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Introduction: Due to having to work with an impoverished auditory signal,

cochlear-implant (CI) users may experience reduced speech intelligibility and/or

increased listening effort in real-world listening situations, compared to their

normally-hearing (NH) peers. These two challenges to perception may be usefully

integrated in a measure of listening efficiency: conceptually, the amount of

accuracy achieved for a certain amount of effort expended.

Methods: We describe a novel approach to quantifying listening efficiency based

on the rate of evidence accumulation toward a correct response in a linear

ballistic accumulator (LBA) model of choice decision-making. Estimation of this

objective measure within a hierarchical Bayesian framework confers further

benefits, including full quantification of uncertainty in parameter estimates. We

applied this approach to examine the speech-in-noise performance of a group of

24 CI users (M age: 60.3, range: 20–84 years) and a group of 25 approximately

age-matched NH controls (M age: 55.8, range: 20–79 years). In a laboratory

experiment, participants listened to reverberant target sentences in cafeteria

noise at ecologically relevant signal-to-noise ratios (SNRs) of +20, +10, and +4 dB

SNR. Individual differences in cognition and self-reported listening experiences

were also characterised by means of cognitive tests and hearing questionnaires.

Results: At the group level, the CI group showed much lower listening efficiency

than the NH group, even in favourable acoustic conditions. At the individual

level, within the CI group (but not the NH group), higher listening efficiency was

associated with better cognition (i.e., working-memory and linguistic-closure)

and with more positive self-reported listening experiences, both in the laboratory

and in daily life.

Discussion: We argue that listening efficiency, measured using the approach

described here, is: (i) conceptually well-motivated, in that it is theoretically

impervious to differences in how individuals approach the speed-accuracy trade-

off that is inherent to all perceptual decision making; and (ii) of practical utility,
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in that it is sensitive to differences in task demand, and to differences between

groups, even when speech intelligibility remains at or near ceiling level. Further

research is needed to explore the sensitivity and practical utility of this metric

across diverse listening situations.

KEYWORDS

listening efficiency, listening effort, speech intelligibility, cochlear implants, ecological
relevance, linear ballistic accumulator, evidence accumulation model, decision-making
model

1. Introduction

Cochlear-implants can partially restore hearing function
to people with severe-to-profound hearing loss (HL). Their
effectiveness has been widely proven in terms of improving
outcomes such as speech recognition, overall quality of life
(QOL), long-term wellbeing, and mental health (Buchman et al.,
2020). However, not all CI recipients achieve the same level of
performance in terms of speech intelligibility (Boisvert et al., 2020).
Such variability is usually attributed to individual factors such as
the duration of HL, age of implantation, and the duration of CI
use, among others. These factors, however, can only explain a
small proportion of such variability (Zhao et al., 2020; Goudey
et al., 2021). Regardless of any individual differences, the limitations
of the CI technology impose additional challenges to speech
perception, especially in noisy environments. The impoverishment
of the auditory signal provided by implants (i.e., reduced spectral
resolution, spectral smearing, absence of temporal fine structure
cues, acoustic dynamic range compression) can hinder the ability
to distinguish and segregate sounds, making listening a highly
taxing task (Fu and Nogaki, 2005; Başkent, 2012; Winn et al.,
2015). Moreover, these limitations can be exacerbated by individual
factors including age, and other biological constraints (auditory
nerve degradation and cochlear dead regions). Indeed, the selective
attention needed to stay focused on a desired speech target while
ignoring irrelevant competing sounds, could lead CI users to
experience elevated listening effort (Wild et al., 2012; Strauss and
Francis, 2017). Certainly, previous research has found that CI users
report experiencing high levels of listening effort and fatigue in
everyday life (Alhanbali et al., 2017; Hughes et al., 2018; Rapport
et al., 2020). This ongoing demand for increased mental exertion
could have negative consequences for communication (Hétu et al.,
1988), social participation (Kramer et al., 2006; Nachtegaal et al.,
2009; Pronk et al., 2011; Mick et al., 2014; Shukla et al., 2020), and
long-term cognitive health (Lin et al., 2013; Pichora-Fuller et al.,
2015).

In recent years, the assessment and understanding of listening
effort has become a priority for the hearing science community
(McGarrigle et al., 2014; Pichora-Fuller et al., 2016; Francis and
Love, 2019). Different measures have been proposed to estimate
the amount of effort exerted in a listening task. These measures
are usually classified as physiological (brain activity and measures
of the autonomic nervous system), subjective (self-reported and
subjective assessments), cognitive (working memory and attention
allocation) and behavioral (dual-task performance). Although these

measures are sensitive to changes in participants cognitive load and
could index the construct of listening effort, nowadays there is no
standard method of measuring it (Rudner et al., 2012; McGarrigle
et al., 2014; Alhanbali et al., 2019; Francis and Love, 2019). This
is mainly because these measures are believed to assess different
underlying domains of the listening effort phenomenon (Strand
et al., 2018; Alhanbali et al., 2019; Francis and Love, 2019; Lau et al.,
2019).

Behavioral measures are perhaps the objective assessments
most commonly used to evaluate listening effort due to their
simplicity and feasibility, i.e., the tasks are easy to design,
implement, and perform, and no special equipment is required.
These assessments are based on measurements of accuracy in task
performance and speed of processing, often in the context of single
or dual-task paradigms (Larsby et al., 2005; McGarrigle et al.,
2014). Most commonly, response time (RT) is measured as the
rate at which a cognitive task can be performed with reasonable
accuracy (Phillips, 2016). Behavioral assessments assume that both
accuracy and speed of processing are reduced as the level of task
difficulty increases. Previous research has considered (dual-task)
behavioral measures to be effective assessments of listening effort
(Gatehouse and Gordon, 1990; Deary, 1994; Hällgren et al., 2001;
Larsby et al., 2005; Houben et al., 2013). Their use has even been
proposed in clinical settings (Gosselin and Gagné, 2010; Kaplan
Neeman et al., 2022). Nonetheless, as with other listening effort
assessments, measures of accuracy and RT need to be taken into
account in combination since it is known that listening effort can
still be experienced even when intelligibility performance is at or
near ceiling (Houben et al., 2013; Pals et al., 2020; Winn and Teece,
2022).

Considerable effort has been made in the field of experimental
cognitive psychology to integrate both behavioral measures,
accuracy and RT, into a combined metric (Hughes et al., 2014;
Vandierendonck, 2017; Liesefeld and Janczyk, 2019). In hearing
sciences, this metric is usually interpreted as “listening efficiency”
and considers both performance and response time in a listening
task (Prodi et al., 2010; Prodi and Visentin, 2015; Visentin et al.,
2017). Such integration is sought/preferred due to its consistency
in terms of test-retest reliability which is greater than the ordinary
analysis of response time and accuracy separately, which ignores
any speed-accuracy trade-off (SATO) (Salthouse and Madden,
2008; Vandierendonck, 2017; Bakun Emesh et al., 2021). Some of
the linear transformations proposed to combine both measures
include metrics such as: the inverse efficiency scores (Townsend
and Ashby, 1983), the rate correct score (Woltz and Was, 2006), the
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Linear Integrated Speed–Accuracy Score (Vandierendonck, 2017),
the bin score (Hughes et al., 2014), and the listening efficiency
(Prodi et al., 2010; Prodi and Visentin, 2015; Visentin et al.,
2017). However, these linear transformations do not consider the
curvilinear relationship between speed and accuracy. Therefore,
the estimations that they provide, although accurate in some cases,
have some limitations that could lead to biased or noisy results
when assessing both individual differences and group comparison
(Stafford et al., 2020; Bakun Emesh et al., 2021).

To overcome this limitation, in this article a RT decision model
is proposed to perform a joint analysis of behavioral measures.
Models of decision-making are able to characterize the SATO that
is inherent to decision-making processes (Forstmann et al., 2011;
Heitz, 2014; Stafford et al., 2020). Such models not only provide
a combined analysis of speed and accuracy data but also offer
increased statistical power (Stafford et al., 2020). Their use has
become predominant in the cognitive psychology field and their
effectiveness in characterizing the underlying processes of rapid
decision tasks has been widely demonstrated (Gomez et al., 2007;
Forstmann et al., 2010, 2011, 2016; Heathcote and Love, 2012;
Evans and Wagenmakers, 2020).

The main assumption behind these models is that decisions are
made when enough evidence is accumulated in favor of a particular
response option. Among all accumulator models available, we use
here a hierarchical linear ballistic accumulator model (LBA: Brown
and Heathcote, 2008). The LBA is a simplified version of these
cognitive models and is classified as a race sequential sampling
model in which the accumulation of evidence occurs linearly over
time toward a common response threshold. They can be used to
predict both response probabilities and response times in speeded
decision-making paradigms. All possible choices (either binary or
multiple) are represented with independent evidence accumulators
that gather evidence for each response. In this way, the decision
made corresponds to the accumulator that first reaches the response
threshold (Figure 1). The observed RT is assumed to be the sum
of the decision and non-decision time. The decision time is the
amount of time taken for the faster accumulator to reach the
threshold, while the non-decision time (t0) is a constant value
representing other non-decision processes.

The LBA model comprises different parameters that are related
to different components of the underlying cognitive process that
occur during the decision making (Evans and Wagenmakers, 2020).
These parameters shown in Figure 1 are: (1) the drift rate (v)
which is the speed of evidence accumulation for each response
option and is able to reflect both task difficulty and participants’
efficiency in information processing; (2) the decision threshold
(b) is the amount of evidence required to trigger a decision and
is able to reflect task caution; (3) the starting point (a) is the
amount of evidence that already exist for a particular response
even before the accumulation of evidence starts, and represents
any response bias that participants may have toward a particular
response; (4) the non-decision time (t0) is the amount of time
needed for other processes not related to the decision making,
such as the speed of perceptual encoding (of a given stimulus) and
response execution (e.g., button pressing); (5) the response caution,
calculated as K + A/2, is the amount of evidence required to reach
a decision (response).

The LBA approach therefore allows dissociating RTs into
the different processes that are involved in a response decision.

FIGURE 1

Graphical representation of the accumulation process assumed by
LBA model, created based on Donkin et al. (2011) and Nishiguchi
et al. (2019) studies. Racing LBA accumulators representing
hypothetical responses A and B, where A is the selected response
that first reached the evidence threshold (b).

Moreover, it uses hierarchical Bayesian statistics which provides
clear advantages in estimating parameters at both individual and
group levels (Robert, 2007b; Nilsson et al., 2011; Katahira, 2016;
Liu et al., 2017). Individual parameter estimates are constrained
by group-level distributions, assuming that participants within
each group are similar, but not identical to each other. Therefore,
the model accounts for individual differences while identifying
group commonalities. The probabilistic nature of the Bayesian
approach also offers the ability to quantify the uncertainty of
the parameters’ estimation (Robert, 2007a; Annis and Palmeri,
2018). It considers the entire response time distribution instead
of single point estimates (e.g., mean, median). Likewise, results
of model’s parameters are provided as full posterior probability
distributions whose credible interval is computed by the 95%
Highest Density Interval (HDI), which is the shortest interval
that contains 95% of the mass posterior distribution (Hyndman,
1996). In contrast to the orthodox confidence interval, one
can be 95% confident that the true value of a particular
parameter lies within the HDI interval (Lee and Wagenmakers,
2014). Additionally, individual-level posterior distributions can be
extracted to compute correlations between model parameters and
other measures of interest. Following the plausible values approach,
it is possible to obtain the sample plausible correlations that can
then be generalized to the wider population (plausible population
correlations) (Ly et al., 2017, 2018).

To take all the advantages of this approach, this study aimed to
apply a LBA model to perform the analysis of the behavioral data
collected in a laboratory experiment. The experiment was designed
to assess the listening effort experienced by a group of adult CI
users and a group of age-matched NH controls using a wide
range of methods, including self-reported, cognitive, behavioral,
and physiological measures. Individual differences in cognition
and everyday listening experiences were characterized by means
of non-auditory working-memory and linguistic-closure tests, as
well as standardized hearing questionnaires. In the main laboratory
task, simultaneous behavioral, subjective, pupillometry, and brain-
imaging measures were collected to assess the listening effort in an
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ecologically-relevant speech in noise task at three levels of difficulty
(or signal-to-noise ratios).

It is important to note that the objective of the study is not to
demonstrate the advantages of decision models over the analysis of
RT and accuracy separately given that previous research has already
addressed this (Donkin et al., 2009; White et al., 2016; Stafford et al.,
2020; Bakun Emesh et al., 2021). Instead, we exploit LBA analysis
to obtain a single metric that objectively characterizes participants’
performance during listening tasks. We took as our primary
performance metric the net drift rate since it provides an integrated
estimation of the relationship between response time and accuracy
(Donkin et al., 2009), and thus reflects both intelligibility and
listening effort. We proposed this metric as a putative marker of
participants’ listening efficiency and hypothesized that it would
be sensitive to changes in listening performance across groups
(between-subjects) and conditions (within-subjects). We expected
that CI users would show inferior listening efficiency and greater
self-reported effort than NH controls in the laboratory speech-
in-noise task, as well as report less positive listening experiences
than controls in questionnaires assessing daily life. Moreover,
correlations between listening efficiency and participants’ cognitive
and subjective scores were explored to determine whether these
could act as individual predictors of listening efficiency.

2. Materials and methods

The study was approved by the University of Nottingham
Research Ethics Committee (reference: 247-1902).

2.1. Participant recruitment

Recruitment was carried out primarily through the Nottingham
Biomedical Research Centre (Hearing Theme) Participant
Database. The study was also advertised by national and regional
hearing charities and organizations in the United Kingdom
including the Royal National Institute for Deaf People1 and the
National Cochlear Implant Users Association.2

A group of 24 CI recipients and a group of 25 age-matched
NH controls volunteered to take part in the study (participant
demographics in Section “3.1. Participant demographics and
hearing profile”). All participants were adults (aged 18 or
over), right-handed as assessed using the Edinburgh Handedness
Inventory (Oldfield, 1971), English native speakers, with normal
or corrected-to-normal vision (e.g., glasses), and no history of
motor (e.g., cerebral palsy) or cognitive impairment (e.g., dementia
or brain injury). Participants in the CI group were required to
have at least 6 months of experience using their implant(s), and
were tested in their best aided condition (e.g., with a HA in
the contralateral ear if bimodal listeners). Participants in the NH
group were confirmed to have normal hearing with a pure-tone
audiometry air-conduction hearing screen (≤20 dB HL pure-tone
average across 0.5, 1, 2, and 4 kHz). This criterion was relaxed to

1 https://rnid.org.uk/

2 https://www.nciua.org.uk/

30 dB HL PTA for participants over 60 years of age, but only three
participants exhibited a PTA worse than 20 dB HL. After providing
informed consent, participants completed the experiment that
lasted approximately 2 h. Participants received an inconvenience
allowance of £7.50 per hour and local travel expenses were covered
(up to a maximum of £15).

2.2. Test procedure

After pure tone audiometry (PTA) and a short interview about
participants’ implantation experience (patient group only) were
conducted, participants completed digitized versions of hearing
questionnaires (SSQ12, EAS, FAS and HHQ) at their own pace
on a touchscreen device. These questionnaires were administered
to enquire about participants’ daily life experiences. Additionally,
participants were asked to perform Reading Span (RSpan) and
Text Reception Threshold (TRT) tests to characterize their working
memory and linguistic abilities.

The main laboratory task was a hybrid block-event
design divided into two runs where simultaneous behavioral,
pupillometric, and optical brain-imaging measures were collected.
Each run lasted approximately 14 min and consisted of three blocks
of 4 min representing the three auditory experimental conditions
(Figure 2). These listening conditions established the three levels
of difficulty considered in the experiment and were defined by the
SNR as; Easy (20 dB), Medium (10 dB), and Hard (4 dB). Each
block contained 28 trials. The trials’ stimulus-onset was randomly
varied in the range of 6–10 s. Moreover, no trial occurred within
the first 10 s of a block. In this way, participants were given some
time to acclimatize to the background noise before the presentation
of any trial.

There were two types of trials, sentence and null trials, each
appearing 18 and 10 times per block, respectively, in random
interleaved order. Each trial was comprised of a single sentence
roughly 1.6 s in length, a post stimulus pause of 0.5 s and a
yes/no decision task (Figure 2). In sentence trials, participants were
instructed to listen to speech sentences masked by a continuous
background noise. Then, they had to answer by pressing a button a
simple yes/no question, whether a probe word (presented visually
on screen) was featured in the sentence just heard. Participants
were encouraged to answer as accurately and quickly as possible
and make their best guess when they were in doubt. Participants
had 3 s to indicate their answer; otherwise, a missed response was
recorded. The probability that the probe word had featured in the
sentence was 50%, while in the remaining 50% of the trials a foil
word was presented. Foil words were chosen to rhyme with the
keyword, and, where possible, to be semantically plausible (e.g., in
the sentence “The green tomatoes are small,” the keyword “green”
might have been replaced with the foil word “clean”). In null trials,
the sentence was muted and only the noise was audible. In those
cases, participants were instructed to submit a specific response
either “press yes” or “press no.” Null trials acted as a noise baseline
needed for the interpretation of brain imaging measures.

A silent baseline of approximately 50 s was also included
between blocks. During this time and immediately after each
block, participants were asked to report on their subjective
listening experience during that block using visual analog scales.
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FIGURE 2

Schematic representation of the speech-in-noise task. (A) Example of an experimental run, whose blocks or experimental conditions are presented
in easy, hard, and medium order (after randomization). Physiological measures (fNIRS and pupillometry) are recorded for the duration of the entire
run. (B) Example of an experimental block, where sentence (S) and null trials (N) randomly presented, are masked by a continuous cafeteria
background noise. During the inter-block pause, participants submit their subjective ratings. (C) Example of sentence and null trials with their
corresponding tasks: indicating whether a probe word was featured in the sentence or submitting a specific response as instructed in null trials. Both
trial types have approximately the same duration.

Participants could respond anywhere along the 10 cm scale, with
no intermediate marks or labels. The three questions that provided
participants’ task subjective scores were:

– Q1. Perceived effort: “How much effort was needed to
understand the sentences?” (endpoints: “No effort” and
“Extreme effort”).

– Q2. Perceived intelligibility: “How many of the sentences did
you understand?” (endpoints: “None of the sentences” and “All
of the sentences”).

– Q3. Task disengagement: “How often did you give up trying to
understand the sentences?” (endpoints: “Never gave up” and
“Always gave up”).

Participants had 40 s to give their answers using a mouse
as the input device. After this period, the questions disappeared,
recording missed answers if no rating was reported. The total
duration of the main task was approximately 30 min, however,
a break between runs was always offered for participant comfort.
During testing, the researcher observed and took notes from
a control room adjacent to the sound booth where the main
task was performed.

A short practice session was conducted before commencing
data collection in which participants gained familiarity with
the task and stimuli. During this practice, the researcher was
present in the testing room to provide additional support
when needed. The practice was designed to gradually instruct
participants to perform the task. The practice session was

conducted before the fNIRS and eye-tracker equipment were placed
on the participant’s head. All experimental programming was
implemented in Matlab (MATLAB R2018b, The MathWorks Inc.,
Natick, MA, USA).

A momentary fatigue questionnaire (MFQ) was also completed
by participants before and immediately after the main task to assess
any change in participants’ state of fatigue as a result of performing
the task. Participants answered the question “How much fatigue
(tiredness, weariness, problems thinking clearly) do you feel right
now?” by putting a cross by hand anywhere on a numeric visual
analog scale divided in equal sections from 0 to 10, 0 being labeled
as “None at all” and 10 as “Extreme fatigue.”

2.3. Materials and stimuli

The following tests and questionnaires were considered
appropriate within the context of the experiment to characterize
participants’ cognitive abilities and listening experiences. These
assessments were chosen due to their practicality; they are concise,
intuitive, and easy to administer.

2.3.1. Hearing questionnaires
• The effort assessment scale (EAS) measures self-reported

listening effort in daily life of people with HL (Alhanbali
et al., 2017). It consists of six questions whose responses are
provided on a visual analog scale from 0 indicating “No effort”
to 10 “Lots of effort.” Participants put a mark at any point of
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the scale that best represent their experiences. The ratings from
all questions are adding up to obtain the final EAS score, which
is expressed in a range between 0 and 60, with higher scores
indicating more effort.
• The fatigue assessment scale (FAS) (Michielsen et al., 2004)

aims to measure fatigue in a general domain. It is formed of
10 short statements that are rated on a five-point likert scale
divided into five answer categories: 1 = Never, 2 = Sometimes;
3 = Regularly; 4 = Often and 5 = Always. The scale score
is calculated by summing up all items, having into account
that items 4 and 10 require reverse scoring. The total score of
FAS ranges from 0 to 40, with higher scores indicating more
fatigue.
• The short version of the Speech, Spatial and Qualities of

Hearing Scale (SSQ12) (Noble et al., 2013) measures hearing
ability and consists of 12 questions with answers provided
in a numeric visual analog scale divided in equal sections
from 0 to 10. Participants give their answers, by putting a
mark at any point of the scale, considering that 0 means
being unable and 10 being perfectly able to do or experience
what is described in the question. A “non-applicable” box was
also included for participants to indicate when a particular
question is not relevant to their everyday experiences. The final
score is calculated by averaging all the ratings reported and
it ranges from 0 to 10, with higher scores indicating better
hearing abilities.
• The Hearing Handicap Questionnaire (HHQ) evaluates, in 12-

items, the social restrictions and emotional distress caused by
hearing impairment. Responses are scored using a five-point
scale with equal intervals (almost, always, often, sometimes,
rarely, never). All responses are averaged and scaled to provide
a final handicap score that ranges from 0 to 100, with higher
scores indicating greater handicap.

2.3.2. Cognitive tests
Two cognitive tests were used to assess individual differences

in cognitive and linguistic abilities. Both tests were selected as
they involve a non-auditory task that allows comparisons across
participants and groups, regardless of their hearing status.

• The Reading Span Test (RSpan test) measures verbal
working memory capacity with written stimuli (Daneman and
Carpenter, 1980). Baddeley et al. (1985)’s version was used
in the study and consisted of the presentation of five-word
sentences with a subject-verb-object syntax (e.g., “The captain”
“sailed” “his boat”), half of which were semantically incorrect
(e.g., “The train” “sang” “a song”). Participants were asked to
read each sentence aloud and judge the semantic correctness
of each sentence immediately after presentation. The sentences
were grouped in three blocks of three, four, and five sentences,
respectively. After each block of sentences was presented,
participants were asked to recall in the correct order either the
first or the last words of every sentence in that block. A total of
thirty-six sentences were presented in nine blocks. Prior to the
test, one block of three sentences was presented in a practice
session for participants to become familiar with the task. The
Rspan score is the proportion of words that participants were

able to recall correctly, and thus higher scores indicate greater
working memory capacity.
• The Text Reception Threshold (TRT) test measures the

“linguistic closure” ability to integrate and complete partially
masked sentences (Zekveld et al., 2007). The test consists of
reading aloud digitally presented sentences that are partly
masked by a bar pattern. The text that is not covered
by the bar pattern represents the percentage of unmasked
text that is modified throughout the test in an adaptive
procedure, increasing or decreasing in 6% steps, according
to participants’ responses. No feedback was given during
the test and participants were encouraged to make their
best guess when in doubt. The TRT score is defined by the
average percentage of unmasked text required to read 50%
of the sentences correctly. Lower TRT scores indicates better
performance.

Participants completed one practice session with 10 sentences
and two TRT tests with 16 sentences each. For consistency, the
sentences were presented in the same order to all participants and
were obtained from three Bamford-Kowal-Bench (BKB) sentence
lists, which were only used for the TRT test. Note that this
experiment used a slightly modified version of the test, which
was adapted and provided by Zekveld et al. (2007). This version
only scores key words within each sentence (three key words per
sentence), in this way importance is given to words that provide
more meaning within the context. For instance, if a non-key word
(e.g., “the”) was not read correctly but all key words of the sentence
were, then the overall sentence was scored as “correct.” The final
rating was calculated for each participant as the averaged TRT score
between the two tests performed.

2.3.3. Speech material and background noise
A real-world recording of a busy atrium café from the

RealSpeech content library was used (with permission of Dr.
Ian Wiggins and Dr. Mark Fletcher) as background noise. This
“cafeteria” background noise was used to mask the target speech
sentences. The difficulty of the listening task was manipulated by
varying the level of speech relative to the level of the background
noise (SNR), defining the three experimental conditions:

– Easy: +20 dB SNR (Speech level 65 dBA, noise level 45 dBA).
– Medium: +10 dB SNR (Speech level 65 dBA,

noise level 55 dBA).
– Hard: +4 dB SNR (Speech level 65 dBA, noise level 61 dBA).

Each condition was presented in a separate block (i.e., the SNR
was kept fixed throughout each 4-min block). The conditions were
randomly presented for each run and participant. To avoid startling
participants, the background noise was faded in and out gradually
at the start and end of each block (fade duration 3 s).

The type of background noise and SNRs assigned for each
condition were chosen to be representative of everyday life sound
scenarios. Particularly, the SNRs were selected based on previous
studies that characterized the most commonly found real world
SNRs of older adults with mild-to-moderate hearing loss (Smeds
et al., 2015; Wu et al., 2018). For instance, +4 dB SNR (the hard
condition), was the average most common SNR found for “noisy”
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speech listening situations. Likewise, +10 dB SNR (the medium
condition), was described to be the median SNR found in different
listening environments, such as “home,” “indoors other than home,”
and “outdoors.” Finally, +20 dB SNR (the easy condition) was
the most favorable condition found in everyday life scenarios and
characterized as “very quiet situations.” Unlike previous studies, the
SNRs used in the main task were not adjusted to each participant.
This was intended to provide greater “realism” to the experiment,
since people are not usually able to modify the noise levels
encountered in real life scenarios.

Speech material consisted of recordings of BKB sentences
(Bench et al., 1979) spoken by a male talker. Seventeen sentence lists
were available, each comprising 16 sentences. For each participant,
a random subset of the available lists was selected and the sentences
from those lists were randomly assigned to the three experimental
conditions for each run. No participant was presented with the
same BKB sentence more than once during the entire testing
session. Prior to use, the sentences were convolved with the impulse
response of the space in which the background noise was recorded.
By doing so, the acoustic characteristics of the space, in particular
the reverberation time (∼1.4 s), were applied to the target speech
sentences.

2.4. Equipment

A touchscreen laptop connected to an external monitor was
used to conduct the hearing questionnaires and cognitive tests. For
this part of the experiment, participants were seated in the control
room at approximately 45 cm from the external monitor, where the
sentences were displayed.

The main behavioral task was conducted in a sound-attenuated
room. Participants were seated at approximately 75 cm from a
display screen with a loudspeaker (Model 8030A, Genelec, Iisalmi,
Finland) mounted immediately above it. Auditory stimuli were
presented in the free field. The sound pressure levels were measured
at the listening position using a Brüel & Kjaer Type 2250 sound
level meter. Participants entered their responses using a mouse and
a “RTbox” button box (Li et al., 2010).

2.5. Statistical analysis

Participants’ subjective scores during the task (perceived
effort, intelligibility, and task disengagement) were calculated per
each listening condition and averaged across runs using Matlab
(MATLAB R2018b, The MathWorks Inc., Natick, MA, USA).
Likewise, cognitive tests scores (RSpan and TRT tests) were
calculated by custom applications implemented in Matlab and
Delphi, respectively. These scores together with those resulting
from the hearing and momentary fatigue questionnaires were
analyzed in RStudio (Version 4.1.2; R Core Team, 2021). To
facilitate comparison of hearing and cognitive test scores, reverse
scoring was applied to the SSQ12 questionnaire and RSpan test so
that greater scores represent worse hearing ability and less working
memory capacity, respectively.

Group level differences were examined by computing Bayesian
analyses using the R package brms (Bürkner, 2017). The
brms package implements Bayesian multilevel models using the

probabilistic programming language Stan. The formula used to
analyze hearing questionnaires, cognitive tests, momentary fatigue,
and group age differences, regressed each outcome variable on the
effect of Group (e.g., Age∼Group), assuming unequal variances of
both groups (e.g., sigma∼ Group). On the other hand, the formula
for task subjective measures assessed the interaction “group per
condition,” taking into account participants’ random effects by
group {EF∼ 0 + Intercept + Group:Condition + [1 | gr(Participant,
by = Group)]}. Ordered beta regression (Kubinec, 2022) was set as
the custom family distribution to model participants’ responses to
hearing questionnaire, cognitive tests and task subjective measures.
Such distribution was explicitly designed for survey data where
slider and visual analog scales (with both lower and upper bounds)
are used. The Gaussian family was chosen to perform linear
regression for outcome variables such as age and momentary
fatigue measures. The latter was analyzed on the difference post-
vs. pre experiment momentary fatigue scores. Prior distributions
for ordered beta regression models were set as defined by Kubinec
(2022), whereas default flat priors were used on the effect of age and
momentary fatigue scores. Posterior distributions were estimated
using the Markov Chain Monte Carlo (MCMC) (van Ravenzwaaij
et al., 2018) algorithms, whose convergence was measured by the
potential scale reduction factor R-hat(R) (Brooks and Gelman,
1998) over four separate chains, each with 2,000 warmup iterations
followed by another 2,000 post-warmup iterations. Posterior
predictive checks were performed to ensure that the models’
predictions adequately fit the data.

The model conditional effects, predicted means and 95%
credible intervals (CrI), were reported per group and condition
(when relevant). Effects sizes were also calculated, when relevant,
using Cliff ’s Delta statistics on the posterior distribution of the
model’s predicted data. This non-parametric effect size measure
was chosen for its suitability to analyze ordinal data (Likert
scales), which reduces the influence of outliers or groups’
variance differences.

A hierarchical Linear Ballistic Accumulator model (LBA)
was performed to analyze participants’ behavioral responses
following Gunawan et al. (2020). This approach allows modeling
intercorrelated individual level LBA parameters using a
multivariate normal prior distribution. The LBA model was
implemented in Stan as described by Annis et al. (2017), using a
non-centered parameterization to efficiently explore the posterior
parameters’ distributions. Missing response times (late responses
>3 s) were treated as parameters estimated within the model,
assuming that their response accuracy would have been at chance
level. The model scaling constraint was set so that the between-trial
variability in the drift rates was fixed to one (sv = 1). The model
considered fifteen free parameters, two evidence accumulators, one
per each response option (correct vs. incorrect), that were allowed
to vary across SNR conditions (Easy, Medium, Hard) and trial type
(Sentence vs. Null). The remaining parameters, A, b and t0 were
allowed to vary across groups but were fixed across trials. Posterior
distributions were estimated using MCMC algorithm, over four
separate chains, each with 1,000 warmup iterations followed by
another 2,000 sample iterations (8,000 draws in total). Posterior
predictive checks were used to assess the agreement between model
predictions and observed data. Effects were assessed using 95%
Highest posterior density intervals (HDI; HDInterval package)
that acted as the 95% CrI of the average posterior parameters.
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Differential drift rates were calculated per each group as the
difference between correct and incorrect responses. This parameter
indicates the rate at which a listener preferentially accumulates
evidence toward a correct response and was considered a
putative indicator of participants’ listening efficiency. Thus, faster
accumulation of evidence toward correct answers was interpreted
as greater listening efficiency, that is, greater ability for correctly
recognizing speech. Differential drift rates were calculated for both
trial types to examine whether group differences occur during the
listening process (sentence trials) or task execution (null trials).

Moreover, individual-level differential drift rates in sentence
trials were extracted (per participant) and averaged across
conditions. A correlation analysis following the plausible values
approach (Ly et al., 2017) explored relationships between
participants’ listening efficiency and task subjective, cognitive,
and hearing questionnaires scores. Correlations between 8,000
posterior draws per individual’s drift rates and their scores on
these measures were computed, resulting in a distribution of
plausible correlations. The posterior distribution of the population
correlation was also calculated (Ly et al., 2018), and each group’s
correlation mean and 95% CrI were reported. Correlations were
considered reliable when the 95% CrI did not contain zero or
when a high degree of certainty (>90%) suggested that the true
population correlation (plausible p) was different from zero.

3. Results

3.1. Participant demographics and
hearing profile

Both groups of participants had a similar age range; CI users:
20–84 years and NH controls: 20–79 years. The age similarity
of both groups was confirmed by the results of the analysis that
showed similar predicted means and overlapping 95% CrIs (CI:
60.5 [53.8, 67.1], NH: 55.9 [50, 62]) between groups. In terms of
gender, both groups were similarly distributed with 10 and 11 males
in the CI and the NH group, respectively.

Participants in the control group had normal (or near-normal)
hearing as assessed using air-conduction PTA screen across
frequencies 0.5, 1, 2, and 4 kHz in both ears (22 adults with an
average threshold ≤20 dB HL and three adults with an average
threshold≤30 dB HL). Participants in the CI group had an average
of 8 years of CI experience (range 1–24 years). According to hearing
device configuration, there were 11 bimodal listeners, 11 unilateral
and 2 bilateral CI recipients. Most participants had severe-to-
profound HL in the non-implanted ear as revealed by mean
audiometric thresholds (in dB HL) (Unilateral: 93, 100, 100, 100;
Bimodal: 83, 82, 85, 92). Likewise, low-frequency residual hearing
in the implanted ear(s) was hardly preserved [Unilateral (M: 100,
SD: 1.5); Bimodal (M: 95, SD: 12.3); Bilateral (M: 99, SD: 1.8) dB
HL]. Twenty CI users reported having developed HL after language
acquisition while four were pre-lingually deafened. In all cases,
CI participants were able to perform all listening tests included
in the study as well as maintain conversations and communicate
effectively with the researcher. Demographic information for CI
participants is listed in Table 1.

3.2. Cognitive and hearing function

Participants in both groups achieved similar scores on cognitive
tests (Figure 3). Although the difference in scores between groups
was slightly greater in the RSpan test compared to the TRT test,
the model 95% CrIs show considerable overlap between groups.
The model predicted means and 95% CrIs for the RSpan test were
60.3 [54.9, 65.1] and 55.7 [50.6, 60.6], for the CI and NH groups,
respectively, whereas for the TRT they were 55.9 [52.3, 59.2] and
55.1 [51.6, 58.4].

The results of hearing questionnaires, however, showed greater
differences between groups, with CI users reporting greater hearing
difficulties on all questionnaires compared to their NH peers
(Figure 4). Strong effects of group were evident in the EAS, HHQ,
and SSQ12 as revealed by non-overlapping 95% CrIs. Indeed, CI
users’ EAS scores were double those reported by NH controls,
suggesting that participants in the CI group were greatly affected
by listening effort in daily life. Likewise, a difference of 3.3 points
(out of 10) in the SSQ12 scores between groups suggested that
CI users exhibited worse hearing abilities compared to their NH
peers. HHQ scores showed a difference of 35 points (on a 100-point
scale) between groups, which again is interpreted as higher self-
perception of hearing disability and handicap of CI users compared
to NH controls. The model predicted means and 95% CrIs for
the CI group in these questionnaires were: EAS (42.1, CrI:[36,
47.3]); FAS (8.7, CrI:[6.3, 11.6]); HHQ (43.4, CrI:[33.3, 53.7]);
and SSQ12 (5.2, CrI:[4.5, 6]). The NH group predicted results in
these questionnaires were: EAS (19.9, CrI:[14.3, 26.1]); FAS (7,
CrI:[5, 9.4]); HHQ (8.8, [4.3, 15.4]); and SSQ12 (1.9, CrI:[1.4,
2.4]).

Overall, low scores of fatigue were reported by participants
before [CI (M: 2.7, SD: 1.9); NH (M: 1.5, SD: 1.8)] and after [CI
(M: 4.7, SD: 2.8); NH (M: 2.8, SD: 2.2)] performing the main
laboratory task. The change in participants’ state of fatigue due
to the experiment was similar in both groups as revealed by
the model predicted means and 95% CrIs (CI: 2 [1.2, 2.8], NH:
1.3 [0.8, 1.8]).

Cliff ’s Delta effect size calculation (Figure 5) confirmed
large group effects in EAS (d = 0.7), HHQ (d = 0.9), and
SSQ12 (d = 0.7) questionnaires, with group-difference posterior
distributions that do not contain zero. This suggests that CI
users experienced significantly greater hearing difficulty in daily
life compared to NH controls. Cognitive measures, however,
showed a weak effect of group on both the TRT (d = 0.08) and
RSpan (d = 0.2) tests, suggesting that on average participants
in both groups exhibited similar working memory capacity and
linguistic closure abilities. Likewise, the effect of group on fatigue
scores was small in both the FAS (d = 0.2) and the MFQ
post-vs.-pre-experiment (d = 0.25). These weak effects were also
associated with a large uncertainty as expressed by wider credible
intervals.

3.3. Task subjective results

3.3.1. Self-reported listening effort
Participants in the CI group reported greater levels of perceived

listening effort during the behavioral task compared to those in
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TABLE 1 Demographics of CI participants.

CI
participant

Gender Age
(years)

CI
manufacturer

Hearing devices
(implanted side)

Etiology of
deafness

Years CI
Exp.

1 M 66 Cochlear Nucleus 6 Unilateral (R) Virus or disease 5

2 M 66 Cochlear Nucleus 6 Unilateral (R) Born deaf/not known 15

3 M 56 Cochlear Nucleus 7 Bimodal (R) Not known 6

4 F 61 Cochlear Nucleus 7 Unilateral (L) Nerve damage 5

5 F 61 Cochlear Nucleus 7 Bimodal (R) Not known 6

6 M 38 AB Bimodal (L) Born deaf/Not Known 8

7 F 56 Cochlear Nucleus 7 Unilateral (R) Not known 4

8 F 69 Cochlear Nucleus 7 Unilateral (L) Not known 1

9 M 23 Cochlear Nucleus 7 Unilateral (R) Ototoxicity 21

10 F 20 Med-EL Bilateral CIs Born deaf/not known 8

11 M 56 Cochlear Nucleus 6 Bimodal (R) Born deaf/not known 4

12 M 84 Cochlear Nucleus 6 Bimodal (L) Virus or disease 3

13 F 75 AB Bimodal (L) Virus or disease 13

14 M 66 Med-EL Unilateral (R) Virus or disease 8

15 F 64 Med-EL Bimodal (R) Genetics 9

16 F 78 Med-EL Unilateral (R) Virus or disease 8

17 F 73 Med-EL Bilateral CIs Born deaf/not known 23

18 F 72 Cochlear Nucleus 7 Unilateral (R) Virus or disease 2

19 M 73 Cochlear Nucleus 6 Bimodal (L) Genetics 4

20 F 53 Cochlear Nucleus 6 Bimodal (L) Virus or disease 22

21 M 51 Cochlear Nucleus 6 Bimodal (L) Ototoxicity 5

22 F 72 Cochlear Nucleus 7 Unilateral (L) Not known 24

23 F 71 Cochlear Nucleus 7 Unilateral (R) Not known 5

24 F 43 Cochlear Nucleus 7 Bimodal (L) Not known 2

Gender: F for female and M for male. CI manufacturer: AB for Advanced Bionics. Implanted side: R for right and L for left. The variable “Years CI Exp.” refers to years of CI usage experience.

the NH group in all SNR conditions. The model predicted means
(Easy [CI M: 0.48, NH M: 0.02], Medium [CI M: 0.69, NH M: 0.04],
Hard [CI M: 0.82, NH M: 0.1]) and 95% CrIs on the interaction
“Group x Condition” confirmed this as shown in Figure 6. Such a
strong effect of group was evident as revealed by 95% CrIs that did
not overlap in any condition. These results suggest that CI users
perceived significantly greater listening effort than NH controls at
all task difficulty levels. Although more dramatic in the patient
group, the increasing trend in participants’ perceived effort as SNR
worsened was present in both groups.

3.3.2. Self-reported intelligibility
The analysis of task perceived intelligibility also indicated

considerable differences between both groups of participants
(Figure 6). A ceiling effect was observed in the NH group in
all experimental conditions as shown by the model predicted
means (Easy M:0.99, Med M:0.99, Hard M:0.98), with extremely
narrow 95% CrIs (± 0.01). The patient group (CI), however,
reported significantly inferior levels of intelligibility in all
conditions (Easy [M: 0.83, CrI: (0.69, 0.92)], Med [M:0.74,
CrI: (0.655, 0.86)], Hard [M:0.59, CrI: (0.39, 0.76)]), with
such difference being more dramatic as the level of task
difficulty increased.

3.3.3. Self-reported task disengagement
Overall, low levels of task disengagement were reported by

all participants in all experimental conditions. This floor effect in
task disengagement was observed in the model predicted means
(Easy [CI group M: 0.017, NH group M: 0.006], Med [CI group
M: 0.02, NH group M: 0.005], Hard [CI group M: 0.04, NH group
M: 0.004]) and narrow 95% CrIs (Figure 6). A small effect of
group was only present in the hard condition where the 95% CrIs
did not overlap.

3.4. Behavioral results

The LBA model was fed with 8,064 observations, corresponding
to 47 participants who completed 168 trials each (two runs x
three conditions x 28 trials [18 sentence + 10 null trials]), and
two participants who only completed one run each (84 trials).
Sixty-three observations were treated as missing responses within
the model. Missing responses occurred when participants took
more than 3 s to submit their answer and therefore, a not-known
response was assumed. Satisfactory convergence was found for all
estimated parameters as revealed by the full traces’ plots and Rhats’
range [0.99, 1.01]. Posterior predictive checks showed an adequate
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FIGURE 3

Model conditional effects over raw data for participants’ cognitive tests results by group (e.g., TRT∼ Group). Abbreviations refer to Text Reception
Threshold (TRT) and Reading Span (RSpan) tests for both groups of cochlear implant (CI) and normally hearing (NH) participants. The error bars
display 95% credible intervals; the bold dots represent posterior means, and the small dots represent the raw data. Scores for TRT and RSpan tests
range between 0–100, with greater scores indicating worse performance. Note that RSpan scores were reversed so that greater scores represent
less working memory capacity.

fit of the model’s predictive RT distributions to the observed data
(Figure 7). The mean difference between predicted and observed
data was 0.1% and 0.5% for the NH and the CI group, respectively,
across conditions and trial types.

As can be seen in Figure 7, very few errors (plotted as negative)
were made by participants during the behavioral task (on average
0.5% incorrect responses were submitted by NH participants and
9% by CI users across conditions and trial types). The high levels of
accuracy were not surprising considering that the behavioral task
was a yes-no task in which correctness of responses are always at
least at a chance level (50%). Moreover, the listening conditions,
all with positive SNRs, were considerably easy for NH listeners
and more challenging for CI recipients, hence the difference in
error rate between groups. To take into account this difference, the
listening efficiency results are expressed using differential drift rates
(vDiff = vcorrect-vincorrect).

Significant group differences were found in the posterior
distributions of the LBA’s drift rates parameters in sentence trials
(Figure 8). Overall, NH participants showed faster accumulation
of evidence toward correct answers in sentence trials (greater
listening efficiency) in all experimental conditions compared to CI
users. Such a strong effect of group was confirmed by posterior
distributions that do not overlap in any SNR condition. This can
also be seen in the between-group difference column of Table 2
with means and 95% CrIs that do not contain zero. Conversely,
no effect of group was found in null trials. Although CI users’
listening efficiency in null trials was slightly inferior compared to
NH controls, such difference did not reach significance as revealed
by the between-group difference in null trials’ drift rates (Table 2). It
comes as no surprise that differences in listening efficiency between
groups were only present in sentence trials, since null trial tasks
did not require active listening but just following instructions
instead.

The increase in task difficulty was also noticeable within
participants’ listening efficiency across conditions in sentence trials.
This effect was explored by the slope of listening efficiency across
conditions (Figure 9). Negative slopes (“vDiff.Sentence.Slope” <0
in Figure 9 and Table 2) confirmed that participants’ listening
efficiency in both groups was reduced as the SNR became less
favorable. The effect was stronger in the CI group as revealed
by steeper negative slopes across conditions (CI M: −0.61; NH
M:−0.26). These results suggest that CI users may be affected to
a greater extent by the worsening of SNR than their NH peers.
As expected, participants’ listening efficiency in null trials was not
significantly affected by the increase in task difficulty. Indeed, their
performance in null trials was similar across conditions as revealed
by the “zero slope” value that is contained in the 95% CrIs of both
groups’ posterior distributions (“vDIff.Null.Slope” ∈ 0).

Parameters such as the non-decision time (t0) and response
caution (K + A/2) were almost identical in both groups (Figure 8;
Table 2). It is assumed therefore that participants in both groups
had similar non-decision timings and levels of caution. In other
words, they spent the same amount of time in non-decision
processes and needed the same amount of evidence to make a
choice.

3.5. Correlation analysis

Relationships between participants’ listening efficiency and
their scores on cognitive, subjective, and hearing questionnaires
were explored following a plausible values approach. To do
so, differential drift rates in sentence trials were extracted per
each participant and averaged across conditions (8,000 draws
each). Then, the relative importance of predictor variables (age,
hearing questionnaires and cognitive scores) were calculated in a
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FIGURE 4

Model conditional effects over raw data for participants’ hearing questionnaires results by group (e.g., EAS∼ Group). The error bars display 95%
credible intervals; the bold dots represent posterior means, and the small dots represent the raw data. The effort assessment scale (EAS)
questionnaire has a score range between 0–60 points. The fatigue assessment scale (FAS) ranges between 0–40 points. The hearing handicap
questionnaire (HHQ) has a score range of 0–100 points. The short version of the speech, spatial and qualities of hearing scale (SSQ12) was reverse
scored, with a total range of 0–10 points. Greater scores in all questionnaires indicate greater hearing difficulty.

multiple linear regression model using the Relaimpo R package
(Groemping, 2006). Figure 10 shows the relative contribution
of these predictor variables to individual-level listening efficiency
(sentence differential drift rates) by group.

As can be seen in Figure 10, none of the variables were able
to explain the variance in the NH group, whereas some seemed
to explain some of the variability of CI users’ listening efficiency.
In particular, the SSQ12, EAS, and TRT scores accounted for 0.11,
0.07, and 0.09 of the variance, respectively. To explore any potential
correlations with those variables, both plausible correlations and
plausible population correlations (plausible p) for each of them
were calculated following Ly et al.’s (2018) analytic approach.

Moderate-to-weak correlations were found between CI users’
scores in the SSQ12 (r = 0.4), EAS (r = −0.3), and TRT (r = −0.4)

and their performance on the behavioral task (listening efficiency).
These, although not being strong relationships, suggest that the
greater the subjective hearing abilities of CI users (SSQ12 scores
without reversing), the better their listening efficiency was in the
behavioral task. Conversely, the more effort they reported in daily
life (greater EAS scores) and the worse linguistic closure abilities
they exhibited (greater TRT scores), the worse their performance
was in the behavioral task (left column plots in Figure 11).
Although the 95% CrIs of the plausible population correlations
(plausible p) just encompassed zero (SSQ12 [−0.07, 0.64], EAS
[−0.61, 0.12], and TRT [−0.65, 0.07]), there was reasonably
strong evidence in favor of a correlation within the CI group.
Specifically, there was 95.4% (p > 0), 91.7% (p < 0) and 95.1%
(p < 0) certainty that participants’ listening efficiency correlated
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FIGURE 5

Group-difference Cliff’s Delta effect sizes with 95% credible
intervals on the posterior distributions of cognitive tests (TRT,
RSpan), hearing questionnaires (EAS, FAS, HHQ, SSQ12, MFQ.dif),
and participants’ age. Positive Cliff’s Delta values indicate greater
scores/results of participants in the CI group compared to the NH
group (CI scores > NH scores). Abbreviations refer to Text
Reception Threshold (TRT), Reading Span (RSpan) tests, Effort
Assessment Scale (EAS), Fatigue Assessment Scale (FAS), Hearing
Handicap Questionnaire (HHQ), short version of the Speech, Spatial
and Qualities of hearing scale (SSQ12), and Momentary Fatigue
Questionnaire (MFQ.dif) on the difference post-vs.-pre experiment.

with SSQ12, EAS, and TRT, respectively (right column plots in
Figure 11).

The relationship between participants’ subjective measures and
their listening efficiency in the behavioral task was also explored.
Figure 12 shows the partial contribution of these subjective
measures (averaged across conditions) to the overall variability in
listening efficiency.

Just like before, some task-related subjective measures seemed
to act as individual predictors of listening efficiency only in the CI
group. Both perceived intelligibility and effort contributed largely
to explain CI users’ listening efficiency variability. Indeed, moderate
and strong correlations were found between CI users’ listening
efficiency and their subjective scores of effort (r = −0.5) and
intelligibility (r = 0.9), respectively. Evidence of such correlations
was also found at the population level (Figure 13) as revealed
by 95% CrIs of the plausible population correlations that do not
contain zero (AV_EF [−0.72,−0.06], AV_IN [0.56, 0.91]).

These results suggest that CI users’ perceived effort and
intelligibility reflected accurately their listening efficiency
during the task.

4. Discussion

In this article, a LBA model was used to perform a joint analysis
of behavioral measures acquired in a laboratory experiment that
aimed to assess the cognitive effort and listening performance
of a group of CI users and a group of age-matched NH

controls. The drift rate parameter was proposed as a putative
metric of participants’ listening efficiency and its correlations with
other listening effort measures (self-reported, task subjective, and
cognitive) were examined following the plausible values approach.

4.1. CI users were disproportionately
affected by moderate ecologically
relevant levels of background noise

The between-group comparison revealed significant differences
between CI users and NH controls as assessed by different
measures of listening effort. Regarding self-reported daily life
measures, EAS scores clearly showed that CI wearers reported
considerably greater levels of listening effort in daily life than
controls. This was consistent with their own perception of
hearing abilities (SSQ12) and hearing handicap (HHQ), which
again showed a clear disadvantage to CI users compared with
NH participants.

Participants were also consciously aware of their effort while
performing the main task. CI users reported significantly more
listening effort than their NH peers did in all experimental
conditions. Such remarkable difference was apparent even in
the easy condition (SNR: 20dB), despite task accuracy and,
self-reported intelligibility, being near ceiling in both groups
(approximately 90% and 100% in CI and NH groups, respectively).
These results confirm the observation already made by many
researchers that listening effort can be present even at ceiling levels
of speech understanding performance (Pals et al., 2013, 2020; Winn
et al., 2015; Winn and Teece, 2021).

Such differences between groups were also confirmed by the
behavioral results. The LBA’s drift rate parameter in sentence trials
interpreted as a measure of listening efficiency showed a strong
effect of group in all listening conditions.

Overall, CI users exhibited lower listening efficiency
(slower accumulation of evidence toward correct answers)
during sentence trials compared with NH controls in all
experimental conditions. That no effect of group was found
in null trials suggests that the reduction in listening efficiency
observed in the CI group during sentence trials must be
associated with difficulties encountered during the listening
process rather than the execution of the task itself, which
was the same in both trial types. This assumption is also
supported by the non-decision time (t0) parameter of the LBA
model and the cognitive tests’ results. Both indicating that
participants had similar cognitive abilities (working memory
and linguistic closure) and spent the same amount of time
to perceive/encode the stimulus and execute the task (button
pressing). Therefore, the increased cognitive load perceived by
CI users during the task (as expressed by their subjective scores)
was consistent with and mirrored by their behavioral performance
(listening efficiency).

Although listening was clearly more effortful for CI users
than for NH participants, no differences in fatigue were found
between groups. Similar scores were reported by participants in
the FAS questionnaire and the MFQ, suggesting that participants
overall experienced low levels of fatigue both in daily life and
during task performance. These results support the fact that
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TABLE 2 Means and Highest Density Intervals (HDI) of the LBA model’s parameters posterior distributions by group.

NH Group CI Group Between-Group difference(NH-CI)

Mean (v) 95% CrI
Lower

95% CrI
Upper

Mean (v) 95% CrI
Lower

95% CrI
Upper

Mean (v) 95% CrI
Lower

95% CrI
Upper

t0 0.21 0.15 0.25 0.21 0.15 0.26 0.00 −0.08 0.07

resp_caution 2.76 2.38 3.21 2.70 2.33 3.03 0.06 −0.45 0.57

vDiff.Sentence.Easy 4.14 3.75 4.46 2.79 2.35 3.23 1.35 0.79 1.88

vDiff.Sentence.Med 4.04 3.61 4.39 2.16 1.75 2.55 1.88 1.31 2.43

vDiff.Sentence.Hard 3.62 3.18 4.12 1.57 1.20 1.95 2.05 1.45 2.65

vDiff.Null.Easy 4.32 3.86 4.74 3.60 2.97 4.22 0.72 −0.01 1.48

vDiff.Null.Med 4.20 3.59 4.70 3.74 3.13 4.26 0.46 −0.28 1.17

vDiff.Null.Hard 4.50 4.16 4.83 4.10 3.72 4.47 0.39 −0.08 0.90

vDiff.Sentence.Mean 3.93 3.67 4.20 2.17 1.89 2.48 1.76 1.35 2.14

vDiff.Null.Mean 4.34 3.99 4.67 3.81 3.42 4.18 0.52 0.05 1.02

vDiff.Sentence.Slope −0.26 −0.54 0.02 −0.61 −0.86 −0.35 0.35 0.01 0.75

vDiff.Null.Slope 0.09 −0.08 0.29 0.25 −0.06 0.57 −0.16 −0.52 0.18

The effect of group can be seen in the between-group difference columns (last three columns). The HDI is interpreted as the 95% credible intervals (CrI) of posterior distributions. Table parameters are t0, response caution (resp_caution), and differential drift rates
(vDiff). Drift rates are described in the format “vDiff. trial type. Condition” and “vDiff. trial type. Mean or Slope across conditions.”
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FIGURE 6

Model conditional effects over raw data for participants’ task subjective ratings (self-perceived listening effort, intelligibility, and task disengagement)
by Group and Condition {e.g., EF ∼ 0 + Intercept + Group:Condition + [1 | gr(Participant, by = Group)]}. The error bars display 95% credible intervals;
the bold dots represent posterior means, and the small dots represent the raw data. Scores were measured in a 0–1 scale.

FIGURE 7

Posterior predictive checks per group (NH and CI group shown at the two top and bottom lines, respectively), trial type (sentence vs. null trials), and
condition (Easy, Med, and Hard conditions shown from left to right columns). Participants’ response time (RT) for incorrect responses are plotted as
negative. Solid dark lines represent the observed data and light blue lines represent the model predicted data (8,000 draws).

the experience of listening effort does not necessarily imply the
presence of listening-related fatigue. Although it is reasonable to
think that there must be a connection between both concepts

(Hornsby et al., 2016), there is very little empirical support for
a cause-and-effect relationship (McGarrigle et al., 2014; Pichora-
Fuller et al., 2016). Indeed, Alhanbali et al.’s (2017) study found
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FIGURE 8

Posterior group comparison in LBA model’s parameters: t0,
response caution, and differential drift rates (vDiff) per trial type
(Sentence,Null), and condition (Easy, Med, and Hard). Solid lines in
posterior distributions represent the predicted median index for
each parameter.

FIGURE 9

Mean value and Slope across conditions of LBA model’s differential
drift rates per trial type (Sentence, Null). Solid lines in posterior
distributions represent the predicted median index for each
parameter.

low correlations between FAS and EAS scores and concluded
that fatigue cannot be reliably predicted from self-reported
effort.

Another common assumption is that fatigue could lead to task
disengagement (Boksem and Tops, 2008; Hockey, 2013). In the
present study our subjects reported low levels of fatigue, and thus,
it is not surprising that the levels of disengagement were equally
low in both groups. Indeed, previous studies have shown that once
CI users engaged in communication they tend to persevere despite

FIGURE 10

Posterior relative contribution of predictor variables to
individual-sentence differential drift rate by group. Predictor
variables are age, hearing questionnaires (EAS, FAS, SSQ12, and
HHQ), and cognitive tests (TRT and RSpan) scores.

experiencing effortful listening (Eckert et al., 2016; Herrmann and
Johnsrude, 2020; Perea Pérez et al., 2022).

4.2. Drift rates from LBA models: a new
metric of listening efficiency

The speed of evidence accumulation (drift rates) toward
correct answers (incorrect responses subtracted) was proposed as
a measure of participants’ listening efficiency. It was hypothesized
that this metric would be able to capture differences in listening
performance between groups and conditions. The results of the
study confirmed this. As mentioned above, the listening efficiency
metric was able to show a significant effect of group in all
experimental conditions in sentence trials. Moreover, this measure
was sensitive to changes in task demands, showing a declining
trend as the task difficulty increased. This tendency was evident
(as revealed by negative slopes across conditions) not only in the
CI group but also in the control group. This reduction in listening
efficiency among NH participants may not be too surprising
considering their own subjective ratings during the task— they
did perceive an increase in listening effort as the SNR worsened.
This may demonstrate the sensitivity of the drift rate parameter in
capturing the SATO even when none of the behavioral measures
alone could reflect such tendency (i.e., as revealed by similar
accuracy and RT distributions of NH participants across conditions
in Figure 7). In addition, the lack of effects in null trials supports the
validity of the listening efficiency metric at reflecting participants’
performance and cognitive processing load during active listening.

Notably, listening efficiency was correlated with subjective
measures of listening effort only in the CI group. The potential of
an objective measure of listening performance that is consistent
with self-perceived ratings of effort is very promising. Listening
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FIGURE 11

Relationship between listening efficiency and SSQ12 (A), EAS (B), and TRT (C) scores by group. Groups are plotted in red (CI) and blue (NH) colors.
Plots on the left column display the posterior mean estimates of listening efficiency for each participant as a function of SSQ12, EAS, and TRT scores,
respectively. Plots on the right column show the posterior distribution of the plausible population correlation (ρ) per each variable. In the later,
colored solid lines and shaded areas, represent the mean, and 95% credible intervals, respectively.
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FIGURE 12

Posterior relative contribution of task subjective measures (averaged
across conditions) to individual-level listening efficiency by group.
Predictor variables are participants’ perceived listening effort
(AV_EF), intelligibility (AV_IN), and task disengagement (AV_TD).

efficiency is not subject to individual bias and yet is able to reflect
to some extend participants’ perception of listening effort. This
is an important quality, given that self-reported measures have
been considered more sensitive than other methods to evaluate
listening effort (particularly due to changes in task demand), and
thus more relevant to audiological contexts (Johnson et al., 2015;
Francis and Love, 2019; Visentin et al., 2022). Nonetheless, further
investigation is needed to examine the sensitivity of the listening
efficiency metric and its relationship with self-reported measures of
listening effort.

Although the speech recognition task used in the study was
relatively simple for compatibility with the physiological measures
simultaneously recorded, such simplicity is not required for the
application of the proposed LBA analysis. Listening efficiency
can be evaluated using any type of speech recognition task, as
long as response time and accuracy are recorded. Therefore,
the assessment of listening efficiency may also be relevant to
clinical applications. This metric could provide a better evaluation
of patients’ performance, taking into account both the speech
understanding ability and the cognitive load exerted. This approach
could be applied to the test batteries currently used in clinics.
Indeed, speech in noise (SIN) tests, such as the Quick Speech
in Noise Test (QuickSIN), Hearing in Noise Test (HINT),
Bamford-Kowal-Bench SIN Test (BKB-SIN), AzBio Sentence Test,
and the City University of New York Sentences (CUNY) are
commonly used to assess patients’ intelligibility pre- and after
implantation (British Society of Audiology [BSA], 2019). By
additionally recording the response time, which may require task
adaptation, it would be possible to evaluate CI users’ listening
efficiency with the same test batteries already used by audiologists.
Nonetheless, we should be mindful of the main limitation of this
analysis– LBA models could be analytically costly. Certainly, RT
decision models require a considerable post-processing analysis
that, although common in research, may be less suitable in clinical

environments due to time-constraints. Custom software should be
developed to perform such analysis in “real time” and to provide an
interpretation of the patients’ performance with respect to the wider
CI population. Although this poses a challenge, the development
of such software is feasible, just as other clinical solutions were
provided in the past to evaluate otoacoustic emissions or auditory
evoked potentials.

4.3. Individual predictors of listening
efficiency

The plausible correlation analysis yielded significant
associations between CI users’ listening efficiency and their
subjective effort and cognitive ratings, respectively. These
findings suggest that better cognition and more positive self-
reported listening experiences may be related to higher listening
efficiency in CI users.

Indeed, although cognitive tests did not show any significant
difference between groups, at the individual level, CI users
with worse linguistic closure abilities exhibited poorer listening
efficiency. Similar associations were already found by previous
studies that concluded that the long-term memory process and
lexical access abilities tapped by this test were correlated with
speech in noise perception (Kramer et al., 2009; Haumann et al.,
2012; Besser et al., 2013; Strand et al., 2018). Haumann’s study
even considered the test to be a predictor of better postsurgical
speech recognition performance in CI recipients. She suggested
that the TRT test should be included in the CI candidacy criteria.
The association between the TRT scores and listening efficiency,
although moderate (plausible p = −0.3), is likely to be present in
the CI population with 95% certainty, as revealed by the plausible
correlation analysis.

Similarly, the scores of hearing questionnaires describing
participants’ hearing abilities (SSQ12) and perceived effort (EAS)
in daily life were associated with their efficiency during the task.
Higher listening efficiency was positively correlated with better
hearing abilities and less perceived effort in everyday life. In
the same way, CI users’ self-reported measures of momentary
effort and intelligibility during the task seemed to be associated
with their listening efficiency. Participants were consciously aware
of the level of speech understanding achieved, and thus, their
subjective ratings accurately reflected their listening efficiency
performance (plausible p = 0.8). Conversely, listening efficiency
was inversely correlated with task perceived effort (plausible
p =−0.4).

There is conflicting evidence concerning associations between
behavioral and subjective measures of listening effort. While some
studies, like the present one, have found correlations between
participants’ performance and their effort ratings (Koelewijn et al.,
2015; White and Langdon, 2021; Stenbäck et al., 2023), most of
the research literature failed to find these associations (Anderson
Gosselin and Gagné, 2011; Hornsby, 2013; Strand et al., 2018;
Alhanbali et al., 2019; Francis and Love, 2019; McGarrigle et al.,
2021; Shields et al., 2023). Although differences in the experimental
design (different behavioral task and effort questionnaires) may
explain in part the disparity in results, the main difference
between previous studies and the present one is how correlations
were calculated. Most studies only used one behavioral measure
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FIGURE 13

Relationship between listening efficiency and both task subjective effort (A), and task subjective intelligibility (B) scores by group. Groups are plotted
in red (CI) and blue (NH) colors. Plots on the left column display the posterior mean estimates of listening efficiency for each participant as a
function of perceived effort and intelligibility, respectively. Plots on the right column show the posterior distribution of the plausible population
correlation (ρ) per each variable. In the later, colored solid lines and shaded areas, represent the mean and 95% credible intervals, respectively.

(either accuracy or response time) in their correlation analysis.
However, the use of integrated behavioral measures is usually
preferred when measuring cognitive or executive functions since
they capture the SATO that usually gets lost using response time
or accuracy separately (Stafford et al., 2020; Bakun Emesh et al.,
2021). The listening efficiency metric used here, being an integrated
measure that reflects intelligibility and effort, could have tapped
into different domains of the listening effort construct, reflecting
perhaps a combination of exerted and (self-) assessed effort (Francis
and Love, 2019).

Moreover, the Bayesian nature of the plausible correlation
analysis could be more appropriate to explore associations between
measures since it overcomes the limitations of multiple testing

usually associated with p-values in the traditional frequentist
approach. Although these could explain the associations found, at
this point we can only speculate since there is not enough evidence
to prove that this combined metric provides a more comprehensive
assessment of listening performance and thus favors correlations
with other measures. More research is surely needed to explore the
sensitivity of the listening efficiency metric and its relationship with
other measures of listening effort.

Finally, the experimental design could have also contributed
to improve the coherence and consistency across measures. For
instance, the simultaneous acquisition of behavioral and task
subjective measures is generally preferred to reduce within-subject
variability across measures. Likewise, the ecologically relevant

Frontiers in Human Neuroscience 18 frontiersin.org

https://doi.org/10.3389/fnhum.2023.1214485
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-17-1214485 July 12, 2023 Time: 11:9 # 19

Perea Pérez et al. 10.3389/fnhum.2023.1214485

stimuli used in the study could also have favored correlations with
subjective measures, given that realistic stimuli are likely to evoke
similar perceptions and reactions to those experienced in daily life
(and reflected by self-reported questionnaires).

4.4. Limitations

It is known that effort measured in the laboratory is likely to
differ from the effort experienced in the real world, particularly
due to task differences (Pichora-Fuller et al., 2016). Although
the main behavioral task was designed to achieve some degree
of ecological validity (Keidser et al., 2020) (by using meaningful
sentences masked by realistic background noise at most frequent
SNR levels), we could not replicate other aspects that play an
important role when listening under naturalistic conditions. For
instance, the presentation of the sound stimuli did not consider the
spatial distribution of sound sources. Both the target speech and the
background noise were played using a loudspeaker located in front
of the participants. The use of different loudspeakers to present the
target and the background noise, as well as a more appropriate
distribution of them around participants could have produced a
better immersive sound experience of a cafeteria environment.
Moreover, no visual cues were available during the listening task.
Many CI users rely on visual cues such as facial expressions and lip
reading to enhance their speech understanding performance. Thus,
the lack of visual cues could have affected participants’ listening
efficiency and the effort experienced compared to real life. Even so,
this difference may have not been that substantial considering the
correlations found between participants’ self-reported measures in
daily life and their listening efficiency scores during the task.

The SNRs at which participants performed the main listening
task, although representative of everyday life sound scenarios for
people with HL (Smeds et al., 2015; Wu et al., 2018), are not likely
to pose any listening challenge for NH participants. This low level of
task difficulty (positive SNR for all experimental conditions) could
have contributed partially to the high listening efficiency exhibited
by the NH group, and therefore the great disparity in results with
respect to the patient group. The same reasoning could be used to
explain partly the lack of correlations found between measures of
listening effort within the NH group. One could assume that people
with NH may expose themselves to more challenging listening
environments in everyday life than the ones reproduced in the
behavioral task.

Finally, while the study aimed to detect differences in listening
efficiency between NH and CI listeners, it did not account
for differences in performance within the CI group (unilateral,
bimodal, and bilateral subgroups). Considering the potential
benefits of bimodal and bilateral stimulation in speech perception,
this generalization of CI recipients may have resulted in wider
listening efficiency distributions. Future research could provide
further insights into the listening efficiency of CI users as a function
of hearing device configuration.

5. Conclusion

A LBA model was used to perform a joint analysis of behavioral
measures and assess listening efficiency in a group of CI and

NH participants. The listening efficiency metric proposed here
holds potential as a new outcome measure able to characterize
the speed-accuracy trade-off (SATO) of participants’ performance
under challenging listening conditions. This metric was sensitive
to changes in task demands and able to determine significant
differences between groups. Under moderate ecologically relevant
levels of background noise, CI users exhibited significantly inferior
listening efficiency than their NH peers did in all experimental
conditions. Only in the patient group, listening efficiency showed
moderate-to-strong correlations with cognitive and self-reported
measures of listening effort. This metric should warrant further
consideration given its ability to assess both intelligibility and effort.
Nonetheless, more research is needed to explore the sensitivity
and practical utility of the listening efficiency metric across diverse
listening situations.
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