
The Serbian Ceramic Society The Academy of Engineering Sciences of Serbia Institute for Multidisciplinary Research - University of Belgrade Institute of Physics - University of Belgrade Vinča Institute of Nuclear Sciences - University of Belgrade

Edited by: Snežana Bošković Vladimir V. Srdić Zorica Branković Programme and Book of Abstracts of The Second Conference of The Serbian Ceramic Society **publishes abstracts from the field of ceramics, which are presented at international Conference.**

Editors-in-Chief Dr Snežana Bošković Prof. Vlaimir V. Srdić Dr. Zorica Branković

Publisher

Institute for Multidisciplinary Research, University of Belgrade Kneza Višeslava 1, 11000 Belgrade, Serbia

For Publisher Prof. Dr Sonja Veljović Jovanović

Printing layout Vladimir V. Srdić

Press FUTURA, Novi Sad, Serbia

CIP – Каталогизација у публикацији Народна библиотека Србије, Београд

666.3/.7(048) 66.017/.018(048)

SERBIAN Ceramic Society. Conference (2nd ; 2013 ; Beograd)

Program ; and the Book of Abstracts / 2nd Conference of the Serbian Ceramic Society, 2CSCS-2013, June 5-7, 2013, Belgrade, Serbia ; [organizers] The Serbian Ceramic Society ... [et al.] ; edited by Snežana Bošković, Vladimir Srdić, Zorica Branković. - Belgrade : Institute Multidisciplinary Research, 2013 (Novi Sad : Futura). - 102 str. ; 24 cm.

Tiraž 120. – Registar.

ISBN 978-86-80109-18-3

1. Bošković, Snežana [уредник] 2. Serbian Ceramic Society (Beograd)

а) Керамика - Апстракти b) Наука о материјалима – Апстракти

с) Наноматеријали - Апстракти

COBISS.SR-ID 198593292

The Serbian Ceramic Society The Academy of Engineering Sciences of Serbia Institute for Multidisciplinary Research-University of Belgrade Institute of Physics-University of Belgrade Vinča Institute of Nuclear Sciences-University of Belgrade

PROGRAMME AND THE BOOK OF ABSTRACTS

2nd Conference of The Serbian Ceramic Society

June 5-7, 2013 Belgrade, Serbia 2CSCS-2013

Edited by: Snežana Bošković Vladimir Srdić Zorica Branković P-17

CESIUM ADSORPTION AND PHASE TRANSFORMATION OF CLINOPTILOLITE

<u>Mia Omerašević</u>¹, Uroš Jovanović², Vladimir Pavlović³, Maria Čebela¹, Snežana Nenadović¹

 ¹Laboratory for Material Science, Institute of Nuclear Sciences "Vinča", University of Belgrade, Serbia
²Laboratory of Chemical Dynamics and Permanent Education, Institute of Nuclear Sciences "Vinča", University of Belgrade, Serbia
³Faculty of Agriculture, University of Belgrade, Serbia

This work was focused to provide promising solid-phase materials that combine relatively inexpensive and high removal capacity of some radionuclides from low-level radioactive liquid waste. Cesium adsorption from aqueous solutions onto clinoptilolite and their thermal transformation in this work was investigated. All samples were characterized by scanning electron microscopy and X-ray diffraction analysis. The elemental composition of the zeolitic material clinoptilolite was also determined with XRF. The content of Al and Si was determined using ICP-OES. The cesium adsorption by zeolites was carried on in a batch system where a contact time was 24 h. The cesium was detected by atomic absorption spectrometer. The results for Cs adsorption efficiency of clinoptilolite are very satisfactory, especially for concentration of 10 mg/l, but this material didn't change into pollucite stable phase.

P-18

EXAMINATION OF NANOSTRUCTURED Ca_{1-x}Gd_xMnO₃ (x=0.05; 0.1; 0.15; 0.2) OBTAINED BY MODIFIED GLYCINE NITRATE PROCEDURE

M. Rosic¹, J. Zagorac¹, A. Devečerski¹, A. Egelja¹, A. Šaponjić¹, V. Spasojevic¹, B. Matovic¹

The Vinca Institute, University of Belgrade, P.O. Box 522, Belgrade, Serbia

Starting Ca_{1-x}Gd_xMnO₃ powders (x=0.05, 0.10, 0.15, 0.20) were prepared by combustion of solutions containing mixture of glycine with metal nitrates in their appropriate stoichiometric ratios. The so-obtained powders were annealed at the temperature of 850 °C to 950 °C for 10 minutes to produce final nanostructured