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Abstract

Objectives: Validation studies in juvenile dental age estimation primarily focus on

point estimates while interval performance for reference samples of different ancestry

group compositions has received minimal attention. We tested the effect of reference

sample size and composition by sex and ancestry group on age interval estimates.

Materials and Methods: The dataset consisted of Moorrees et al. dental scores from

panoramic radiographs of 3334 London children of Bangladeshi and European ances-

try and 2–23 years of age. Model stability was assessed using standard error of mean

age-at-transition for univariate cumulative probit and sample size, group mixing (sex

or ancestry), and staging system as factors. Age estimation performance was tested

using molar reference samples of four sizes, stratified by year of age, sex, and ances-

try. Age estimates were performed using Bayesian multivariate cumulative probit

with 5-fold cross-validation.

Results: Standard error increased with decreasing sample size but showed no effect

from mixing by sex or ancestry. Estimating ages using a reference and target sample of

different sex reduced success rate significantly. The same test by ancestry groups had

a lesser effect. Small sample size (n < 20/year of age) negatively affected most perfor-

mance metrics.

Discussion: We found that reference sample size, followed by sex, primarily drove age

estimation performance. Combining reference samples by ancestry produced equivalent

or better estimates of age by all metrics than using a single-demographic reference of

smaller size. We further proposed that population specificity is an alternative hypothesis

of intergroup difference that has been erroneously treated as a null.
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1 | INTRODUCTION

It is often assumed that ideal skeletal methods will be constructed

from the same population as the target individual, however in juvenile

age estimation, the assumption that dental development differs

greatly between ancestral or geographic groups has not been exam-

ined while extensively controlling for other factors that may impact

estimates of age. Many methods of estimating dental age in
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contemporary individuals appear to be population specific; error rates

found in follow-up studies are larger than those originally reported

(Chaillet et al., 2005) or better results are obtained by using a

population-specific reference (Baghdadi & Pani, 2012; Jayaraman

et al., 2018). Similarly, several studies report consistent bias in esti-

mated age (Jayaraman et al., 2013; Kırzıo�glu & Ceyhan, 2012;

Kumaresan et al., 2016; Maia et al., 2010; Mani et al., 2008; Phillips &

van Wyk Kotze, 2009; Prasad & Kala, 2019; Tunc & Koyuturk, 2008).

One possible explanation for these discrepancies between

methods and follow-up studies is that there are biological differences

in dental development between groups. Such biological difference

would imply that combining ancestry groups in reference samples or

estimating age in a target sample from one group using a method

developed with a reference sample from another will produce worse

estimates of age than if the reference and target sample were both

drawn from a single ancestral group. Such assumptions are compli-

cated by the fact that many factors other than biological difference

have the potential to affect estimates of age, with most of these fac-

tors related to method and not the people in the dataset (Corron

et al., 2018). Some such factors include reference sample size, refer-

ence sample age distribution, and model type. Here we will address

potential effects from reference sample size, as well as issues with

how the population specificity assumption is framed during hypothe-

sis construction and testing.

Reference sample size is a plausible explanation for discrepancies

in error rates because small samples will appear different even when

drawn from the same population, the phenomenon of small-sample

effects, which has been documented in statistics for over a century

(Lin, 2018; Student, 1908; Welch, 1958). We do not currently have a

good understanding of what constitutes a small sample in dental age

estimation. It is possible that total reference sample sizes in dental

age estimation will need to be quite large (thousands rather than hun-

dreds) in order to avoid these effects because partitioning continuous

dental development into a large categorical scale will result in many

partitions having very few individuals. Uneven age distributions can

exacerbate the issue, producing bias and variable error rates across

the age range (Buckberry, 2015). This is similar to sex bias in sex

estimation methods with unequal sex ratios in the reference sample

(Boldsen et al., 2015; Milner & Boldsen, 2012).

The assumption that population specific methods are necessary is

of practical importance because requiring population-specific methods

means requiring ancestry estimates from juvenile skeletal remains as

well as dividing already sparse datasets of juvenile dental develop-

ment data. If dental age estimation is truly population-specific, this

will require serious efforts to improve ancestry estimation in children,

and to obtain reference samples that are directly representative of

specific target populations. If small sample effects are to blame, the

entirely opposite solution of combining reference samples should be

applied instead.

There are several problems with the population specificity

assumption. Of the three that we will discuss here, two are methodo-

logical challenges to identifying population specificity in the first place

and the third is related to human variation. The first problem is that

results are not consistent across studies. Some show no differences in

error rates between groups or biases in dental age estimates (Braga

et al., 2005; Kiran et al., 2015; Liversidge, 2011; Thevissen

et al., 2010). Follow-up studies using different individuals from the

same geographic/demographic population as those included in the

development of the original method are uncommon. Willems et al.

(2001) provide an excellent example of this procedure and to some

extent so do AlQahtani et al. (2010, 2014) although sources are added

to the follow-up sample that were not included in the original. This

dearth of follow-up studies on original groups means that reported

error rates in original studies may be underestimates due to overfit-

ting (error rate based on data used to fit the model) and model selec-

tion bias (error rate based on data used to select the best model).

The second challenge to identifying population specificity is that

there have been no systematic studies of these effects on age interval

estimates. Most existing research has focused on mean errors in point

estimates of age (Jayaraman et al., 2013). This is concerning because

existing best practices in forensic age estimation recommend estimat-

ing age intervals with associated error rates or point estimates with

associated standard errors (Corron et al., 2018).

The third problem with the assumption is that since human varia-

tion is continuous and does not follow typological categorizations of

race, it is not possible to construct a reference sample larger than

monozygotic siblings that has truly homogeneous ancestry. There

must come a point at which it is no longer practical to divide a sample

further. Moorrees et al. (1963) found consistent differences in devel-

opment between children from Ohio and Boston. Building city-

specific reference samples is a nearly impossible task and would have

limited applicability in forensic identification. It may be that develop-

mental differences exist at a finer level than it is practical to capture in

our methods. Not all detectable differences will be useful or meaning-

ful. Further, these findings suggest that phenotypic plasticity in the

dentition (rather than genetic ancestry) may be driving intergroup

differences in development through environmental effects. This has

subsequently been supported in additional contexts (Cardoso, 2007).

The mismatch between age estimation methods and the land-

scape of human variation is partly the result of how hypotheses in

validation studies are framed. A null hypothesis is of “no difference”
between populations, or of “no effect” from an experimental manipu-

lation (Nickerson, 2000). Inter-group difference in age estimation is

fundamentally an alternative hypothesis; the corresponding null

hypothesis should be that there is “no difference.” The population-

specificity assumption frames intergroup difference as the null

hypothesis. This is problematic both because it is incorrect from the

standpoint of hypothesis construction and because treating inter-

group difference as something that must be falsified reinforces

erroneous typological ideas about human variation. We therefore

reframe intergroup difference as an alternative hypothesis as follows:

Ho1. Demographic differences in sex and ancestry in

the reference and target sample do not cause sufficient

differences in dental development to impact estimates

of age.
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Ha1. Demographic differences in sex and ancestry in the

reference and target sample do cause sufficient differ-

ences in dental development to impact estimates of age.

Note that this set of hypotheses does not speak to the effect of

experimental manipulation, which includes factors such as the size and

age distributions of the reference and target samples. When “differ-
ence” and “effect” hypotheses are conflated or combined there is a

very real risk that an effect of experimental manipulation will be inter-

preted as a difference between groups. Separating difference from

effect requires controlling experimental conditions by holding them

constant or varying them systematically. Systematic variation of experi-

mental conditions necessitates a second null hypothesis of “no effect”
along with a corresponding suite of appropriate alternatives. We are

interested in the effect of reference sample size on both the stability of

modeling parameters and on age estimation performance. We there-

fore use a separate set of hypotheses for each line of inquiry:

Ho2. Reference sample size has no effect on model

stability (model mean-age-at-transition).

Ha2. Larger reference samples produce more stable

models than smaller ones that are more homogeneous.

Ho3. Reference sample size has no effect on age

estimation performance (estimated vs. true age).

Ha3. Larger reference samples produce better estimates

of age than smaller ones that are more homogeneous.

In this approach, we reframe intergroup similarity as a null

hypothesis of no difference by sex and ancestry, include a second and

third null hypothesis of no effect by sample size (an experimental

manipulation), and test appropriate alternatives to both. We also

leverage Bayesian hypothesis testing, which unlike frequentist

hypothesis testing, allows for evaluating the strength of evidence for

null hypotheses (Krueger, 2001). We use sex as a positive control for

inter-group differences, since dental developmental differences by

sex are well-documented (Demirjian & Levesque, 1980; Garn

et al., 1958; Moorrees et al., 1963). By testing these hypotheses, we

will address the pressing questions of whether (A) it is necessary to

estimate an individual's age from a reference sample of the same

ancestry and (B) reference samples can be combined even when

ancestry is heterogeneous between them.

2 | MATERIALS AND METHODS

2.1 | Dataset

The initial data consisted of Moorrees et al. (1963) scores of the left

permanent mandibular dentition from panoramic radiographs of 3334

London children between 2 and 23 years of age, of known sex, and

clear medical history other than dental caries and associated patholo-

gies. Images were taken during the course of normal diagnosis and

treatment at Institute of Dentistry, Barts, and The London School of

Medicine and Dentistry, London. All images were scored by Dr. Helen

Liversidge (intra-observer weighted kappa = 0.952, n = 30 individuals

for eight teeth). For H1 and H3 we used a subsample (N = 1120) of molar

scores (three teeth) with a uniform age distribution by year of age

between 5 and 19 years stratified by sex and ancestry. For H2 we used a

subsample (N = 2607) of complete cases (eight teeth) between 2 and

23 years but did not control the age, sex, or ancestry distributions.

2.2 | Demographic correspondence of reference
and target samples (H1)

Since estimating age intervals requires calculating the full residual cor-

relation matrix between dental developmental variables (after control-

ling for age), a time-consuming computation step, only the molars

were included for this hypothesis. The subsample of molar scores was

divided into four groups of n = 280 by sex and ancestry (European

females, Bangladeshi males, etc.). Bayesian multivariate cumulative

probit models with a uniform prior bounded from 2 to 23 years were

fit with age on a log scale to each group after using stage collapsing

and a Lagrange multiplier goodness-of-fit test with a cutoff p-value of

0.1 to ensure model fit (Bera et al., 1984; Johnson, 1996). See Konigs-

berg et al. (2016) for details of this procedure. Equation (1) gives

Bayes theorem as it was applied to dental stages here with the poste-

rior probability of age given stage on the left, the likelihood and prior

in the numerator, and the normalizing constant in the denominator.

P agejstage1, ::: stagek
� �¼

Qk
i¼1P stageijage

� �
P ageð Þð23

age¼2

Qk
i¼1P stageijage

� �
P ageð Þdage

ð1Þ

Next, each group was used as a reference sample to estimate

ages for every other group. Performance testing within the same

group was not conducted. This would require cross-validation, which

would produce metrics not directly comparable to those from the

other reference-target combinations (which do not need to be cross-

validated because the reference and target are different samples).

Individuals were excluded from the target sample if they had tooth

stages that were not represented in the reference sample and the

number of exclusions was tracked. This is necessary in categorical

data modeling because unlike with continuous data, it is not possible

to extrapolate beyond the range of the data. Ages were calculated as

both the 95% highest posterior density region (HPD) and the maxi-

mum likelihood estimate from the posterior (i.e., the mode of the

posterior).

Following age estimation, we calculated residual error of maxi-

mum likelihood estimates, root-mean-square error (RMSE) of resid-

uals, precision as the scaled age interval width (width of HPD divided

by true age), and accuracy as the success rate of the HPD capturing

true age (the rate at which the estimated age interval included the

SGHEIZA and LIVERSIDGE 3
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true age of the individual). Success rate was calculated using two dif-

ferent values for the denominator: the total number of individuals in

the target sample, and the number of individuals in the target sample

for whom age could be estimated. If an individual in the target sample

has tooth stages not present in the reference sample, their age cannot

be estimated in a categorical model. We used both residual error and

RMSE because residual error provides an evaluation of bias, while

RMSE is more sensitive to large errors due to the squared term. Since

the squared terms are summed before taking the root, larger errors

are weighted more heavily in the final calculation. If two models have

the same residual error but one has larger RMSE, this would indicate

that large errors in the second model are less frequent but more

severe when they occur.

Success rates were compared via Bayes factors calculated using

integration of the binomial logistic distribution (Morey et al., 2015). A

Bayes factor is the ratio of the probability of the alternative hypothe-

sis to the probability of the null hypothesis, each of which can be

expressed as an integral. Here, the alternative hypothesis is in the

numerator and the null is in the denominator, so a Bayes factor

greater than 1 supports the alternative hypothesis and a value less

than 1 supports the null.

2.3 | Reference sample size and model fitting (H2)

We fit cumulative probit models to each tooth in the dataset with

log-scale age as the explanatory variable and sex and ancestry as

covariates. We then performed variable selection on each model using

backward stepwise Akaike Information Criterion (AIC). AIC penalizes

both poor model fit and model complexity, so larger values indicate a

worse model. In backwards stepwise AIC, a model is fit with all vari-

ables included and with each variable removed. AIC is calculated for

each model and the model with the lowest AIC is chosen as the new

model. This process is repeated until removing a variable no longer

produces a lower AIC. The results of the stepwise AIC were used to

test whether the positive control (sex) was appropriate in our dataset

and determine if the subsequent factorial design was sensitive to

effects from sex.

The effect of reference sample size on model parameters was

assessed using a full factorial design. The factors were staging system

(Demirjian et al., 1973; Moorrees et al., 1963), percent original sample

size (60, 80, 100), and group mixing percentage (0, 10, 20, 30, 40, 50),

for a total of 36 factor-level combinations in each experimental run.

We ran two versions, one with sex as the mixing variable and one

ancestry group as the mixing variable. Ten bootstrap runs were com-

pleted for each version. For each tooth in each run, we fit a Bayesian

univariate cumulative probit model with age on a log scale and com-

puted the standard error of mean age at transition between model

stages. The final test metric was the average standard error for all

stage transitions for a particular tooth and run of our full factorial

design. Averaging the standard error across stages was a necessary

generalization due to the number of stages for each tooth (up to 16)

and number of factor-level combinations in the design.

In order to compare the effect of total sample size against the

effect of within-stage sample size we employed two staging sys-

tems with very different numbers of stages: Moorrees et al. (1963)

(15 stages) and Demirjian et al. (1973) (eight stages). For each sys-

tem, we included an additional initial crypt stage for a total of

16 and nine stages respectively. The Moorrees et al. stages in the

original data were collapsed into Demirjian stages according to

Liversidge (2008a, 2008b).

Before beginning a single experimental run for either sex or

ancestry the larger of the two groups was randomly trimmed to match

the size of the smaller group. At each percentage level of original sam-

ple size, the groups were again randomly trimmed by the specified

amount. Similarly, for each percentage level of group mixing the nec-

essary number of individuals were randomly selected and switched to

the opposite group. It is the randomness of this trimming and mixing

that allowed for bootstrapping multiple runs.

2.4 | Reference sample size and age interval
estimates (H3)

The experimental design for H3 used the same N = 1120 subsample

from the first design and again considered only the molars. Each refer-

ence sample was constructed with a uniform age distribution of

10, 20, 40, or 80 individuals in each year of age with equal numbers

by sex and ancestry group if applicable. Type 1 reference samples

contained a single sex and ancestry group, type 2 a single ancestry

group, type 3 a single sex, and type 4 both sexes and ancestry groups.

Age estimates were performed using full Bayesian multivariate cumu-

lative probit with 5-fold cross-validation.

For each sample type 10, 20, 40, or 80 individuals were included

per year of age by drawing 5, 10, or 20 individuals from each stratum

of ancestry, sex, and year of age. The sample was divided into refer-

ence and target and individuals were excluded from the target if they

had tooth stages not present in the reference sample. We collapsed

stages based on a Lagrange multiplier goodness-of-fit test with a cut-

off p-value value of 0.1 as was done for H1. We then fit a Bayesian

multivariate cumulative probit model with a uniform prior bounded

from 2 to 23 years and age on a log scale (see Equation 1). We then

estimated MLEs and highest posterior density regions from the target

sample. This was 5-fold cross-validated and repeated for every combi-

nation of reference sample type and size.

What made this a fractional factorial design was that not every

sample size was available for every reference sample type. Twenty

was the maximum within-year reference sample size for type 1 refer-

ence samples (20 from a single sex and ancestry) but the minimum

within-year size for type 4 reference samples (five from each sex-

ancestry combination). An additional consideration was that while

unequal sample sizes were needed for fitting models, equal numbers

of estimated ages were preferred for comparing performance metrics.

Including every person in the sample in every type-size combination

ensured that the only variables in our model comparisons were model

characteristics, not the individuals in the dataset.

4 SGHEIZA and LIVERSIDGE
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TABLE 1 Performance metrics for
testing demographic correspondence of
reference and target samples.

Type Mean residual RMSE Int width SR BF # Exclusions

same_alla - - 0.3455 0.9366 1.0132 5

same_anc 0.0880 1.2307 0.3455 0.9152 1.51E+04 7

same_sex 0.0824 1.2181 0.3457 0.9259 4.88E+01 10

diff_all 0.0874 1.2199 0.3448 0.9223 2.72E+02 7

Abbreviations: BF, Bayes factor; SR, success rate.
aCross-validated type 1 model with 20 children per year of age.

TABLE 2 AIC values from stepwise
AIC for teeth with a significant
contribution from ancestry.

Tooth All variables Removing ancestry Removing sex Removing age

1st premolar 4509.7 4520.8 4589.5 10600.1

3rd molar 8515.6 8529.7 8516.3 12864.9

0 10 40 50

SE

20 30

Group Mixing Percentage

−1
.5

−1
.0

−0
.5

0.
0

0.
5

1.
0

1.
5

2.
0 60% M

60% D
80% M
80% D

100% M
100% D

(a)

(b)

0 10 40 50

0.
0

−1
.0

−0
.5

0.
5

1.
0

1.
5

SE

20 30

Group Mixing Percentage

60% M
60% D

80% M
80% D

100% M
100% D

F IGURE 1 Standard error results for I1 sex (a) and P3 ancestry (b).
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F IGURE 2 Performance metrics for all sample types: mean residuals (a), RMSE (b), and age interval width with standard deviations (c). Factor
labels are reference sample types: (1) single sex, single ancestry group, (2) single ancestry group, combined sex, (3) single sex, combined ancestry,
(4) combined sex, combined ancestry.
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This was accomplished using partitioning. For smaller sample

sizes, only ½ or 1/4 of the available sample was used to cross-

validate. The solution was to partition the sample into halves or

quarters by giving every individual within each year-sex-ancestry

stratum an index between one and 20 and repeat the cross-

validation procedure on left-out partitions for smaller sample sizes.

For example, in Bangladeshi boys (type 1) with 10 individuals per

year of age we cross-validated on individuals indexed 1–10 in the

first partition and on individuals indexed 11–20 in the second parti-

tion. There were 47 total type-size combinations when accounting

for partitions. This made for a total of 235 model fits after cross-

validation. The performance metrics were residual error, RMSE,

relative age interval width, and success rate (both calculations as

detailed above). Success rates were compared via Bayes factors, as

described for H1.

3 | RESULTS

3.1 | Demographic correspondence of reference
and target samples (H1)

The demographic correspondence of reference and target sample

had no effect on age interval width. The largest mean residual and

RMSE was found when the reference and target were the same,

however, the difference in RMSE was small. This indicated that

while there was more error overall, there was not a corresponding

increase in large errors. Success rate was lowest when ancestry

was the same. According to Bayes factors, there was moderate

evidence for the alternative hypothesis of success rate different

from 0.95 for same sex, different ancestry (Bayes factor between

30 and 100) and decisive evidence for the alternative for same

ancestry, different sex and for different sex and ancestry (Bayes

factor > 100). The number of individuals excluded from the target

sample due to having tooth stages not represented in the reference

sample was similar for all three reference-target combinations

(Table 1).

3.2 | Reference sample size and model fitting (H2)

Based on backward stepwise AIC of univariate probit models, sex was

a significant covariate for all teeth. Ancestry was a significant covari-

ate for the first premolar and third molar only (Table 2). This is consis-

tent with the findings of Liversidge (2011) on a subset of our dataset,

in which the first premolar and third molar were the only teeth with

stage differences between ancestry groups.

Standard error of mean age at transition increased with decreas-

ing reference sample size. Standard error was also consistently higher

with Demirjian et al. staging than with Moorrees et al. staging. Stan-

dard error results for mixing by sex in the first incisor are similar to

those found for the remaining teeth (Figure 1a). There was no consis-

tent effect from group mixing for either sex or ancestry. The standard

deviation of this metric remained consistent within a tooth type,

group size, and staging system, also showing no trends by mixing per-

centage. The first premolar had somewhat erratic standard error

results for both sex and ancestry (Figure 1b). The remaining 14 plots

are available as Supporting Information.

3.3 | Reference sample size and age interval
estimates (H3)

All reference sample types and sizes showed positive mean residuals.

Increasing sample size increased the mean residual but decreased

RMSE for most combinations of type and size (Figure 2a,b). In addi-

tion, combining reference samples by sex (type 2) resulted in smaller

mean residuals but larger RMSE than combining by ancestry (type 3).

Sample size and type did not have a significant effect on age interval

width (Figure 2c). When exclusions were not included in the success

rate calculation, only the smallest three reference samples showed

evidence of difference from 0.95. These three samples also had the

largest numbers of exclusions. When exclusions were included in the

success rate calculation, the 20-per-year reference samples for types

2, 3, and 4 all had Bayes factors between 10 and 30 (moderate to

strong evidence of difference from null). All of the larger samples

TABLE 3 Success rates for all sample
types with and without exclusions.

Type n SR BF # Exclusions SR with exclusions BF with exclusions

1 10 0.9175 3.24E+03 17 0.9036 4.88E+07

1 20 0.9408 0.3898 5 0.9366 1.0132

2 10 0.9187 1.70E+03 13 0.9080 1.76E+06

2 20 0.9309 6.0471 5 0.9268 32.7869

2 40 0.9462 0.1925 5 0.9420 0.3191

3 10 0.9210 4.76E+02 19 0.9054 1.25E+07

3 20 0.9336 2.4034 5 0.9295 10.7712

3 40 0.9418 0.3271 3 0.9393 0.5305

4 20 0.9344 1.8770 7 0.9286 15.4043

4 40 0.9382 0.6722 3 0.9357 1.2951

4 80 0.9400 0.4545 3 0.9375 0.8044
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along with the 20-per-year sample for type 1 had Bayes factors below

1.3 (Table 3).

We found mixed support for Ha1. The highest success rate for

models in part 1 was achieved when the reference and target samples

had the same sex and ancestry, however, the success rate for esti-

mates where the reference and target differed by both sex and ances-

try was intermediate between estimates differing by ancestry and

those differing by sex. There was no effect on age interval width.

Residual error and RMSE were not compared due to cross-

validation concerns. Ha2 was strongly supported for total reference

sample size. Reference sample size, and to a lesser extent, staging

system, were the only factors that affected model stability. We

cannot speak conclusively here about the effects of within-stage

sample size. We found strong support for Ha3. Combining refer-

ence samples produced equal or better estimates of age up to a

point of diminishing returns in success rates for increasing refer-

ence sample size.

4 | DISCUSSION

Existing literature shows conflicting results regarding population

specificity in juvenile dental age estimation with some follow-up

studies showing consistent bias (Jayaraman et al., 2013; Kırzıo�glu &

Ceyhan, 2012; Kumaresan et al., 2016; Maia et al., 2010; Mani

et al., 2008; Phillips & van Wyk Kotze, 2009; Prasad & Kala, 2019;

Tunc & Koyuturk, 2008), while others find no consistent differ-

ences in dental development between groups (Braga et al., 2005;

Liversidge, 2011; Thevissen et al., 2010). This raises the practical

questions of whether reference and target samples must have the

same ancestry and whether reference samples of different ances-

tries should be combined to produce larger sample sizes. Mixed

support for Ha1 suggests that it may be better to estimate age using

a demographically similar reference sample, but matching sex is

more important than matching ancestry, and this does not take into

account sample size, which will be discussed below. Support for

H2a and H3a indicates that combining reference samples across

ancestry groups is a viable strategy for improving age estimation

performance.

We demonstrated that there are important differences in

model performance between reference and target samples that

have non-corresponding demographics (H1) and those that have

equally mixed demographics (H3). This was particularly true for sex.

Success rates were poor with a large Bayes factor when the sex of

the reference and target sample did not match (Table 1), but when

both the reference and target had mixed sex, success rate was

higher, reducing the Bayes factor by about three orders of magni-

tude (Table 3). Some caution is warranted for combining by sex

because it may increase large errors relative to combining by ances-

try (residual error vs. RMSE).

Ancestry displayed a similar pattern, although to a lesser

degree. The Bayes factor decreased to about 25% of non-

corresponding ancestry of reference and target sample for mixed

ancestry of reference and target sample. However, the primary

question we are asking is whether it is useful to combine reference

samples across demographic variables to improve model perfor-

mance. Here we first compare types 2 and 3 where n = 10 to type

4 where n = 20. These reference sample type/size combinations

can be thought of as separating by either ancestry or sex (types

2 and 3) and then doubling the size of the reference sample by

combining. There is a large gain in success rate going from n = 10

to n = 20 per year of age even when combining across both demo-

graphics. The success rate Bayes factor decreases by five to six

orders of magnitude.

Similarly, we double the model reference sample size of type

1 where n = 10 by combining sex or ancestry (types 2 and 3 where

n = 20) and then combining both (type 4 where n = 40). The Bayes

factor of the success rate again decreases by five to six orders of mag-

nitude when the reference sample size is increased from n = 10 to

n = 20 and by one order of magnitude when the sample size

increased from n = 20 to n = 40. This trend in success rate relative to

sample size demonstrates two things. First, it is advantageous to com-

bine reference samples across demographic variables in order to pro-

duce a larger sample. Second, there are diminishing returns in success

rate with increasing reference sample size.

These diminishing returns are especially apparent for types

2 and 3 where n = 40 compared to type 4 where n = 80. Here, the

success rate for type 4 is slightly lower and the Bayes factor slightly

higher than the rates for the type 2 and 3 models. The rates are very

similar, and the Bayes factors are all below 1, so all three model type

and size combinations were equally successful at estimating ages to

the target error rate. This indicates that combining reference sam-

ples to increase sample size from n = 40 to n = 80 did not improve

model performance.

Part of the reason for this patterned shift in performance is

the decrease in numbers of exclusions with increasing sample size.

Reference samples with n = 10 do not capture sufficient variation

in dental stages to reliably cover the variation expressed in the

target sample, resulting in large numbers of exclusions. A refer-

ence sample of n ≥ 20 was large enough to capture this variation.

Additional performance improvements beyond n = 20 seem to

mostly result from a larger sample size directly benefitting model

parameter estimation, supported by a nearly identical pattern in

RMSE (Figure 2b).

There are several potential reasons why consistently reported

differences in age estimates by ancestry group did not manifest

here. These include using age intervals instead of point estimates, a

large sample size, a uniform age distribution for two out of three

hypotheses, and a Bayesian modeling framework. Bias in point esti-

mates will not necessarily translate to poor success rates if the bias

is small relative to the uncertainty of the estimate. Note that we

saw positive bias (mean residuals) for all models in H3. Small sample

effects can produce apparent differences between samples that are

not representative of the population as a whole (Student, 1908;

Welch, 1958), and sampling error due to small sample sizes can

result in biases in metanalyses (Lin, 2018).
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A uniform reference distribution and a Bayesian framework

should reduce the potential for age mimicry of reference samples

by target samples. Age mimicry is a more serious problem in adult

age estimation where traits have lower correlations with chrono-

logical age, but age mimicry is possible in any instance where the

correlation between trait and age is less than one (Boldsen

et al., 2002; Konigsberg & Frankenberg, 1992). Age mimicry has

been documented for age estimation from the developing denti-

tion (Sgheiza & Liversidge, 2023). Using a uniform reference sam-

ple age distribution ensures that any effect from the reference

sample age distribution is consistent across all comparisons

(Konigsberg & Frankenberg, 1992). A Bayesian modeling frame-

work regresses dental stage (dependent variable) on chronological

age (independent variable) and solves for age rather than the

reverse scenario of inverse calibration methods where the inde-

pendent variable (age) is regressed on the dependent variable

(stage). This former method is less sensitive to the effect of age

mimicry but requires Bayes' theorem to estimate since true ages in

the target sample are treated as unknown (Boldsen et al., 2002;

Hoppa & Vaupel, 2002).

Examining the five studies identified previously that reported no

significant differences in dental development by various measures of

population affinity (ancestry, ethnic group, national origin, geographic

location) four had overall sample sizes of at least 1000 individuals

(Braga et al., 2005; Liversidge, 2011; Liversidge et al., 2017; Thevissen

et al., 2010), two used approximately uniform age distributions

(Liversidge, 2011; Liversidge et al., 2017), and three used a Bayesian

modeling framework (Braga et al., 2005; Liversidge et al., 2017;

Thevissen et al., 2010). By approximately uniform, we mean that an

effort was made to have similar numbers of individuals by year of age,

but the numbers were not identical.

When we compare the findings of two third molar studies,

Liversidge (2008a, 2008b) and Liversidge et al. (2017), the poten-

tial impact of methodological characteristics on findings of popu-

lation specificity is apparent. Liversidge (2008a, 2008b) had a total

sample size of 3224, an approximately uniform age distribution,

modeled dental development using logistic regression, and found

significant differences in development between groups. Liversidge

et al. (2017) had a total sample size of 4555, an approximately uni-

form age distribution, and modeled dental development using a

Bayesian framework. In this instance, applying a Bayesian frame-

work showed that while there were consistent differences in

development between groups, these differences were small rela-

tive to the standard deviations of mean age at transition between

tooth stages.

Our findings may not be generalizable between geographic

areas. Everyone in our sample was from a single location (London).

We do not account for population differences due to environmen-

tal factors. Groups of different socioeconomic status may show

differences in dental development, regardless of ancestry, due to

environmental effects (Cardoso, 2007). Individual-specific informa-

tion on socio-economic status was unknown, so we cannot speak

to its effects. What we do provide is evidence against population

specificity in a single location and demonstrates the effect of sam-

ple size as a confounding factor in identifying developmental differ-

ences between groups. We also propose that our design for H3

may be used as a framework for testing population differences in

other samples. A cross-validated factorial design using uniform age

distributions should reduce overfitting and age mimicry effects,

both of which are possible explanations for observed differences in

age estimation performance between original methods and follow-

up studies.

5 | CONCLUSIONS

Through hypothesis testing we address two key questions: if it is nec-

essary to estimate the age of an individual using a reference sample of

the same ancestry and whether reference samples can be combined

across ancestry groups. These questions are motivated by conflicting

results in the literature that suggest that estimates of age may be pop-

ulation specific. Here we frame population specificity as a hypothesis

of difference in contrast with reference sample size, which is a

hypothesis of effect. Our goals are to deconstruct the population

specificity assumption and to contribute to the process of identifying

sampling and modeling characteristics that will facilitate stronger com-

parisons between studies.

There are several implications for age estimation that can be

drawn from these results. First and foremost, model stability

and age estimation performance are strongly driven by reference

sample size. Here we found that the minimum effective reference

sample size for a uniform age distribution was 20 to 40 individuals

per year of age. There were diminishing returns in metrics of

model performance beyond 40 individuals. Second, using a model

with a reference sample that is heterogeneous by sex may be

especially advantageous when sex is unknown. Lastly, combining

reference samples by sex or by ancestry to produce a larger refer-

ence will produce better estimates of age up to a point of diminish-

ing returns from sample size. To answer our initial research

questions, reference samples can be combined when ancestry is

heterogeneous between them. It is not necessarily better to use a

reference sample with the same ancestry as the target individual.

It is more important to use a reference sample from the same sex

as the target individual, or of mixed sex if the sex of the target

individual is unknown.
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