it estimates an initial gradient of the growth rate as a function of 𝑐ℎ based on a small

perturbation, whereas linons2 solves for a value of 𝑐c
ℎ

between two bounds within which 𝑐c
ℎ

is known

to be found. The codes sbrlinons1 and sbrlinonsd apply a solid body rotation in order to solve for a

system rotating at the same angular velocity as the convection rolls at onset. This was found to be

necessary as the eigensolvers struggle to find the correct eigenvalues when the imaginary parts of

the growth rates become too large. By imposing a solid body rotation, we solve in a rotating frame

of reference and the imaginary part of the growth rate is defined by the difference between the drift

rate and the imposed rotation. The growth rate can therefore become purely real if the solid body

rotation corresponds exactly with the drift rate. sbrlinons1 imposes a fixed solid body rotation and

sbrlinonsd attempts to iterate to the solid body rotation which makes the relative drift rate zero.

Note that this problem decouples in the wavenumber, 𝑚, such that each run is performed for a

specified 𝑚. Each set of parameters has a critical Rayleigh number for each wavenumber so the

overall critical Rayleigh number will have an associated preferred wavenumber.

The four codes are as follows:

• linons1. Finds the critical Rayleigh number for the onset of thermal convection in a rotating

fluid-filled sphere or spherical shell from an initial guess.

• linons2. As for linons1 but iterates between a lower and an upper bound.

• sbrlinons1. As for linons2 but imposes a fixed solid body rotation. (i.e. solves in a fixed

rotating frame of reference.)

• sbrlinonsd. As for sbrlinons1 but attempts to solve for the solid body rotation for which the

imaginary part of the growth rate vanishes for the onset of thermal convection. (i.e. solves in a

rotating frame of reference that is modified on each iteration.)

These codes were validated by reproducing the results of Zhang & Busse (1987), in which a fixed
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14 S. J. Gibbons et al.

temperature was specified at the outer boundary, and were used to calculate the critical Rayleigh

numbers in the study of Gibbons et al. (2007), for which a fixed heat-flux was specified at the outer

boundary.

3.3 Boundary-locked Convection

When there is a spatially varying temperature or heat-flux as a boundary condition, convection will

always occur. That is to say that there is no critical regime like there is for the onset of convection in

the uniform boundary problem. Convection driven by the thermal boundary is even possible when

the fluid is stably stratified. There are three codes for calculating boundary-locked convection as

follows:

• blscnlsc. Solves iteratively for steady-state boundary-locked or boundary-driven convection.

Note that there is no time-dependence to the solution but that we cannot tell, from this calculation

alone, whether or not the solution is stable or not.

• blscnlsic. As for blscnlsc but the resulting steady-state solution is also subject to an instability

analysis. This is an eigenvalue problem and a growth rate with a positive real part indicates that a

perturbation to the steady-state boundary-locked or boundary-driven flow would grow.

• blscnlsic_evecs. As for blscnlsic but produces different output. The programs are essentially

identical but blscnlsic_evecs writes out all of the eigenvectors from the instability analysis. This of

course will consume a lot of disk space, so only use this program for spot-checking and displaying

of the spatial form of the thermal instabilities.

These codes were validated by reproducing the results of Zhang & Gubbins (1993) and Zhang &

Gubbins (1996), for which a fixed temperature outer-boundary-condition was imposed, and were

used to calculate the boundary-locked solutions in the study of Gibbons et al. (2007), for which a

fixed heat-flux outer-boundary-condition was imposed. An earlier version of the code blscnlsc had

been used to calculate the solutions in the study of Gibbons & Gubbins (2000).

Note that all of these three programs use large matrices with cross-terms between different radial

functions. The size of these matrices increases rapidly as the spatial resolution of the problem

increases. You will rapidly reach a limit regarding memory demands and time-to-solution as

the dimensions of the problem increase. However, any boundary-driven or boundary-locked flow

should also result from the time-stepping code o2ibtctsc2. If you run o2ibtctsc2 and blscnlsc with

identical resolution and identical parameter settings then the time-stepping code should result

in a steady-state solution identical to that obtained using blscnlsc. If the steady-state solution is
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Convection and geodynamo codes 15

unstable, as indicated by the program blscnlsic, then this should result in a time-dependent solution

in o2ibtctsc2. The philosophy behind the two types of programs is rather different and the likeness

of the two solutions should provide a degree of validation.

3.4 Time-Stepping Codes for Non-Magnetic Convection

There are two codes which solve the heat and the vorticity equations in the absence of a magnetic

field for general time-dependent temperature and flow fields. They differ only in whether we wish

a spatially heterogeneous thermal boundary condition or not. The two codes are

• o2ubtctsc2. Time-stepping code for non-magnetic convection with a uniform temperature or

heat-flux at the boundaries. A slightly earlier version of this code was used for the contribution

labelled GJZ in the benchmark study (Case 0) of Christensen et al. (2001).

• o2ibtctsc2. Time-stepping code for non-magnetic convection with the possibility of spatially

varying temperature or heat-flux at the boundaries. This code was used to compute the time-

dependent solutions in the studies of Gubbins & Gibbons (2004) and Gibbons et al. (2007). These

studies considered only laterally varying heat-flux at the outer boundary, although the code also

allows full flexibility in specifying laterally varying heat-flux at the boundary of the inner core.

3.5 Time-Stepping Codes for The Full Dynamo Problem

There are five codes for solving the full set of equations for temperature, flow, and magnetic fields.

They are summarized as follows:

• o2ubcdts2. Time-stepping code for convection-driven magnetic field generation with a uni-

form temperature or heat-flux at the boundaries and an insulating inner core. A slightly earlier

version of this code was used for the contribution labelled GJZ in the benchmark study (Case 1) of

Christensen et al. (2001).

• cicubcdts2. Time-stepping code for convection-driven magnetic field generation with a uni-

form temperature or heat-flux at the boundaries and a conducting inner core that co-rotates with

the mantle. The fluid must have a no-slip boundary condition at the inner boundary.

• cicibcdts2. Time-stepping code for convection-driven magnetic field generation with the

possibility of a spatially varying temperature or heat-flux at the boundaries and a conducting inner

core that co-rotates with the mantle. The fluid must have a no-slip boundary condition at the inner

boundary.
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16 S. J. Gibbons et al.

• cicmubcdts2. Time-stepping code for convection-driven magnetic field generation with a

uniform temperature or heat-flux at the boundaries and a conducting inner core that co-rotates with

the mantle and, optionally, a conducting layer at the base of the mantle. The fluid must have a

no-slip boundary condition at boundaries at which we solve for a magnetic field on either side.

• cicmibcdts2. Time-stepping code for convection-driven magnetic field generation with the

possibility of a spatially varying temperature or heat-flux at the boundaries and a conducting inner

core that co-rotates with the mantle and, optionally, a conducting layer at the base of the mantle.

The fluid must have a no-slip boundary condition at boundaries at which we solve for a magnetic

field on either side.

3.6 Auxiliary Codes

The 10 codes listed here are miscellaneous tools for manipulating files acted on by the main

programs:

• svpnsmap. Converts a set of solution vectors from one spatial mesh to another. We can change

the locations of the radial grid nodes and change the set of radial functions present.

• cicsvpnsmap. As for svpnsmap but operates on the double sets of solution vectors (i.e. six

files) for the conducting inner core calculations.

• cicmsvpnsmap. As for cicsvpnsmap but covers the cases where we also have a conducting

layer at the base of the mantle.

• iic2cicsc. Converts a set of files from the insulating inner core code (o2ubcdts2) to the six-file

conducting inner core format for one of the other magnetic field time-stepping codes.

• msvip. Combines multiple sets of solution vector files. Useful when displaying solutions with

inhomogeneous thermal boundary conditions.

• rsvfg. Generates a random initial solution vector (a set of three files).

• itfvf. Generates a set of files for imposing a spatially varying thermal boundary condition.

• cicm2ocdisplay. Combines the magnetic field and flow/temperature files to a single solution

vector specification (i.e. 3 files) for the outer core only. This is to generate temporary files for

plotting since the constant radius plotting programs only take in single sets of files.

• svenspec. Calculates the kinetic and magnetic energy as a function of 𝑙 and 𝑚.

• mfcanal1. Calculates a number of properties of the magnetic field. The properties calculated

were specifically chosen for one particular investigation. If more different properties were to be
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Convection and geodynamo codes 17

Spherical Section Programs

Overlaying of Continent Outlines

ps_2plot_z_eq_merid4

arrows_z_eq_merid4

cic_arrows_z_eq_merid4

cicm_arrows_z_eq_merid4

Sphere Programs

shc_sphere_plot

cutout_sphere_plot

full_sphere_plot

continent_full_sphere_plot

Constant Radius Plotting Programs

arrows_const_r3 continent_arrows_const_r3

Figure 2. At-a-glance summary of the graphics programs listed in Sec.4.

required, this would necessitate a new code. However, this program may provide a suitable starting

point.

4 OVERVIEW OF GRAPHICS PROGRAMS

There are 10 programs which provide postscript displays of the temperature, flow, and magnetic

fields generated. An at-a-glance overview is provided in Fig. 2. There are three types of projection

which we will consider separately: rectangular plots of fields for constant radius (2 codes), spherical

shell sections in polar coordinates (4 codes), and quasi-three-dimensional images of fields on the

surface of a sphere (4 codes).

Should the user prefer to use alternative software for making the plots (for example, the Generic

Mapping Tools (GMT): Wessel et al. 2019), the programs in the gprograms directory could easily

be adapted to simply write out the functions to be plotted to ASCII files which could be interpreted

by other plotting programs. Subroutines such as CONSTANT_R_RECT_EVAL, EQ_SEC_POLAR_EVAL,

and MERID_SEC_POLAR_EVAL look after all the interpolation of radial functions and the evaluation

of the correct spherical harmonic terms. These routines return simple two-dimensional arrays with

the requested functions. (The coordinates in 𝑟 , 𝜃, and 𝜙 are always equally spaced between the

requested limits.)
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18 S. J. Gibbons et al.

4.1 Programs for plotting on fixed-radius projections

Two codes are provided for plotting functions and flow arrows on surfaces of constant radius. They

are:

• arrows_const_r3. Colour or contour plots of scalar functions (optionally with flow arrows)

on a surface for a specified constant radius. Sample output in Fig. 3 a).

• continent_arrows_const_r3. As for arrows_const_r3 except that a simple outline of the

continents is drawn on top. Sample output in Fig. 3 b).

4.2 Programs for plotting on spherical sections

Four codes are provided for plotting scalar functions and, optionally, flow arrows in equatorial

sections, meridian sections, or sections of constant distance from the equatorial plane (constant 𝑧).

• arrows_z_eq_merid4. Plots section of scalar and, optionally, flow arrows for spherical shells

(i.e. inner core is not included). Sample output in Fig. 4 a).

• cic_arrows_z_eq_merid4. As for arrows_z_eq_merid4 except that it plots solutions from the

conducting inner core codes. Sample output in Fig. 4 b).

• cicm_arrows_z_eq_merid4. As for cicm_arrows_z_eq_merid4 except that it plots solutions

with a conducting layer at the base of the mantle. Sample output in Fig. 4 c).

• ps_2plot_z_eq_merid4. Plots two hemispherical sections side by side. There are many ex-

amples in the study of Gubbins & Gibbons (2002).

4.3 Programs for plotting on the surface of a sphere

There are four programs which plot scalar fields on the surface of a sphere.

• shc_sphere_plot. Plots a scalar function on a spherical surface specified by a file of spherical

harmonic coefficients. Sample output in Fig. 5 a).

• cutout_sphere_plot. Plots a scalar function from a standard 3-file solution vector on a spher-

ical surface with a cut out section as displayed in Fig. 5 b).

• full_sphere_plot. Plots a scalar function from a standard 3-file solution vector on a spherical

surface. Sample output in Fig. 5 c).

• continent_full_sphere_plot. As full_sphere_plot except that a simple outline of the continents

is drawn on top. Sample output in Fig. 5 d).
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Convection and geodynamo codes 19

arrows_const_r3

continent_arrows_const_r3

a)

b)

Figure 3. Example outputs from the constant radius plotting programs listed in Sec. 4.1 Panel (a) shows arrows of flow and coloured contours
of 𝑣𝜃 for the Case 0 Dynamo Benchmark study of Christensen et al. (2001) generated using the solution vector and an input file in the directory
GRAPHICS_arrows_const_r3 of the distribution. Panel (b) shows contours of the temperature perturbation together with outlines of continents and
arrows of flow for the same solution from the directory GRAPHICS_continent_arrows_const_r3 of the distribution. All documentation for each
program is contained within a pdf file in the appropriate directory.
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20 S. J. Gibbons et al.

a)

b)

c)

arrows_z_eq_merid4

cic_arrows_z_eq_merid4

cicm_arrows_z_eq_merid4

Figure 4. Example outputs from the spherical section plotting programs as indicated listed in Sec. 4.2 The plots in panels (a), (b), and (c)
can be generated using the solution vectors and input files in the directories of the distribution GRAPHICS_arrows_z_eq_merid4, GRAPH-
ICS_cic_arrows_z_eq_merid4, and GRAPHICS_cicm_arrows_z_eq_merid4 respectively. All documentation for each program is contained within
a pdf file in the appropriate directory.
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a) b)

c) d)

shc_sphere_plot cutout_sphere_plot

full_sphere_plot continent_full_sphere_plot

Figure 5. Example outputs from the spherical surface plotting programs listed in Sec.4.3 The plots in panels (a), (b), (c) and (d) can be generated
using the solution vectors and input files in the directories of the distribution GRAPHICS_shc_sphere_plot, GRAPHICS_cutout_sphere_plot,
GRAPHICS_full_sphere_plot, and GRAPHICS_continent_full_sphere_plot respectively. All documentation for each program is contained within
a pdf file in the appropriate directory.

5 CONCLUSIONS

We present a set of codes for calculating and displaying solutions to diverse problems in convection

and magnetic field generation in rotating fluid-filled spheres and spherical shells. The codes are

freely available from both github and Zenodo. Each of the codes has a pdf user manual with an

explanation of the parameters used and at least one set of input files for a sample run. (Some of the

codes have several worked examples.) The main codes are purely written in FORTRAN with no
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external dependencies and compile under the free gfortran compiler (GNU Fortran version 9.4.0 on

Ubuntu 20.04.1 was used for the most recent test of the code prior to submitting this manuscript).

The graphics codes require in addition the PGPLOT library (version 5.2 was used). All codes

were tested thoroughly prior to uploading to github in late 2022, with every worked example being

reproduced using newly compiled code.

These codes represent a relatively brief snapshot in the development of the dynamo simulation

toolbox at the University of Leeds but are worth preserving and detailing as they

(i) were documented in unprecedented depth at this time,

(ii) formed a common basis for subsequent diverging developments and optimizations of the

codes, and

(iii) consider many aspects of geodynamo simulation within a common framework.

The codes described in this paper (LEOPACK) were used for numerous publications as detailed.

Subsequent studies by the Leeds group addressed more diverse problems and required both different

approaches and codes with better scalability. The code used by Willis et al. (2007) inherited much

of the LEOPACK approach, including its fundamental spectral-finite difference discretization. The

LEOPACK codes contributed both as a source of routines for certain inherited elements and, more

widely, for checking the accuracy of the new code.

A limitation is that the codes with conducting inner cores do not permit the inner core to rotate

at a different rate to the outer boundary and do not permit stress-free boundary conditions. At the

time of the benchmark study of Christensen et al. (2001), a conducting inner core had not been

implemented at all and there is no GJZ contribution for the Case 2 dynamo simulation. Subsequent

development of these codes at the University of Leeds reproduced the Case 2 benchmark with

a completely different representation of the magnetic field. The co-rotating inner core limitation

means that the user cannot, for example, study the torque balance on the inner core. A second

limitation is that this initial set of codes was not parallelized.

Although the basis in Fortran 77 brings a number of disadvantages, such as the lack of dynamic

memory allocation, it has helped the codes’ longevity. The lack of dependency on external libraries,

often subject to frequent updates, has meant that the code has required no modifications since its

initialization. It is our hope that the codes are easy to navigate, compile, and run, and that they will

provide a useful baseline comparison for subsequent code developments in geodynamo simulations.
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DATA AVAILABILITY

The code and examples are all available from

https://github.com/stevenjgibbons/LEOPACK-2022-revision

and the repository is obtained by typing

git clone

https://github.com/stevenjgibbons/LEOPACK-2022-revision.git

A permanent zip file of the release v1.0.1 is found on Zenodo at https://doi.org/10.5281/zenodo.7932800

The graphics programs require the PGPLOT library found at https://sites.astro.caltech.edu/~tjp/pgplot/

(last accessed August 2023).

The XSHELLS code is available from https://nschaeff.bitbucket.io/xshells/ (last accessed August

2023).

The SINGE code is available from https://bitbucket.org/vidalje/singe/src/master/ (last accessed

August 2023).

The psconvert tool is part of the free Generic Mapping Tools software (GMT: Wessel et al. 2019)

and can be obtained from https://www.generic-mapping-tools.org/ (last accessed August 2023).
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