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Abstract
We describe the synthesis and characterisation of the first of a new class of soluble ladder oligomeric thermoelectric material 
based on previously unutilised ethene-1,1,2,2-tetrasulfonic acid. Reaction of Ba(OH)2 and propionic acid at a 1:1 stoichiom-
etry leads to the formation of the previously unrecognised soluble [Ba(OH)(O2CEt)]⋅H2O. The latter when used to hydrolyse 
1,3,4,6-tetrathiapentalene-2,5-dione (TPD), in the presence of  NiCl2, forms a new material whose elemental composition 
is in accord with the formula [(EtCO2Ba)4Ni8{(O3S)2C = C(SO3)2}5]⋅22H2O (4). Compound 4 can be pressed into pellets, 
drop-cast as DMSO solutions or ink-jet printed (down to sub-mm resolutions). While its room temperature thermoelectric 
properties are modest (σmax 0.04 S  cm−1 and Seebeck coefficient, αmax − 25.8 μV  K−1) we introduce a versatile new oligomeric 
material that opens new possible synthetic routes for n-type thermoelectrics.

Graphical Abstract

(EtCO2Ba)4
SS

SS
+ NiCl2

S

S

O

O

O

O
O

O

NiII

BaII

nNiII

S
O

O
O

S
O

OO

O2CEt

oxidation in air

Use in Thermoelectric Device

Modest performance: � 0.04 S/cm
and � -28.5 �V/K
...but: Soluble! Printable!

opticalelectron microscopy

Keywords Organic thermoelectric · Oligomer · n-Type · Nickel · Barium · Thiolate

 * Yaoyang Hu 
 yaoyang.hu@nottingham.ac.uk; yaoyanghuchem@gmail.com

 * Michael P. Weir 
 michael.weir@nottingham.ac.uk

1 GSK Carbon Neutral Laboratories for Sustainable 
Chemistry, University of Nottingham, Jubilee Campus, 
Nottingham NG7 2TU, UK

2 Faculty of Engineering, University of Nottingham, 
Nottingham NG7 2RD, UK

3 School of Physics and Astronomy, University of Nottingham, 
Nottingham NG7 2RD, UK

4 Institut de Ciència de Materials de Barcelona 
(ICMAB-CSIC), Consejo Superior de Investigaciones 
Científicas, Campus Universitari de Bellaterra, 
08193 Cerdanyola del Vallès, Spain

http://crossmark.crossref.org/dialog/?doi=10.1007/s13391-023-00454-z&domain=pdf
https://orcid.org/0000-0002-6659-6666
https://orcid.org/0000-0003-4097-6043
http://orcid.org/0000-0001-8283-1040
https://orcid.org/0000-0003-1674-8462
https://orcid.org/0000-0003-0146-3851
https://orcid.org/0000-0003-2329-8471
https://orcid.org/0000-0002-8625-5084
https://orcid.org/0000-0001-8539-6232


 Electronic Materials Letters

1 3

1 Introduction

Zhu’s [1] 2012 re-evaluation of earth-abundant poly-
[M1

x(M2-ett)][2] complexes (ett = 1,1,2,2-ethenetetrathi-
olate;  M1 = Na, K;  M2 = Ni, Cu; typically with x = 0.02–0.25, 
but as high as 0.6, Scheme 1) as thermoelectric (TE) materi-
als has generated wide interest. This is as a result of their 

high potential for use in sustainable heat-to-power energy 
harvesting devices [3–6]. In particular, the excellent TE 
performance of poly-[Kx(Ni-ett)] is attractive, because of 
its high air stability, which is rare in n-type carriers [7–15]. 
However, two significant limitations of such materials exist: 
their poor solubility and potential to form diverse (unpredict-
able) microstructures hindering their use. Poly-[M1

x(M2-ett)] 
materials precipitate very rapidly when their in situ reaction 
precursors are exposed to air (Scheme 1). This leads to a dis-
tribution of material compositions and particle sizes that is 
dependent on the reaction micro-conditions. Variation in TE 
performance for samples nominally prepared under identi-
cal conditions can result. The complete insolubility of poly-
[M1

x(M2-ett)] complexes also prevents subsequent solution-
based purification and re-processing and hinders chemical 
characterisation of the materials. Poly-[M1

x(M2-ett)] com-
plexes are typically represented as 1D ladder polymers con-
taining structural motif A (Scheme 1) in the literature, but 
this is a significant simplification. Recent XPS studies led 
to the realisation that both hydrated (B) and oxidised ett 
(C) polymer forms can also be present [16]. Based on their 
elemental analyses, additional (presently poorly character-
ised) impurities can also be present within poly-[M1

x(M2-
ett)] samples. Finally, full characterisation of the materials 
is further complicated by the redox-active nature of the ett 
ligand itself (i.e. its ability to provide oxidised tetrathiooxa-
late units in situ) [17]. These factors make rational design of 
new metal-ett TE materials presently challenging.

Colloidal suspensions of poly-[Kx(Ni-ett)] can some-
times be used to prepare film devices which show a range of 
TE properties (Table 1) [18–24]. Aqueous ethylene glycol 
micro suspensions currently offer the best approach (Table 1, 
fourth entry) [21]. However, a truly homogeneous form of 
‘Ni(ett)’ would be attractive, as this would allow improved 
characterisation, film casting and ink-jet printing approaches 
to device fabrication. Only extruded pastes or suspensions 
of Ni-ett materials are presently used to prepare simple TE 
modules (Table 1) [18–24]. As opportunities to modify the 

Scheme  1  Preparation and thermoelectric properties of Zhu’s[1] 
original  M1

x[M2(ett)] species: σrt, αrt, and  PFrt are the room tempera-
ture electrical conductivity, Seebeck coefficient and Power Factor 
respectively. The empirical formulae presented are the best (linear 
least squares) fits attained to the bulk material C, H and metal ele-
mental analysis data provided by Zhu[1] (ΔC%error 0.1–3.3%, ΔH% 
error 0.1–0.7, ΔM1/M2%error 0.2–3.3. TPD = 1,3,4,6-tetrathiapentalene-
2,5-dione

Table 1  Comparative thermoelectric performance of known ‘Ni-ett’ formulated films

PVDF polyvinylidene fluoride, BMIM butyl-methyl-1H-imidazol-3-ium, PVC polyvinyl chloride, EG ethylene glycol, tto tetrathiooxalate (oxi-
dised ett),CNT carbon nanotubes

Material Dry/anneal temp 
(°C)

σmax (S  cm−1) αmax (µV  K−1) PFmax (µW  m−1  K−2) Refer-
ences

[Kx(Ni-ett)]n ball milled with PVDF 90 2 − 36 0.26 [18]
[Nax(N-ett)]n with ionic liquid BMIMBF rt ~10–3 − − [19]
37 nm particles of  [Nax(N-ett)n] with PVC 60 4.4 ×  10–3 −36 5.7 ×  10–4 [20]
190 nm  [Nax(N-ett)n] + iodine in EG 210 52 −79 33 [21]
[Ni-tto]n ball milled with PVDF 160 90 −20 3.6 [22]
[Kx (Ni-ett)n]ball milled with PVDF 60 0.5 −28 4.1 ×  10–2 [23]
[Nax(N-ett)]n particles with CNT and PVC 60 630 +30 58.6 [24]
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structure of the ett ligand itself (to improve solubility) are 
not available, we considered a new strategy to solubilise ‘Ni-
ett’ species through use of barium carboxylate salts. Barium 
is the most sustainable of the heavy elements in the periodic 
table [25, 26] and, potentially offers additional opportuni-
ties for improving thermoelectric performance by a range 
of effects, such as carrier filtering, as has been observed in 
some related non-composite materials [27].

2  Experimental

Full experimental details of all materials prepared and their 
characterisation are described in the Supporting Information.

3  Results and Discussion

3.1  Synthesis and Characterisation

We began our studies by identifying an appropriate barium-
based carboxylate with which to carry out the hydrolysis of 
TPD (Scheme 2, TPD = 1,3,4,6-tetrathiapentalene-2,5-di-
one), as this is commonly used to access ett. Preliminary 
studies revealed that pre-mixture of Ba(OH)2 and equimolar 
amounts of  EtCO2H provided the best hydrolysis conditions. 
Unexpectedly, such mixtures do not remain as separate dis-
tinct phases but react overnight to form previously unrec-
ognised [(EtCO2)BaOH]⋅H2O (2). We make this assign-
ment on the basis of the shift of the IR carbonyl (C = O) 
stretching frequency from 1708  cm−1 in propionic acid to 
1535  cm−1 in [(EtCO2)BaOH]⋅H2O (2), which is expected 
upon barium coordination of the carboxylate [28]. Power 
X-ray diffraction confirms that Ba(OH)2 is absent (against 
authentic samples) and that a new crystalline phase attrib-
uted to [(EtCO2)BaOH]⋅H2O (2) is present in the solid state. 
Finally, [(EtCO2)BaOH]⋅H2O (2) is completely soluble in 
methanol-d4 (unlike barium hydroxide propionic acid mix-
tures) and its 13C NMR carbonyl resonance (183.5 ppm) is 
significantly shifted from propionic acid (178.7 ppm) in the 
same solvent. The carboxylate peak for (2) is also reproduc-
ibly shifted + 0.2 ppm higher than that of authentic, inde-
pendently prepared, Ba(O2CEt)2 recorded under identical 
conditions (see Supporting Information). All of these facts 
indicate (2) is a separate phase, not simple admixture of 
Ba(OH)2 and Ba(O2CEt)2. We believe the reason (2) has 
remained unrecognised is that its elemental analysis and 
that of a simple 1:1 admixture of the starting materials give 
identical values. Attempts to remove the water of crystallisa-
tion from (2) at 80 °C for 16 h led to ca. 18% BaO forma-
tion based of the CHN analyses of such samples. Barium 
metal analyses of (2) are also consistent with the proposed 
formulation.

We used freshly prepared (2) to hydrolyse TPD 
(Scheme 2), in place of  M1OH (M = Na, K). A 3.7:1 ratio 
of (2): TPD was employed in order to be sure that all of 
the barium carboxylate was consumed, so that no unreacted 
excesses of barium carboxylates are present to complicate 
the analysis of the final nickel material. Overnight heating 
(16 h) at 65 °C led to complete consumption of the TPD, as 
monitored by 13C NMR. Based on the work of Tkachov [13], 
we assign the remaining signals observed in the 13C NMR 
spectrum (188.5, 185.1, 158.0, 116.2, 32.4, and 11.0 ppm) 
of the reaction mixture to the species given in Scheme 2. 
Subsequent addition of anhydrous  NiCl2 causes the reac-
tion solution to become very dark. After additional heating 
(65 °C, 24 h) the TPD-intermediate 3 and unreacted 2 are 
completely consumed leading to fine black precipitate that 
was initially ascribed to 'poly-[(EtCO2Ba)x(Ni-ett)]' (4). This 
is easily isolated after addition of water and filtration in air 
(Scheme 2).

Material (4) was analysed by CHN combustion analysis, 
supported by barium and nickel metal analyses by induc-
tively coupled plasma-optical emission spectrometry (ICP-
OES). These data were used to attain best fits (linear regres-
sion) to the stoichiometry coefficients a-e shown in the box 
in Scheme 2. The data are in accord with a composition 
[(EtCO2Ba)4(ett)5O60Ni8]⋅22H2O for (4). The presence of 
the initially unexpectedly high O:S ratio is confirmed by 
Energy Dispersive X-Ray Analysis (EDX) studies of pressed 
pellets of (4) (1000 bar, 5 min) (Supporting Information) 
which also support the proposed formulation. No chlorine 
signal is seen in the EDX spectrum of (4), indicating com-
plete substitution of  NiCl2 (Fig. 1.). Consistent with this 
picture (4), digested in  HNO3, gives a negative chloride test 
with  AgNO3. Solid-state FTIR studies of (4), as isolated, 
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Scheme  2  Partial hydrolysis of TPD with  (EtCO2)BaOH (2) in 
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13C NMR signals (ppm) observed after 16 h. TPD = 1,3,4,6-tetrathia-
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reveal the presence of new strong bands at 1422 and 1078 
 cm−1. Typically organosulfonyl  RSO3 units show strong 
asymmetric/symmetric νS=O stretches at 1200–1400  cm−1 
and around 1050  cm−1 respectively [29–31]. Overall, these 
observations indicate that extensive aerial oxidation takes 
place during the isolation of 4 in air causing all of the ett 
thiols to become converted to [(O3S)2C = C(SO3)2]4−. The 
latter ligand has been described once in the literature, during 
 CO2 reduction studies as its tetrasodium salt [32], but its IR 
spectrum is not described. Our elemental H, C, Ni, O, S and 
Ba analyses of (4) are in good agreement with formulation 
as [(EtCO2Ba)4Ni8{(O3S)2C = C(SO3)2}5]⋅22H2O (see Sup-
porting Information). We attribute the aerobic thiol oxida-
tion behaviour to the presence of our soluble barium inter-
mediates, as completely insoluble poly-[Kx(Ni-ett)] is only 
oxidised slowly in the solid state under vigorous conditions 
(200 °C) after its isolation [16]. In control reactions when 
we hydrolysed TPD with Ba(OH)2 alone and this led only 
to poorly characterisable insoluble materials, completely 
unrelated to (4).

In agreement with its polar formulation, unlike the spe-
cies A–C (Scheme 1), (4) is fully soluble in DMSO and 
partially in other polar solvents. UV–vis-NIR spectra of 
(4) (DMSO  10–4 M) show peaks at λmax = 313 and 375 nm, 
close to reported literature value for π–π* transition of ett-
type ligands, respectively [33, 34]. Two broad peaks 1070 
and 1263 nm, the latter trailing off into long wavelength 
infra-red, beyond the detector range of our instrument (1400 
nm) are suggestive of charge transfer events [19]. Using the 
frequency of the latter peak as an approximate band gap 
transition energy gives an  Eg(opt) estimate for (4) of ≤ 1 
eV. This is similar to the values that have been calculated 
for a range of related nickel conducting oligomers (both 
known and hypothetical) [35]. The magnetic susceptibility 
(χg) of material (4), as isolated, gives χg = 3.17 ×  10–8  m3 

 kg−1 by standard Evan’s balance measurements, indicating 
(4) is paramagnetic. This prevents detection of ett-derived 
ligands by 13C NMR spectroscopy, but the propionate ethyl 
groups could be seen in the proton NMR studies, although 
they were significantly broadened. Quantification against a 
1,2-dibromoethane internal standard indicated 4–5 wt% of 
(4) to be ‘EtCO2’, compared to the 8.5 wt% calculated for the 
formula: [(EtCO2Ba)4Ni8{(O3S)2C = C(SO3)2}5]⋅22H2O (4). 
However, it was not possible to measure  t1 relaxation values 
for (4) and relaxation differences between the 1,2-dibromoe-
thane standards and paramagnetic (4), are likely to be signifi-
cant and affect the relative integrals significantly.

As we were unable to grow crystals of (4), we sought 
to visualise (at least potential) structures for it via space-
filling molecular models (see Supporting Information). The 
linear ‘pentamers’ (4a/b) realised from this are in accord 
with the elemental analysis and other (composition) data 
(Scheme 3) observed. We prefer the former of these (4a) as 
a simple working model, due to the lack of steric clashes. 
However, both forms did indicate the viability of discrete, 
soluble, coordination clusters consistent with the analytical 
data attained (in the absence of crystallographic data). The 
true nature of (4) is undoubtedly more complex than this 
simple model and other oligomer lengths and degrees of 
coordination/oxidation are possible. Our isolated samples 
of (4) are thus likely a mixture of species, but with cores all 
related to (4a/b).

3.2  Formulation of (4) and thermoelectric 
properties

 The powder form of (4) could be easily pressed into a 
pellet (diameter 4 mm × 139 μm deep), and its electrical 
conductivity and Seebeck coefficient determined by stand-
ard means (Table 2; further information on the techniques 

Fig. 1  A representative electron microscopy image of [(EtCO2Ba)4Ni8{(O3S)2C = C(SO3)2}5]⋅22H2O (4) pressed pellet and its associated EDX 
spectrum
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Scheme 3  Core of the proposed structure ladder motif in compound 
4, free coordination sites are assumed to be water or solvent occupied. 
Structures with a bridging μ-O sulfate (4a) lead to a planar [(EtCO2B

a)4Ni8{(O3S)2C = C(SO3)2}5] units, while motif (4b) was disfavoured, 
leading to overly close sulfonyl oxygen contacts and deviations from 
planarity

Table 2  Thermoelectric 
properties of pressed pellet vs. 
drop-cast and ink-jet printed 
films of [(EtCO2Ba)4Ni8{(O3S)
2C = C(SO3)2}5]⋅22H2O (4)[a]

Formulation of (4) Dry/anneal 
temp (°C)

σmax (S  cm−1) αmax (µV  K−1) PFmax (µW  m−1  K−2)

Pressed pellet (1000 bar, 5A min) 80 3.7 ×  10–2  − 24.3 21.8 ×  10−3

DMSO drop-cast 11 µm film 150 4.0 ×  10–2  − 25.9 26.8 ×  10−3

BuOH/DMSO printed 0.7 µm film 150 1.14 ×  10−2  − 25.8 7.6 ×  10−3

Fig. 2  Lateral Seebeck measurements of printed lines of PEDOT:PSS 
and 4, showing a schematic of the experimental setup, b thermoelec-
tric voltage vs. time for 4 and graphs of thermoelectric voltage vs 

∆T for c the PEDOT:PSS printed line and d the 4 printed line, both 
including a linear fits to the data, the gradient of which is equal to -S
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employed are provided in the Supporting Information). 
A summary of the approach used to measure the thermo-
electric properties is presented in Fig. 2. DMSO solutions 
of (4, 0.22 M) could also be easily drop cast onto Kapton 
tape, resulting in films around 10 μm thick. The thermo-
electric properties of both the pellets and films were inves-
tigated (Table 2). Finally, the surface tension and viscos-
ity of DMSO solutions of (4) are, when co-mixed with 
n-butanol (BuOH), appropriate for ink-jet printing of thin 
films, whose headline properties are reported in Table 2 
(other mixtures were also investigated, see Supporting 
Information). Annealing of these thin films was required 
in all cases to attain n-type TE materials.

Clearly, while the performance of (4) is inferior to the 
current best ‘Ni-ett’ nanoparticle/PVDF formulations in 
power factor  (PFmax = 58.6 μW  m−1K−2, [24] see Table 1), 
it does afford opportunities for simplifications in multi-junc-
tion device preparation. To investigate this, we prepared a 
3-junction device using (4) for the n-type and commercial 
PEDOT-PSS for the p-type material. Printing resolutions 
of ca. 1 mm are easily attained (Fig. 3) on to PEN (poly-
ethylene naphthalate) as a flexible substrate. For details of 
the optimisation of the printing conditions and associated 
Hansen/Jettability plots see the Supporting Information. At a 
temperature difference of 7.9 °C this simple device delivered 
an output of -93.1 μV  K−1. Microscopy of the printed films 
revealed some aggregation of material (4) occurs during its 
drying (see Supporting Information). The resultant minor 
film defects do have a minor negative (grain boundary) effect 
on the devices, but in no case do the films fall below their 
electrical percolation limits.

4  Conclusion

Our simple idea that the potassium counter cation in poly-
[Kx(Ni-ett)] could be replaced by a barium carboxylate, 
solubilising the material, has been fulfilled. Compound 4 
is, to the best of our knowledge, the first organic coordina-
tion oligomer containing barium to have its TE properties 
extensively investigated [36, 37]. Including  EtCO2Ba units 
provides a 'poly-[(EtCO2Ba)x(Ni-ett)]' material that is solu-
ble in polar solvents (primarily DMSO). Elemental analysis 
reveals the reason for this to be induced aerobic oxidation of 
the ett thiols to sulfonic acids and that the isolated material 
is, in fact, an oligomer of the composition [(EtCO2Ba)4Ni8-
{(O3S)2C = C(SO3)2}5]⋅22H2O (4). Although only partially 
related to known Ni-ett species this compound retains n-type 
behaviour and contains the fortuitously discovered ligand 
[(O3S)2C = C(SO3)2]4−,[32] whose coordination polymers 
have not been described before. We propose that the latter 
has significant potential for use in dimensionally restricted 
(ladder) TE materials and other electrical conductors, and 
these we are currently investigating.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s13391- 023- 00454-z.
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