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Abstract

The emerging technology, reconfigurable intelligent surface (RIS), could support high

data rate while maintaining low costs and energy consumption. Besides, it can construc-

tively reflect the signal from the base station (BS) to users which helps solve the block-

age problem in the urban area. Due to these benefits, RIS could be an energy-efficient

and cost-effective complement to conventional massive multiple-input multiple-output

(MIMO) systems. Focusing on the underload network in far-field outdoor scenarios with

fixed users, this thesis investigates the theoretical performance and optimisation design of

uplink RIS-aided massive MIMO systems under different detectors and different channel

state information (CSI). A novel two-timescale transmission scheme is exploited where

the BS detectors and RIS phase shifts are designed based on fast-changing instanta-

neous CSI and slow-changing statistical CSI, respectively, which achieves a good trade-off

between the system performance and the channel estimation overhead.

First, this thesis analyses the RIS-aided massive MIMO system with low-complexity

maximal-ratio combination (MRC) detectors under the general Rician fading channel

model. Closed-form expressions for the achievable rate are derived with blocked and

unblocked direct links, based on which the power scaling laws, the rate scaling orders,

and the impact of Rician factors are revealed, respectively. A genetic algorithm (GA)-

based method is proposed for the design of the RIS phase shifts relying only on the

statistical CSI. Simulation results demonstrate the benefit of integrating the RIS into

conventional massive MIMO systems.

Second, the RIS-aided massive MIMO system is investigated in the presence of the

channel estimation error. Following the two-timescale strategy, a low-overhead channel

estimation method is proposed to estimate the instantaneous aggregated CSI, whose

quality and properties are analysed to shed light on the benefit brought by the RIS.
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With MRC detectors and the channel estimation results, the achievable rate is derived

and a comprehensive framework for the power scaling laws with respect to the number of

BS antennas and RIS elements is given. The superiority of the proposed two-timescale

scheme over the instantaneous-CSI scheme is validated.

Third, the more general scenario in the presence of spatial correlation and electromag-

netic interference (EMI) is studied. The channel estimation result is revisited which

shows that the RIS could play more roles with spatial correlation. Then, the closed-form

expression of the achievable rate is derived and the negative impact of the EMI is anal-

ysed. To maximise the minimum user rate, the phase shifts of the RIS are designed based

on an accelerated gradient ascent method, which has low computational complexity and

relies only on the statistical CSI.

Fourth, to solve the severe multi-user interference issue, a zero-forcing (ZF) detector-

based design is considered for the RIS-aided massive MIMO system. After tackling

the challenging matrix inversion operator, the closed-form ergodic rate expression is

derived. Then, the promising properties of introducing ZF detectors into RIS-aided

massive MIMO systems are revealed.

Fifth and last, the RIS-aided massive MIMO system with ZF detectors and imperfect

CSI is analysed. A minimum mean-squared error (MMSE) channel estimator is pro-

posed and analysed. The closed-form expression of the ergodic rate is derived and two

insightful upper and lower bounds are proposed, which unveil the rate scaling orders

and prove that the considered structure is promising for enhanced mobile broadband,

green communications, and the Internet of Things. Besides, both the sum user rate

maximisation and the minimum user rate maximisation problems are solved based on

the low-complexity majorization-minimisation (MM) algorithms.
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Chapter 1

Introduction

1.1 Background

Massive multiple-input multiple-output (MIMO) has been widely recognized as a corner-

stone technology for the fifth-generation (5G) and beyond wireless communications[1–7].

Thanks to its spatial multiplexing gains, massive MIMO system can simultaneously

provide high quality of service for multiple users on the same time-frequency resource.

Massive MIMO also has some other appealing properties, e.g., the transmit power can

be reduced inversely proportional to the number of antennas without sacrificing the

achievable rate.

However, conventional massive MIMO still has some drawbacks. The first one is the

blockage problem. Due to the complex environment and user mobility, communication

links may be blocked, in which case the channel strength could be severely degraded.

Another problem is the high cost and energy consumption of the active radio-frequency

(RF) chains. Massive MIMO commonly employs hundreds of antennas, each of which

will be connected to an RF chain. Hence, this system incurs high hardware cost and

energy consumption.

The recently developed technology of reconfigurable intelligent surfaces (RISs)[8–13],

1
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also referred to as intelligent reflecting surfaces (IRSs), is a promising solution for tackling

the above two issues in massive MIMO systems. On the one hand, since the RIS is a

small, thin, and light surface, it can be flexibly deployed at a carefully selected location

with a favourable propagation environment. Therefore, RISs enable additional high-

quality communication paths to overcome the blockage problem. On the other hand,

RISs are comprised of low-cost passive reflecting elements, which are much cheaper than

active RF chains. Benefiting from the gain of RIS, the number of BS antennas and

the uplink transmit power of the users can be reduced without sacrificing performance.

Considering that the energy consumption of the active RF chains is proportional to the

number of BS antennas, it is envisioned that RISs are beneficial for improving the energy

efficiency of conventional massive MIMO systems.

1.2 Literature Review

1.2.1 Reconfigurable Intelligent Surface

As an emerging technique, RIS has been widely investigated recently in many contri-

butions. Specifically, for multi-antenna single-cell systems, the authors in [10] jointly

considered the active and passive beamforming optimisations to demonstrate the poten-

tial of RIS, while a deep reinforcement learning-based method was proposed in [14].

Zhang et al. [15] characterized the fundamental capacity limit of RIS-aided MIMO sys-

tems with the narrowband and broadband transmission. The benefits of using RIS in

multi-user full-duplex (FD) two-way communication systems were demonstrated in [16].

Meanwhile, an energy efficiency maximization problem was considered in [12]. In multi-

cell systems, the authors in [11] further verified the interference-suppression capacity of

RISs for cell-edge users. Moreover, contributions [17, 18] revealed a superior cooperative

beamforming gain in multi-RIS systems, and some practical experimental validations

have been carried out in [19, 20].
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1.2.2 RIS-Aided Applications

The RIS-aided simultaneous wireless information and power transfer (SWIPT) systems

were studied in [9]. Meanwhile, an energy efficiency maximization problem was consid-

ered in [12]. To investigate the performance of RIS-aided multi-cell MIMO networks, the

authors in [11] proposed to deploy RIS at the cell edge and demonstrated the benefits of

RIS to mitigate the inter-cell interference. Furthermore, RIS-aided mobile edge comput-

ing (MEC) systems were studied in [21], which showed that significant latency can be

reduced by integrating RIS into conventional MEC systems. The authors in [22] further

investigated the wireless powered orthogonal-frequency-division-multiplexing (OFDM)

MEC systems under the assistance of RIS. Meanwhile, RIS-aided unmanned aerial vehi-

cle (UAV) networks were studied in [23–25]. Specifically, the work in [23] considered

the joint optimisation of UAV’s trajectory and RIS’s phase shifts in the single-user

network, and a novel symbiotic UAV-aided multiple RIS radio system was studied in

[24]. Wang et al. [25] further investigated the UAV-aided multi-RIS multi-user systems

using a deep reinforcement learning approach. Besides, RIS-aided space shift keying

and RIS-aided spatial modulation schemes were investigated in [26, 27]. Considering the

secure communication scenarios, the authors in[28] studied the performance of artificial

noise-aided MIMO systems with the aid of RIS. RIS-aided secure communications with

imperfect RIS-eavesdropper channels were considered in [13], while the authors in [29]

further investigated the robust transmission design in RIS-aided secure communications

with cascaded channel errors. Furthermore, RIS-aided MIMO and FD cognitive radio

systems were respectively studied in [30] and [31]. Meanwhile, the integration of RISs

has also been investigated in terahertz and millimetre-wave (mmWave) systems [32, 33],

cell-free systems[34], device-to-device (D2D) communications[35, 36] and so on.

1.2.3 Statistical CSI-Based Design

In spite of the attractive benefits of RISs, their gains highly rely on the knowledge of the

instantaneous channel state information (CSI) for each individual channel link. However,

the accurate acquirement of the CSI in RIS-aided systems is a challenging task, since RISs
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are typically passive without RF chains. Moreover, the number of individual channels

in RIS systems is proportional to the number of reflecting elements, which is very large

in general. As a result, if the wireless channel varies rapidly, it would be impractical to

implement the real-time adjustment of the RIS in each channel coherence time. To cope

with this challenge, more researchers have turned their attention to designing the phase

shifts of RISs based on statistical CSI [37–46]. Thanks to the slowly changing nature

of the statistical CSI, the phase shift of the RIS only needs to be configured once over

a large timescale. Accordingly, this greatly reduces the computational complexity, and

reduces the overhead of channel estimation and feedback.

To be specific, with the aid of stochastic optimisation, the statistical phase shift

design in single-RIS multi-user, multi-RIS single-user, multi-RIS multi-user and D2D

underlay systems was studied in [37–40], respectively. Based on the correlated Rayleigh

fading channel model and utilizing the random matrix theory [47], the authors in [41, 42]

designed the RIS with asymptotic analytical expressions. Furthermore, considering the

case when both the number of BS antennas and the number of reflecting elements are

arbitrary, the authors in [43–46] designed the RIS based on closed-form expressions and

the general Rician fading model. Therein, single-user systems with uncorrelated and

correlated models were studied in [43] and [44], respectively. The authors in [45] further

captured the impact of interference on the single-user systems. RIS-aided multi-pair

communications were investigated in [46].

1.2.4 Statistical CSI-Based RIS Design with Imperfect CSI

The existing work mainly characterized the system performance under the assumption

that perfect instantaneous overall CSI is available at the BS. In practice, channel esti-

mation errors are inevitable, which emphasises the necessity of studying their impact

on statistical CSI-based RIS systems. Only a few contributions have taken imperfect

CSI into consideration when configuring the phase shifts of the reflecting elements based

on statistical CSI[48–51]. Specifically, the authors in [48] characterized the performance
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degradation caused by imperfect location information. The impact of imperfect instanta-

neous CSI was evaluated in [49], which however applied the traditional estimation error

model in RIS-free systems. Different from [49], the authors in [50, 51] first derived the

specific cascaded error model in RIS systems and then investigated the system perfor-

mance, where the RIS-BS link is fully line-of-sight (LoS) while RIS-users links are fully

non-LoS (NLoS).

1.2.5 RIS-Aided Massive MIMO

It is envisioned that the RIS technology will make an influential paradigm shift to tra-

ditional massive MIMO systems[52]. With the help of the passive beamforming gains

of the RIS, the massive MIMO systems can maintain the same capacity performance

but with much fewer antennas. Due to the benefits of the RIS, RIS-aided massive

MIMO has gained growing research interests with many activities, focusing on various

applications and different perspectives, such as channel estimation [53], dual-polarized

transmission[54], mmWave communications[55], hardware impairments[51], multi-RISs

co-design[18], cell-free systems[56], antenna selection[57], and power scaling law analysis

with a single-user setup[58].

1.3 Research Motivation

In RIS-aided massive MIMO systems, the channel matrix will have an extremely large

dimension, which means that the channel estimation will be a crucial problem. There-

fore, a promising solution is to design the RIS-aided massive MIMO systems based on

the statistical CSI. Meanwhile, to guarantee the system performance, the beamform-

ing at the BS can still be designed based on the instantaneous CSI, by only using the

knowledge of the low-dimension user-RIS-BS aggregated channels. This design scheme,

called two-timescale design, can not only achieve higher system performance but also

maintain lower complexity and overhead, and thus achieves a good trade-off between the

performance and the overhead. Therefore, the RIS-aided massive MIMO system based
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on two-timescale design has broad prospects and is worthy of further research.

The research on RIS-aided massive MIMO systems with two-timescale design is still

in its infancy. There are many open questions and challenges, as stated in the following.

First, to fully understand the potential of RISs, it is essential to draw theoreti-

cal insights from information-theoretical expressions, which rigorously demonstrate the

impact of the various system parameters. Fundamental information-theoretical expres-

sions for conventional massive MIMO systems have been provided in, e.g., [2–4]. It was

shown that the achievable rate of conventional massive MIMO systems with M antennas

scales on the order of O (log2 (M)). This naturally raises the question of what is the

corresponding scaling law for massive MIMO systems with the integration of RISs. To

answer this question, explicitly analytical rate expressions are required. It has already

been shown that in RIS-aided single-user systems with N reflecting elements, the achiev-

able rate could scale as O
(
log2

(
N2
))

[10, 43], or even O
(
log2

(
N4
))

[59] if two RISs coop-

erate. Similar scaling orders were also reported for some other RIS-aided communication

scenarios, such as the RIS-aided relay[60], RIS with scattering parameter analysis [61],

and RISs with hardware impairments[62, 63]. However, these works focused on the sim-

ple single-user case, and cannot be easily generalized to multi-user systems. In fact, it is

very challenging to provide an insightful analysis for the rate scaling order of RIS-aided

multi-user massive MIMO systems. This is because the resulting signal-to-interference-

plus-noise ratio (SINR) expressions are more complicated and more involved than the

interference-free signal-to-noise ratio (SNR) expressions for single-user systems, and also

because the optimal RIS passive beamforming vectors cannot be given in the closed form

in the case of multiple users.

Second, it is necessary to quantify the benefits when aggregating two-timescale trans-

mission strategy into RIS-aided massive MIMO systems. Considering the passive prop-

erty of the RIS and the massive number of BS antennas, it is essential to control the chan-

nel estimation overhead, hardware cost and energy consumption in RIS-aided massive

MIMO systems. To this end, it is a good choice to utilize the two-timescale transmission
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scheme, which could effectively reduce the channel estimation overhead, the system oper-

ation complexity, RIS’ controller energy consumption, and signalling overhead. However,

none of the previous work has investigated the RIS-aided massive MIMO system relying

on the two-timescale design. Therefore, for different detection algorithms and different

CSI conditions, the gains, the performance, and the properties of RIS-aided massive

MIMO systems are all unknown.

Third, most of the existing works have utilized the simplified channel models such as

spatially independent or spatially correlated Rayleigh fading channels. However, consid-

ering that the RIS is commonly equipped on the facade of some high buildings, the more

general Rician fading channel model should be utilized to characterize the performance

of RIS-aided massive MIMO systems so that the more reliable system properties can

be revealed. Meanwhile, by using the Rician channel model, the impact of LoS channel

and NLoS channel components can be captured, which could provide useful insights for

future wireless communication systems.

1.4 Contributions

Motivated by the above factors, this thesis investigates the RIS-aided massive MIMO

system where one RIS is employed to build additional communication paths between the

users and the BS. The direct links are also existed but they could be weak due to the

obstacles. For analytical tractability, the underload network is considered and the uplink

communication in the far-field outdoor scenario is focused. The users are assumed to be

fixed.

The objective of this thesis is to understand and quantify the theoretical features

and gains of RIS-aided massive MIMO systems based on the two-timescale design. To

this end, closed-form expressions of the achievable rate are derived based on different

detection algorithms, based on which the order of magnitude of the rate and the power

scaling laws are revealed. To gain deep insights, practical constraints are considered,
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such as Rician fading, channel estimation errors, spatial correlation, and electromagnetic

interference (EMI). Besides, effective optimisation algorithms are proposed to ensure the

passive beamforming gain of the RIS. The specific contributions can be summarised as

follows.

• A complete framework for RIS-aided massive MIMO systems is provided, consid-

ering maximal-ratio combination (MRC) and zero-forcing (ZF) detectors and dif-

ferent kinds of channel state information (perfect and imperfect). The advantages

and the properties of the two-timescale transmission scheme are comprehensively

investigated and verified in this thesis, compared with the instantaneous CSI-based

design. This thesis also analyses the limit brought by the multi-user interference

when using MRC and theoretically proves the superiority of ZF over the MRC.

The effectiveness and the benefits of integrating the RIS into conventional massive

MIMO systems are validated from extensive simulation results.

• Based on the derived expressions, an in-depth theoretical analysis is performed and

explicit insights are provided. Possible power scaling laws are revealed with respect

to the number of BS antennas and the number of RIS elements, respectively. The

order of the magnitude of the achievable rate in RIS-aided massive MIMO systems

is theoretically proved. Specifically, the closed-form information-theory expressions

are derived and based on which different achievable rate scaling orders are revealed

in various scenarios. For uncorrelated Rayleigh fading channels, it is proved that

the achievable rate is still bounded based on the MRC detectors even if the number

of RIS elements grows to infinity. This is due to the severe multi-user interference,

since the common RIS-BS channel is used by all users. Then, the ZF detector is

adopted, which can effectively eliminate this interference. In that case, it is proved

that the rate scale at least asO (log2 (MN)) even with the channel estimation error,

where M and N denote the number of BS antennas and RIS elements, respectively.

The analytical conclusions could provide useful guidelines for the design of practical

systems and for achieving green communications.
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• The Rician fading-based system framework is established, with the consideration

of channel estimation errors, discrete phase shifts, spatial correlation, and EMI. In

this framework, the impact of the Rician factors is revealed which provides useful

guidelines for the deployment of the RIS. The impacts of channel estimation errors,

discrete phase shifts, spatial correlation, and EMI on the achievable rate and the

power scaling laws are also analysed. Besides, the trade-off between the achievable

spatial multiplexing gain and the channel path-loss is discussed.

• Different optimisation algorithms are provided for solving the phase shifts design

problem of the RIS, including the genetic algorithm (GA), majorization-minimisation

(MM), and accelerated gradient ascent methods. The computational complexity

of the proposed algorithms is theoretically analysed. Then, the effectiveness of

the proposed algorithm is verified in the simulations. Different algorithms are

compared to show their advantages.
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1.6 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 introduces some funda-

mental concepts for RIS-aided massive MIMO systems. Chapter 3 studies the RIS-aided

Massive MIMO systems under perfect CSI based on the MRC detector. Chapter 4 further

considers the channel estimation errors and then re-visits the performance of RIS-aided

massive MIMO systems. Chapter 5 investigates the impact of spatial correlation and

the EMI on the RIS-aided massive MIMO system. Chapter 6 utilizes the ZF detector

to eliminate the multi-user interference and then studies the gain of RIS given perfect

CSI. Chapter 7 characterizes the RIS-aided massive MIMO system in the presence of

imperfect CSI and using the ZF detector. Chapter 8 presents the conclusion and some

thoughts for future work.



Chapter 2

Fundamental Concepts

In this Chapter, some basic concepts used in the study of RIS-aided massive MIMO

systems are introduced, which serves as a solid foundation for the following technical

chapters.

2.1 Massive MIMO

Massive MIMO is an efficient technology to achieve high system capacity and energy

efficiency, which has been recognized as one of the most important techniques for 5G

and beyond wireless communication systems. It has been widely studied during the last

two decades and has been successfully applied for various scenarios[1]. In the massive

MIMO system, each BS can be equipped with orders of magnitude more antennas, e.g.,

100 or more. Fig. 2.1 illustrates the massive MIMO systems where a BS with hundreds

of antennas serves multiple users simultaneously. It has been demonstrated that massive

MIMO has several promising features. For example, the transmit power of each user

can be reduced inversely proportional to the number of BS antennas, without sacrificing

the performance. This feature can help improve the energy efficiency. Meanwhile, two

important properties, i.e., the channel hardening and favourable propagation, exist in

massive MIMO systems, and therefore the simple and low-complexity MRC detectors

12
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Figure 2.1: Massive MIMO systems.

can be used to achieve a good performance[2].

2.2 Channel State Information

The information available about the channel is called CSI [64]. The CSI information

known at the transmitter and the receiver would significantly impact the system perfor-

mance. It also decides the quality of the beamforming/detector design at the BS/receiver.

In wireless systems, the acquisition of the CSI at the BS mainly relies on the feedback

from the receivers or exploiting the channel reciprocity. Considering that the BS is

commonly equipped with a large number of antennas while the users are commonly

single-antenna, the estimation of CSI can be done by the users based on the pilot sym-

bols sent from the BS. After the estimation of the CSI by the users, the BS can obtain

the channel information based on the feedback from the user. This feedback method

can be used in both the time division duplex (TDD) and the frequency division duplex

(FDD), but it also introduces additional overhead. Another more promising method is

to exploit the channel reciprocity, which means that the channel from the BS to the

users is identical to that from the users to the BS, if the channel is measured at the same

frequency band. However, the channel reciprocity can only be used in the TDD, since

the channel reciprocity does not hold for different carrier frequencies.

2.3 Channel Estimation

Channel estimation is a basic operation needed for wireless communication systems,

which aims to obtain the CSI information as accurately as possible. A popular method
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is the minimum mean-squared error (MMSE) estimator whose objective is to minimise

the mean-squared error (MSE) given by

E
{
‖x− x̂(y)‖2

}
, (2.1)

where x̂(y) denotes the estimator of x based on the observation y. As a result, the

MMSE estimator can be calculated as[2]

x̂MMSE(y) = E{x | y} =

∫
X

xf(x | y)dx, (2.2)

where f(x | y) is the conditional probability density function (PDF) of x given y. In

wireless communications, the observation vector y is commonly the pilot signal received

by the users/BSs. The length of the pilot sequence is related to the channel estimation

overhead. The pilot sequence could not be too long since it will occupy a lot of time to

transmit the pilot signal and then the time slots left for data transmission will be very

limited. In massive MIMO systems, an important topic is to design the pilot structure

given the pilot length. If the pilot signal for different users is overlapped to some extent,

pilot contamination could happen which will degrade the quality of channel estimation.

A useful scenario is that when the variable x follows a multivariate Gaussian distri-

bution x ∼ NC(x̄,R). In that case, based on the observation vector y = Ax + n with

deterministic matrix A and independent noise n ∼ NC(n̄,S), the MMSE estimator of x

based on y is[2]

x̂MMSE(y) = x + RAH
(
ARAH + S

)−1
(y −Ax− n), (2.3)

with the MSE

MSE = tr
(
R−RAH

(
ARAH + S

)−1
AR

)
. (2.4)



Chapter 2. Fundamental Concepts 15

2.4 Channel Modelling

The modelling of the wireless propagation channel is the foundation of the further

research. Denote the vector hk as the channel from the single-antennas user k to the M -

antenna BS. If very few scatterers exist in the environment, the channel can be assumed

to be LoS. In this case, hk is deterministic and is not a random variable. Using uniform

linear array mode, the channel can be expressed as

hLoS
k = ξk

[
1, e−j2π

∆
λ
sinψk , . . . , e−j2π

∆
λ
(M−1) sinψk

]T
, (2.5)

where ψk denotes the angle of arrival from the user to the BS antenna array. ξk is the

pathloss. ∆ and λ denote the antenna spacing and the wavelength, respectively.

If the environment is rich scattering, the channel would be a random variable following

some kind of distribution. Neglecting the spatial correlation, the channel can be modelled

as spatial-independent Rayleigh fading with

hNLoS
k ∼ NC (0, IM ) . (2.6)

However, in the practical systems, the channel is generally spatially correlated, result-

ing in the correlated Rayleigh fading model as

hNLoS
k ∼ NC (0,R) , (2.7)

where R ∈ CM×M is the positive semi-definite spatial correlation matrix.

Besides, since the propagation environment is complex, both the LoS and the NLoS

channel components could exist in the practical systems. Therefore, a more general

channel fading model is the uncorrelated/correlated Rician fading model, given by [65]

hk =

√
κ

κ + 1
hLoS
k +

√
1

κ + 1
hNLoS
k , (2.8)
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where κ is the Rician factor stating the power ratio between the LoS channel component

and the NLoS channel component. κ could be large if there are few scatterers in the

propagation environment.

2.5 Symbol Detection

The signal received by the BS from the K users can be expressed as y =
√
pHs + n,

where H and s = [s1, . . . , sK ] denote the channel matrix and the symbols transmitted

from K users, respectively. p denotes the power of the signal and n ∼ NC(0, σ2I) is the

thermal noise. To detect the transmitted symbols s of users from the received signal

y, detectors should be employed at the BS. Three commonly used linear detectors, i.e.,

MRC, ZF, and MMSE detectors can be respectively expressed as[64]

A =


H for MRC ,

H
(
HHH

)−1
for ZF ,

H
(
HHH + σ2

p IK

)−1
for MMSE ,

(2.9)

Then, the BS can detect the symbols from AHy. Compared with the design of detectors

using the iterative optimisation algorithms, the linear detectors have lower computational

complexity, and therefore they are very suitable for massive MIMO systems with a large

number of BS antennas.

The MRC is designed to simply maximise the desired signal and neglect the interfer-

ence. It is optimal for a single-input multiple-output (SIMO) system provided that the

additive noise is white. When applied to a MIMO system, MRC becomes suboptimal

since it does not account for the multi-user interference, and therefore it is optimal only

when the MIMO channel is orthogonal. The design of the ZF detector is to completely

eliminate the multi-user interference such that AHH = IK . Even though the ZF receiver

effectively eliminates the interference, the system performance may become poor if the

channel of desired signal is almost co-linear to the interference subspace, i.e., when the
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channel is rank deficient[64]. In that case, projecting the desired channel to the orthog-

onal space would make the channel strength very small. MMSE detector is a solution

for this problem, which projects the received signal into a direction that is in-between

the MRC and the ZF projection directions. It can achieve a good trade-off between the

noise enhancement and the interference suppression. However, it is worth noting that

even though MRC and ZF have certain drawbacks, they are very useful for theoretical

analysis since they could lead to closed-form expressions and provide explicit insights.

2.6 Performance Criteria

Channel capacity: Channel capacity is the tight upper bound on the rate at which

information can be reliably transmitted over a communication channel. Following the

terms of the noisy-channel coding theorem, the channel capacity of a given channel

is the highest information rate that can be achieved with an arbitrarily small error

probability[2]. Consider a single-input single-output (SISO) discrete memoryless com-

munication system as follows

y = hx+ n, (2.10)

where x ∈ C and y ∈ C are the input and output symbols, respectively. Besides,

power constraint is E
{
|x|2
}
≤ p and the variance of the noise is E

{
|n|2

}
= σ2. For

deterministic channel h, the channel capacity is

C = log2

(
1 +

p|h|2

σ2

)
. (2.11)

For random channel h, the ergodic channel capacity is

C = E
{

log2

(
1 +

p|h|2

σ2

)}
, (2.12)

where the expectation operator is carried out in terms of the random channel h.
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Energy efficiency: The energy efficiency, which is measured in bit/Joule, can be

defined as a ratio between the system capacity and the sum power consumption. The

sum power consumption can be calculated as [66]

P = P
(ul)
TX + P

(dl)
TX + PCP, (2.13)

where P
(ul)
TX , P

(dl)
TX , PCP denote the uplink transmit power, downlink transmit power, and

the circuit power consumption. The circuit power consumption can be further calculated

as

PCP = PFIX + PTC + PCE + PC/D + PBH + PLP, (2.14)

where PFIX is a fixed power consumption used for site-cooling, control signalling, and

load-independent power of backhaul infrastructure and baseband processors. PTC accounts

for the power consumption of the transceiver chains. PCE is the power consumed in chan-

nel estimation. PC/D is consumed in channel coding and decoding units. PBH is used

for load-dependent backhaul and PLP is the linear processing power consumption at the

BS.

Outage: When the selected transmission rate Rs is larger than the maximal rate for

reliable communication for the given block, the system is said to be in the outage. Outage

probability is the probability that the selected rate is above the maximal achievable rate.

For example, for a SISO deterministic channel h with transmit power p and noise power

σ2, the outage probability is defined as the probability that the selected transmission

rate Rs is larger than the capacity as follows[67]

pout (Rs) = Pr

{
log2

(
1 +

p|h|2

σ2

)
< Rs

}
. (2.15)

Rank: The rank of MIMO channel H is the number of non-zero eigenvalues of matrix

H.
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Condition number: The condition number of the channel matrix H is defined as

the ratio between the maximal eigenvalue and the minimum eigenvalue, i.e.,

C =
λmax(H)

λmin(H)
. (2.16)

Multiplexing gain: The multiplexing gain denotes the number of independent

streams that can be simultaneously transmitted from the BS to the receivers. Mathe-

matically, it can be defined as

lim
ρ→∞

C(ρ)

log2 ρ
, (2.17)

where C(ρ) and ρ = p
σ2 denote the MIMO system capacity and the SNR, respectively.

2.7 Reconfigurable Intelligent Surface

As an emerging candidate for next-generation communication systems, reconfigurable

intelligent surfaces, also called intelligent reflecting surfaces, have attracted significant

interest from both academia and industry[52]. RIS is a reconfigurable engineered surface

that does not require active RF chains, power amplifiers, and digital signal processing

units, and is usually made of a large number of low-cost and passive scattering elements

that are coupled with simple low-power electronic circuits. By intelligently tuning the

phase shifts of the impinging waves with the aid of a controller, an RIS can constructively

strengthen the desired signal or can deconstructively weaken the interference signals,

which results in an appealing nearly-passive beamforming gain. Meanwhile, as a thin

surface, RIS can be flexibly deployed on the facade of the builds in the urban area, and

help effectively eliminate the communication dead zone.

The reconfigurability of the RIS is ensured by low-power tunable electronic circuits,

such as the positive intrinsic negative (PIN) diodes or varactors[8]. The phase shifts of

the impinging signal can be configured based on the adjustment of the on/off state of
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RIS

Figure 2.2: An example of the RIS-aided communications.

the PIN diodes or the bias voltage of the varactors. As shown in Fig. 2.2, the RIS can

reflect the impinging signal from the BS to the user, with the adjustment of the phase

shifts of the signal. Assume that the phase shift matrix of the RIS is Φ, the cascaded

channel from the BS to the user via the RIS will be

hcas = hHrdΦhsr. (2.18)

Due to the unit modulus constraints of the phase shift, the matrix Φ is subject to

condition |[Φ](n,n)| = 1. Clearly, by properly designing the phase shift matrix, the

RIS could intelligently tailor the wireless propagation environment, and then achieve

promising performance gains.

RIS is able to manipulate electromagnetic (EM) radio waves. Specifically, it can

realize the function of reflection, refraction, absorption, focusing, polarization, and

splitting[8]. The various EM manipulation ability enables the RIS to own broad applica-

tion scenarios. It can be used for coverage enhancement by creating additional reflecting

links bypassing the obstacle. It can also suppress the unwanted interference or enhance

the desired signal using the different kinds of phase shift design. Meanwhile, it can

improve the security, channel rank, wireless energy transformation efficiency, and local-

ization precision.



Chapter 2. Fundamental Concepts 21

Figure 2.3: Three kinds of transmission schemes.

2.8 CSI-Based Transmission Schemes

Depending on the levels of CSI availability, transmission design of RIS-aided communi-

cation systems can be designed in three ways: 1) designs based on instantaneous CSI; 2)

designs that rely on fully long-term CSI; 3) designs based on the so-called two-timescale

CSI. The operation protocol for each scheme is shown in Fig. 2.3.

As illustrated in Fig. 2.3, transmission designs based on the knowledge of the instan-

taneous CSI require the BS to estimate the instantaneous channel in each channel coher-

ence block, in which the number of time slots required for channel training is often

proportional to the number of reflecting elements. Since the RIS is not endowed with

power amplification and signal processing capabilities, it is expected to be equipped with

hundreds or even thousands of reflecting elements for ensuring the desired coverage. As

a result, the channel training overhead may be excessive, and there may be only a few

or even no time slots left for data transmission. If the channel estimation overhead is

neglected ideally, instantaneous CSI-based design can achieve the optimal performance

due to the full exploitation of the CSI. However, in practice, with limited pilot resource,

the authors in [65] has shown that the net data rate that accounts for the penalty due
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to channel estimation overhead first increases and then decreases with the number of

reflecting elements. Besides, it is known that TDD is the preferred option in massive

MIMO systems since the channel training overhead depends on the number of users, and

is not related to the number of BS antennas. However, in RIS-aided wireless systems, no

matter whether TDD or FDD is used, the required channel training overhead is always

proportional to the number of reflecting elements under the assumption of unstructured

channel models. Furthermore, in each coherence block with a duration of at most several

hundred milliseconds, the BS needs to optimise the phase shifts and active beamforming

vectors, which requires the BS to have sufficient computational capabilities. In addition,

the phase shifts computed at the BS need to be sent to the RIS controller for updat-

ing the phase shifts in each coherence block. Therefore, to sum up, the instantaneous

CSI-based design would incur high pilot overhead, power consumption, computational

complexity, and feedback overhead[68].

To reduce the overhead, a simple method is to exploit the statistical CSI-based design.

As shown in Fig. 2.3, for the fully statistical CSI-based design, both the BS beamforming

and the RIS phase shifts are designed only relying on the statistical CSI. As a result, no

channel estimation in terms of the instantaneous CSI needs to be done. This could sig-

nificantly reduce the channel estimation overhead. However, since no instantaneous CSI

is utilized in the design of the BS and RIS beamforming, the quality of the beamforming

design could degrade. This is because this transmission scheme only caters to the long-

term channel components. If the environment is rich scattering, the instantaneous CSI

would play an important role, and therefore the fully statistical CSI-based design may

realize a bad performance.

The two-timescale design could realize a good trade-off between the channel esti-

mation overhead and the system performance. As shown in Fig. 2.3, the main idea is

that the active beamforming vectors at the BS are designed based on the instantaneous

effective CSI (the aggregated channels from the users to the BS, as a superposition of

the direct and RIS-reflected channels), while the phase shifts at the RIS are designed
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based on long-term CSI, such as their distribution parameters including channel mean

and channel covariance matrices. In each coherence block, only the instantaneous effec-

tive channel of each user needs to be estimated and the channel training overhead is

equal to the number of users, which is the same as for legacy massive MIMO systems

without RISs. Furthermore, since the long-term CSI remains usually invariant for a

large number of channel coherence blocks, the phase shifts of the RIS can be updated

at a much lower rate than the fast fading fluctuations, which significantly reduces the

computational burden and feedback overhead.



Chapter 3

RIS-Aided Massive MIMO with

MRC Decoders and Perfect CSI

3.1 Introduction

Some existing works have considered the statistical CSI-based RIS design, however,

research gaps still exist. Firstly, from the perspective of theoretical analysis, most of

the works only considered the simple channel models, such as purely LoS channels and

purely NLoS channels, i.e., Rayleigh fading channels. These models are tractable for

analysis but not general enough. In the practical environment, which is complex and

dynamic, both the LoS channel components and NLoS channel components would exist.

Therefore, the general Rician fading model should be adopted for both the user-RIS chan-

nels and RIS-BS channels, based on which the impact of Rician factors and the degrees

of scatterers on achievable rate can be theoretically characterized, and guidelines can be

provided for the practical deployment of the RIS. Secondly, most of the works do not

investigate the benefits and influence when integrating the RIS into conventional mas-

sive MIMO systems. Since massive MIMO has been widely acknowledged as a critical

technique for current and future wireless communication systems, it is essential to char-

24
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acterize the interplay between the promising RIS technology and the existing massive

MIMO technology, and evaluate the potential of RIS-aided massive MIMO systems.

To fill the above mentioned research gaps, this chapter studies the RIS-aided massive

MIMO systems with Rician fading for both users-RIS and RIS-BS channels. This channel

model is more general but also very challenging to be tackled. For tractability, the

simple but low-complexity MRC detector is adopted in this chapter. It first derives the

closed-form approximate achievable rate expressions, and then provides a comprehensive

analysis for the interplay between the RIS and the conventional massive MIMO systems,

including the power scaling laws, the asymptotic achievable rate and the impact of critical

systems parameters. It also provides useful insights with respect to the benefits of the

RIS. Then, it uses statistical CSI to optimise the RIS phase shifts for both the sum user

rate maximisation and minimum user rate maximisation problems, which is beneficial

to gain better understanding of the impact of different optimisation criteria. Besides,

it theoretically and numerically studies the influence of discrete phase shifts. The main

contributions are summarised as follows:

• Firstly, the closed-form approximate expression of the uplink achievable rate is

derived using the Rician channel model that holds for any finite number of antennas

at the BS, and this analytical expression only depends on the location and angle

information and Rician factors. Then, the power scaling law is unveiled and the

average asymptotic rate achieved by random phase shifts is evaluated. Analytical

insights are provided on the impact of Rician factors on the achievable rate and

power scaling laws.

• Based on the derived expression, the RIS-aided massive MIMO systems are the-

oretically compared with the conventional RIS-free massive MIMO systems. It is

proved that the RIS-aided massive MIMO can outperform non-RIS-aided systems

under three cases: 1) in low-SNR regime; 2) with large number of RIS elements;

3) with weak direct links strength.
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RIS

N elements

M antennas

User K

...

...
User 1

User k

BS

Figure 3.1: An RIS-aided massive MIMO system.

• Using the derived expressions, the GA-based method is utilized to respectively

solve the sum-rate maximisation problem and the minimum user rate maximisation

problem, which only relies on the statistical CSI.

• Finally, extensive simulations are provided to characterize the gains by integrating

RIS into massive MIMO networks. The results reveal the trade-off between the

increase of spatial multiplexing gain and the decrease of path loss in the RIS-

aided massive MIMO systems. Meanwhile, the effectiveness of deploying large-

size discrete-phase shift RIS with low quantization precision into existing massive

MIMO systems is validated.

3.2 System Model

As shown in Fig. 3.1, a typical uplink massive MIMO system is considered. There is

one BS equipped with M antennas that simultaneously communicates with K single-

antenna users, and the direct links could be weak due to the obstacles (trees, cars,

buildings, and so on). An RIS deployed on the facade of a tall building is considered

which builds additional high-quality communication paths between the users and the BS.

The users are assumed to have fixed locations. The outdoor scenario is considered with

long communication distances and therefore the far-field communication is considered.

The RIS is composed of N reflecting elements, and its configuration matrix can be
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expressed as

Φ = diag
{
ejθ1 , ejθ2 , ..., ejθN

}
, (3.1)

where the phase shift of the n-th reflection element is constrained by θn ∈ [0, 2π) with

ideal continuous phase shifts, while for practical discrete phase shifts with b bits quan-

tization, there is θn ∈
{

0, 2π
2b
, 2× 2π

2b
, . . . ,

(
2b − 1

)
2π
2b

}
.

The cascaded M × K channels can be written as G = H2ΦH1, where H1 =

[h1, ...,hK ] is the N × K channels between users and the RIS, and H2 represents the

M ×N RIS-BS channels. Since the BS and RIS are often deployed with certain heights

and the RIS is often deployed near the users, channels H1 and H2 can be LoS domi-

nant. Thus, the Rician channel model is adopted to characterize user k-RIS link hk and

RIS-BS link H2 respectively as

hk =
√
αk

(√
εk

εk + 1
h̄k +

√
1

εk + 1
h̃k

)
, 1 ≤ k ≤ K, (3.2)

H2 =
√
β

(√
δ

δ + 1
H̄2 +

√
1

δ + 1
H̃2

)
, (3.3)

where αk and β are distance-dependent large-scale path-loss factors, εk and δ are Rician

factors. h̃k ∈ CN×1 and H̃2 ∈ CM×N are NLoS channel components whose elements

are independent and identical distribution (i.i.d.) random variables following CN (0, 1).

By contrast, h̄k and H̄2 are deterministic LoS channel components. Under the uniform

square planar array (USPA) model, h̄k and H̄2 can be respectively expressed as

h̄k = aN (ϕakr, ϕ
e
kr) , 1 ≤ k ≤ K, (3.4)

H̄2 = aM (φar , φ
e
r) aHN (ϕat , ϕ

e
t ) , (3.5)
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with

aX (ϑa, ϑe) =
[
1, ..., ej2π

d
λ
(x sinϑe sinϑa+y cosϑe), ..., ej2π

d
λ((
√
X−1) sinϑe sinϑa+(

√
X−1) cosϑe)

]T
,

(3.6)

where d is the elements spacing, λ is wavelength, ϕakr, ϕ
e
kr (φar , φ

e
r) are respectively the

azimuth and elevation angles of arrival (AoA) from user k to the RIS (from the RIS to

the BS), ϕat , ϕ
e
t are respectively the azimuth and elevation angles of departure (AoD)

from the RIS to the BS. It is assumed that these angles are known since they can be

computed from the locations of BS, RIS and users, and their locations can be obtained

from the global position system (GPS).

Since rich scatters often exist near the ground, the Rayleigh fading model is used to

express the direct links between the BS and users. The channel of direct links D ∈ CM×K

can be written as

D = [d1, ...,dk, ...,dK ] ,dk =
√
γkd̃k, (3.7)

where γk is large-scale path loss and d̃k represents the NLoS direct link for user k.

Based on the above definitions, the received signal at the BS can be expressed as

y = (G + D)Px + n = (H2ΦH1 + D) Px + n, (3.8)

where P = diag(
√
p1, ...,

√
pK) and pk is transmit power of user k, x = [x1, ..., xK ]T

denotes the information symbol vector, n ∼ CN (0, σ2IM ) is the receiver noise vector.

To reduce the implementation complexity in practical systems, the low-complexity

MRC technique with receiver matrix (G + D)H is employed. Therefore, the received

signal at the BS is given by

r = (G + D)H(G + D)Px + (G + D)Hn, (3.9)
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and the received signal of the k-th user is

rk =
√
pk
(
gHk + dHk

)
(gk + dk)xk

+
∑K

i=1,i 6=k

√
pi
(
gHk + dHk

)
(gi + di)xi +

(
gHk + dHk

)
n, (3.10)

where gk , H2Φhk is the k-th column of G and gk denotes the cascaded channel of user

k.

3.3 Performance Analysis

In order to design the phase shifts of the RIS with statistical CSI, the expression of

achievable rate should be derived. To this end, the achievable rate expression of user k

is presented as

Rk = E

{
log2

(
1 +

pk ‖gk + dk‖4∑K
i=1,i 6=k pi

∣∣(gHk + dHk
)

(gi + di)
∣∣2 + σ2 ‖gk + dk‖2

)}
. (3.11)

In the following Theorem, a closed-form approximation of (3.11) is obtained.

Theorem 1. In the RIS-aided massive MIMO systems with the existence of direct links,

the uplink achievable rate can be approximated as

Rk ≈ log2

(
1 +

pkE
(signal)
k (Φ)∑K

i=1,i 6=k piIki(Φ) + σ2E
(noise)
k (Φ)

)
, (3.12)
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where E
(signal)
k (Φ), Iki(Φ) and E

(noise)
k (Φ) are respectively given by

E
(signal)
k (Φ) =M2c2kδ

2ε2k |fk(Φ)|4 + 2ckMδεk |fk(Φ)|2

× (ck (2MNδ +MNεk +MN + 2M +Nεk +N + 2) + γk (M + 1))

+ c2kM
2N2

(
2δ2 + ε2k + 2δεk + 2δ + 2εk + 1

)
+ c2kMN2

(
ε2k + 2δεk + 2δ + 2εk + 1

)
+ ckMN(M + 1) (ck (2δ + 2εk + 1) + 2γk (δ + εk + 1)) + γ2k

(
M2 +M

)
,

(3.13)

Iki(Φ) = M2ckciδ
2εkεi |fk(Φ)|2 |fi(Φ)|2

+Mckδεk |fk(Φ)|2 (ci (δMN +Nεi +N + 2M) + γi)

+Mciδεi |fi(Φ)|2 (ck (δMN +Nεk +N + 2M) + γk)

+MN2ckci
(
Mδ2 + δ (εi + εk + 2) + (εk + 1) (εi + 1)

)
+M2Nckci (2δ + εi + εk + 1) +M2ckciεkεi

∣∣∣hHk hi

∣∣∣2
+ 2M2ckciδεkεi Re

{
fHk (Φ)fi(Φ)h

H
i hk

}
+M (ciγkN (δ + εi + 1) + ckγiN (δ + εk + 1) + γiγk) , (3.14)

E
(noise)
k (Φ) = M

(
ckδεk |fk(Φ)|2 + ck (δ + εk + 1)N + γk

)
. (3.15)

Besides, ck ,
βαk

(δ+1)(εk+1) , fk(Φ) , aHN (ϕat , ϕ
e
t ) Φhk =

∑N
n=1 e

j(ζkn+θn), where

ζkn = 2π dλ

(
b(n− 1)/

√
Nc (sinϕekr sinϕakr − sinϕet sinϕat )

+((n− 1) mod
√
N) (cosϕekr − cosϕet )

)
.

(3.16)

Proof: See Appendix A.1. �

Note that |fc (Φ)| ≤ N and the equality holds when θn = −2π dλ (xpc + yqc) ,∀n. If
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|fk (Φ)| = N , as N →∞, |fk (Φ)| can grow without bound. However, |fi (Φ)| , i 6= k will

be bounded unless user i has nearly the same azimuth and elevation AoA with user k.

Thus, Theorem 1 shows that both E
(signal)
k (Φ) and Iki(Φ) are on the order of O

(
M2
)
.

However, their scaling laws with respect to N depend on the value of Φ. For example,

when the phase shifts of RIS are aligned to user k, E
(signal)
k (Φ) is on the order of O

(
N4
)

whereas Iki(Φ) is on the order of O
(
N3
)
.

Theorem 1 shows that expression (3.12) does not depend on the fast-varying instan-

taneous CSI h̃k, H̃2 and d̃k, but it only relies on the statistical CSI, i.e., the AoA and

AoD in h̄k and H̄2, the path-loss coefficients β, αk, γk and Rician factors δ, εk, which

change very slowly. Specifically, environment-related path-loss coefficients and Rician

factors can be measured and saved at the BS in advance. The BS can also estimate the

AoA and AoD based on global position systems[48]. Therefore, to simplify the analysis

and draw key insights, it is assumed that the statistical CSI is perfectly known at the

BS before the data transmission[43, 45]. Then, based on Eq. (3.12), the BS exploits

statistical CSI to design and update the phase shifts of RIS. Note that this operation

only needs to be done once for a long time, which significantly reduces the computational

complexity and feedback overhead.

Remark 1. The achievable rate for RIS-aided massive MIMO systems without direct

links can be obtained by setting γk = 0,∀k. Besides, the single-user case in [43] is a

special case of this chapter with pi = 0,∀i 6= k.

3.3.1 Analysis in the Absence of Direct Links

For analytical tractability, this section first considers the scenario of γk = 0,∀k, to shed

light on the benefits brought by the RIS. To begin with, the power-scaling law of the

achievable rate in the RIS-aided massive MIMO systems is revealed in the following.

Corollary 1. Assume that the transmit power of each user is scaled with the number of

antennas at the BS according to pk = Eu/M , ∀k, where Eu is fixed. When M → ∞, it



Chapter 3. RIS-Aided Massive MIMO with MRC Decoders and Perfect CSI 32

is obtained that

Rk → log2

1 +
Eu

βαk
(δ+1)(εk+1)A

(1)
k (Φ)∑K

i=1,i 6=k Eu
βαi

(δ+1)(εi+1)A
(2)
ki (Φ) + σ2A(3)

k (Φ)

 , (3.17)

where

A(1)
k (Φ) =

(
A(3)
k (Φ)

)2
+ 2δεk |fk(Φ)|2 (Nδ + 2) +N

(
Nδ2 + 2δ + 2εk + 1

)
, (3.18)

A(2)
ki (Φ) = εkεi

∣∣∣δfHk (Φ)fi(Φ) + h
H
k hi

∣∣∣2 +
(
δ2N + 2δ

) (
εk |fk(Φ)|2 + εi |fi(Φ)|2

)
+N

(
Nδ2 + 2δ + εi + εk + 1

)
, (3.19)

A(3)
k (Φ) = δεk |fk(Φ)|2 + (δ + εk + 1)N. (3.20)

Proof: By substituting pk = Eu/M,∀k into rate expression (3.12) under γk = 0, ∀k,

when M → ∞, the insignificant terms which do not scale with M can be neglected.

Then, after some simplifications, the proof is completed. �

From Corollary 1, it can be seen that similar to conventional massive MIMO systems,

users in RIS-aided systems can cut down their transmit power by a factor 1/M while the

rate will converge to a non-zero value as M →∞. However, different from conventional

systems, both the signal, interference and noise terms in (3.17) are related with Φ. To

clearly show the difference, a special case, where the RIS is deployed in the environment

with purely NLoS channels, i.e., δ = εk = 0,∀k, is considered. Then, the power scaling

law in Corollary 1 becomes

R̃k → log2

(
1 +

Euβαk(N + 1)∑K
i=1,i 6=k Euβαi + σ2

)
, as M →∞. (3.21)

By contrast, in conventional non-RIS massive MIMO systems with large-scale path-loss

γk, when scaling the power by pk = Eu/M , the rate can be written as [4, Theorem 1]:

R
(w/o)
k → log2

(
1 +

Euγk
σ2

)
, as M →∞. (3.22)



Chapter 3. RIS-Aided Massive MIMO with MRC Decoders and Perfect CSI 33

Comparing Eq. (3.21) with Eq. (3.22), it can be seen that the rate in (3.21) has a

high order of magnitude with respect to N . Therefore, significant benefits can be reaped

by integrating an RIS with large N into conventional massive MIMO systems.

Corollary 2. For both the ideal RIS with continuous phase shifts and non-ideal RIS

with b > 1 bits discrete phase shifts, if the phase shift matrix Φ is randomly adjusted in

each time block, when N →∞ and M →∞, it is arrived at

Rk → log2

(
1 +

pkαk
(
2δ2 + 2δ + 1

)∑K
i=1,i 6=k piαiδ

2

)
. (3.23)

Proof: See Appendix A.2. �

Corollary 22 shows that with a large number of antennas at the BS and a large

number of reflecting elements at the RIS, the sum achievable rate is still bounded if the

phase shifts are randomly adjusted. This conclusion shows the necessity of optimising

the phase shifts of RIS in the RIS-aided massive MIMO systems. Besides, it can be seen

that the data rate in (3.23) decreases when δ increases. The reason lies in that when

the phase shifts are adjusted randomly in each time block, it tends to equally allocate

the passive beamforming gain to all the users. However, when δ →∞, the channel with

unit rank is incapable of supporting the multi-user communications.

Next, the impact of Rician factors on the achievable rate is studied.

Corollary 3. If δ = εk = 0, ∀k, i.e., only NLoS paths exist in the environment, it is

arrived at

R̃k → log2

(
1 +

pkβαk(MN +M +N + 1)∑K
i=1,i 6=k piβαi(M +N) + σ2

)
. (3.24)

Corollary 3 represents the environment where rich scatters exist and the Rician chan-

nel degrades to the Rayleigh channel. It can be seen that with uncorrelated Rayleigh

channels, there is no need to design the phase shifts of RIS. This is because H̃2Φh̃k
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has the same statistical property as H̃2h̃k with unitary matrix Φ[67]. Therefore, in the

environment with rich scatters, the phase shifts of RIS can be set arbitrarily. Besides,

with a large number of antennas or a large number of reflecting elements, the rates in

(3.24) converge to

R̃k → log2

(
1 +

pkαk(N + 1)∑K
i=1,i 6=k piαi

)
, as M →∞, (3.25)

R̃k → log2

(
1 +

pkαk(M + 1)∑K
i=1,i 6=k piαi

)
, as N →∞. (3.26)

Therefore, even the LoS link does not exist, significant performance gain can be

achieved by deploying RIS with large numbers of elements in the massive MIMO systems.

Furthermore, since R̃k in (3.24) does not rely on Φ, it enables the derivation of the power

scaling law with respect to N . If the power of all users is scaled down proportionally to

pk = Eu
N , ∀k, as N →∞, the rate of user k can maintain a non-zero value as follows

R̃k → log2

(
1 +

Euβαk(M + 1)∑K
i=1,i 6=k Euβαi + σ2

)
, p =

Eu
N
. (3.27)

Corollary 4. In the RIS-aided massive MIMO systems, if the RIS has discrete phase

shifts with b bits resolution, the sum achievable rate can still achieve a gain of O (log2(N)).

Proof: If the RIS has discrete phase shifts with b bits precision, the adjustable

phase shifts θ̂n can only be selected from
{

0, 2π
2b
, 2× 2π

2b
, . . . ,

(
2b − 1

)
2π
2b

}
. Therefore, the

quantization error of RIS element n can be expressed as θ̃n = θ∗n− θ̂n ∈
[
− π

2b
, π
2b

]
, where

θ∗n is the optimal phase shifts under the continuous phase shifts assumption. Assume

that the phase shifts of RIS are aligned to an arbitrary user k, which is a simple sub-

optimal solution for the maximisation of sum rate R. In this case, when N is even, the
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worst influence brought by phase noise can be quantified as follows

|fk(Φ)|2 =
∣∣∣∑N

n=1 exp
(
jθ̃n

)∣∣∣2
≥
∣∣N
2

(
exp

(
j π
2b

)
+ exp

(
−j π

2b

))∣∣2 = N2 cos2
(
π
2b

)
,

(3.28)

and |fk(Φ)|4 =
(
|fk(Φ)|2

)2
≥ N4 cos4

(
π
2b

)
.

While for fi(Φ),∀i 6= k, it is still bounded when N → ∞. Since the worst rate

degradation brought by RIS’s phase noise is cos2
(
π
2b

)
which does not increase with N ,

when N → ∞, user k’s rate still has the following orders of magnitude: E
{
‖gk‖4

}
=

O
(
M2N4

)
, E
{∣∣gHk gi

∣∣2} = O
(
M2N3

)
, and E

{
‖gk‖2

}
= O

(
MN2

)
. Therefore, the

rate can still scale as O (log2(N)) in the case of low-resolution phase shifts. �

Corollary 4 states that the phase noise of RIS does not impact the scaling laws, and

the rate can still grow without bound when N → ∞. Corollary 4 indicates that the

negative effect brought by RIS’s low-resolution elements can be readily compensated by

increasing the size of RIS. Therefore, this result demonstrates the feasibility of deploying

low-resolution RIS with a large number of reflecting elements in the massive MIMO

systems.

3.3.2 Performance Comparison with Direct Links

With the presence of the direct links, this section would like to make a deeper comparison

between the RIS-aided massive MIMO systems and the conventional RIS-free massive

MIMO systems and shed light on the impact of the direct links.

Corollary 5. The achievable rate for traditional massive MIMO systems without an RIS

can be obtained by setting ck = 0,∀k, which is given by R
(w)
k , log2

(
1 + SINR

(w)
k

)
with

SINR
(w)
k ≈ pk(M + 1)γk

/(∑K
i=1,i 6=k piγi + σ2

)
.

Corollary 5 shows that under a simple MRC receiver but with a large M , the power of

interference is negligible compared with the signal. However, this feature no longer holds
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for RIS-aided massive MIMO systems. It can be found that both the signal term and

interference term are on the order of O(M2), which means that a large M will make the

signal-interference ratio converge to a constant. Thus, a basic question is whether this

additional interference will limit the gain of RIS. To answer this question and provide

clear insights, some special cases will be used to compare RIS-aided massive MIMO

systems with non-RIS-aided massive MIMO systems.

Corollary 6. For a special case where cascaded channels are pure NLoS, i.e., δ = εk =

0,∀k, the achievable rate is R
(NL)
k , log2

(
1 + SINR

(NL)
k

)
and SINR

(NL)
k is given by

SINR
(NL)
k ≈

pk
(
c2k
(
MN2 +N2 +MN +N

)
+ 2ckγkN (M + 1) + γ2k(M + 1)

)∑K
i=1,i 6=k pi (ckci (N2 +MN) + ckγiN + ciγkN + γkγi) + σ2 (ckN + γk)

.

(3.29)

It can be seen that in this special case, when both N →∞ and M →∞, rate R
(NL)
k

could grow without bound. Furthermore, this special case can be used to investigate the

gain from RIS in the presence of additional interference. To further facilitate the analysis

and provide useful insights, the two-user case is considered where users are located closely

and have the same transmit power, i.e., ck = c, γk = γ, pk = p, k = 1, 2. Then, by solving

the inequality SINR
(NL)
k > SINR

(w)
k , the following Corollary can be obtained.

Corollary 7. Considering an RIS deployed in the environment with rich scatters and

γ > 0, c > 0, the achievable rate of RIS-aided massive MIMO systems is higher than

non-RIS-aided massive MIMO systems when

p

σ2
<

N + 1

γ(M−1)
+

1

c(M−1)
, or N>γ

(
p

σ2
(M − 1)− 1

c

)
− 1. (3.30)

Corollary 7 indicates that RIS-aided massive MIMO can outperform non-RIS-aided

systems under three cases: 1) in low-SNR regime; 2) with large N ; 3) with weak direct

links strength γ. Reasons behind these results are: 1) In high SNR regime, rate will be
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interference-limited which aggravates the negative impacts of RIS’s additional interfer-

ence; 2) large N can increase the passive beamforming gain of RIS; 3) with strong direct

links, the signal contributions from cascaded links become relatively small.

Next, another case is studied where the phase shifts of the RIS are adjusted randomly.

For analytical tractability, an extreme scenario is considered where N → ∞. This case

is reasonable since RIS is comprised of low-cost passive elements, and large N can also

help RIS unleash its passive beamforming gains.

Corollary 8. Assume that RIS’s phase shifts are set randomly in each time block. When

N →∞, the average data rate is given by R
(rm)
k , log2

(
1 + SINR

(rm)
k

)
with

SINR
(rm)
k ≈

pkαk
(
M
(
2δ2 + 2δ + 1

)
+ 2δ + 1

)∑K
i=1,i 6=k piαi (Mδ2 + 2δ + 1)

. (3.31)

Proof: Following the proof of Corollary 2, terms involving Φ in (3.12) are substituted

with their expectation. When N → ∞, the insignificant terms which do not scale as

O(N2) are ignored and then the proof is completed after some simplifications. �

Then, a two-user case is considered with ck = c, γk = γ, εk = ε, pk = p, k = 1, 2. By

solving inequality SINR
(rm)
k > SINR

(w)
k , the following result can be obtained.

Corollary 9. When N → ∞, RIS-aided massive MIMO systems with random phase

shifts outperform traditional non-RIS systems if

γ
p

σ2
<

(
2δ2 + 2δ + 1

)
M + (2δ + 1)

δ2 (M2 −M)
. (3.32)

Corollary 9 shows that when RIS’s phase shifts are set randomly, to beat non-RIS

systems, it should operate in low-SNR regime. Besides, even when N → ∞, it is still

challenging to meet inequality (3.32) under large M .
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Figure 3.2: GA algorithm.

3.4 GA-Based RIS Design

This subsection will describe the design of Φ based on the achievable rate expression in

(3.12). To gain a comprehensive understanding of the impacts of the RIS, it considers

two optimisation problems, i.e., the sum user rate maximisation and the minimum user

rate maximisation problems. Specifically, the sum user rate maximisation problem is

formulated as

max
Φ

∑K

k=1
Rk, (3.33a)

s.t. θn ∈ [0, 2π),∀n, or (3.33b)

θn ∈
{

0,
2π

2b
, 2× 2π

2b
, . . . ,

(
2b − 1

) 2π

2b

}
,∀n. (3.33c)

Note that constraint (3.33b) corresponds to the continuous phase shift case, while con-

straint (3.33c) corresponds to the discrete phase shift case with b bits precision. Mean-

while, the minimum user rate maximisation problem, which guarantees the fairness, is

formulated as

max
Φ

min
k

Rk, (3.34a)

s.t. (3.33b) or (3.33c).

Due to the complicated form of Rk in (3.12), it is difficult to optimise Φ based

on conventional techniques, such as the semidefinite relaxation (SDR) and the MM

algorithm. Meanwhile, the Max-Min problem has a non-smooth objective function,

which makes it more challenging to be solved. Therefore, as the beginning of this thesis,
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Algorithm 1 GA-based Method

1: Initialize a population of 200 individuals where individual t has a randomly generated
chromosome Φt; Count = 1;

2: while Count ≤ 100 ∗N do
3: Calculate the fitness of each individual as R(t) =

∑K
k=1Rk(Φt), where Rk(Φ) is

given in (3.12);
4: Remove the top 10 individuals with higher fitness from the current population as

elites;
5: Remove 40 individuals with lower fitness from the current population, and use

uniform mutation[70] with probability 0.1 to create 40 offspring;
6: Generate 300 parents from remaining individuals based on stochastic universal

sampling[70], and then perform two-point crossover[70] to create 150 offspring;
7: Combine 10 elites, 40 offspring and 150 offspring to evolve to the next generation;

Count = Count+1;
8: end while
9: Output the chromosome of the individual with the highest fitness in the current

population.

a tractable GA-based method is employed in this chapter to solve these two optimisation

problems. GA simulates the evolution of a population in the nature[69], and its main

steps are shown in Fig. 3.2 and Algorithm 1. GA is a useful and general method and

can be used for some other scenarios. Note that in the sequel of this thesis, more specific

optimisation algorithms will be proposed to improve the optimisation performance.

Assume that the iteration number of the GA is L and the number of individuals in

each generation of GA is Nt. The computational complexity of the GA mainly comes

from the fitness evaluation of Nt individuals in each generation, and the complexity of

sort, scaling, crossover, and mutation can be neglected. The fitness evaluation needs

to calculate the achievable rate based on (3.12). Since the approximate complexity of

calculating Rk in (3.12) is O (KN), the proposed GA has an approximate computational

complexity of O (LNtKN).

3.5 Numerical Results

In this section, the previous analysis is validated and the benefits brought by integrating

RIS into massive MIMO systems are demonstrated. The impact of Rician factors is also
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illustrated in this section.

3.5.1 Comparison without Direct Links

For brevity and to draw clear insights, the system performance is first evaluated in the

absence of the direct links. This scenario is a typical application case of using the RIS

to serve the users located in the dead zone. Specifically, it is assumed that the locations

of the BS and the RIS are (0, 0, 25) and (5, 100, 30), respectively. Similar to [10], it is

assumed that users are located on a half circle centred at (5, 100) with radius of 5 m

and height of 1.6 m. The AoA and AoD of BS, RIS and users are generated randomly

from [0, 2π][9, 11] and these angles will be fixed after initial generation. Unless otherwise

stated, the simulation parameters are set as follows: element spacing of d = λ
2 , number

of users of K = 4, number of reflecting elements of N = 16, number of antennas of

M = 64, transmit power of pk = 30 dBm, ∀k, noise power of σ2 = −104 dBm and Rician

factor of δ = 1, εk = 10,∀k. Large-scale path-loss is calculated as αk = 10−3dk
−αkUR , ∀k

and β = 10−3d−βRB0 [11] where dk and d0 are respectively the distances of user k-RIS

and RIS-BS, and the path-loss exponents are αkUR = βRB = 2.8,∀k [10]. The following

simulation results are obtained by averaging over 104 random channel generations.

To begin with, the impacts of various system parameters on the data rate of RIS-

aided massive MIMO systems are evaluated. To this end, two kinds of optimal phase

shifts Φ∗ are obtained by respectively solving Problem (3.33) and Problem (3.34), and

the obtained Φ∗ will be used to calculate two different performance metrics, i.e., the sum

user rate
∑K

k=1Rk (Φ∗) and the minimum user rate min
k
Rk (Φ∗). This section refers to

the sum user rate calculated by Φ∗ obtained from Problem (3.33) as “sum rate by max-

sum”, refers to the minimum user rate calculated by Φ∗ obtained from Problem (3.33) as

“min rate by max-sum”, refers to the sum rate calculated by Φ∗ obtained from Problem

(3.34) as “sum rate by max-min” and refers to the minimum user rate calculated by Φ∗

obtained from Problem (3.34) as “min rate by max-min”, respectively. Besides, the sum

rate and minimum user rate under random RIS phase shifts are calculated by averaging
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Figure 3.3: Sum rate and minimum user rate versus the Rician factor δ.

over 1000 random phase shifts generations.

Fig. 3.3 shows four different kinds of rate versus the Rician factor δ of RIS-BS channel

H2. Results show that the approximated analytical rate expression (3.12) matches well

with the simulation results, which verifies the correctness of the derived results. It can

be seen that when δ is small, both the sum rate maximisation (3.33) and minimum rate

maximisation (3.34) lead to a similarly good performance (both in terms of sum rate and

minimum rate). This means that in the rich scattering environment, one can simultane-

ously achieve a large system capacity while guaranteeing user fairness. However, when δ

increases, it becomes impossible to balance the system capacity and fairness. If the sum

rate is maximised, the minimum user rate will approach zero. Conversely, if it is needed

to maintain the minimum rate, the sum rate will be severely degraded, which nearly

equals the rate achieved by random phases. This result is totally different from the

RIS-aided single-user system with statistical CSI[43, 45], whose rate performance will be

improved by increasing the Rician factor. The reason lies in that when δ increases, chan-

nel LoS components will become more dominant, which increases the channel correlation

between different users, as well as increases the inter-user interference and reduces the

spatial multiplexing gain. It is worth noting that this observation has also been reported

in [37]. Specifically, when δ →∞, the rank of the cascaded channel G will approach one,
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Figure 3.4: Sum rate and minimum rate versus the path-loss exponent βRB.

and the system will be incapable of supporting the communication of multiple users.

According to the above discussion, it is known that it is better to deploy the RIS

in the environment with relatively rich scatters to support multi-user communications.

However, to ensure the rich scatters, the distance between the BS and RIS should be

increased, yielding an increased path loss and a larger path-loss exponent[52, 71]. There-

fore, Fig. 3.4 is presented to show the impacts of RIS-BS channel path-loss exponent

βRB. Firstly, it can be seen that when βRB is small, both the max-sum problem (3.33)

and max-min problem (3.34) can achieve similarly good performance. Secondly, it can

be seen that as βRB keeps increasing, if it is needed to maintain fairness, the rate perfor-

mance (sum-rate and min-rate) will decrease and eventually approach the rate achieved

by random phases. These observations indicate that if it is needed to simultaneously

achieve high system throughput and guarantee fairness, the path-loss exponent should

be as small as possible, which corresponds to short distances and high value of Rician

factors. Therefore, there exists a trade-off between the achievable spatial multiplexing

gain and the channel path-loss.

Next, the question about what benefits are brought by deploying RIS in massive

MIMO systems is answered. Note that to guarantee fairness, only the minimum user
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Figure 3.5: Average condition numbers of the cascaded channel G.

rate maximisation (3.34) is considered in the following simulation.

Fig. 3.5 shows the standard condition number (i.e., the ratio between the largest

to the smallest eigenvalue [72]) of the cascaded channel G versus the number of RIS

elements N , and the result is obtained from Monte Carlo simulation. It is well known

that channel matrix with a lower condition number can achieve better performance in

the high SNR regime[67], and the channel matrix with condition number 1 is referred to

as “well-conditioned”. Fig. 3.5 shows that the condition number of the cascaded channel

decreases quickly as N increases. Recalling the definition of condition number, it can be

seen that the difference between the largest and the smallest eigenvalue of the channel

matrix based on the optimised phase shifts is significantly reduced compared with that

based on the random phase shifts. After the optimisation, the channel becomes nearly

well-conditioned. This finding indicates that the RIS can reshape the channel in massive

MIMO systems, reduce the disparity among the channel singular values and achieve a

higher capacity in the high SNR regime.

Fig. 3.6 illustrates the achievable rate versus M . It can be observed that although the

inter-user interference makes the minimum rate and sum rate approach saturate when

M → ∞, it still has some promising features. Firstly, by increasing the number of RIS
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Figure 3.6: Sum rate and minimum user rate versus BS antennas number M .

elements N , the data rate can be significantly improved, which demonstrates the ben-

efits of integrating RIS into massive MIMO networks. By contrast, in the conventional

massive MIMO networks without RIS, the number of the antennas should be extremely

large to serve excessive number of users. However, the increase of the number of active

antennas requires a large-sized array, high power consumption and high hardware cost.

By observing Fig. 3.6, it can be found that thanks to RIS’s passive beamforming gain,

only a moderate number of antennas are enough to bring promising throughput. For

example, 100 antennas with 64 RIS elements can outperform 400 antennas with 16 RIS

elements. Therefore, RIS-aided massive MIMO systems are promising to be applied in

future communication systems with much reduced hardware cost and power consump-

tion, while still maintaining the network capacity requirement.

In Fig. 3.7, the power scaling laws are examined in the RIS-aided massive MIMO

systems, where the transmit power of each user is scaled down as pk = Eu/M,∀k, with

Eu = 20 dB. As expected in Corollary 1, when M →∞, each user can reduce their uplink

transmitting power proportionally to 1/M while maintaining a non-zero achievable rate

which is consistent with the theoretical limit in (3.17). Besides, by optimising the phase

shifts of the RIS relying on statistical CSI, the transmit power of each user can be further

cut down compared with using random phase shifts. Meanwhile, the increase of RIS’s
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size also has a positive impact on saving power consumption.

Furthermore, the benefits of the RIS reducing energy consumption can be interpreted

based on Figs. 3.6 and 3.7. On the one hand, with the gain of the RIS, the number of BS

antennas can be significantly reduced without sacrificing the rate performance. On the

other hand, with the increase of the RIS elements, the transmit power of users can also

be reduced in inverse proportion. Since the RIS is nearly passive, its energy consumption

can be neglected compared with the transmit power and the power consumed by active

RF chains. Recalling the energy consumption model in (2.13) and (2.14), it can be

found that benefiting from the gain of RIS, the total system power consumption will

be significantly reduced due to the reduction of transmit power, P
(ul)
TX , and the power

consumed by active RF chains, PTC, which is proportional to the number of BS antennas.

In Fig. 3.8, the performance degradation brought by RIS’s discrete phase shifts in

massive MIMO systems is assessed. Firstly, it can be seen that both random continu-

ous phase shifts and random discrete phase shifts lead to the same rate performance,

which is consistent with the analysis in Corollary 2. Secondly, it can be seen that in

the RIS-aided massive MIMO systems, the degradation due to low-resolution reflecting

elements is marginal which does not enlarge when N increases. Hence, it will not be an
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Figure 3.8: Minimum user rate under continuous and discrete phase shifts.

implementation bottleneck in practical systems. Meanwhile, the degradation can be eas-

ily compensated by increasing N , and the degradation does not enlarge when increasing

the number of antennas at BS. It is conjectured that the reason for this phenomenon

lies in that the robustness of data rate against the low-resolution of individual reflecting

elements is increased by means of large N and large M . Therefore, it is feasible to deploy

RIS with low hardware cost but large size in massive MIMO systems.

3.5.2 Comparison in the Presence of Direct Links

Next, the general case is considered where the direct links exist between the BS and the

users. It is assumed that four users are evenly located on a circle centred at the RIS with

a radius of dUI = 20 m as in [10, Fig. 6]. RIS-BS distance is dIB and the distance between

user k and BS is calculated by (dUB
k )2 =

(
dIB − dUI sin

(
π
5k
))2

+
(
dUI cos

(
π
5k
))2

. The

distance-based path-loss are αk = 10−3d−2UI , β = 10−3d−2.5IB and γk = 10−3
(
dUB
k

)−4
, ∀k.

Fig. 3.9 shows that even with a simple MRC receiver, statistical CSI-based RIS

can still effectively improve the rate performance in massive MIMO systems in the low-

SNR regime. However, due to the multi-user interference, as SNR increases, conventional

massive MIMO systems will outperform random phase shifts-based RIS systems. Finally,

with extremely high SNR, it could even outperform the optimal phase shifts-based RIS
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Figure 3.9: Rate versus the power, M = N = 49, dIB = 1000.
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Figure 3.10: Rate versus M and N , dIB = 1000.

systems. These results agree with the analysis in Corollary 7 and Corollary 9.

Fig. 3.10 and Fig. 3.11 plot the achievable rate versus N and M with dIB = 1000 m

and dIB = 700 m, respectively. Note that smaller dIB means stronger direct links. It can

be seen that the RIS with optimal phase shifts brings a significant rate improvement to

traditional massive MIMO systems in both figures, and this improvement can hold with

quite large M . However, when the direct links are strong or when M is large, massive

MIMO systems without RIS have a better performance than RIS-aided systems with

random phase shifts. With random phase shifts, the performance could even degrade
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Figure 3.11: Rate versus M and N with dIB = 700.

as N increases. This is because of the additional interference brought by the RIS.

Without an appropriate design, the larger the RIS, the greater the multi-user interference

caused by the RIS, and therefore the performance is reduced. Besides, these observations

indicate that to fully take advantages of RIS with a simple MRC receiver, it is better to

use RIS with a large number of elements to serve cell-edge users, and the RIS has the

ability to play a significant role in the low-SNR regime.

3.6 Summary

In this chapter, an RIS-aided massive MIMO system is studied. Based on the low-

complexity MRC detector, a closed-form achievable rate expression is derived. Then,

based on the expression, it is proved that with low-complexity MRC beamforming, RIS-

aided massive MIMO systems can outperform non-RIS systems in the low-SNR regime.

Relying on the statistical CSI, GA-based optimisation method is adopted to solve the

sum user rate and minimum user rate maximisation problems, respectively. Finally, the

analytical results are verified by the simulations.



Chapter 4

RIS-Aided Massive MIMO with

MRC Decoders and Imperfect

CSI

4.1 Introduction

In the practical systems, due to the limited transmitting power and the limited pilot

transmission period, the acquired channel state information would not be perfect, and

therefore the channel estimation error will inevitably exist. When investigating the

impacts of imperfect CSI analytically, most of the prior contributions only considered

a simple channel model where the RIS-BS link is fully LoS while RIS-users links are

fully NLoS. Although this model is mathematically tractable, it cannot reveal the fun-

damental impact of the scatter richness of the propagation environment on RIS-aided

systems along with the imperfect CSI. With a variety of richness of scatter, the quality

of channel estimation and the system capacity performance in RIS-aided systems will

exhibit wide differences. Furthermore, it is envisioned that the RIS technology will make

an influential paradigm shift to traditional massive MIMO systems[52]. However, the

49
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impact of imperfect CSI on RIS-aided massive MIMO systems remains unknown.

Motivated by the above, this chapter focuses on the uplink transmission of an RIS-

aided massive MIMO system with imperfect CSI, where all the RIS-related channels are

Rician distributed. It is assumed that the RIS is deployed in a conventional massive

MIMO system to strengthen the signal power for the remote users. Considering the

extremely large dimension of the channel matrix in RIS-aided massive MIMO systems,

the conventional low-complexity maximal ratio combining (MRC) technique is applied

at the BS. The MRC matrix is designed based on the channel estimates obtained with a

linear minimum mean square error (LMMSE) estimator, where all the channels involved

in the system are treated as a whole. Thereby, the estimation method only requires

that the length of the pilot sequences is larger than the number of users, which is much

smaller than that required by existing instantaneous cascaded CSI estimation which is

usually proportional to the number of reflecting elements[73, 74]. Moreover, the passive

beamforming of the RIS is designed based on the statistical CSI, which only needs to

be updated on a larger time scale. Under the low-overhead channel estimation, low-

complexity MRC receiver and statistical CSI-based phase shift design, this chapter aims

to investigate the fundamental properties of RIS-aided massive MIMO systems with

imperfect CSI. The contributions of this chapter are summarised as follows.

• A low-complexity LMMSE estimator is proposed to estimate the aggregated chan-

nel from the users to the BS, which has the same amount of overhead as conven-

tional massive MIMO systems. The MSE and normalized MSE (NMSE) of the

estimated channels are computed. Based on the analysis, it is unveiled that the

MSE converges to an upper bound but the NMSE converges to zero when the

number of RIS elements tends to infinity.

• A low-complexity MRC receiver is applied at the BS by exploiting the estimated

aggregated channel, and the corresponding uplink ergodic achievable rate is derived

and formulated in a closed-form expression. The derived results hold for arbitrary

numbers of BS antennas and RIS elements. Based on obtained analytical expres-
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sions, the asymptotic behaviour of the rate and the power scaling laws are analysed.

The rate performance for the single-user case is analysed as well.

• Using the derived closed-form expressions, the optimal phase shifts of the RIS

based on statistical CSI are designed. To guarantee the desired fairness among

different users, a GA is applied for maximizing the minimum rate of all the users.

In the special case of a single user, the optimal solution for the RIS phase shifts is

formulated in a closed-form expression.

• Extensive simulation results are presented to evaluate the performance gain offered

by RIS-aided massive MIMO systems compared to conventional massive MIMO

systems. The numerical results unveil that it is preferable to deploy the RIS in the

vicinity of the users rather than in the vicinity of the BS.

4.2 System Model

A similar system model as Chapter 3 is considered, where the definitions H1, H2, D and

Φ are the same as perfect CSI case. In addition, let Q = G+D = [q1, · · · ,qK ] ∈ CM×K

represent the overall channels involved in RIS-aided massive MIMO systems. Thereby,

the received signal vector at the BS is given by

y =
√
pQx + n =

√
p
∑K

k=1
qkxk + n, (4.1)

where p is the average transmit power of each user, x = [x1, · · · , xK ]T represents the K

users’ transmit symbols, and n ∼ CN
(
0, σ2IM

)
denotes the vector of noise.

The BS will apply the low-complexity MRC beamforming to detect the signal. Before

the design of the MRC matrix, channel Q should be estimated at the BS. A standard

LMMSE estimator is employed to obtain the estimated channel Q̂, whose details will be

elaborated in the next section. Utilizing the channel estimate, the BS performs MRC to



Chapter 4. RIS-Aided Massive MIMO with MRC Decoders and Imperfect CSI 52

split the received signal y into streams by multiplying it with Q̂H as

r = Q̂Hy =
√
pQ̂HQx + Q̂Hn. (4.2)

Then, the kth element of vector r is expressed as

rk =
√
pq̂Hk qkxk +

√
p
∑K

i=1,i 6=k
q̂Hk qixi + q̂Hk n, (4.3)

where q̂k is the kth column of Q̂.

Then, the aggregated channel from the user k to the BS can be expressed as

qk = gk + dk = H2Φhk + dk

=
√
ckδεk H2Φhk︸ ︷︷ ︸

q1
k

+
√
ckδH2Φh̃k︸ ︷︷ ︸

q2
k

+
√
ckεk H̃2Φhk︸ ︷︷ ︸

q3
k

+
√
ck H̃2Φh̃k︸ ︷︷ ︸

q4
k

+
√
γk d̃k

, q
k

+ dk, (4.4)

where ck ,
βαk

(δ+1)(εk+1) , and q
k

=
∑4

ω=1 qωk . Note that q
k

and dk are mutually indepen-

dent.

4.3 Channel Estimation

In this section, the LMMSE method is used to obtain the estimated aggregated instanta-

neous channel Q̂. Specifically, the BS estimates the aggregated channel matrix Q based

on some predefined pilot signals. Let τc and τ denote the length of the channel coherence

interval and the number of time slots used for channel estimation, respectively, where τ

is no smaller than K, i.e., τ ≥ K. In each channel coherence interval, the K users simul-

taneously transmit mutually orthogonal pilot sequences to the BS. The pilot sequence

of user k is denoted by sk ∈ Cτ×1. By defining S = [s1, s2, . . . , sK ], there is SHS = IK .
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Then, the M × τ pilot signals received at the BS can be written as

Yp =
√
τpQSH + N, (4.5)

where τp is the transmit pilot power, and N denotes the M × τ noise matrix whose

entries are i.i.d. complex Gaussian random variables with zero mean and variance σ2.

Multiplying (4.5) by sk√
τp and exploiting the orthogonality of the pilot signals, the BS

obtains the following observation vector for user k

ykp =
1
√
τp

Ypsk = qk +
1
√
τp

Nsk. (4.6)

The optimal estimate of the k-th user’s channel based on the observation vector ykp

can be determined based on the MMSE criterion, which has been widely utilized in

conventional massive MIMO systems [3, 4, 75]. In RIS-aided massive MIMO systems

where Rician fading is considered for all RIS-aided channels, however, it is challenging

to obtain the MMSE estimator. This is because the cascaded user-RIS-BS channel

G in RIS-aided systems is not Gaussian distributed, but double Gaussian distributed

[76]. To obtain closed-form channel estimates, as is needed to obtain useful design

insights, the sub-optimal but tractable LMMSE estimator is adopted. This is because

the LMMSE estimator only requires the knowledge of the first and second order statistics,

and therefore it does not need to know the exact channel distributions. In the following

lemma, the required statistics for the channel vector qk and the observation vector ykp

are presented.

Lemma 1. For k ∈ K, the mean vectors and covariance matrices that are needed to
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compute the LMMSE estimator are given by

E {qk} = E
{

ykp

}
=
√
ckδεk H2Φhk, (4.7)

Cov
{

qk,y
k
p

}
= Cov

{
ykp ,qk

}
= Cov {qk,qk} = ak1aMaHM + ak2IM , (4.8)

Cov
{

ykp ,y
k
p

}
= Cov {qk,qk}+

σ2

τp
IM = ak1aMaHM +

(
ak2 +

σ2

τp

)
IM , (4.9)

where ak1 = Nckδ and ak2 = Nck (εk + 1) + γk are two auxiliary variables.

Proof: See Appendix B.2. �

Theorem 2. Using the observation vector ykp , the LMMSE estimate q̂k of the channel

vector qk is given by

q̂k = Aky
k
p + Bk (4.10)

=
√
ckδεk H2Φhk︸ ︷︷ ︸

q̂1
k

+ (Mak3 + ak4)
√
ckδH2Φh̃k︸ ︷︷ ︸

q̂2
k

+
√
ckεkAkH̃2Φhk︸ ︷︷ ︸

q̂3
k

+
√
ckAkH̃2Φh̃k︸ ︷︷ ︸

q̂4
k︸ ︷︷ ︸

q̂
k

+
√
γkAkd̃k +

1
√
τp

AkNsk, (4.11)

where

Ak = AH
k = ak3aMaHM + ak4IM , (4.12)

Bk = (IM −Ak)
√
ckδεk H2Φhk, (4.13)

ak3 =
ak1

σ2

τp(
ak2 + σ2

τp

)(
ak2 + σ2

τp +Mak1

) , (4.14)

ak4 =
ak2

ak2 + σ2

τp

, (4.15)
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and the NMSE of the estimate of qk is

NMSEk =
Tr {Cov {qk − q̂k,qk − q̂k}}

Tr {Cov {qk,qk}}

=

σ2

τp

(
Mak1ak2 + a2k2 + (ak1 + ak2)

σ2

τp

)
(
ak2 + σ2

τp

)(
ak2 + σ2

τp +Mak1

)
(ak1 + ak2)

. (4.16)

Proof: See Appendix B.3. �

As evident from Theorem 2, only the aggregated channel matrix Q ∈ CM×K , includ-

ing the reflected and direct channels, is estimated, which has the same dimension as

the user-BS channel matrix in conventional massive MIMO systems. Therefore, it only

requires that the length of the pilot sequences is no smaller than the number of users, i.e.,

τ ≥ K. Compared to methods that estimate the MN individual channels in RIS-aided

communications[73, 74], the proposed method has a lower overhead and computational

complexity.

Remark 2. When ck = 0,∀k, i.e., the RIS-assisted channels are absent, there are

ak1 = 0, ak2 = γk, ak3 = 0, ak4 = γk

γk+
σ2

τp

and Bk = 0. In this case, the estimate in (4.10)

reduces to q̂k = γk

γk+
σ2

τp

ykp and the MSE matrix in (B.22) reduces to MSEk =
γk

σ2

τp

γk+
σ2

τp

IM ,

which, as expected, is the same as the MSE in conventional massive MIMO systems [3].

If the RIS channels only have the LoS components, i.e., δ, εk → ∞,∀k, ak1 → 0 and

ak2 → γk are also obtained. In this case, the MSE matrix in (B.22) is again the same

as that in conventional massive MIMO systems. This is because the LoS channels are

deterministic and known, and, thus, they do not introduce additional estimation errors.

Corollary 10. In the low pilot power-to-noise ratio regime, high pilot power-to-noise
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ratio regime, and large N regime, the asymptotic NMSE is, respectively, given by

limσ2

τp
→∞NMSEk → 1, (4.17)

limσ2

τp
→0

NMSEk → 0, (4.18)

limN→∞NMSEk → 0. (4.19)

Besides, assume that the power p is scaled proportionally to p = Eu/N , where Eu denotes

a constant. As N →∞, it is arrived at

limp=Eu
N
,N→∞NMSEk < 1. (4.20)

Proof: When σ2

τp →∞ or N →∞, by selecting the dominant terms in (4.16), which

scale with (σ
2

τp )
2

or N3, it is arrived at (4.17) and (4.19), respectively. Substituting σ2

τp = 0

into (4.16), its numerator reduces to zero, which leads to (4.18). Replacing the power

p in (4.16) with p = Eu/N , as N → ∞, it can be readily found that all the dominant

terms in the numerator are present in the denominator as well, which results in (4.20).

The specific limit of (4.20) is omitted since it is a complex expression but is simple to

compute. �

It is worth noting that NMSE values between 0 (i.e., perfect estimation) and 1 (i.e.,

using the mean value of the variable as the estimate) quantify the relative estimation

error [2]. In conventional massive MIMO systems, a common method for reducing the

NMSE is to increase the length of the pilot sequence τ . In RIS-aided massive MIMO

systems, Corollary 10 indicates that increasing the number of RIS elements N can play

a similar role as increasing τ . Therefore, increasing the number of RIS elements not only

helps improve the system rate, but it also helps reduce the NMSE. Additionally, (4.20)

reveals that an RIS equipped with a large number of reflecting elements N can help the

NMSE converge to a limit lower than one, even for low pilot powers.

To better understand the impact of increasing N for channel estimation, the following
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asymptotic results are presented.

Corollary 11. When τ → ∞, there is q̂k → qk, which implies ek → 0 and therefore

the channel estimation is perfect. When N →∞, by contrast, it is arrived at

q̂k → qk +
1
√
τp

Nsk, (4.21)

ek = qk − q̂k →
−1
√
τp

Nsk, (4.22)

MSEk = E
{
eke

H
k

}
→ σ2

τp
IM . (4.23)

Proof: When τ → ∞ or N → ∞, based on Theorem 2, it is obtained that ak3 → 0,

ak4 → 1, and Mak3 + ak4 → 1, which yields Ak → IM . If τ →∞, it is further obtained

that 1√
τp → 0, which completes the proof. �

Although the NMSE converges to zero as N → ∞ (see (4.19)), Corollary 11 shows

that, in contrast to increasing τ , the MSE of the LMMSE estimator converges to a non-

zero constant as N → ∞. If the channel qk is estimated based on the least-squares

(LS) estimator[2, (3.35)], it is interesting to note that the same results as in (4.21) and

(4.23) can be obtained. In general, the LS estimator, which does not exploit any prior

channel statistics, has worse estimation performance (higher MSE) than the LMMSE

estimator[2, 6, 74]. Therefore, Corollary 11 indicates that the MSE performance of the

LMMSE estimation converges towards an upper bound, which is the MSE performance

of the LS estimation, as N →∞.

Corollary 12. When the RIS-BS channel reduces to the Rayleigh channel (i.e., δ = 0),

the estimated channel vector, MSE, and NMSE, respectively, simplify to
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q̂k = ak4IMykp =
Nβαk + γk

Nβαk + γk + σ2

τp

ykp , (4.24)

MSEk =
(Nβαk + γk)

σ2

τp

Nβαk + γk + σ2

τp

IM , (4.25)

NMSEk =

σ2

τp

Nβαk + γk + σ2

τp

. (4.26)

Proof: When δ = 0, there are ak1 = 0, ak2 = Nβαk + γk, ak3 = 0, ak4 = Nβαk+γk

Nβαk+γk+
σ2

τp

and Bk = 0. The proof follows by inserting these results in Theorem 2 and (B.22). �

Corollary 12 corresponds to a scenario where a large number of scatterers exist nearby

the RIS and the BS, and the LoS path between the RIS and the BS is negligible. There-

fore, the RIS-BS channel is dominated by the NLoS paths. In this case, both the MSE

and NMSE have simple analytical expressions, which is beneficial to better understand

the conclusions drawn in Corollary 10 and Corollary 11. It is apparent that the MSE

(represented by the trace of MSEk in (4.25)) and the NMSE (represented by NMSEk

in (4.26)) are decreasing functions of the pilot power τp. As a function of N , on the

other hand, the MSE is an increasing function, while the NMSE is a decreasing function.

When N → ∞, it is obtained that MSEk → σ2

τpIM but NMSEk → 0. Note that the

MSE and NMSE for conventional massive MIMO systems can be obtained by setting

N = 0 in (4.25) and (4.26). Therefore, the obtained result implies that the MSE of

RIS-aided massive MIMO systems is worse than the MSE of massive MIMO systems

without RISs, while the NMSE of RIS-aided massive MIMO systems is better than the

NMSE of massive MIMO systems without RISs. The reason is that an RIS introduces N

additional paths to the system, but the pilot length τ does not increase correspondingly,

which increases the estimation error. However, the presence of an RIS results in better

channel gains, which help decrease the normalized error.

Furthermore, if the power is reduced as p = Eu/N , as N →∞, the NMSE in (4.26)
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converges to a limit less than one, as follows

limδ=0, p=Eu
N
, N→∞NMSEk →

σ2

τEuβαk + σ2
< 1. (4.27)

4.4 Uplink Achievable Rate Analysis

Based on channel estimates provided in Theorem 2, the closed-form achievable rate

expressions are derived in this section. The derived expressions will then be utilized for

the statistical CSI-based RIS design using the GA method.

Using the received signal rk in (4.3), the achievable rate of the kth user can be

calculated, which however includes the expectation outside the logarithm. This accurate

derivation is non-trivial. Therefore, as in [6, 65, 77–79], this chapter resorts to the so-

called use-and-then-forget (UatF) bound, a tractable lower bound which can be used to

characterize the achievable rate performance in RIS-aided massive MIMO systems and

provide closed-form expressions. Assuming that the BS uses the channel estimate in

receive combining but not in the signal detection, rk in (4.3) can be rewritten as

rk =
√
pE
{
q̂Hk qk

}
xk︸ ︷︷ ︸

Desired signal

+
√
p
(
q̂Hk qk − E

{
q̂Hk qk

})
xk︸ ︷︷ ︸

Signal leakage

+
√
p
∑K

i=1,i 6=k
q̂Hk qixi︸ ︷︷ ︸

Multi-user interference

+ q̂Hk n︸︷︷︸
Noise

.

(4.28)

Then, the achievable rate of the kth user is lower bounded by [6, 77–79]

Rk =
τc − τ
τc

log2

{
1 +

pE
(signal)
k

pE
(leakage)
k + p

∑K
i=1,i 6=k Iki + σ2E

(noise)
k

}
, (4.29)
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with

E
(signal)
k ,

∣∣E{q̂Hk qk
}∣∣2 , (4.30)

E
(leakage)
k , E

{∣∣q̂Hk qk
∣∣2}− ∣∣E{q̂Hk qk

}∣∣2 , (4.31)

Iki , E
{∣∣q̂Hk qi

∣∣2} , (4.32)

E
(noise)
k , E

{
‖q̂k‖2

}
. (4.33)

The expectations in (4.30)-(4.33) are calculated with respect to the randomness of

small-scale channel components, i.e., h̃k, d̃k, N, and H̃2. To simplify the expression of

Rk, three auxiliary variables ek1, ek2, and ek3 are defined. These variables capture the

performance degradation due to the imperfect knowledge of the CSI.

Lemma 2. For k ∈ K, it is obtained that Tr {Ak} = Mek1, AkH2 = ek2H2 and

Tr {AkAk} = Mek3, where

ek1 , ak3 + ak4, (4.34)

ek2 ,Mak3 + ak4, (4.35)

ek3 ,Ma2k3 + 2ak3ak4 + a2k4. (4.36)

Furthermore, ek1, ek2 and ek3 are bounded in [0, 1]. When τp→∞ or N →∞, it is

obtained that ek1, ek2, ek3 → 1. When τp→ 0, by contrast, there are ek1, ek2, ek3 → 0.

Proof: See Appendix B.4. �

Next, the closed-form achievable data rate expression is obtained by deriving expec-

tation terms in (4.30) ∼ (4.33), respectively. The result is presented in the following

theorem.
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Theorem 3. The lower bound of the achievable rate of user k is given by

Rk =
τc − τ
τc

log2

{
1 +

pE
(signal)
k

pE
(leakage)
k + p

∑K
i=1,i 6=k Iki + σ2E

(noise)
k

}
, (4.37)

with E
(signal)
k =

(
E

(noise)
k

)2
,

E
(noise)
k = M

{
|fk(Φ)|2 ckδεk +Nckδek2 + (Nck (εk + 1) + γk) ek1

}
,

(4.38)

E
(leakage)
k = M |fk(Φ)|2 c2kδεk

{
N (Mδ + εk + 1)

(
e2k2 + 1

)
+ 2 (Mek1 + ek2) (ek2 + 1)

}
+M |fk(Φ)|2 ckδεk

{
γk +

(
γk + σ2

τp

)
e2k2

}
+M2N2c2kδ

2e2k2

+MN2c2k

{
2δ (εk + 1) e2k2 + (εk + 1)2 ek3

}
+M2Nc2k

{
(2εk + 1) e2k1 + 2δek1ek2

}
+MNck

{
ck
(
2δe2k2 + (2εk + 1) ek3

)
+
(

2γk + σ2

τp

) (
δe2k2 + (εk + 1) ek3

)}
+Mγk

(
γk + σ2

τp

)
ek3,

(4.39)

and

Iki = M2 |fk(Φ)|2 |fi(Φ)|2 ckciδ2εkεi

+M |fk(Φ)|2 ckδεk {ci (MNδ +Nεi +N + 2Mek1) + γi}

+M |fi(Φ)|2 ciδεi
{
ckek2 (MNδek2 +Nεkek2 +Nek2 + 2Mek1) +

(
γk + σ2

τp

)
e2k2

}
+M2N2ckciδ

2e2k2 +MN2ckci
{
δ (εk + εi + 2) e2k2 + (εk + 1) (εi + 1) ek3

}
+M2Nckciek1 {(εk + εi + 1) ek1 + 2δek2}

+M2ckciεkεiek1

(∣∣∣hHk hi

∣∣∣2 ek1 + 2δRe
{
fHk (Φ)fi(Φ)h

H
i hk

})
+MN

{(
γk + σ2

τp

)
ci
(
δe2k2 + (εi + 1) ek3

)
+ γick

(
δe2k2 + (εk + 1) ek3

)}
+Mγi

(
γk + σ2

τp

)
ek3,

(4.40)
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where

fk(Φ) ,aHNΦhk =
∑N

n=1
ej(ζ

k
n+θn), (4.41)

ζkn =2π
d

λ

(
b(n− 1)/

√
Nc (sinϕekr sinϕakr − sinϕet sinϕat )

+((n− 1) mod
√
N) (cosϕekr − cosϕet )

)
. (4.42)

Proof: See Appendix B.5. �

The closed-form expression in Theorem 3 does not involve the calculation of inverse

matrices and the numerical computation of integrals. In contrast to time-consuming

Monte Carlo simulations, the evaluation of the rate based on Theorem 3 has a low

computational complexity even if M and N are large numbers, as usually is in RIS-

aided massive MIMO systems.

Besides, since the small-scale components are averaged out, Theorem 3 only relies on

statistical CSI. Therefore, by using the analytical expression of the rate in (4.37) as an

objective function for system design, the phase shifts of the RIS can be optimised only

based on long-term statistical CSI. Note that the achievable rate in (4.37) corresponds

to the system performance given the fixed locations of the users. If the users move,

large-scale channel components will vary, and the achievable rate changes accordingly,

which means that the design of the RIS should be updated. To incorporate the impact

of high user mobility into the achievable rate, the randomness of the user locations can

be averaged out in the SINR expressions. Meanwhile, due to the user mobility, there

may exist location and angular estimation errors based on, e.g., GPS information, which

could result in some performance loss for the design of receiver at the BS and passive

beamforming at the RIS. The impact of imperfect statistical CSI can be analysed by

averaging the angular estimation error in the expression of the achievable rate similar to

[48]. The study of high user mobility is interesting and will be left to a future research

work.
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By comparing the formulation in Theorem 3 with that given in (3.12), it can be

seen that the impact of imperfect CSI is completely characterized by the parameters

ek1, ek2, ek3 and σ2

τp . In the perfect CSI scenario, there is τ → ∞, which leads to ek1 =

ek2 = ek3 = 1 and σ2

τp = 0. Based on Theorem 3, the performance of RIS-aided massive

MIMO systems for arbitrary system parameters can be analysed. Even though the

obtained analytical expressions may look cumbersome at the first sight, they provide

clear insights in terms of the key system parameters M , N , and fk(Φ), ∀k. For example,

since the interference term Iki scales as O(M2), it can be inferred that RIS-aided massive

MIMO systems suffer from stronger multi-user interference than conventional massive

MIMO systems. In the following, a comprehensive analysis of RIS-aided massive MIMO

systems is provided, including the asymptotic behaviour of the rate for large values of

M and N , the power scaling laws, and the impact of the Rician factors. To this end, a

useful lemma is provided firstly.

Lemma 3. • If N = 1, for arbitrary Φ, it is obtained that |fk(Φ)| = 1.

• If N > 1, by optimising Φ, the range of values 0 ≤ |fk(Φ)| ≤ N is achievable.

• If the phase shifts of the RIS are configured to achieve |fk(Φ)| = N , unless the

user i, i 6= k, has the same azimuth and elevation AoA as the user k, the function

|fi(Φ)| is bounded when N →∞.

• Unless the user i, i 6= k, has the same azimuth and elevation AoA as the user k,

the term
∣∣∣hHk hi

∣∣∣2 is bounded when N →∞.

Proof: See Appendix B.6. �

4.4.1 Multi-User Case

In this section, the general multi-user scenario is considered, i.e., K > 1. Since any

two users are unlikely to be in the same location, it is assumed that the azimuth and

elevation AoA of any two users are different, i.e., (ϕakr, ϕ
e
kr) 6= (ϕair, ϕ

e
ir). To begin with,

the asymptotic behaviour of the rate in (4.37) is investigated for large values of M and
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Table 4-A: Power scaling laws in the multi-user case.
(RIS-BS channel, user-RIS channels)

(Ric., Ric) (Ric., Ray.) (Ray., Ric.) (Ray., Ray.)

Imperfect CSI
M 1/M 1/M 1/

√
M 1/

√
M

N � 1/N

Perfect CSI
M 1/M
N � 1/N

N .

Remark 3. From Theorem 3, it can be observed that, as a function of M , Esignal
k (Φ),

Eleak
k (Φ) and Iki (Φ) behave asymptotically as O

(
M2
)
. Therefore, the rate Rk converges

to a finite limit when M → ∞. If, on the other hand, the phase shifts of the RIS are

aligned for maximizing the intended signal for the user k, i.e., setting |fk(Φ)| = N , then

it is obtained that Rk →∞ for user k, and Ri → 0 for the other users i 6= k as N →∞,

based on Lemma 3. In a multi-user scenario, this implies that it is necessary to enforce

some fairness requirements among the users when designing the phase shifts of the RIS.

Next, the power scaling laws of RIS-aided massive MIMO systems are studied with

different Rician factors. Specifically, the Rician factor characterizes the fading severity

of the environment and the richness of scatterers in the environment. The smaller the

Rician factor, the larger the number of scatterers in the environment. If the Rician factor

is zero, the Rayleigh fading channel is retrieved as a special case in which only the NLoS

components exist. If the Rician factor tends to infinity, the channel is deterministic and

is characterized only by the LoS component. It is worth mentioning that, under the

assumption of imperfect CSI, decreasing the transmit power p results in a reduction of

the power used for both the data and pilot signals.

Several scenarios for the RIS-BS and user-RIS channels are analysed. For ease of

exposition, the obtained power scaling laws as a function of M and N are summarised in

Table 4-A. Specifically, the following notations are used. “Imperfect CSI” and “Perfect

CSI” are referred to the power scaling laws obtained for imperfect and perfect CSI,

respectively. By setting ek1 = ek2 = ek3 = 1 and σ2

τp = 0, which are obtained when τ →
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∞, the imperfect CSI setup reduces to the perfect CSI setup. The notation “(Ric., Ric.)”

means that the RIS-BS channel and all the user-RIS channels are Rician distributed,

i.e., δ > 0 and εk > 0,∀k. Similarly, the notation “(Ric., Ray.)” means that the RIS-BS

channel is Rician distributed and all the user-RIS channels are Rayleigh distributed, i.e.,

δ > 0 and εk = 0,∀k. The notations “1/M”, “1/
√
M” and “1/N” imply that the rate

tends to a non-zero value if the transmit power scales proportionally to 1/M , 1/
√
M and

1/N , respectively. For completeness, the readers interested in the power scaling laws as

a function of M in conventional massive MIMO systems without RISs may refer to [4]

and [3]. Besides, note that the rate does not depend on the RIS phase shift matrix Φ if

δ = 0 or εk = 0, ∀k, which will be proved in Corollary 14. In the following, the proof for

the imperfect CSI case is mainly considered, since the perfect CSI setup can be obtained

in a similar manner, by setting ek1 = ek2 = ek3 = 1 and σ2

τp = 0.

Corollary 13. (“1/M” for “(Rician, Rician)” and “(Rician, Rayleigh)”) Assume that

the transmit power p is scaled as p = Eu/M . For M →∞, the rate of user k, k ∈ K, is

lower bounded by

Rk → τ o log2

1 +
Euc

2
kδ

2
(
|fk(Φ)|2 εk +Nek2

)2
EuEleak

k (Φ) + Eu
K∑

i=1,i 6=k
Iki (Φ) + σ2ckδ

(
|fk(Φ)|2 εk +Nek2

)
 ,

(4.43)
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where

Eleak
k (Φ) = N |fk(Φ)|2 c2kδ2εk

(
e2k2 + 1

)
+

σ2

τEu
|fk(Φ)|2 ckδεke2k2 +N2c2kδ

2e2k2 +
σ2

τEu
Nckδe

2
k2, (4.44)

Iki (Φ)= |fk(Φ)|2 |fi(Φ)|2 ckciδ2εkεi+N |fk(Φ)|2 ckciδ2εk

+ |fi(Φ)|2 ciδεie2k2
(
Nckδ +

σ2

τEu

)
+N2ckciδ

2e2k2 +N
σ2

τEu
ciδe

2
k2, (4.45)

ek2 =
Nckδ

σ2

τEu
+Nckδ

. (4.46)

Proof: If p = Eu/M and M → ∞, it is obtained that ek1 → 0, ek3 → 0, and ek2

tends to (4.46). The proof is completed by substituting p = Eu/M into Theorem 3 and

retaining the non-zero terms whose asymptotic behaviour is O (M). �

For a massive number of antennas, Corollary 13 shows that the rate of all the users

tends to a non-zero value when the transmit power scales as p = Eu/M . (4.43) evinces

that the rate Rk is still non-zero if εk = 0,∀k, i.e., all the user-RIS channels are Rayleigh

distributed. This proves the power scaling law “1/M” for the “(Rician, Rayleigh)” setup

in Table 4-A. However, the rate Rk in (4.43) reduces to zero if ck = 0 or δ = 0, i.e.,

the RIS-aided channels are absent or the RIS-BS channel is Rayleigh distributed. This

indicates that the power scaling law “1/M” does not hold for these two case studies.

Specifically, the considered system degenerates to an RIS-free massive MIMO system

with Rayleigh fading if ck = 0,∀k. In this case, it has been proven that the rate can

maintain a non-zero value when the power scales as p = Eu/
√
M [3, (37)]. As for the

power scaling law for δ = 0, an analytical expression of the rate when δ = 0 is first

provided.

Corollary 14. If the RIS-BS channel is Rayleigh distributed (δ = 0), the rate of user
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k, k ∈ K, is lower bounded by

R
(NL1)
k =τ o log2

(
1+

pEsignal
k

pEleak
k + p

∑K
i=1,i 6=k Iki+ σ2Enoise

k

)
, (4.47)

where

Esignal
k = M (Nck (εk + 1) + γk)

2 ek1, (4.48)

Enoise
k = Nck (εk + 1) + γk, (4.49)

Eleak
k = N2c2k (εk + 1)2 ek1 +MNc2k (2εk + 1) ek1

+Nck

{
ck (2εk + 1) +

(
2γk +

σ2

τp

)
(εk + 1)

}
ek1

+ γk

(
γk +

σ2

τp

)
ek1, (4.50)

Iki = N2ckci (εk + 1) (εi + 1) ek1

+MNckci(εk+εi+1) ek1+Mckciεkεi

∣∣∣hHk hi

∣∣∣2 ek1
+N

{(
γk +

σ2

τp

)
ci (εi + 1) + γick (εk + 1)

}
ek1

+ γi

(
γk +

σ2

τp

)
ek1, (4.51)

and

ek1 =
Nβαk + γk

Nβαk + γk + σ2

τp

. (4.52)

Proof: When δ = 0, it is obtained that ak1 = 0, ak2 = Nβαk + γk, and ak3 = 0.

Thus, it is obtained that ek3 = e2k1, where ek1 = ak4 is given in (4.52). Substituting δ = 0

into Theorem 3 and using ek3 = e2k1, the proof follows with the aid of some algebraic

simplifications. �

It is observed that the rate in Corollary 14 does not depend on Φ. Therefore, in a

fully NLoS RIS-BS channel, any RIS phase shift matrix results in the same achievable
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rate. This is because the RIS phase shift matrix Φ is a unitary matrix and the entries of

the NLoS channel H̃2 are Gaussian distributed. Therefore, H̃2Φ has the same statistical

properties as H̃2. Likewise, there is no need to design the RIS phase shifts if all the user-

RIS links are fully NLoS. This conclusion is apparent from (4.37) by setting εk = 0,∀k.

By analysing the dominant terms of (4.47) when M,N →∞, it evinces that the rate

increases without bound for all the users. This implies that fairness requirements among

the users are implicitly guaranteed in this special case. As N → ∞, specifically, the

dominant terms in (4.47) scale asymptotically as O
(
N2
)
, and the rate converges to

R
(NL1)
k → τ o log2

(
1 +

Mαk∑K
i=1 αi

)
, as N →∞, (4.53)

= τ o log2 (1 +M/K) , if α1 = . . . = αK . (4.54)

(4.53) evinces that the SINR, Mαk∑K
i=1 αi

, does not depend on the pilot power τp and it

increases linearly with M . Therefore, good performance can be obtained if δ = 0 and

N →∞.

With the aid of Corollary 14, the following corollaries investigate the power scaling

laws as a function of M and N when δ = 0.

Corollary 15. (“1/
√
M” for “(Rayleigh, Rician)” and “(Rayleigh, Rayleigh)”) If the

RIS-BS channel is Rayleigh distributed (δ = 0), and the power is scaled as p = Eu/
√
M

with M → ∞, the rate of user k, k ∈ K tends to R
(NL1)
k → τ o log2 (1 + SINRk), where

the effective SINR is given by

SINRk =
τE2

u (Nck (εk + 1) + γk)
2

τE2
uNc

2
k (2εk + 1) +

∑K
i=1,i 6=k τE

2
uckci

{
N (εk + εi + 1) + εkεi

∣∣∣hHk hi

∣∣∣2}+ σ4
.

(4.55)

Proof: First, substitute p = Eu/
√
M into Corollary 14 and ignore the terms that

tend to zero as M →∞. Then, divide the numerator and denominator of the SINR by
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Nβαk+γk
σ2 . This yields (4.55) and the proof is completed. �

(4.55) evinces that the numerator of the SINR scales with O
(
N2
)
, but the denomina-

tor of the SINR only scales with O (N). Therefore, Corollary 15 indicates that the rate

scales logarithmically with N if p = Eu/
√
M and M → ∞, which is a promising result

for RIS-aided massive MIMO systems. Besides, it is worth noting that (4.55) reduces to

the same expression as in [3, Eq. (37)] when ck = 0,∀k.

Corollary 16. (“1/N” for “(Rayleigh, Rician)” and “(Rayleigh, Rayleigh)”) If the RIS-

BS channel is Rayleigh distributed (δ = 0) and the power is scaled as p = Eu/N with

N →∞, the rate of user k, k ∈ K, is lower bounded by

R
(NL1)
k → τ o log2

1 +
EuMβαk∑K

i=1

(
Euβαi + αi

αk
σ2

τ

)
+ σ2

(
1 + σ2

τEuβαk

)
 . (4.56)

Proof: First, p = Eu/N is substituted into Corollary 14. When N → ∞, it is

obtained that ek1 → βαk

βαk+
σ2

τEu

. Then, the non-dominant terms that do not scale as

O (N) are removed. By noting that ck (εk + 1) = βαk,∀k, and dividing the numerator

and denominator of the SINR by βαk, (4.56) is obtained and the proof is completed. �

Corollary 16 sheds some interesting insights. Firstly, note that Corollary 15 has

unveiled that the transmit power p can only be reduced proportionally to 1/
√
M , while

maintaining a non-zero rate, when δ = 0. Corollary 16, on the other hand, proves that

the transmit power can be reduced proportionally to 1/N , while maintaining a non-zero

rate, when δ = 0. This reveals the positive role of deploying RISs in massive MIMO

systems. Secondly, the obtained power scaling law does not depend on the Rician factors

of the user-RIS links, i.e., εk,∀k. This implies that the rate in (4.56) is the same for

LoS-only and NLoS-only user-RIS channels. Thirdly, in (4.56), the desired signal term in

(4.56) scales asO(M) and the interference term scales asO(1). As a result, the rate scales

logarithmically with the number of BS antennas. When the number of antennas is large,

the power of the interference is relatively small compared with the power of the desired
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signal, and then a good rate can be guaranteed with the setup stated in Corollary 16.

Therefore, a rich-scattering environment between the RIS and the BS (δ = 0) is beneficial

in RIS-aided massive MIMO systems, since it can provide sufficient spatial multiplexing

gains and help eliminate the multi-user interference. Finally, (4.56) unveils that, if the

users are all located at the same distance from the RIS, i.e., α1 = . . . = αK , they all

achieve the same rate. Therefore, fairness requirements can be guaranteed in this special

case.

Corollary 16 sheds light on the achievable rate when the RIS-BS channel is Rayleigh

distributed (δ = 0). In the next corollary, the opposite scenario is analysed in which the

user-RIS channels are Rayleigh distributed (εk = 0,∀k).

Corollary 17. (“1/N” for “(Rician, Rayleigh)”) Assume δ > 0. If the user-RIS chan-

nels are Rayleigh distributed (εk = 0, ∀k) and the power is scaled as p = Eu/N with

N →∞, the rate of user k, k ∈ K, is lower bounded by

R
(NL2)
k → τ o log2

1 +
EuMc2k (δek2 + ek1)

2

Eu

(
Eleak
k +

∑K
i=1,i 6=k Iki

)
+ σ2ck (δek2 + ek1)

 , (4.57)

where

Eleak
k +

K∑
i=1,i 6=k

Iki =

K∑
i=1

ci

{
Mckδ

2e2k2 + ck
(
2δe2k2 + ek3

)
+

σ2

τEu

(
δe2k2 + ek3

)}
, (4.58)

ak3 =
ckδ

σ2

τEu(
ck + σ2

τEu

)(
ck + σ2

τEu
+Mckδ

) , (4.59)

ak4 =
ck

ck + σ2

τEu

. (4.60)

Proof: It follows from Theorem 3 by setting εk = 0,∀k and p = Eu/N , and by keeping

only the dominant terms for N →∞. �

Corollary 17 characterizes the achievable rate when the user-RIS channels are char-

acterized by rich scattering. The obtained performance trends are different from those
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unveiled in Corollary 16 (i.e., the RIS-BS channel characterized by rich scattering). In

contrast to Corollary 16, in particular, both the desired signal and the interference in

(4.57) scale as O (M). As a result, if the user-RIS channels are Rayleigh distributed, the

rate in (4.57) is still bounded from above even if the number of BS antennas is very large.

Besides, it is not hard to prove that the rate in (4.57) reduces to the same expression as

(4.56) if δ = 0. This result confirms the conclusion in Corollary 16 that the scaling law

is unrelated to the Rician factor εk if δ = 0.

From Corollary 16 and Corollary 17, it can be concluded that a small value of δ

is beneficial in terms of power scaling laws. This is because a small δ corresponds to

a high-rank RIS-BS channel, which provides sufficient spatial diversity for multi-user

communications. It is known that, due to the product pathloss law that characterizes

RIS-aided links in the far-field region, it is better to deploy an RIS either close to the

BS or close to the users[52, 80]. The analysis reveals that the best deployment for an

RIS depends on the spatial diversity provided by the RIS-BS channel. When the RIS is

deployed close to the users, δ could be small since the Rician factor commonly decreases

with the communication distance[71]. Therefore, placing the RIS close to the users is still

a good choice since this results in a high-rank RIS-BS channel. If the RIS is deployed

near the BS, δ could be large and the RIS-BS channel could become rank-deficient.

In this context, other methods are needed to improve the rank of the channel such as

introducing some artificial scatterers between the BS and the RIS or placing the RIS

very close to the BS[42].

4.4.2 Single-User Case

This subsection analyses the power scaling laws in the special case with only one user, i.e.,

K = 1. Without loss of generality, the user is referred to as user k. Since no other user

exists, the rate can be obtained from Theorem 3 by ignoring the multi-user interference

term, i.e., by setting Iki (Φ) = 0. For analytical tractability, it is further assumed that

the number of RIS elements is large. In this scenario (single-user and large N), it can be
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Table 4-B: Power scaling laws in the single-user case.
(RIS-BS channel, user-RIS channel)

(Ric., Ric.) (Ric., Ray.) (Ray., Ric.) (Ray., Ray.)

Imperfect CSI
M 1/M 1/M 1/

√
M 1/

√
M

N 1/N2 1/N

Perfect CSI
M 1/M
N 1/N2 1/N

proved that the optimal phase shift matrix that maximises the rate corresponds to the

condition |fk(Φ)| = N . This statement is formally proved in the next section (Theorem

4).

Therefore, by setting Iki = 0 and |fk(Φ)| = N in Theorem 3, it is obtained that the

power of the desired signal scales as O
(
M2N4

)
, the power of the signal leakage scales as

O
(
M2N3

)
, and the power of the noise term scales as O

(
MN2

)
. Therefore, the rate is

bounded for M →∞, but it can grow without bound for N →∞. For ease of exposition,

similar to the multi-user case, the obtained power scaling laws are summarised in Table

4-B. In the following, only the proofs for some (those that lead to insightful design

guidelines) system setups that are summarised in Table 4-B are reported. The proof of

each case study can, in fact, be obtained by using analytical steps similar to the multi-

user case. Finally, it is worth noting that the power scaling laws in the single-user case

with perfect CSI can be derived readily based on [43, Eq. (17)].

Corollary 18. Consider a single-user system with |fk(Φ)| = N . If the transmit power

is scaled as p = Eu/
(
MN2

)
with M,N →∞, the rate is lower bounded by

Rk → τ o log2

(
1 +

Eu
σ2

βαkδεk
(δ + 1) (εk + 1)

)
. (4.61)

If the transmit power is scaled as p = Eu/N
2 with N →∞, the rate is lower bounded

by

Rk → τ o log2

(
1 +

Eu
σ2
Mckδεk

)
. (4.62)
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Proof: Setting p = Eu/
(
MN2

)
, |fk(Φ)| = N and Iki = 0 in Theorem 3, the rate in

(4.61) follows because ek1, ek2, ek3 → 0 and by retaining the dominant terms that scale

as O
(
MN2

)
for M,N → ∞. Similarly, setting p = Eu/N

2, |fk(Φ)| = N and Iki = 0

in Theorem 3, the rate in (4.62) follows by retaining the dominant terms that scale as

O
(
N2
)

for N →∞. �

The SNRs in (4.61) and (4.62) do not depend on τ , and except for a pre-log scaling

factor, the same SNR as for perfect CSI-based systems can be obtained from [43, Eq.

(17)]. Therefore, τ = K = 1 is the optimal pilot length based on (4.61) and (4.62).

Therefore, the overhead for channel estimation is relatively low. Furthermore, the rates in

(4.61) and (4.62) are increasing functions with the Rician factors δ and εk, which unveils

that LoS-dominated environments are favourable for RIS-aided single-user systems. If

both δ → ∞ and εk → ∞, (4.61) and (4.62) are maximised. On the contrary, if δ = 0

or εk = 0, it can be observed that (4.61) and (4.62) tend to zero. This implies that the

power scaling law 1/N2 does not hold anymore. In these two cases, the transmit power

can be scaled only proportionally to 1/N to maintain a non-zero rate when N → ∞.

Mathematically, the corresponding power scaling laws can be proved from Corollary 16

and Corollary 17 by setting the multi-user interference to zero. As an example, the case

study for δ = 0 is analysed in the following corollary.

Corollary 19. Consider a single-user system with δ = 0. If the transmit power is scaled

as p = Eu/N with N →∞, the rate is lower bounded by

R
(NL1)
k →τ o log2

1+
EuMβαk

Euβαk+ σ2

τ +σ2
(

1 + σ2

τEuβαk

)
 . (4.63)

As τ increases, the denominator of the SNR of (4.63) decreases. Therefore, the SNR

of (4.63) is an increasing function of τ . Therefore, τ = 1 is not guaranteed to be optimal

in a rich-scattering environment (δ = 0), and a relatively large number of pilot signals

may be needed. Thus, Corollary 19 also unveils that LoS environments are favourable
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for RIS-aided single-user systems.

4.5 RIS Phase Shifts Design

This section optimises the phase shifts of the RIS to maximise the achievable rate derived

in Theorem 3. Since the derived achievable rate depends only on statistical CSI, the phase

shifts of the RIS need to be updated according to the time variations of the long-term

CSI. This results in less frequent updates of the RIS phase shifts especially in the sub-6

GHz frequency range, which, in turn, reduces the channel acquisition overhead and the

computational complexity.

4.5.1 Single-User Case

Before tackling the general optimisation problem, this subsection first justifies the state-

ment made in Section 4.4.2 that the optimal phase shift matrix that maximises the rate

in the single-user case fulfils the condition |fk(Φ)| = N . To this end, this subsection

aims to solve the phase shifts optimisation problem in the single-user case.

In the single-user case, only the user k is present. The target is to find the phase

shifts matrix Φ that maximises the lower bound of the achievable rate Rk in Theorem

3 by setting Iki (Φ) = 0. Only the scenarios with N > 1, δ > 0 and εk > 0, ∀k are

considered, since Φ can be set arbitrarily otherwise. It can be observed that the phase

shifts matrix Φ appears only in the term |fk (Φ)|2. For clarity, denote x = |fk (Φ)|2 as

the optimisation variable. Then, the rate Rk in Theorem 3 can be rewritten as given in

(4.64), which depends on some constants s1, s2, t1 and t2, as follows

Rk = τ o log2 (1 + SNRk (x))

= τ o log2

(
1 +

Esignal
k (x)

Eleak
k (x) + σ2

p E
noise
k (x)

)

= τ o log2

(
1 +

(s1x+ s2)
2

t1x+ t2

)
. (4.64)
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The expressions of s1, s2, t1 and t2 can be derived by direct inspection of Theorem 3 and

therefore are omitted for brevity. Besides, it is not difficult to prove that s1, s2, t1, t2 > 0.

From Lemma 3, it is known that the domain of the variable x is 0 ≤ x ≤ N2. Based on

(4.64), therefore, the optimisation problem can be formulated as follows

max
x

SNRk (x) =
(s1x+ s2)

2

t1x+ t2
, (4.65a)

s.t. 0 ≤ x ≤ N2. (4.65b)

To solve the problem in (4.65), the first-order derivative of SNRk (x) is computed

with respect to x, as follows

∂SNRk (x)

∂x
=

(s1x+ s2) (s1t1x+ 2s1t2 − s2t1)
(t1x+ t2)

2 . (4.66)

The first-order derivative of SNRk (x) is positive or negative depending on the numer-

ator in (4.66), which is a quadratic function of x, i.e., a parabola opening upward, with

two roots. The two roots can be obtained by setting (4.66) equal to zero, which yields

xL0 =
−s2
s1

, xR0 =
s2t1 − 2s1t2

s1t1
, (4.67)

where xL0 < 0 while xR0 can be positive.

The optimal configuration of Φ can be designed by analysing the derivative ∂SNRk(x)
∂x

in the domain of x, i.e., (4.65b), which depends on xR0 . For example, if xR0 ≤ 0, for a

parabola opening upward, it is obtained that ∂SNRk(x)
∂x ≥ 0 in the domain 0 ≤ x ≤ N2.

The complete optimal design criterion is summarised in the following theorem.

Theorem 4. For RIS-aided single-user systems subject to imperfect CSI, the optimal

phase shift matrix Φ obtained by maximizing the UatF bound of the achievable rate can

be summarised as follows.
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• It is optimal to set |fk (Φ)| = N if (1) xR0 ≤ 0; or (2) 0 < xR0 < N2 and SNRk (0) ≤

SNRk

(
N2
)
; or (3) N →∞.

• It is optimal to set |fk (Φ)| = 0 if (4) 0 < xR0 < N2 and SNRk (0) > SNRk

(
N2
)
;

or (5) xR0 ≥ N2.

Proof: It follows by direct inspection of xR0 . If xR0 ≤ 0, it is obtained that ∂SNRk(x)
∂x ≥ 0

in the domain 0 ≤ x ≤ N2. Thus, the SNR is an increasing function of x in its domain,

which implies that the maximum SNR is reached at the endpoint x = N2. Therefore,

it is optimal to set |fk (Φ)| = N . If xR0 ≥ N2, ∂SNRk(x)
∂x ≤ 0 is obtained in the domain

of x. Thus, the SNR is a decreasing function of x, which implies that the maximum

SNR is reached at the endpoint x = 0. Therefore, it is optimal to set |fk (Φ)| = 0.

If 0 < xR0 < N2, the SNR first decreases for x < xR0 , and then increases for x > xR0 .

Therefore, the maximum SNR is obtained either at x = 0 or at x = N2. By comparing

SNRk (0) with SNRk

(
N2
)
, the optimal design can be identified. Finally, a special case of

N →∞ is considered. In this context, it is obtained that SNRk (0) < SNRk

(
N2
)
, since

SNRk (0) is bounded while SNRk

(
N2
)
→∞. Therefore, it is optimal to set |fk (Φ)| = N

if N →∞. �

Finally, note that the optimal design obtained for N →∞ substantiates the analysis

reported in Section 4.4.2 for large N .

4.5.2 Multi-User Case

This subsection focuses on the design of the RIS phase shifts in the general multi-user

scenario for K > 1. In the multi-user case, as mentioned in Remark 3, it is necessary to

guarantee some fairness among the different users at the design stage. To this end, the

objective is to maximise the minimum rate of the users. As a result, the optimisation
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problem can be formulated as follows

max
Φ

min
k∈K

Rk (Φ) , (4.68a)

s.t. 0 ≤ θn < 2π,∀n, (4.68b)

where Rk (Φ) is given by (4.37) in Theorem 3.

Due to the complex analytical expression of Rk and the fairness requirement among

the users, it is difficult to solve the problem in (4.68) by using conventional optimisa-

tion methods, such as semi-definite programming (SDP) and the MM algorithm. In

this chapter, the problem in (4.68) is tackled by leveraging GA-based methods, whose

suitability and effectiveness to optimise RIS-aided systems has been recently validated

in [46, 70, 81]. The main idea of a GA-based method applied to RIS-aided systems is to

view the RIS phase shifts as the gene of a population. The approach consists of evolving

the population by updating its gene, and finally setting the RIS phase shifts equal to the

best gene in the last generation[69, 82]. The detailed process of the proposed GA-based

method is stated as follows.

1) Population initialization: First, generate an initial population having S =

Se + Sc + Sm individuals, where each individual has a chromosome with N genes. The

chromosome of the individual 1 ≤ t ≤ S is denoted by Φt = diag
{
ejθ

t
1 , . . . , ejθ

t
N

}
, whose

nth gene is θtn that is randomly generated in [0, 2π). The three sets of individuals Se,

Sc, and Sm are detailed next.

2) Fitness evaluation and scaling: Then, define the raw fitness of the individual

t with chromosome Φt in the current population as ft = min
k
Rk
(
Φt
)
. The individu-

als having a better raw fitness in the current population have a higher probability to

reproduce. To avoid premature convergence, utilize the rank scaling method to map

raw fitness values to expected values. Let Rank(t) denote the rank, in descending order,

of the raw fitness of the individual t. Then, the expected fitness of the individual t is
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Algorithm 2 Stochastic universal sampling.

1: Input the population’s expected fitness [f̂1, . . . , f̂S ], set F̂sum = 0;
2: Randomly initialize a pointer 0 ≤ ptr ≤ 1

(2Sc+Sm) ;
3: for i = 1 : 2Sc + Sm do
4: for t = 1 : S do
5: F̂sum = F̂sum + f̂t;
6: if F̂sum ≥ ptr then
7: Select the individual t as a parent and then break;
8: end if
9: end for

10: F̂sum = 0, ptr = ptr + 1
(2Sc+Sm) ;

11: end for

calculated as

f̂t =
Rank(t)−0.5∑S
i=1 Rank(i)−0.5

, 1 ≤ t ≤ S. (4.69)

3) Selection: The Se individuals with the highest expected fitness in the current

population are selected as elite individuals. These elite individuals are directly passed

to the next generation. Then, apply the stochastic universal sampling method to select

2Sc crossover parents and Sm mutation parents. The process is sketched in Algorithm

2.

4) Crossover and mutation: Based on the selected parents, Sc crossover offspring

and Sm mutation offspring are reproduced according to Algorithm 3. Then, the current

population can evolve to the next generation, which is composed of Se elite individuals,

Sc crossover offspring and Sm mutation offspring.

5) Stopping criterion: If the number of generations is higher than 100N or the

average change of the raw fitness is lower than 10−4, the GA is stopped. The output of

the GA algorithm is the chromosome of the individual having the highest raw fitness in

the current population. The obtained chromosome is the set of optimal phase shifts of

the RIS. Otherwise, the GA is repeated from Step 2.
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Algorithm 3 Crossover and Mutation.

1: Input 2Sc + Sm selected parents and disturb their order;
2: for i = 1 : Sc do
3: Select the (2i − 1)-th and the 2i-th parents. Assume that their chromosome is

Φ2i−1 and Φ2i, respectively;
4: Generate an integer crossover point s randomly from [1, N − 1];
5: Crossover the chromosome of two parents at point s to generate the i-th offspring.

The offspring has the chromosome diag
{
ejθ

2i−1
1 , . . . , ejθ

2i−1
s , ejθ

2i
s+1 , . . . , ejθ

2i
N

}
;

6: end for
7: for i = 2Sc + 1 : Sm do
8: Select the i-th parent;
9: Reproduce the i-th offspring by mutating each gene of the i-th parent with a

probability pm. The mutated gene is generated randomly from [0, 2π);
10: end for

4.6 Numerical Results

In this section, the performance of RIS-aided massive MIMO systems is evaluated and

the impacts of key system parameters unveiled in the previous sections are validated. A

typical RIS-aided scenario is considered where an RIS is deployed in close proximity to

some cell-edge users. In this case, the direct links are relatively weak, and therefore an

RIS may improve the end-to-end system performance. Accordingly, it is assumed that

K = 8 users are evenly distributed on a semicircle centred at the RIS and of radius

dUI = 20 m. The distance between the RIS and the BS is dIB = 700 m. The distance

between the user k and the BS is obtained from the network topology, i.e.,
(
dUB
k

)2
=(

dIB − dUI cos
(
π
9k
))2

+
(
dUI sin

(
π
9k
))2

. The path-loss exponent of the direct links is

larger than the path-loss exponent of the RIS-assisted links in order to characterize the

more severe signal attenuation due to the presence of blocking objects on the ground.

Specifically, the distance-dependent path-loss factors are set to be equal to αk = 10−3d−2UI ,

β = 10−3d−2.5IB and γk = 10−3
(
dUB
k

)−4
, ∀k. The number of symbols in each channel

coherence time interval is τc = 196[3, 4], and τ = K = 8 symbols are utilized for channel

estimation. The noise power is σ2 = −104 dBm (corresponding to a noise spectral

density equal to −174 dBm/Hz over a bandwidth of 10 MHz). The other simulation

parameters (unless stated otherwise) are listed in Table 4-C. The analytical results are

obtained by using Theorem 3 and related corollaries. The Monte Carlo simulations,
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Table 4-C: Simulation parameters.
(ϕat , ϕ

e
t ) (4.17, 0.09) (φar , φ

e
r) (6.28, 4.21)

(ϕa1r, ϕ
e
1r) (5.20, 4.32) (ϕa2r, ϕ

e
2r) (0.41, 2.52)

(ϕa3r, ϕ
e
3r) (3.84, 1.78) (ϕa4r, ϕ

e
4r) (1.35, 4.15)

(ϕa5r, ϕ
e
5r) (5.08, 5.76) (ϕa6r, ϕ

e
6r) (4.75, 1.56)

(ϕa7r, ϕ
e
7r) (4.74, 5.36) (ϕa8r, ϕ

e
8r) (0.09, 1.40)

BS antennas M = 64 RIS elements N = 64

Transmit power p = 30 dBm Antenna spacing dbs = λ/2

Rician factors δ = 1, εk = 10, ∀k Approximation factor µ = 100

0 500 1000 1500 2000 2500

1.5

2

2.5

3

3.5
10

-13

0 500 1000 1500 2000 2500

0

0.1

0.2

0.3

0.4

0.5

0.6

(4.23)

Figure 4.1: MSE and NMSE of user 1 versus N .

which are referred to as “Simulation” in the legends of the figures, are obtained from

(4.29) by averaging over 105 random channel realizations.

Note that the results in existing literature [50, 51] do not serve as the baselines in this

thesis. This is because their results were obtained based on full-rank LoS RIS-BS chan-

nels and Rayleigh user-RIS channels. As a result, the aggregated channels of different

users follow independent Gaussian distributions leading to small multi-user interference

and good performance. By contrast, the considered Rician channel models result in

channel dependence among users, leading to performance degradation. Therefore, it is

unfair to compare these results.
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4.6.1 Quality of the LMMSE Channel Estimation

To begin with, the MSE and NMSE of the proposed channel estimation scheme are

investigated. The MSE and NMSE of the channel estimation algorithm of the k-th user

are characterized through the functions Tr {MSEk} and NMSEk, respectively. Without

loss of generality, Fig. 4.1 illustrates the MSE and NMSE of user 1 versus the number

of RIS elements N . In general Rician channels, it can be observed that the MSE is

an increasing function of N while the NMSE is a decreasing function of N , which is

consistent with Corollaries 10, 11 and 12. This is because the number of communication

paths increases with N , but the pilot length τ does not increase correspondingly, which

increases the estimation error. However, the intensity of the channel gains increases with

N , which, in turn, decreases the normalized errors. In purely LoS RIS-assisted channels

(δ = εk → ∞), the MSE and NMSE are, on the other hand, independent of N . This

is because LoS channels are deterministic, and therefore do not introduce additional

estimation errors. Also, it can be seen the MSE tends to an upper bound but the NMSE

tends to zero when N → ∞, which validates Corollary 10 and 11. By increasing the

length of the pilot signals from 8 to 30, it can be seen that the NMSE decreases. However,

the NMSE that is obtained for τ = 30 can also be obtained for τ = 8 but by using a

larger value for N . This validates the remark that increasing the RIS elements can play

a similar role as increasing τ . Finally, it can be seen that the NMSE tends to a limit

less than 1 when the transmit power is scaled proportionally to p = 100/N , as N →∞.

This validates the correctness of (4.27).

4.6.2 Single-User Case

Next, the achievable achievable rate in the single-user scenario is evaluated, where only

user 1 is present.

Fig. 4.2 compares the proposed two-timescale scheme with the conventional instanta-

neous CSI-based scheme. For brevity, the detailed implementation of the instantaneous

CSI-based scheme is presented in [83, Appendix J]. By assuming the same rate loss
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Figure 4.2: Comparison of the two-timescale and instantaneous CSI-based
design.

factor (ideal but not achievable), it is seen that the instantaneous CSI-based scheme

outperforms the proposed two-timescale scheme, especially when N is large. This is

because the LoS and NLoS channel components are both exploited in the instantaneous

CSI-based RIS design. By contrast, the fast-fading NLoS channel information is aver-

aged out in the proposed statistical CSI-based RIS design. When considering the actual

channel estimation overhead, however, the proposed scheme outperforms the instanta-

neous CSI-based scheme. This is because the instantaneous CSI-based scheme requires

a longer pilot length, which is proportional to N , even though it results in a higher

SNR. When N is large, the instantaneous CSI-based scheme needs a large number of

time slots to transmit the pilot sequence, and then only a few symbols are left for data

transmission. As a result of the high estimation overhead, the instantaneous CSI-based

scheme incurs in a rate loss, which leads to a severe decrease of the rate in the large N

regime. Furthermore, it can be seen that the benefits of the two-timescale design rely on

the value of channel coherence time τc. In the case of long channel coherence time, the

rate loss caused by the factor (N + 1)/τc for instantaneous CSI-based design would be

small. Therefore, the two-timescale design is more suitable for the scenario with short

coherence time.

Fig. 4.3 illustrates the power scaling law as a function of N in a single-user scenario.
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Figure 4.3: Rate versus N in a single-user system. The transmit power is
scaled as p = Eu/N

2 or p = Eu/N , where Eu = 20 dB.

In agreement with Corollary 18, the rate converges to a limit if the power is reduced pro-

portionally to 1/N2 in Rician fading channels. Also, the limit is maximised in LoS-only

RIS-assisted channels (δ = εk →∞). In NLoS-only RIS-assisted channels (δ = εk = 0),

scaling the power proportionally to 1/N2 reduces the rate to zero. As proved in Corol-

lary 19, in NLoS-only RIS-assisted channels, the power can only be scaled proportionally

to 1/N for maintaining a non-zero rate. These observations highlight that LoS environ-

ments are preferable for the deployment of RIS-aided single-user systems.

4.6.3 Multi-User Case

In Figs. 4.4-4.7, the performance of RIS-aided systems is evaluated in the general multi-

user scenario.

Fig. 4.4 shows the impact of the Rician factors. It can be observed that the achievable

rate is a decreasing function of δ but an increasing function of εk,∀k. This is because

the rank of the LoS component H2 between the RIS and the BS is 1, while the rank

of the LoS component H1 between the users and the RIS is not. When δ → ∞, the

rank of the RIS-BS channel tends to 1, which leads to a rank-1 cascaded user-RIS-BS

channel. As a result, the RIS-assisted channel becomes rank-deficient, which cannot

effectively sustain the transmission of multiple users simultaneously. It is known that
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Figure 4.4: Minimum user rate versus the Rician factor δ or εk,∀k.

the RIS should be deployed either near the BS or near the users so that the product

pathloss effect is mitigated[52]. In addition, Fig. 4.4 provides some suggestions with

respect to the spatial diversity gain provided by the deployment of an RIS. To increase

εk, it is beneficial to install the RIS at a certain height with respect to the ground,

which results in increasing the strength of the LoS components of the RIS-user channels.

Besides, it is necessary to guarantee a high-rank RIS-BS channel. This condition holds

for small values of δ under the considered Rician fading model. Since small values of

δ are typically obtained when the RIS is deployed far away from the BS, it is still a

good choice to place the RIS near the users after taking into consideration the impact of

spatial diversity. On the contrary, if the RIS is deployed near the BS, δ could be large

and the BS-RIS channel could be rank-deficiency under the considered Rician fading

model. In this case, possible options for increasing the rank of the channel may be the

deployment of artificial scatterers between the BS and the RIS or placing the RIS very

close to the BS so that the spherical wave model is valid[42].

Fig. 4.5 evaluates the rate as a function of the number of BS antennas. The figure

illustrates the impact of deploying an RIS in conventional massive MIMO systems. It is

observed that the deployment of an RIS effectively improves the rate, and the improve-

ment increases with the number of RIS elements. It is worth noting that this performance
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Figure 4.5: Minimum user rate versus M .

gain is obtained by using a simple MRC receiver at the BS, and that the LMMSE chan-

nel estimator requires the same amount of overhead as conventional massive MIMO

systems. With the help of an RIS, the same rate as conventional massive MIMO systems

can be achieved, but with a much smaller number of BS antennas. In particular, the rate

obtained by a 200-antenna BS in conventional massive MIMO systems can be obtained

by a 100-antenna BS in RIS-aided massive MIMO systems with N = 64 RIS elements.

The number of BS antennas can be further decreased to M = 64 if the number of RIS

elements is increased to N = 400. Since the cost and energy consumption of one RIS

element is much lower than that of one BS antenna, it can be concluded that the inte-

gration of RISs in conventional massive MIMO systems is a promising and cost-effective

solution for future wireless communication systems.

In Fig. 4.6 and Fig. 4.7, finally, the power scaling laws over a purely NLoS RIS-BS

channel (δ = 0) and a purely NLoS user-RIS channels (εk = 0,∀k) are investigated.

In Fig. 4.6, the transmit power is scaled proportionally to 1/
√
M for the NLoS RIS-BS

channel (δ = 0). In agreement with Corollary 15, if δ = 0, the rate can be maintained to a

non-zero value when the power is scaled proportionally to 1/
√
M as M →∞. Compared

with conventional massive MIMO systems, the deployment of an RIS effectively improves

the asymptotic limit when M → ∞, and the rate gain could be further improved by
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Figure 4.6: Minimum user rate versus M when δ = 0. The transmit power is

scaled as p = Eu/
√
M , where Eu = 10 dB.
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Figure 4.7: Minimum user rate versus N when δ = 0 or εk = 0. The transmit
power is scaled as p = Eu/N , where Eu = 10 dB.

increasing N .

In Fig. 4.7, the transmit power is scaled proportionally to 1/N over a purely NLoS

RIS-BS channel (δ = 0) or purely NLoS user-RIS channels (εk = 0, ∀k). For N →

∞, the rate maintains a non-zero value, which is consistent with Corollaries 16 and

17. Besides, in agreement with Corollary 16, the asymptotic limit for δ = 0 when

N → ∞ can be significantly improved by increasing the number of BS antennas from

M = 64 to M = 400. This is because the RIS-BS channel has a high rank if δ = 0,
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which decreases the spatial correlation among the users and mitigates the multi-user

interference. Furthermore, in agreement with Corollary 17, the asymptotic limit for

εk = 0,∀k when N → ∞ only marginally increases when increasing M from 64 to 400.

This observation confirms once again that guaranteeing a high spatial diversity between

the RIS and the BS could offer a good rate in RIS-aided massive MIMO systems.

4.7 Summary

This chapter investigates a two-timescale design for RIS-aided massive MIMO systems

by taking into account the channel estimation errors. An LMMSE estimator is proposed

for obtaining the instantaneous CSI of the M × K RIS-assisted aggregated channel,

whose channel estimates are used by the BS for MRC. A closed-form expression for the

achievable rate is derived, and the power scaling laws are studied. Based on the derived

analytical expressions, the RIS phase shifts are designed relying only on statistical CSI,

which significantly reduces the signalling overhead and the computational complexity.

For the single-user case, a closed-form optimal solution is obtained. For the general

multi-user case, a GA is proposed for solving the minimum user rate maximisation

problem. The obtained analytical and numerical results show that the transmit power

can be reduced proportionally to 1/M , while maintaining a non-zero rate, as M → ∞

over RIS-BS Rician channels. If the RIS-BS channel is Rayleigh distributed, on the

other hand, a non-zero rate can be maintained when the power is scaled proportionally

to 1/
√
M as M →∞ or proportionally to 1/N as N →∞.



Chapter 5

RIS-Aided Massive MIMO with

Correlated Channels and EMI

5.1 Introduction

Chapter 4 has investigated the RIS-aided massive MIMO systems with the general Rician

fading channel and in the presence of the channel estimation error. However, some

unique and realistic characteristics need to be considered when analysing RIS-aided sys-

tems, including the spatial correlation among the RIS elements and the EMI. To date,

the impact of spatial correlation and EMI have not been examined in RIS-aided massive

MIMO systems based on the two-timescale scheme and in the presence of imperfect CSI.

To be specific, due to the planar structure of the RIS, the channel spatial correlation

among the RIS elements cannot be ignored [84]. To model the LoS and NLoS channel

components and the spatial correlation among the RIS elements, the correlated Rician

fading model is considered an appropriate choice. Also, due to the large aperture, an

RIS may be subject to a large amount of EMI, which is generated by any uncontrol-

lable external sources (e.g., the signals from adjacent cells and the natural background

radiation) [85, 86]. Therefore, the EMI re-radiated by a large RIS towards the intended

88



Chapter 5. RIS-Aided Massive MIMO with Correlated Channels and EMI 89

RIS

EMI

M antennas

User K

...

...
User 1

User k

BS

EMIEMI

Figure 5.1: An RIS-aided massive MIMO system with EMI.

receiver might deteriorate the channel estimation quality and reduce the end-to-end

SINR, especially when the RIS is large and the useful signal power is weak. These three

open research problems motivate the research in this chapter.

This chapter analyses the uplink two-timescale transmission of an RIS-aided massive

MIMO system that is subject to imperfect aggregated CSI. The analysis in chapter 4

is generalized to a channel model with spatially correlated Rician fading and EMI. In

this context, the impacts of spatial correlation and EMI on the achievable rate and the

power scaling laws are studied. Finally, a gradient ascent method is proposed to solve

the minimum user rate maximisation problem based only on statistical CSI. The specific

contributions of this chapter are summarised as follows.

• A more general system model is considered that includes spatial correlation at

the RIS and the EMI captured by the RIS. The LMMSE channel estimates are

computed and the UatF bound of the achievable rate is formulated in a closed-form

expression. The analysis shows that the presence of spatial correlation provides

the RIS with an enhanced capability of customizing the wireless environment. On

the other hand, the presence of severe EMI may result in different power scaling

laws.

• For both the spatially independent and spatially correlated channel models, an

accelerated gradient ascent-based algorithm is proposed to solve the minimum user

rate maximisation problem. A log-sum-exp approximation is applied to obtain a
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smooth objective function. Then, the gradient vectors with respect to the angle

vectors are computed. The performance loss in the projection is avoided since

the objective function is periodic with the angles and the unit modulus constraint

holds for all the angles.

• The obtained numerical results show that (i) an RIS with a large number of ele-

ments may benefit from the presence of spatial correlation; (ii) in the presence of

severe EMI, an RIS-aided system may not offer better performance than a con-

ventional massive MIMO system; (iii) the integration of RISs in massive MIMO

systems is especially beneficial when the RISs are deployed near the cell edge users.

5.2 Theoretical Analysis

The analysis in Chapter 4 is generalized by further considering the impact of spatial

correlation at the RIS and the presence of EMI. The spatial correlation at the BS is

ignored, since a ULA with half-wavelength antenna spacing is assumed at the BS. On

the other hand, the RIS is usually modelled as a UPA and the spatial correlation cannot

be ignored in general [84]. Specifically, this chapter has two objectives: (1) to analyse

the impact of spatial correlation and EMI in RIS-aided massive MIMO systems; and

(2) to study to what extent the findings obtained in Chapter 4 hold in the presence of

spatial correlation and EMI.

5.2.1 Channel Model with Spatial Correlation

The evaluation conducted in Chapter 4 indicates that it is appropriate to place the RIS

near the users. In this scenario, the LoS components dominate the user-RIS channels,

and therefore the Rician factor εk is relatively large. For ease of analysis and brevity, this

chapter focuses on the scenario where the user-RIS channels are characterized only by

the LoS component (i.e., εk →∞, ∀k). In the following, the system model is presented

in the presence of spatial correlation and EMI. For the avoidance of doubt, the subscript

c is utilized to indicate the existence of spatial correlation.
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In the presence of spatial correlation and EMI, the received signal at the BS is

yc =
√
pQcx + Hc,2Φv + n, (5.1)

where v ∼ CN
(
0, σ2eRemi

)
denotes the EMI received at the RIS whose spatial correlation

matrix is Remi. Specifically, the EMI is reflected by the RIS and reaches the BS through

the RIS-BS channel Hc,2 resulting in the term Hc,2Φv in (5.1). The matrix Qc =

[qc,1,qc,2, . . . ,qc,K ] ∈ CM×K denotes the spatially correlated aggregated channel from

the K users to the BS, where qc,k = Hc,2Φhk + dk is the aggregated channel of user k.

The user k-RIS channel hk and the RIS-BS channel Hc,2 are, respectively, given by

hk =
√
αkhk, (5.2)

Hc,2 =

√
β

δ + 1

(√
δH2 + H̃c,2

)
, (5.3)

where H̃c,2 = H̃2R
1/2
ris and Rris denotes the spatial correlation matrix of the NLoS

channel components. Assuming an isotropic scattering environment for v and H̃c,2, the

spatial correlation matrices Remi and Rris at the RIS can be formulated as Remi =

Rris = R with[84, 85]

[R]a,b = sinc

(
2 ‖ua − ub‖

λ

)
, 1 ≤ a, b ≤ N, (5.4)

where ‖ua − ub‖ denotes the distance between the a-th and b-th elements of the RIS,

which depends on the RIS element spacing dris. Since sinc(·) is an even function, it is

obtained that R = RH . For ease of writing, define ĉk = αkβ
δ+1 . Therefore, based on (5.2)

and (5.3), the spatially correlated aggregated channel of user k can be expressed as

qc,k = Hc,2Φhk + dk

=
√
ĉkδH2Φhk +

√
ĉkH̃c,2Φhk +

√
γkd̃k.

(5.5)
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5.2.2 Channel Estimation with EMI

In this section, the LMMSE channel estimate q̂c,k for the aggregated channel of the k-th

user in the presence of the spatial correlation and the EMI is derived. During the channel

estimation phase, the BS receives the M × τ pilot signal as follows

Yc,P =
√
τpQcS

H + Hc,2ΦV + N, (5.6)

where V = R
1/2
emiṼ ∈ CN×τ and each element of Ṽ ∈ CN×τ is independently distributed

as CN
(
0, σ2e

)
. After correlating Yc,P with sk, the observation vector for the channel of

the k-th user qc,k is given by

ykc,p =
1
√
τp

Yc,P sk = qc,k +
(Hc,2ΦV + N) sk√

τp
. (5.7)

Theorem 5. Based on ykc,p, the LMMSE channel estimate for qc,k is given by

q̂c,k =
√
ĉkδH2Φhk +

√
ĉkΥkH̃c,2Φhk +

√
γkΥkd̃k +

ΥkHc,2ΦVsk√
τp

+
ΥkNsk√

τp
,

(5.8)

where

Υk = ΥH
k =

(
ĉkh

H
k ΦHRrisΦhk + γk

)
×

(
ĉkh

H
k ΦHRrisΦhk + γk +

σ2

τp
+
σ2eβ Tr

{
RemiΦ

HRrisΦ
}

τp(δ + 1)

)
IM

+
σ2eβδH2ΦRemiΦ

HH
H
2

τp(δ + 1)


−1

. (5.9)

Proof: See Appendix C.1. �
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Besides, applying [87, Eq. (12.21)], the MSE matrix is given by

MSEc,k =
(
ĉkh

H
k ΦHRrisΦhk + γk

)
(IM −Υk) . (5.10)

Equation (5.10) embodies the impact of spatial correlation and EMI on channel esti-

mation. By the direct inspection of (5.10), the following observations can be found. On

the one hand, the MSE may be degraded by the EMI power σ2e through the term Υk.

On the other hand, the unitary matrices ΦH and Φ do not cancel out in the presence

of spatial correlation, i.e., the matrices Rris and Remi are not identity matrices. This

implies that an RIS can be utilized for improving the channel estimation accuracy for

transmission over spatially correlated channels. This is a benefit that spatial correlation

brings in RIS-aided systems. If the spatial correlation is negligible, by contrast, it is

obtained that Rris = Remi = IN and the MSE matrix in (5.10) no longer depends on

Φ, and therefore the phase shifts of the RIS cannot be optimised to improve the quality

of channel estimation.

5.2.3 Achievable Rate Analysis

Based on the estimated channel q̂c,k, the MRC detector can be obtained and the corre-

sponding UatF bound of the achievable rate can be computed in the presence of spatial

correlation and EMI as well. Specifically, by pre-multiplying the MRC decoding matrix

Q̂H
c = [q̂c,1, . . . , q̂c,K ]H with the received signal yc in (5.1), the decoded symbols at the

BS are given by

rc = Q̂H
c yc =

√
pQ̂H

c Qcx + Q̂H
c Hc,2Φv + Q̂H

c n. (5.11)
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Then, the k-th entry of rc can be expressed as follows

rc,k =
√
pE
{̂
qHc,kqc,k

}
xk+
√
p
(
q̂Hc,kqc,k−E

{
q̂Hc,kqc,k

})
xk

+
√
p

K∑
i=1,i 6=k

q̂Hc,kqc,ixi + q̂Hc,kHc,2Φv + q̂Hc,kn.
(5.12)

Accordingly, the SINR of user k can be written as

SINRc,k=
pEsignal

c,k

pEleak
c,k +p

∑K
i=1,i 6=k Ic,ki+σ

2
eE

emi
c,k +σ2Enoise

c,k

, (5.13)

where the desired signal is Esignal
c,k =

∣∣∣E{q̂Hc,kqc,k

}∣∣∣2, the signal leakage is Eleak
c,k =

E
{∣∣∣q̂Hc,kqc,k∣∣∣2} − ∣∣∣E{q̂Hc,kqc,k

}∣∣∣2, the interference is Ic,ki = E
{∣∣∣q̂Hc,kqc,i∣∣∣2}, the EMI

is Eemi
c,k = E

{
q̂Hc,kHc,2ΦRemiΦ

HHH
c,2q̂c,k

}
, and the noise is Enoise

c,k = E
{
‖q̂c,k‖2

}
.

In order to obtain a compact expression for the UatF bound of the achievable rate,

the following shorthand functions are introduced, for 1 ≤ k, i ≤ K

fc,1(Φ) = Tr
{
RrisΦRemiΦ

H
}
, fc,k,2(Φ) = h

H
k ΦHRrisΦhk,

fc,k,3(Φ) = Tr
{

Υ2
kH2ΦRemiΦ

HH
H
2

}
,

fc,k,4(Φ) = Tr
{
Υ2
k

}
, fc,k,5(Φ) = |Tr {Υk}|2 ,

fc,k,6(Φ) = h
H
k ΦHRrisΦRemiΦ

HRrisΦhk,

fc,k,7(Φ) = |fk(Φ)|2 , fc,ki,8(Φ) = h
H
i ΦHH

H
2 Υ2

kH2Φhi,

fc,ki,9(Φ) = h
H
i ΦHH

H
2 ΥkH2ΦRemiΦ

HH
H
2 ΥH

k H2Φhi.

(5.14)

Theorem 6. In the presence of spatial correlation and EMI, the UatF bound for the

achievable rate of the k-th user is given by

Rc,k = τ o log2 (1 + SINRc,k) , (5.15)

SINRc,k=
pEsignal

c,k

pEleak
c,k +p

∑K
i=1,i 6=k Ic,ki+σ

2
eE

emi
c,k +σ2Enoise

c,k

, (5.16)
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where the signal term is Esignal
c,k =

(
Enoise
c,k

)2
and the noise term is

Enoise
c,k = Mĉkδ |fk(Φ)|2 + ĉk Tr {Υk}h

H
k ΦHRrisΦhk

+ γk Tr {Υk} .
(5.17)

The EMI term is given by Eemi
c,k = β

δ+1

∑8
ω=1E

ω,emi
c,k where

E1,emi
c,k = M2ĉkδ

2fc,k,7(Φ)aHNΦRemiΦ
HaN ,

E2,emi
c,k =

(
ĉkδfc,k,2(Φ) +

2βδσ2e
τp(δ + 1)

fc,1(Φ) + δ

(
γk +

σ2

τp

))
fc,k,3(Φ),

E3,emi
c,k =

(
Mĉkδfc,k,7(Φ) +

(
σ2

τp
+ γk + ĉkfc,k,2(Φ)

+
βσ2e

τp(δ + 1)
fc,1(Φ)

)
fc,k,4(Φ)

)
fc,1(Φ),

E4,emi
c,k =

βδ2σ2e
τp(δ + 1)

Tr

{(
RemiΦ

HH
H
2 ΥkH2Φ

)2}
,

E5,emi
c,k = 2ĉkδTr {Υk} × Re

{
h
H
k ΦHH

H
2 H2ΦemiΦ

HRrisΦhk

}
,

E6,emi
c,k =

2βδσ2e
τp(δ + 1)

Tr {Υk} × Tr
{

RemiΦ
HH

H
2 ΥH

k H2ΦRemiΦ
HRrisΦ

}
,

E7,emi
c,k = ĉkfc,k,5(Φ)fc,k,6(Φ),

E8,emi
c,k =

βσ2e
τp(δ + 1)

fc,k,5(Φ) Tr
{(

RrisΦRemiΦ
H
)2}

.

(5.18)
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The interference term is Ic,ki =
∑8

ω=1 I
ω
c,ki, where

I1c,ki = γiE
noise
c,k +M2ĉk ĉiδ

2fc,k,7(Φ)fc,i,7(Φ),

I2c,ki =

{
Mĉk ĉiδfc,k,7(Φ) +

(
ĉi

(
γk +

σ2

τp

)
+

ĉiβσ
2
e

τp(δ + 1)
fc,1(Φ)

)
fc,k,4(Φ)

+
ĉiβδσ

2
e

τp(δ + 1)
fc,k,3(Φ)

}
fc,i,2(Φ),

I3c,ki = {ĉk ĉiδfc,ki,8(Φ) + ĉk ĉifc,k,4(Φ)fc,i,2(Φ)} fc,k,2(Φ),

I4c,ki =

{
ĉiβδσ

2
e

τp(δ + 1)
fc,1(Φ) + ĉiδ

(
γk +

σ2

τp

)}
fc,ki,8(Φ),

I5c,ki =

{
ĉk ĉi

∣∣∣hHk ΦHRrisΦhi

∣∣∣2 +
ĉiβσ

2
e

τp(δ + 1)
fc,i,6(Φ)

}
× fc,k,5(Φ),

I6c,ki = 2ĉk ĉiδTr {Υk} × Re
{

h
H
k ΦHH

H
2 H2Φhih

H
i ΦHRrisΦhk

}
,

I7c,ki =
ĉiβδ

2σ2e
τp(δ + 1)

fc,ki,9(Φ),

I8c,ki =
2ĉiβδσ

2
e

τp(δ + 1)
Tr {Υk} × Re

{
h
H
i ΦHRrisΦRemiΦ

HH
H
2 ΥH

k H2Φhi

}
.

(5.19)

The signal leakage term is Eleak
c,k =

∑8
ω=1E

ω,leak
c,k , where

E1,leak
c,k = Mĉkδγkfc,k,7(Φ),

E2,leak
c,k =

{
Mĉ2kδfc,k,7(Φ) + ĉ2kδfc,kk,8(Φ)

+

(
ĉ2kfc,k,2(Φ) + 2ĉkγk +

ĉkσ
2

τp

)
fc,k,4(Φ)

}
× fc,k,2(Φ),

E3,leak
c,k =

{̂
ckδγk+

ĉkβδσ
2
e

τp(δ+1)
fc,1(Φ)+

ĉkδσ
2

τp

}
fc,kk,8(Φ),

E4,leak
c,k =

{
γ2k +

γkσ
2

τp
+

βσ2e
τp(δ + 1)

(γk+ĉkfc,k,2(Φ)) fc,1(Φ)

}
fc,k,4(Φ),

E5,leak
c,k =

ĉkβδ
2σ2e

τp(δ + 1)
fc,kk,9(Φ),

E6,leak
c,k =

2ĉkβδσ
2
e

τp(δ + 1)
Tr
{
ΥH
k

}
× Re

{
h
H
k ΦHH

H
2 ΥkH2ΦRemiΦ

HRrisΦhk

}
,

E7,leak
c,k =

βδσ2e
τp(δ + 1)

{γk + ĉkfc,k,2(Φ)} fc,k,3(Φ),

E8,leak
c,k =

ĉkβσ
2
e

τp(δ + 1)
fc,k,5(Φ)fc,k,6(Φ).

(5.20)
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Proof: See Appendix C.2. �

By comparing the rate Rc,k in Theorem 6 with the rate Rk in Theorem 3, the impact

of spatial correlation and EMI can be unveiled. The impact of spatial correlation on the

achievable rate is discussed in the following remark.

Remark 4. As briefly mentioned for the MSE in (5.10), the presence of spatial correla-

tion could enhance the capabilities of an RIS to tailor a wireless channel. This is apparent

by the direct inspection of the rate in Theorem 6 as well. To be specific, consider the term

h
H
k ΦHRrisΦhk as an example. If the spatial correlation is negligible, this term is fixed

and equal to N without any possibility to be adjusted by the RIS, since the matrix Φ is a

unitary matrix and ΦHΦ = IN . However, the same term can be shaped by an RIS in the

presence of spatial correlation. For simplicity, the most severe setup in terms of spatial

correlation is assumed, i.e., Rris = 1N×N so that h
H
k ΦHRrisΦhk =

∣∣∣hHk ΦH1N×1

∣∣∣2.

Based on the proof of Lemma 3, it is obtained that 0 ≤
∣∣∣hHk ΦH1N×1

∣∣∣2 ≤ N2, which

demonstrates the enhanced adjustment ability of an RIS to shape the channel in the

presence of spatial correlation.

Next, the impact of the EMI on the power scaling laws is discussed. Due to the

complex expressions in (5.18) and the fact that the optimal design of the RIS phase

shifts matrix Φ cannot be obtained in a closed-form expression, general conclusions

cannot be drawn. However, some special cases are discussed in the following corollary

based on the proof by contradiction method.

Corollary 20. The power scaling laws summarised in Table 4-A are not guaranteed to

hold in the presence of EMI.

Proof: Firstly, a counterexample for the power scaling laws is given as a function of

M . Specifically, note that the desired signal Esignal
c,k and the EMI term E1,emi

c,k in (5.18)

scale as O
(
M2
)
. If the power is scaled proportionally to p = 1/M , therefore, the SINR

in (5.16) tends to zero when M → ∞. Then, a counterexample for the power scaling

laws as a function of N is presented. Consider the case study in which only the NLoS
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components of the channels are present, i.e., δ = 0, and no spatial correlation is present,

i.e., Rris = Remi = IN . Accordingly, Υk is simplified as follows

Tr{Υk} =
M(Nĉk + γk)

Nĉk + γk + σ2

τp + Nσ2
eβ

τp

. (5.21)

Then, it is obtained that Esignal
c,k =

(
Enoise
c,k

)2
where

Enoise
c,k =

M(Nĉk + γk)
2

Nĉk + γk + σ2

τp + Nσ2
eβ

τp

. (5.22)

If the power is scaled proportionally to p = 1/N when N → ∞, (5.22) implies that

Esignal
c,k → (

τMĉ2k
σ2
eβ

)2, which implies pEsignal
c,k = Esignal

c,k /N → 0. Therefore, the SINR would

tend to zero. This special case demonstrates that the power scaling laws with respect to

N are not guaranteed to hold in the presence of EMI. �

A simple explanation for Corollary 20 is the following. If the users’ transmit power p

is scaled proportionally to 1/M or 1/N , as M or N increases, the intended signal power

received by the RIS becomes weaker and weaker while the power of the EMI received

by the RIS is unaffected. Thus, the EMI becomes stronger and stronger as compared to

the intended signal. In other words, as M,N →∞, the useful power becomes extremely

weak and the EMI power dominates the received signal at the RIS.

Nevertheless, note that the importance of the power scaling laws does not lie in the

performance limits in the asymptotic regime for M,N → ∞. In practice, neither the

number of BS antennas nor the number of RIS elements can be infinite. The analysis

of the power scaling laws is insightful to understand whether the transmit power of the

users can be reduced by increasing M or N while not significantly sacrificing the rate.

Therefore, it is usually interested in the power scaling laws when M or N is large but

finite. The considered channel model can, in addition, be applied in the far-field region

of the BS and RIS, and hence it is not possible to consider an infinite number of BS

antennas or RIS elements. Besides, the users share the same RIS-BS channel in RIS-
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aided systems, which results in strong multi-user interference when applying MRC, as

noted in Remark 3. Even though the EMI re-radiated by an RIS may be stronger than

the thermal noise, it may not necessarily be stronger than the multi-user interference

when M or N is not very large.

5.3 Accelerated Gradient Ascent

Recalling that as mentioned in Remark 3, it is necessary to guarantee some fairness

requirements among the different users. Therefore, it is still considered to maximise

the minimum rate of the users in this chapter. Unlike Chapter 4 which utilizes the

GA algorithm, in this chapter, a low-complexity accelerated gradient ascent algorithm

is proposed. It is worth noting that the proposed method can also be used for solving

the optimisation problem in Chapter 4. Therefore, the following optimisation problem

is formulated:

max
Φ

min
k∈K

Rk (Φ) or Rc,k (Φ) , (5.23a)

s.t.
∣∣∣[Φ]n,n

∣∣∣ = 1,∀n, (5.23b)

where Rk (Φ) is given by (4.37) in Theorem 3 and Rc,k (Φ) is given by (5.15) in Theorem

6. Constraint (5.23b) is the unit modulus constraint for the RIS phase shifts matrix.

For tractability, the vectors θ = [θ1, θ2, . . . , θN ]T and c = [ejθ1 , ejθ2 , . . . , ejθN ]T are

introduced so that c = ejθ and Φ = diag (c). Then, the problem in (5.23) can be solved

effectively based on the gradient ascent method with respect to the real variable θ. It is

worth noting that the proposed method is different from existing works which adopted

the projected gradient ascent method with respect to complex variable c[42, 88]. To

be specific, after updating c, the projected gradient ascent method needs a projection

operation to ensure that the updated variable cnew fulfils the unit modulus constraint

|cnew| = 1. By contrast, the proposed gradient ascent method avoids the suboptimality

caused by the projection operation since the complex exponential functions are periodic



Chapter 5. RIS-Aided Massive MIMO with Correlated Channels and EMI 100

with θ and the unit modulus constraint holds for every phase shifts vector θ. Besides,

the performance of the gradient ascent method highly depends on the step size, and

working with real variables makes the algorithm more robust to the choice of this tuning

parameter.

The gradient with respect to θ is given as follows. Since the objective function in

(5.23) includes the min function, which is not differentiable, firstly, the objective function

in (5.23) is approximated as

min
k
Rk(θ) ≈ − 1

µ
ln

{
K∑
k=1

exp {−µRk(θ)}

}
, f(θ), (5.24)

min
k
Rc,k(θ) ≈ − 1

µ
ln

{
K∑
k=1

exp
{
−µRc,k(θ)

}}
, fc(θ), (5.25)

where µ is a constant value for controlling the accuracy of the approximation. It can be

proved that the approximation error is smaller than lnK
µ based on the method in [89].

Thus, the problem in (5.23) can be recast as

max
θ

f(θ) or fc(θ), (5.26a)

s.t. 0 ≤ θn < 2π,∀n. (5.26b)

As mentioned, the constraint (5.26b) can be neglected thanks to the periodicity of

the objective functions f(θ) and fc(θ) with respect to θ. Therefore, there is no need

to perform any projection operation after updating variable θ. Then, the gradient of

f(θ) and fc(θ) should be calculated. Since these two gradients can be calculated in a

similar way, only the detailed process for ∂fc(θ)
∂θ is provided. Based on the chain rule, it

is arrived at

∂fc(θ)

∂θ
=

τ o
∑K

k=1

{
exp{−µRc,k(θ)}
1+SINRc,k(θ)

∂ SINRc,k(θ)
∂θ

}
(ln 2)

(∑K
k=1 exp

{
−µRc,k(θ)

}) , (5.27)
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where

∂ SINRc,k(θ)

∂θ

=
p
∂Esignal

c,k

∂θ

pEleak
c,k + p

∑K
i=1,i 6=k Ic,ki + σ2eE

emi
c,k + σ2Enoise

c,k

− pEsignal
c,k

p
∂Eleak

c,k

∂θ + p
∑K

i=1,i 6=k
∂Ic,ki
∂θ + σ2e

∂Eemi
c,k

∂θ + σ2
∂Enoise

c,k

∂θ(
pEleak

c,k + p
∑K

i=1,i 6=k Ic,ki + σ2eE
emi
c,k + σ2Enoise

c,k

)2 .
(5.28)

Therefore, the gradient of fc(θ) can be obtained after calculating
∂Esignal

c,k

∂θ ,
∂Eleak

c,k

∂θ ,

∂Ic,ki
∂θ ,

∂Eemi
c,k

∂θ , and
∂Enoise

c,k

∂θ in (5.28). Based on Theorem 6, it is worth noting that Esignal
c,k ,

Ic,ki, E
leak
c,k , Eemi

c,k and Enoise
c,k can be computed from the functions in (5.14). For ease

of description, two useful lemmas are provided in the following which will be used to

calculate the gradient of the terms in (5.14).

Lemma 4. Given the deterministic matrices A and B, the gradient of Tr
{
AΦBΦH

}
with respect to θ is given by

∂ Tr
{
AΦBΦH

}
∂θ

=jΦT
(
AT �B

)
c∗−jΦH

(
A�BT

)
c

,fd(A,B).

(5.29)

If A = AH ,B = BH , it is further obtained that

∂ Tr
{
AΦBΦH

}
∂θ

= 2 Im
{
ΦH

(
A�BT

)
c
}
. (5.30)

Proof: See Appendix C.3. �

Lemma 5. Define ψ1
k = ĉkh

H
k ΦHRrisΦhk + γk and Υk = ψ1

kΥ
1
k. Then, given the



Chapter 5. RIS-Aided Massive MIMO with Correlated Channels and EMI 102

deterministic matrix T, the gradient of Tr {TΥk} with respect to θ is given by

∂ Tr {TΥk}
∂θ

= 2ĉk

{
Tr
{
TΥ1

k

}
− ψ1

k Tr
{

T
(
Υ1
k

)2}}× Im

{
ΦH

(
Rris �

(
hkh

H
k

)T)
c

}
− 2σ2eβ

τp(δ+1)
ψ1
k Tr

{
T
(
Υ1
k

)2}
Im
{
ΦH(Rris�Remi) c

}
− σ2eβδ

τp(δ + 1)
ψ1
kfd

(
H
H
2 Υ1

kTΥ1
kH2,Remi

)
, zk(T)

(5.31)

Proof: The proof is similar to the proof of Lemma 4 after applying the chain rule to

the inverse matrix ∂
(
X−1

)
= −X−1(∂X)X−1. �

With the aid of Lemma 4 and 5, the following lemma are obtained.

Lemma 6. The gradients of the functions defined in (5.14) are given by

f ′c,1(θ) =
∂fc,1(Φ)

∂θ
= 2 Im

{
ΦH (Rris �Remi) c

}
,

f ′c,k,2(θ)=
∂fc,k,2(Φ)

∂θ
=2 Im

{
ΦH

(
Rris�

(
hkh

H
k

)T)
c

}
,

f ′c,k,3(θ) =
∂fc,k,3(Φ)

∂θ
= zk

(
H2ΦRemiΦ

HH
H
2 Υk

)
+ 2 Im

{
ΦH

(
H
H
2 Υ2

kH2 �Remi

)
c
}

+ zk

(
ΥkH2ΦRemiΦ

HH
H
2

)
,

(5.32)

f ′c,k,4(θ) =
∂fc,k,4(Φ)

∂θ
= 2zk (Υk) ,

f ′c,k,5(θ) =
∂fc,k,5(Φ)

∂θ
= 2 Tr {Υk} zk (IM ) ,

f ′c,k,6(θ) =
∂fc,k,6(Φ)

∂θ
= 2 Im

{
ΦH

(
RrisΦhkh

H
k ΦHRris �Remi

)
c
}

+ 2 Im

{
ΦH

(
RrisΦRemiΦ

HRris �
(
hkh

H
k

)T)
c

}
,

(5.33)
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f ′c,k,7(θ) =
∂fc,k,7(Φ)

∂θ
= 2 Im

{
ΦH

(
aNaHN �

(
hkh

H
k

)T)
c

}
,

f ′c,ki,8(θ) =
∂fc,ki,8(Φ)

∂θ
= zk

(
ΥkH2Φhih

H
i ΦHH

H
2

)
+ zk

(
H2Φhih

H
i ΦHH

H
2 Υk

)
+ 2 Im

{
ΦH

(
H
H
2 Υ2

kH2 �
(
hih

H
i

)T)
c

}
,

(5.34)

f ′c,ki,9(θ) =
∂fc,ki,9(Φ)

∂θ
= zk

(
H2ΦRemiΦ

HH
H
2 ΥH

k H2Φhih
H
i ΦHH

H
2

)
+2Im

{
ΦH
(
H
H
2 ΥH

k H2Φhih
H
i ΦHH

H
2 ΥkH2 �Remi

)
c
}

+ zk

(
H2Φhih

H
i ΦHH

H
2 ΥkH2ΦRemiΦ

HH
H
2

)
+2Im

{
ΦH

(
H
H
2 ΥkH2ΦRemiΦ

HH
H
2 ΥH

k H2�
(
hih

H
i

)T)
c

}
.

(5.35)

Proof: It follows by applying the chain rule to compute the derivatives and using

Lemma 4 and 5. Consider f ′c,k,3(θ) as an example. By applying the chain rule, it is

arrived at

f ′c,k,3(θ) =
∂ Tr

{
ΥkΥkH2ΦRemiΦ

HH
H
2

}
∂θ

=
∂ Tr {TΥk}

∂θ

∣∣∣∣
T=ΥkH2ΦRemiΦ

HH
H
2

+
∂ Tr {TΥk}

∂θ

∣∣∣∣
T=H2ΦRemiΦ

HH
H
2 Υk

+
∂ Tr

{
AΦBΦH

}
∂θ

∣∣∣∣∣
A=H

H
2 Υ2

kH2,B=Remi

.

(5.36)

The other terms can be obtained similarly. �

Therefore, the gradient of ∂fc(θ)
∂θ in (5.27) follows from (5.28), Lemmas 4, 5, 6 and by

applying the chain rule. For example, it is obtained that

∂Esignal
c,k

∂θ
=

∂

{(
Enoise
c,k

)2}
∂θ

= 2Enoise
c,k

∂Enoise
c,k

∂θ
, (5.37)
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Algorithm 4 Accelerated Gradient Ascent Algorithm

1: Initialize θ0 randomly, i = 0, a0 = 1, x−1 = θ0;
2: while 1 do
3: Calculate the gradient vector f ′c(θi) = ∂fc(θ)

∂θ

∣∣∣
θ=θi

;

4: Obtain the step size κi based on the backtracking line search;
5: xi = θi + κif

′
c(θi);

6: ai+1 = (1 +
√

4a2i + 1)/2;

7: θi+1 = xi + (ai − 1) (xi − xi−1) /ai+1;
8: if fc(θi+1)− fc(θi) < 10−4 then
9: θ∗ = θi+1, break;

10: end if
11: i = i+ 1;
12: end while

and

∂Enoise
c,k

∂θ
= Mĉkδf

′
c,k,7(θ) + {ĉkfc,k,2(Φ) + γk} zk (IM ) + ĉk Tr {Υk}f ′c,k,2(θ). (5.38)

All the other terms in ∂f(θ)
∂θ and ∂fc(θ)

∂θ can be obtained similarly to (5.37). For brevity,

the final analytical expressions of ∂f(θ)
∂θ and ∂fc(θ)

∂θ are presented in [83, Appendix K].

It is known that gradient-based methods may have a slow convergence rate. To tackle

this issue, Nesterov’s accelerated gradient method is applied, which effectively increases

the convergence speed of the gradient method[90]. For completeness, the algorithm for

optimising fc(θ) is presented in Algorithm 4 where steps 6-7 correspond to Nesterov’s

acceleration method.

5.4 Numerical Results

The results illustrated in Figs. 4.1-4.7 of Chapter 4 have showcased the gain of RIS over

spatially independent channels and in the absence of EMI. In this section, numerical

examples are presented to further explore the impact of spatial correlation and EMI

and study under what conditions the spatial correlation and the EMI can be ignored

as a function of the inter-distance between the RIS elements and the strength of the

EMI. Specifically, the strength of EMI with respect to the thermal noise at the BS is
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Figure 5.2: Achievable rate versus N for different values of the RIS element
spacing dris.

characterized by the following ratio[86]

ρ =
σ2e
σ2
. (5.39)

Fig. 5.2 illustrates the impact of channel spatial correlation, which is due to the

sub-wavelength spacing between the RIS elements, on the achievable rate. First, as

expected, it can be seen that the impact of spatial correlation can be safely ignored

when the inter-distance between the RIS elements is half of the wavelength (dris = λ/2)

and the EMI is light (ρ = 30 dB). This confirms that the analytical insights drawn in

Chapter 4 over spatially independent channels and in the absence of EMI are meaningful

to understand the fundamental performance limits of RIS-aided systems in practically

relevant scenarios. As the spacing between the RIS elements decreases (dris = λ/4,

λ/8), however, the spatial correlation cannot be ignored and it has a non-negligible

impact on the rate. Specifically, two operating regions are identified: (i) small values

of RIS elements N and (ii) large values of RIS elements N . For small values of N ,

the rate decreases as the inter-distance decreases. This is attributed to the decrease of

the channel rank. For large values of N , the channel rank still decreases but the large

number of RIS elements and the greater ability of an RIS can be leveraged to customize
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Figure 5.3: The impact of element spacing given the same RIS area.

the wireless channels in the presence of channel correlation, as discussed in Theorem 5

and Remark 4. For large values of N , the beamforming gains provided by optimising

RIS outweigh the negative impact of spatial correlation, which in turn results in a better

achievable rate.

In Fig. 5.2, the rate under different element spacing is compared given the same

number of RIS elements. Actually, small element spacing also has the advantage of a

small array area. In other words, given the same RIS area, more reflecting elements

can be placed under a smaller element spacing, and therefore the performance can be

improved. This conclusion is validated by Fig. 5.3 under different RIS areas, where

S = 0.06282 m2. It can be seen that given the same RIS area, the RIS with a smaller

element spacing leads to better achievable rate performance. This is because an RIS

with λ/8 spacing allows 16 times more reflecting elements than that with λ/2 spacing,

and therefore more channel paths are built and stronger passive beamforming gains are

introduced by the RIS.

The impact of EMI is studied in Fig. 5.4. When the power of the EMI is sufficiently

small with respect to the noise (ρ < 60 dB), the impact of the EMI on the achievable

rate is negligible. This is attributed to the strong multi-user interference when using

MRC. As a result, when the EMI is mild, its impact is negligible as compared with the
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Figure 5.4: Impact of the EMI.
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Figure 5.5: Achievable rate when the power is scaled proportionally to p =
10/N .

multi-user interference. As ρ increases, the EMI becomes more severe, and it eventually

becomes the dominant contribution. For large values of the EMI, RIS-aided systems

may even perform worse than conventional massive MIMO systems.

Fig. 5.5 illustrates the power scaling laws as a function of the channel spatial corre-

lation and EMI. Specifically, Fig. 5.5 shows the achievable rate when the power is scaled

as p = 10/N . The figures validate Corollary 20: if the EMI is mild, the power scaling

law as a function of the transmit power is confirmed. On the other hand, it does not

hold anymore in the presence of strong EMI. As a function of the inter-distance dris,
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Figure 5.6: Convergence behaviour for spatially independent and spatially cor-
related cases, M = N = 64.

Fig. 5.5 is in agreement with Fig. 5.2.

In Fig. 5.6, the convergence behaviour of the proposed accelerated gradient method

is studied compared with its non-accelerated counterpart. By applying the proposed

acceleration method, it can be observed that the speed of convergence is effectively

improved. In the presence of spatially independent channels, the algorithm converges

very quickly due to the simple expression of the achievable rate. By contrast, when

considering the spatial correlation of dris = λ/4, the expression of the rate becomes

more complex and the optimisation variable Φ appears more frequently, as discussed

in Remark 4. As a result, the number of iterations needed for convergence increases.

Nevertheless, it can be observed that the accelerated gradient algorithm converges within

100 iterations even though the number of optimisation variables is 64.

Fig. 5.7 compares the performance of the proposed method with two benchmark

algorithms, i.e., the GA and the gradient ascent method formulated in terms of the com-

plex variables c = ejθ [42]. In the absence of spatial correlation, it can be observed that

the three algorithms provide almost the same performance. This is because the objective

function possesses a simple and tractable form. Nevertheless, the proposed algorithm

performs slightly better than the gradient ascent method applied to complex-valued vari-
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Figure 5.7: Performance comparison between different optimisation algo-
rithms.
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Figure 5.8: CDF of the minimal user rate for RIS-aided and RIS-free systems,
dris = λ/4, ρ = 30 dB, p = 20 dBm.

ables. This is because the proposed method treats the angles as optimisation variables

and therefore avoids the performance loss due to the projection operation. In the pres-

ence of spatial correlation, the objective function of the optimisation problem becomes

more complex. In this case, it can be seen that the proposed method outperforms the

other two methods especially when N is large.

The numerical results illustrated in the previous figures are obtained by assuming

that the RIS is deployed near the cell-edge users. Next, the case study is examined in

which the users are distributed over a large area and the transmit power may not be



Chapter 5. RIS-Aided Massive MIMO with Correlated Channels and EMI 110

very high due to the deployment of many BS antennas. The transmit power is set to be

equal to p = 20 dBm and the users are assumed to be randomly distributed in a 100 m

× 100 m area identified by the coordinates (200 m, 0) to (300 m, 100) [91]. The BS and

the RIS are deployed in (0, 0) and (200 m, 0), respectively. Also, assume dris = λ/4 and

ρ = 30 dB for the spacing between the RIS elements and the EMI, respectively.

Fig. 5.8 illustrates the average rate of RIS-aided systems as a function of 500 random

locations of the users and compares it against the rate provided by conventional massive

MIMO systems. It can be observed that the deployment of an RIS still provides some

performance gains, but these are reduced as compared to the optimised deployment of

the RIS near the cell-edge users. As expected, in addition, the achievable rate is low if

the RIS phase shifts matrix is not optimised with the gradient ascent algorithm, but the

phase shifts are randomly set. This is because the RIS introduces additional multi-user

interference which cannot be tackled by MRC detection, as discussed below Fig. 3.11.

5.5 Summary

This chapter investigates the two-timescale design for RIS-aided massive MIMO systems

by taking into account the impact of spatial correlation and EMI. Besides, the phase

shifts of the RIS are optimised based on an accelerated gradient ascent method. Some

useful insights are revealed. It is demonstrated that the presence of spatial correlation is

beneficial in terms of shaping the wireless channels. It is also found that it is beneficial

to place the RIS close to the cell-edge users to compensate for the product path-loss law

in the far-field region. Finally, it is proved that the scaling laws in the absence of EMI

may not be preserved in the presence of EMI, especially if the EMI is strong enough.



Chapter 6

RIS-Aided Massive MIMO with

ZF Decoders and Perfect CSI

6.1 Introduction

The previous chapters have exploited the two-timescale transmission scheme in RIS-

aided massive MIMO systems, which demonstrated that by integrating an RIS into con-

ventional massive MIMO systems, the rate performance can be significantly improved,

especially when the original direct links are weak due to the blockage. However, the sim-

ple MRC detector was considered. As a result, the analytical and numerical results both

revealed that the achieved gains are limited by the multi-user interference. Therefore, it

is expected that the ZF detector, which can effectively mitigate this interference, is more

suitable for RIS-aided massive MIMO systems. Different from MRC detectors, when

using ZF detectors, the matrix inversion operator introduces the additional technical

challenges of deriving the ergodic capacity.

Against the above background, in this chapter, an RIS-aided massive MIMO system

with ZF detectors is considered. The closed-form expression for the ergodic rate is

derived, which only relies on the long-term CSI. Then, the RIS is designed based on a

111
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gradient ascent algorithm. The analytical results reveal that the rate scales on the order

of O (log2 (MN)), which indicates that the RIS-aided massive MIMO system with ZF

detectors has the ability to achieve ultra-high system capacity.

6.2 System Model

Different from conventional systems, an RIS is introduced and equipped at the facade of

a tall building close to K single-antenna users to improve their channel conditions. The

considered model is especially suitable for the scenario where some cell-edge users suffer

from service degradation. Denote the number of BS antennas and RIS elements as M

and N , respectively, where M > K. Then, the channel between the users and the RIS,

the channel between the RIS and the BS, the direct channel between the users and the

BS can be defined as H1 ∈ CN×K , H2 ∈ CM×N and D ∈ CM×K , respectively.

Define the phase shift matrix of the RIS as Φ = diag
{
ejθ1 , . . . , ejθN

}
where θn is the

phase shift of the n-th RIS element. Herein, the cascaded user-RIS-BS channel can be

expressed as G = H2ΦH1 ∈ CM×K , and then the aggregated channel from users to the

BS can be expressed as Q = G + D ∈ CM×K . It is worth noting that this aggregated

channel Q possesses the same dimension as conventional massive MIMO systems.

Based on the above definitions, the detailed channel model for Q is presented next.

Firstly, considering that the direct links may be easily blocked[43, 92, 93], the Rayleigh

channel model is adopted for D as follows

D = D̃Ω
1/2
d , (6.1)

where Ωd = diag {γ1, . . . , γK}, and γk denotes the distance-dependent path-loss factor.

Each element of matrix D̃ ∈ CM×K is i.i.d. complex Gaussian random variables, whose

mean is zero and variance is unit.

Next, since the RIS is considered to be deployed close to the users, and according to
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the fact that the RIS is often installed above the ground, it is assumed that the user-RIS

channels have purely LoS paths. Then, denote

H1 =
[√
α1 h1, . . . ,

√
αK hK

]
, (6.2)

where αk denotes the path loss. To specify the LoS channel hk, the two-dimensional

uniform squared planar array (USPA) model is utilized[94]. Then, the array response

vector for a
√
X ×

√
X USPA can be expressed as follows

aX (ϑa, ϑe) =
[
1, ..., ej2π

d
λ
(x sinϑe sinϑa+y cosϑe),

. . . , ej2π
d
λ((
√
X−1) sinϑe sinϑa+(

√
X−1) cosϑe)

]T
, (6.3)

where 0 ≤ x, y ≤
√
X − 1 are element indices in the two-dimensional planar array, d

and λ denote the element spacing and wavelength, ϑa and ϑe are azimuth and elevation

angles in the propagation path, respectively. Therefore, denoting by the azimuth and

elevation AoA of user k as ϕakr and ϕekr, hk = aN (ϕakr, ϕ
e
kr) can be expressed now.

Since the RIS is placed near the users, the distance between the RIS and the BS

could be a bit large. Even though both the RIS and the BS have certain heights, it

is still not guaranteed that the RIS-BS channel is purely LoS. As a result, the Rician

model is suitable for the considered RIS-BS channel. Besides, by adjusting the value

of Rician factors, the impacts of scatterers in RIS-aided systems can be studied. This

feature is important, since many works have proven that rich scattering environment is

beneficial in conventional massive MIMO systems[95], while the corresponding impact

in RIS-aided massive MIMO systems with ZF detector is still unknown. Thus, define

H2 =

√
βδ

δ + 1
H2 +

√
β

δ + 1
H̃2, (6.4)

where β is the path loss, δ represents the Rician factor. Note that the Rician factor,

varying from 0 to ∞, characterizes the strength ratio between LoS and non-LoS (NLoS)
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paths. The NLoS path H̃2 contains i.i.d. complex Gaussian random variables with zero

mean and unit variance. Recalling USPA model (6.3), the LoS path, H2, is written as

H2 = aM (φar , φ
e
r) aHN (ϕat , ϕ

e
t ) , aMaHN , (6.5)

where a notational simplification H2 , aMaHN is applied in the sequel of this chapter.

Note that the rank of matrix H2 is one. This means that when δ → ∞, the cascaded

channel G may become rank-deficient, and then the achievable spatial multiplexing gains

may degrade.

The M × 1 received signal vector at the BS can be expressed as

y =
√
pQx + n =

√
p (H2ΦH1 + D) x + n, (6.6)

where x = [x1, . . . , xK ]T ∼ CN (0, IK) includes the transmit symbols from K users, and

n ∼ CN
(
0, σ2IM

)
is the noise vector. For simplicity, it is assumed that all users transmit

with the same power p.

To facilitate the analysis, it is assumed that in each channel coherence time, the

instantaneous aggregated channel Q is perfectly known at the BS, which serves as an

upper bound for practical systems. Based on the two-timescale design framework, it

is needed to design the BS beamforming based on instantaneous aggregated CSI, i.e.,

Q. Thus, the ZF detector at the BS is designed as A = Q
(
QHQ

)−1
, which results in

AHQ = IK . Thus, the detected symbol vector is given by

r = AHy =
√
px +

(
QHQ

)−1
QHn. (6.7)

For ZF, there is no multi-user interference. As a result, the SINR reduces to the ratio
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of transmit power and noise. Based on (6.7), the SINR of user k is given by

SINRk =
p
[
Ex

{
xxH

}]
kk

[En{(QHQ)−1QHnnHQ(QHQ)−1}]kk

=
p

σ2 [(QHQ)−1]kk
. (6.8)

Then, the k-th user’s ergodic rate is lower bounded by

Rk = E {log2 (1 + SINRk)} (6.9)

(a)

≥ log2

(
1 +

p

σ2E {[(QHQ)−1]kk}

)
, (6.10)

where (a) utilizes the Jensen’s inequality based on the fact that function f(x)=log2
(
1 + 1

x

)
is convex with respect to x.

6.3 Ergodic Rate Analysis and RIS Design

This section first derives the closed-form expression for the rate Rk, and then uses the

derived expression to propose a statistical CSI-based RIS design.

To derive Rk, it is needed to compute E
{[

(QHQ)−1
]
kk

}
. To this end, expand matrix

QH as

QH =

√
βδ

δ + 1
HH

1 ΦHH
H
2 +

√
β

δ + 1
HH

1 ΦHH̃H
2 + Ω

1/2
d D̃H . (6.11)

For ease of exposition, define QH , [q1, . . . ,qM ], H
H
2 , [c1, . . . , cM ], H̃H

2 , [c̃1, . . . , c̃M ],

and D̃H ,
[
d̃1, . . . , d̃M

]
. Recalling that H̃2 and D̃ are all comprised of i.i.d. complex

Gaussian variables, and H̃2 and D̃ are mutual independent, therefore it is obtained that

c̃m ∼ CN (0, IN ) , 1 ≤ m ≤M, (6.12)

d̃m ∼ CN (0, IK) , 1 ≤ m ≤M, (6.13)
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where c̃i and c̃j are mutual independent for i 6= j; d̃i and d̃j are mutual independent,

for i 6= j; c̃i and d̃j are mutual independent for all i and j. Then, since the linear trans-

formation for a standard Gaussian random vector is still a Gaussian random vector[96],

it is obtained that

√
βδ

δ + 1
HH

1 ΦHcm +

√
β

δ + 1
HH

1 ΦH c̃m ∼ CN

(√
βδ

δ + 1
HH

1 ΦHcm,
β

δ + 1
HH

1 H1

)
, ∀m

(6.14)

and Ω
1/2
d d̃m ∼ CN (0,Ωd) ,∀m, where the facts ΦHΦ = IN and Ωd = ΩH

d were used.

Next, taking into account that the sum of independent Gaussian vectors is still Gaus-

sian distributed[96, Theorem 1.2.14], the statistics of the m-th column of aggregated

channel QH can be obtained as follows

qm ∼ CN
(√

βδ
δ+1HH

1 ΦHcm,
β
δ+1HH

1 H1 + Ωd

)
, (6.15)

where qm, 1 ≤ m ≤ M , are mutual independent. Therefore, vec
(
QH

)
is a complex

Gaussian vector with the following mean and covariance matrices

E
{

vec
(
QH

)}
= vec

(√
βδ
δ+1HH

1 ΦHH
H
2

)
,

Cov
{

vec
(
QH

)}
= IM ⊗

(
β
δ+1HH

1 H1 + Ωd

)
,

(6.16)

where vec and ⊗ denote the vectorization by column stacking and Kronecker product,

respectively.

Then, using the distribution of vec
(
QH

)
and following the notations in [95, Page 2],

matrix Q is a complex Gaussian distributed matrix, written as

Q ∼ CN
(√

βδ
δ+1H2ΦH1, IM⊗

(
β
δ+1HH

1 H1+Ωd

))
. (6.17)

Therefore, the product QHQ has a complex non-central Wishart distribution[96,
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Definition 10.3.1], which can be repressed as

QHQ ∼ WK

(
M, β

δ+1HH
1 H1 + Ωd , ( β

δ+1HH
1 H1 + Ωd)

−1 βδ
δ+1HH

1 ΦHH
H
2 H2ΦH1

)
.

(6.18)

Even though the non-central Wishart distribution (6.18) is accurate, its statistics

are very complicated, and then a tractable expression cannot be obtained for insightful

analysis. To facilitate the analysis, as in contributions [4, 97, 98], the non-central Wishart

distribution (6.18) is next approximated as a central Wishart distribution with the same

first-order moment.

To begin with, the first-order moment for the considered non-central Wishart distri-

bution is[98, Eq. (45)]

E
{
QHQ

}
= M

(
β

δ + 1
HH

1 H1 + Ωd

)
+

βδ

δ + 1
HH

1 ΦHH
H
2 H2ΦH1

= M

(
β

δ + 1
HH

1 H1 + Ωd

)
+M

βδ

δ + 1
HH

1 ΦHaNaHNΦH1,

(6.19)

where the last equality is obtained by using (6.5) and aHMaM = M .

Therefore, a virtual central Wishart distribution with this moment is given by[98,

Sec. V. A]

QHQ∼WK

(
M,

β

δ + 1
HH

1 H1+Ωd+
βδ

δ + 1
HH

1 ΦHaNaHNΦH1

)
. (6.20)

Based on the obtained complex central Wishart distribution (6.20), with the help of

[99, Table I], the expectation of the matrix inverse can be obtained as follows

E
{(

QHQ
)−1}

=

(
β
δ+1HH

1 H1 + Ωd + βδ
δ+1HH

1 ΦHaNaHNΦH1

)−1
M −K

. (6.21)
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Substituting (6.21) into (6.10), the lower bound of the ergodic rate of user k is

obtained as follows

Rk ≥ log2

(
1 +

p (M −K)

σ2(δ + 1)
[
(Λ + βδHH

1 ΦHaNaHNΦH1)−1
]
kk

)
, (6.22)

where Λ = βHH
1 H1 + (δ + 1)Ωd.

Note that the derived expression, (6.22), depends only on the statistical CSI, since

the instantaneous CSI-related variables have been averaged out. Therefore, based on the

two-timescale design framework, (6.22) can be used to design the phase shifts of the RIS

only relying on statistical CSI. Since the statistical CSI-based phase shifts design only

needs to be done on a large timescale, the overhead can be effectively reduced. Besides,

it is clear that (6.22) is an increasing function of p and the RIS-BS channel strength β,

but it is a decreasing function of noise power σ2.

Corollary 21. As M → ∞, the rate can maintain non-zero when the power is scaled

down proportionally to p = 1/M .

Proof: It can be proved by noticing that all the matrices in the denominator of (6.22)

do not depend on M . �

Corollary 22. When M → ∞ or p → ∞, RIS-aided massive MIMO systems with ZF

detectors perform much better than that with MRC detectors.

Proof: Based on (6.22), when M →∞ or p→∞, it is obtained that Rk →∞, while

the rate in RIS-aided massive MIMO systems with MRC detectors is still bounded due

to the multi-user interference, as proved in Chapter 3 based on (3.12). �

Corollary 23. When β = 0, i.e., without the existence of the RIS, the rate of user k

reduces to

Rk ≥ log2
(
1 + p(M −K) γk/σ

2
)
, (6.23)
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which is the same rate as [3, Eq. (20)], and scales on the order of O (log2 (M)).

Corollary 24. The ergodic rate of user k in (6.22) is further lower bounded by

Rk ≥ log2

(
1 +

p (M −K)

σ2(δ + 1) [Λ−1]kk

)
(6.24)

≈ log2

(
1 +

p (M −K)

σ2

(
Nαkβ

δ + 1
+ γk

))
, as N →∞. (6.25)

which scales on the order of O (log2 (MN)).

Proof: Since the existence of direct links is considered, there is Ωd � 0 and then

Λ � 0 and Λ−1 � 0. Besides, it is obtained that ΛH = Λ. Based on the Woodbury’s

identity, it is arrived at

[(
Λ + βδHH

1 ΦHaNaHNΦH1

)−1]
kk

=
[
Λ−1

]
kk
−
βδ
[
Λ−1HH

1 ΦHaNaHNΦH1Λ
−1]

kk

1 + βδaHNΦH1Λ−1HH
1 ΦHaN

(6.26)

=
[
Λ−1

]
kk
−

βδ
∣∣[Λ−1HH

1 ΦHaN
]
k

∣∣2
1+βδaHNΦH1Λ−1HH

1 ΦHaN
≤
[
Λ−1

]
kk
. (6.27)

Substituting (6.27) into (6.22), it is arrived at (6.24). Note that the k-th diagonal

element of HH
1 H1 equals αkN , while the non-diagonal elements are not proportional to

N . When N → ∞, HH
1 H1 can be approximated as Ndiag {α1, . . . , αK}, which results

in the approximation in (6.25). �

Corollary 24 reveals a very promising capacity gain. It is well-known that the ergodic

rate of RIS-aided systems scales as O
(
log2

(
MN2

))
in the single-user scenario[43]. Here,

it is proved that by using ZF detectors in the setup of multiple users, the rate of each

user could still scale as O (log2 (MN)), which demonstrates that the considered systems

can achieve a promising sum user rate. Besides, comparing (6.25) with (6.23), it is shown

that the RIS-aided massive MIMO systems with ZF detectors always outperform RIS-

free massive MIMO systems. Meanwhile, it can be observed that the lower bound (6.25)

tends to (6.22) when δ → 0 and tends to (6.23) when δ →∞.



Chapter 6. RIS-Aided Massive MIMO with ZF Decoders and Perfect CSI 120

Next, the RIS phase shifts are designed based on (6.22), which depends only on the

statistical CSI. The sum-rate maximisation problem can be formulated as follows

max
Φ

Rs =
∑K

k=1
Rk, (6.28a)

s.t. |[Φ]nn| = 1, 1 ≤ n ≤ N. (6.28b)

Problem (6.28) is non-convex due to the non-convex unit modulus constraint. How-

ever, a sub-optimal solution can still be obtained based on the gradient ascent method.

For tractability, rewrite Φ = diag
{
vH
}

, where v = [ejθ1 , . . . , ejθN ]H . Then, the gradient

vector is provided with respect to v in the following lemma.

Lemma 7. The gradient of the objective function in (6.28) is

∂Rs(v)

∂v∗
=

K∑
k=1

Bv
vHAkv

− vHBvAkv

(vHAkv)
2

ln(2)
(

1 + vHBv
vHAkv

) , (6.29)

where

Ak =
σ2(δ + 1)

p(M −K)

([
Λ−1

]
kk

B− βδsksHk
)
, (6.30)

B =
1

N
IN + βδ diag

(
aHN
)
H1Λ

−1HH
1 diag (aN ) , (6.31)

with sHk ,
[
Λ−1HH

1 diag (aN )
]
(k,:)

corresponds to the k-th row vector.

Proof: Substituting ΦHaN = diag (aN ) v into (6.26) and utilize (6.31), it is arrived

at

[(
Λ + βδHH

1 ΦHaNaHNΦH1

)−1]
kk

=
[
Λ−1

]
kk
−
βδ
[
Λ−1HH

1 diag(aN )vvH diag
(
aHN
)
H1Λ

−1]
kk

1 + βδvH diag
(
aHN
)
H1Λ−1HH

1 diag (aN ) v

=
vH
{[

Λ−1
]
kk

B− βδsksHk
}

v

vHBv
. (6.32)
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Then, substituting (6.32) into (6.22), the sum rate can be rewritten asRs =
∑K

k=1 log2

(
1 + vHBv

vHAkv

)
.

Based on the chain rule, the gradient of a real function with respect to a complex vector

variable is given by[100]

∂Rs (v)

∂v∗
=

K∑
k=1

1

ln(2)
(

1 + vHBv
vHAkv

) ∂
(

vHBv
vHAkv

)
∂v∗

. (6.33)

Using
∂{vHBv}

∂v∗ = Bv, and
∂{vHAkv}

∂v∗ = Akv, it is arrived at

∂
(

vHBv
vHAkv

)
∂v∗

=

{
∂(vHBv)

∂v∗

}
vHAkv − vHBv

{
∂(vHAkv)

∂v∗

}
(vHAkv)2

=
BvvHAkv − vHBvAkv

(vHAkv)2
=

Bv

vHAkv
− vHBvAkv

(vHAkv)2
.

(6.34)

Substituting (6.34) into (6.33) completes the proof. �

Assume the variable in the t-th iteration is vt. Then, the next variable vt+1 in the

(t+ 1)-th iteration is given by

ṽt+1 = vt + µ
∂Rs (v)

∂v∗

∣∣∣∣
v=vt

, (6.35)

vt+1 = exp
(
j arg

(
ṽt+1

))
, (6.36)

where µ is the step size which can be chosen by using backtracking line search[42]. (6.36)

is a projection operation for meeting the unit modulus constraint (6.28b).

6.4 Numerical Results

Unless otherwise stated, K = 4 users are considered evenly located on the half-circle

centred of an RIS with a radius dUI = 20 m. The distance between the RIS and the

BS is dIB = 700 m. Using dUI and dIB, the distance between the users and the BS can

be calculated by their geometric relationship as [81]. Based on the distances, the path
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Figure 6.1: Rate versus the number of RIS elements N .

loss factors αk, β and γk are calculated the same as [81]. Besides, set M = N = 64,

p = 30 dBm, δ = 1 and σ2 = −104 dBm. The angles in the LoS channels are generated

randomly from [0, 2π]. The Monte Carlo simulations are obtained based on (6.9) with

104 times average.

In Fig. 6.1, it can be observed that ZF-based RIS design outperforms the random

phase shifts-based design, the MRC-based design, and the RIS-free systems. The superi-

ority of ZF over MRC lies in the fact that RIS-aided systems suffer from severe multi-user

interference[81]. This is because users share the same RIS-BS channel and then their

cascaded channels are highly correlated. Therefore, by effectively eliminating the inter-

ference, ZF can achieve a higher ergodic rate than MRC. In addition, Fig. 6.1 validates

the accuracy of the approximate in (6.25). Fig. 6.2 verifies the power scaling law as

expected in Corollary 21. It again emphasises the advantages of ZF-based RIS systems.

Besides, all numerical results show that the derived lower bound (6.22) is very tight with

the Monte Carlo simulations.

Fig. 6.3 plots the rate versus Rician factor δ. It validates the tightness of (6.25)

under all Rician factors. Besides, it can be seen that when dIB = 700 m, the rate with

large δ performs worse, while a contrary result is observed when dIB = 300 m. This

is because when dIB is large, the direct channel becomes weak, and then the cascaded
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Figure 6.2: Rate versus M , where power is scaled down as p = 10/M .
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Figure 6.3: Rate versus the Rician factor δ.

channel G becomes a dominant factor. In this case, when δ is large, the channel G

becomes rank-deficient, which degrades the rate. However, when dIB is small, the direct

links are strong. Since the direct links have full rank, the aggregate channel could always

have full rank. As shown in (6.22), the variable Φ can play more roles when δ is large,

which results in large performance gains. The observations from Fig. 6.3 could provide

useful guidelines for choosing the deployment location of the RIS when using the ZF

detector. Specifically, if the RIS is used to serve some cell-edge users, it would be better

to place the RIS in the environment where some scatters exist between it and the BS.

On the contrary, if the RIS is deployed near the BS, it would be better to decrease the
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scatters between it and the BS.

6.5 Summary

An RIS-aided massive MIMO system with ZF detectors is considered in this chapter. The

closed-form ergodic rate expressions are derived first, whose lower bound demonstrates

that the rate can scale on the order of O (log2 (MN)). Then, using the gradient ascent

algorithm, the phase shifts of the RIS are optimised based on statistical CSI. Finally,

simulation results validate the correctness of the analytical results.



Chapter 7

RIS-Aided Massive MIMO with

ZF Decoders and Imperfect CSI

7.1 Introduction

In chapter 6, the promising properties of using ZF detectors in RIS-aided massive MIMO

systems were demonstrated. However, for simplicity, ideal CSI of the aggregated chan-

nel including the superimposition of the direct channel and the reflected channel, was

assumed. As a result, the impacts of pilot overhead and channel estimation errors on the

system performance are still unknown. Whether the rate scaling order obtained based on

perfect CSI still holds in the presence of imperfect CSI deserves further study. Therefore,

this chapter aims to provide an analytical framework to gain an in-depth analysis for the

performance of RIS-aided massive MIMO systems with ZF detectors under the realistic

assumption of imperfect CSI.

Specifically, in this chapter, a low-overhead channel estimation scheme is first pro-

posed, in which the required pilot length is independent of N . Next, a comprehensive

theoretical analysis is performed to reveal the explicit rate scaling order and answer

the fundamental question whether the RIS-aided massive MIMO with ZF detectors is

125
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promising or not. Finally, based on MM algorithms, the RIS phase shifts are respec-

tively optimised to maximise the sum user rate and the minimum user rate. The detailed

contributions are summarised as follows.

1) Low-overhead channel estimation: A MMSE-based method is proposed to estimate

the aggregated channel in the systems, which is a superimposition of cascaded RIS

channels and the direct channels. The length of pilots only needs to be no smaller than

the number of users. Besides, the impacts of various system parameters on the MSE are

analysed.

2) Reveal rate scaling orders: The closed-form ergodic rate expression and its insight-

ful lower and upper bounds are derived. The lower bound shows that the data rates of

all users are guaranteed to be on the order of O (log2 (MN)), regardless of the RIS phase

shift design. The upper bound shows that the data rate of a specific user can be on the

order of O
(
log2

(
MN2

))
, if the RIS phase shift is designed to align its beamforming to

that user. Furthermore, it is proved that these two analytical results are robust to RIS

phase shift quantization errors.

3) Answer the question whether the considered system is promising or not: Based on

the analytical results, it is proved that RIS-aided massive MIMO systems with ZF detec-

tors are promising for three applications. It can provide ultra-high network throughput

according to the high data rate scaling order for all users; it can help reduce M inversely

proportional to N without sacrificing the data rate, which helps avoid the power hungry

RF chains and is promising for green communications; it can help all users reduce their

transmit power inversely proportional to N while maintaining high data rates, which is

promising for Internet of Things applications.

4) Low-complexity RIS optimisation: The RIS phase shifts are designed to maximise

the sum user rate and minimum user rate, respectively, relying on the MM algorithm

with closed-form solutions in each iteration. It is also shown that aligning RIS phase

shifts to an arbitrary user is an effective heuristic approach for maximizing the sum user
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rate. In addition, it is demonstrated that maximizing the sum user rate can also ensure

a high minimum user rate.

7.2 Channel Estimation

In the considered system, there are two kinds of channel parameters, namely the fast

varying small-scale/instantaneous parameters (H̃2 and D̃) and the slowly varying large-

scale/statistical parameters (AoA, AoD, path-loss factors, and Rician factors). Since the

large-scale parameters vary much slower than the small-scale parameters, they are easier

to measure. Specifically, the AoA and AoD can be calculated based on location infor-

mation, and the path-loss and Rician factors can be measured by environmental sensors.

Besides, since the required frequency of estimation of large-scale parameters is much

lower than that of small-scale parameters, the corresponding overhead can be ignored.

Therefore, only the overhead and estimation of the small-scale channel parameters are

studied in this chapter.

The small-scale channel parameters are estimated by the BS using a pilot-based

method. For conventional massive MIMO systems, only the M × K user-BS direct

channel D needs to be estimated, and the minimum pilot sequence length is τ = K. In

RIS-aided massive MIMO systems, the required pilot overhead could be prohibitive due

to the extremely large channel dimension of M×N in the RIS-BS link. Since both M and

N could be large in the considered system, a low-overhead channel estimation scheme

is highly desirable. To reduce the pilot overhead, a classic channel estimation method

is extended from conventional massive MIMO systems[3] to the considered system, by

estimating only the instantaneous aggregated user-BS channel Q ∈ CM×K . As a result,

the minimum pilot sequence length is still τ = K, independent of M and N . Meanwhile,

the estimated channel is sufficient for the design of ZF detectors at the BS.

Specifically, in each CCI, theK users are assigned mutually orthogonal pilot sequences

with length τ ≥ K. The pilot sequence of user k is denoted by sk ∈ Cτ×1. Let S =
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[s1, . . . , sK ], where SHS = IK due to the orthogonality. Then, at the beginning of each

CCI, τ time slots are used for the K users to transmit the pilot signal S to the BS. The

received M × τ pilot signal at the BS can be given by Yp =
√
τpQSH + N, where p

is the common average transmission power of each user during the channel estimation

stage, and N is the noise matrix whose elements are i.i.d. Gaussian variables following

CN (0, σ2). Then, the observation vector for the channel of user k can be obtained by

multiplying the term 1√
τpsk to Yp, as follows

ykp =
1
√
τp

Ypsk = qk +
1
√
τp

Nsk, (7.1)

where qk, the k-th column of Q, denotes the aggregated channel of user k.

Lemma 8. Channel qk and noise 1√
τpNsk in (7.1) are complex Gaussian distributed,

where qk ∼ CN (
√

αkβδ
δ+1 H2Φhk,

(
N αkβ

δ+1 + γk

)
IM ), and 1√

τpNsk ∼ CN (0, σ
2

τpIM ).

Proof: Please refer to Appendix D.1. �

From Lemma 8, it is seen that the considered channel is still Gaussian distributed

as conventional massive MIMO systems[6, Eq. (1)], but with the different mean and

variance. Therefore, the well-known MMSE estimator can still be applied to obtain the

channel estimate of qk.

Theorem 7. Based on the observation vector, the MMSE estimate of channel qk is

given by

q̂k=

√
αkβδ

δ + 1
H2Φhk+κk

(√
αkβ

δ + 1
H̃2Φhk+dk+

1
√
τp

Nsk

)
, (7.2)

where κk =
N
αkβ

δ+1
+γk

N
αkβ

δ+1
+γk+

σ2

τp

∈ (0, 1). Denote the estimation error as ek = qk − q̂k, where

the error ek is independent of the estimate q̂k. Then, the MSE matrix for the channel
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estimation is

MSEk = E
{
eke

H
k

}
=

1
1

N
αkβ

δ+1
+γk

+ τp
σ2

IM , εkIM . (7.3)

Proof: Please refer to Appendix D.2. �

Based on (7.3), the MSE can be calculated as MSEk = Tr {MSEk} = M
1

N
αkβ
δ+1

+γk

+ τp

σ2
.

Clearly, the MSE is a decreasing function of τ , p, and δ, but an increasing function of

M , N , αk, β, γk, and σ2. This is because τp
σ2 represents the pilot SNR, and increasing

its value improves the estimation quality. δ is the Rician factor, and increasing its value

makes the RIS-aided channels more deterministic and therefore decreases the estimation

error. Also, the increase of N introduces more communication paths between the users

and the BS, which also increases the estimation error.

Note that in the absence of the RIS (i.e., αk = β = 0, ∀k) or for a purely LoS RIS-BS

channel (δ →∞), the MSE matrix in (7.3) reduces to MSEk = γk
1+ τp

σ2 γk
IM , which is the

same as for conventional massive MIMO systems [3]. Let Q̂ = [q̂1, . . . , q̂K ] denote the

estimated aggregated channel of the K users. Then, based on (7.2), it is arrived at

Q̂ =

√
βδ

δ + 1
H2ΦH1 +

√
β

δ + 1
H̃2ΦH1Υ + D̃Ω1/2Υ +

1
√
τp

NSΥ, (7.4)

where Υ = diag {κ1, . . . , κK}.

7.3 Ergodic Rate Analysis

In the transmission phase, the K users transmit symbols x = [x1, ..., xK ]T where x ∼

CN (0, IK), and the received signal at the BS can be expressed as

y =
√
pQx + n =

√
pQ̂x +

√
pEx + n, (7.5)
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where n ∼ CN
(
0, σ2IM

)
and E , [e1, . . . , eK ] = Q− Q̂. As in [3, 4], it is assumed that

each user has a common average data transmission power p for simplicity, and this power

is the same as that used in the channel estimation stage. To eliminate the multi-user

interference, the BS adopts the linear ZF detectors A = Q̂(Q̂HQ̂)−1 = [a1, . . . ,aK ],

which leads to AHQ̂ = IK . Then, in each CCI, the BS detects the received signal as

follows

r = AHy =
√
px +

√
pAHEx + AHn, (7.6)

whose k-th entry can be further expressed as

rk =
√
pxk +

√
p
∑K

i=1
aHk eixi + aHk n. (7.7)

7.3.1 Closed-Form Expression Derivation

Based on (7.7), the accurate ergodic rate of user k can now be given by

Rk = τ o E

{
log2

(
1 +

p

p
∑K

i=1

∣∣aHk ei
∣∣2 + σ2

∥∥aHk ∥∥2
)}

, (7.8)

where a factor τ o , τc−τ
τc

captures the rate loss caused by pilot overhead, and the

expectation is taken over random channel components in Q̂. It is difficult to derive an

exact expression of (7.8) due to the expectation operator before the logarithm symbol.

Since the function f (x) = log2 (1 + 1/x) is convex of x, the Jensen’s inequality is utilized

to obtain the following lower bound

Rk ≥ Rk (Φ)

(a)
= τ o log2

(
1+

p

p
∑K

i=1 E
{
aHk E

{
eieHi

}
ak
}

+σ2E{
∥∥aHk ∥∥2}

)
(7.9)

(b)
= τ o log2

(
1 +

p

(p
∑K

i=1 εi + σ2) E{[(Q̂HQ̂)−1]kk}

)
, (7.10)
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where εi is defined in (7.3), (a) utilizes the independence between the channel estimate

and the estimation errors, and (b) is due to the result in (7.3) and
∥∥aHk ∥∥2 =

[
AHA

]
kk

=

[(Q̂HQ̂)−1]kk.

Theorem 8. The achievable rate of user k is lower bounded by

Rk (Φ) = τ o log2

1 +
p (M −K)(

p
∑K

i=1 εi + σ2
)[(

Λ + βδ
δ+1HH

1 ΦHaNaHNΦH1

)−1]
kk

 , (7.11)

where Λ = β
δ+1ΥHH

1 H1Υ + ΩΥ2 + σ2

τpΥ
2.

Proof: Please refer to Appendix D.3. �

The rate expression in Theorem 8 depends only on the slowly varying statistical CSI.

Therefore, (7.11) enables the long-term CSI-based design for the phase shifts of the RIS.

Accordingly, the RIS’s phase shifts only need to be updated over a large time scale, which

could effectively reduce overhead and computational complexity. Before the design of

the phase shifts, (7.11) is first analysed to shed some light on the benefits of the RIS,

and to answer the question whether RIS-aided massive MIMO is promising or not.

Corollary 25. When the RIS is switched off (i.e., αk = β = 0, ∀k), the data rate (7.11)

reduces to

Rk
w/o = τ o log2

1 +
p(M −K)

p
∑K

i=1
1

τp

σ2 +
1
γi

+ σ2
×

γ2k
γk + σ2

τp

 . (7.12)

When the RIS is switched off, the RIS-aided massive MIMO systems degrade to the

conventional massive MIMO systems with Rayleigh fading channels (Q → D), which

has been studied in [3]. As expected, the obtained rate (7.12) is the same as [3, Eq.

(42)]. Based on (7.12), it can be seen that the rate is on the order of O (log2 (M)), and

the rate can maintain a non-zero value when the power is scaled down proportionally to

p = Eu/
√
M , as the number of antennas M →∞, where Eu is a constant. Specifically,
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it is obtained that

limp= Eu√
M
,M→∞ Rk

w/o → τ o log2
(
1 + τE2

uγ
2
kσ
−4) . (7.13)

Note that the achievable rate in (7.12) and power scaling law in (7.13) will serve as

baselines and based on which the benefits brought by introducing an RIS are identified.

7.3.2 What’s New After Integrating An RIS?

The order of magnitude of Rk (Φ) in (7.11) with respect to M is O (log2 (M)), since εk

and Λ are independent of M . However, it is challenging to determine how Rk (Φ) scales

with N , due to the unknown value of Φ and the inverse operator. For tractability, an

insightful lower bound Rk for Rk (Φ) is proposed in the following.

Corollary 26. A Φ-independent lower bound Rk is given by

Rk (Φ) ≥ Rk = τ o log2

1 +
p (M −K)(

p
∑K

i=1 εi + σ2
)

[Λ−1]kk

 , (7.14)

where equality holds when δ = 0, and the gap Rk (Φ)− Rk enlarges after optimising Φ.

Besides, (7.14) can be approximated as

Rk ≈ τ o log2

1 +
p (M −K)

p
∑K

i=1 εi + σ2
×

(
N αkβ

δ+1 + γk

)2
N αkβ

δ+1 + γk + σ2

τp

 , (7.15)

which scales on the order of O (log2 (MN)).

Proof: Please refer to Appendix D.4. �

Interestingly, if N αkβ
δ+1 + γk is treated as a new path-loss factor, (7.15) possesses the

same form as (7.12). This reveals two fundamental impacts of the RIS: i) Positive effect:

RIS enhances the channel strength by a factor N αkβ
δ+1 ; ii) Negative effect: RIS results

in larger channel estimation errors εk. However, the channel strength always increases
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with N since
(N

αkβ

δ+1
+γk)

2

N
αkβ

δ+1
+γk+

σ2

τp

grows without bound as N → ∞, but the estimation error

saturates to εk → σ2

τp as N →∞. Therefore, for large N , the benefits of the RIS outweigh

its drawbacks in massive MIMO systems.

Corollary 26 proves that even with imperfect CSI, RIS-aided massive MIMO systems

can achieve an ergodic rate at least on the order of O (log2 (MN)). This promising gain

comes from the additional N paths contributed by the RIS for each user, such that more

signals can be collected by the BS. Compared with the order O (log2 (M)) in conventional

systems, Corollary 22 proves that much higher capacity can be achieved after integrating

an RIS. More importantly, the scaling law O (log2 (MN)) indicates that if it is needed

to maintain a fixed rate, the number of antennas can be reduced inversely proportional

to the number of RIS elements. For better understanding, a quantitative relationship is

provided in a special case.

Corollary 27. When δ = 0 and for large N , to achieve SNRk = C0 for a given N , the

required number of antennas M is approximately given by

M ≈ C0(K + τ)σ2

τp (Nαkβ + γk)
+K

= 2C0
σ2

p
× 1

Nαkβ + γk
+K, if τ = K.

(7.16)

Proof: When δ = 0, it is obtained that Rk (Φ) = Rk. Then, using (7.15), for large

N , it is derived that εk ≈ σ2

τp , and SNRk ≈ p(M−K)

K σ2

τ
+σ2

(Nαkβ + γk). Solving the equation

SNRk = C0 completes the proof. �

Corollary 27 corresponds to the scenarios with rich scattering. Eq. (7.16) clearly

exhibits the inversely proportional relationship between M and N . Meanwhile, intu-

itively, M increases with C0, K, and σ2

p , but decreases with the link strengths αkβ and

γk. Since the RIS’s reflecting elements consume much less energy than RF chains, Corol-

lary 27 states that the energy efficiency can be remarkably improved by integrating an

RIS.
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Corollary 28. If the RIS-BS channel is purely LoS (δ →∞), RIS-aided massive MIMO

systems perform no worse than conventional massive MIMO systems, i.e., Rk (Φ) ≥

Rk
w/o.

Proof: Substituting δ →∞ into (7.14), εk, and κk, it can be shown that Rk = Rk
w/o.

Then, it is obtained that Rk (Φ) ≥ Rk = Rk
w/o. �

Corollary 28 corresponds to the scenario where the RIS is carefully deployed to reduce

the scatters and obstacles between the BS and the RIS. In this case, the additional

channel estimation error in εk, ∀k, caused by the RIS, vanishes. Therefore, the RIS only

has the positive effect of enhancing the channel strength, which improves the achievable

rate. It is worth noting that even though it is only proved that RIS-aided systems are no

worse than conventional systems when δ →∞, in general, it could perform much better

because the second lower bound Rk is not as tight as the first lower bound Rk (Φ) if Φ

is carefully designed.

7.3.3 New Power Scaling Laws

In conventional massive MIMO systems, an attractive feature is that the transmit power

can be scaled down proportionally by increasing M [2–4]. After introducing an RIS, a

new power scaling law is revealed with respect to N , and it will be used to compare with

(7.13).

Corollary 29. As N → ∞, when the power is scaled proportionally to p = Eu/N , the

achievable rate in (7.11) can maintain a non-zero value ~Rk (Φ) → τ o log2

(
1 +
−−→
SNRk

)
,

where

−−→
SNRk =

Eu(M −K)∑K
i=1

Eu
τEu
σ2 + δ+1

αiβ

+ σ2
× 1

[Ξ−1]kk

≥ Eu(M −K)∑K
i=1

Eu
τEu
σ2 + δ+1

αiβ

+ σ2
×

(
αkβ
δ+1

)2
αkβ
δ+1 + σ2

τEu

.

(7.17)
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with Ξ=diag

{
(
α1β
δ+1

)2

α1β
δ+1

+ σ2

τEu

, ...,
(
αKβ

δ+1
)2

αKβ

δ+1
+ σ2

τEu

}
+ βδ
δ+1

HH
1 ΦHaNaHNΦH1

N .

Proof: Substitute p = Eu
N into (7.11). As N →∞, it is obtained that κk →

αkβ

δ+1
αkβ

δ+1
+ σ2

τEu

,

Eu
N εi → Eu

δ+1
αiβ

+ τEu
σ2

,
ΥHH

1 H1Υ
N → diag

{
κ21α1, . . . , κ

2
KαK

}
, ΩΥ2

N → 0, and σ2

τp
Υ2

N →
σ2

τEu
Υ2,

which leads to the first equation in (7.17). Then, the lower bound can be obtained by

using the inequality in (D.15). �

Comparing (7.17) with (7.13), it can be seen that this new scaling law has a high

order of magnitude with respect to M . Besides, by comparing (7.17) with (7.12), it is

interesting to find that (7.17) can be interpreted as the SNR achieved by a conventional

massive MIMO system with transmit power Eu and path-loss αkβ
δ+1 . To sum up, for large

M and N , transmit power can be significantly reduced while achieving high data rates.

7.3.4 Comparison with MRC-Based Systems

Corollary 30. When p or M or N is large, ZF-based RIS-aided massive MIMO outper-

forms its MRC-based counterpart. Besides, the severe fairness problem in MRC-based

RIS-aided massive MIMO system as stated in Remark 3, does not exist in the considered

ZF-based systems.

Proof: According to Corollary 26, when p or M grows without bound, it is found

that Rk ≥ Rk →∞, ∀k. Thus, all users can have infinite data rates. However, as proved

in Remark 3, when using MRC detectors, due to the mutual interference, the rate is

still bounded when p or M is large. Meanwhile, the rates of all users in the considered

system are at least on the order of O (log2 (N)). However, when using MRC, the rate

of only one user can be on the order of O (log2 (N)), while the rates of all other users

degrade to zero when N is large, which results in a serious fairness problem. �

ZF-based RIS systems perform better since RIS-aided systems suffer from severe

multi-user interference. This is because multiple users share the common RIS-BS chan-

nel, and thus the K users’ channels are highly correlated. The highly correlated channels
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result in severe interference and low data rate. However, by using ZF, the severe multi-

user interference issue can be addressed, which leads to promising performance for various

aspects.

7.3.5 The Upper Bound

The analysis based on the lower bound Rk is rigorous but conservative, since it ignores

the performance gain achieved by optimising Φ. Next, an upper bound is provided to

unveil the maximum gain achieved by optimising Φ.

Corollary 31. The rate is upper bounded by Rk(Φ) ≤ Rk = τ o log2
(
1 + SNRk

)
, where

SNRk

=
p(M −K)

p
∑K

i=1 εi + σ2

{
(N αkβ

δ+1 + γk)
2

N αkβ
δ+1 + γk + σ2

τp

+
∣∣aHNΦhk

∣∣2 αkβδ
δ + 1

}
(7.18)

≤ p(M −K)

p
∑K

i=1 εi + σ2

{
(N αkβ

δ+1 + γk)
2

N αkβ
δ+1 + γk + σ2

τp

+N2αkβδ

δ + 1

}
. (7.19)

Based on (7.18), Rk is at least on the order of O (log2 (MN)). Based on (7.19), Rk

is on the order of O
(
log2

(
MN2

))
.

Proof: Please refer to Appendix D.5. �

It is worth noting that (7.18) holds for all K users but (7.19) does not. This is

because (7.19) is achieved by aligning the RIS phase shifts to a specific user k so that

aHNΦhk = N . However, when aHNΦhk = N , it is known that aHNΦhi, ∀i 6= k, is bounded

even for N → ∞ as proved in Lemma 3. Thus, the additional N -fold gain in (7.19)

comes from the concentration of passive beamforming on user k. Combining the lower

bound in Corollary 26 and this upper bound, the following conclusion is highlighted:

Remark 5. If the RIS phase shifts are aligned to one specific user, the rate of this user

will scale at most on the order of O
(
log2

(
MN2

))
, while the rates of the other users

scale at least on the order of O (log2 (MN)), which is high as well.
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Based on these two achievable rate scaling laws, the sum user rate will be high for

large M and N , if the RIS phase shifts are simply aligned for an arbitrary user, which

constitutes a low-complexity heuristic approach for the sum-rate maximisation problem.

Corollary 32. The quantization error caused by RIS discrete phase shifts does not

impact the derived achievable rate scaling orders.

Proof: First, the lower bound Rk does not depend on Φ, and hence, is not affected

by quantization errors. Secondly,
∣∣aHNΦhk

∣∣2 ≥ N2 cos2
(
π
2b

)
holds for an RIS with b-bit

quantization[43]. Therefore, scaling order O
(
log2

(
MN2

))
still holds for Rk. �

7.3.6 Summary

It is summarised that RIS-aided massive MIMO with ZF detectors is promising for

• Green communications (Corollary 27) : The number of BS antennas can be

reduced inversely proportional to the number of RIS elements, while maintaining

a constant rate.

• Enhanced mobile broadband (Corollary 26, 31, 32, Remark 5) : According

to the rate scaling orders, ultra-high throughput requirement can be achieved for

large M and N .

• Internet of things (Corollary 29) : For large M and N , all users can signifi-

cantly reduce their transmit powers while maintaining high data rates.

7.4 RIS Phase Shifts Design

In this section, based on the derived rate expression in (7.11) and the low-complexity

MM technique[101], the sum user rate maximisation (Max-Sum) and the minimum user

rate maximisation (Max-Min) problems are solved, respectively. The Max-Sum problem

maximises the utility but may sacrifice fairness. On the contrary, the Max-Min problem

guarantees fairness but may sacrifice utility. Thus, simultaneously investigating both
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problems is beneficial to understand which optimisation criterion is more suitable for

the considered systems. For tractability, variable Φ is rewritten as Φ = diag
{
vH
}

,

where v =
[
ejθ1 , . . . , ejθN

]H
. Then, the design of Φ can be transformed to the design of

vector v.

Lemma 9. The rate in (7.11) can be rewritten as Rk (v) = τo

ln(2) ln
(

1 + vHBv
vHCkv

)
, where

B =
1

N
IN +

βδ

δ + 1
diag

{
aHN
}

H1Λ
−1HH

1 diag {aN} ,

Ck =
p
∑K

i=1 εi + σ2

p(M −K)

([
Λ−1

]
kk

B− βδ

δ + 1
zkz

H
k

)
,

(7.20)

and zHk =
[
Λ−1HH

1 diag {aN}
]
(k,:)

. Besides, it is obtained that B � 0 and Ck � 0.

Proof: The proof can be completed by substituting the last equality in (D.15) into

(7.11), and using ΦHaN = diag {aN}v and 1 = 1
N vHINv. Besides, it is obtained that

B � 0 due to Λ−1 � 0, which results in vHBv > 0. Since the rate Rk (v) must be

non-negative due to its definition in (7.9), it is obtained that vHCkv ≥ 0, which means

that Ck � 0. �

Define fk(v) , ln
(

1 + vHBv
vHCkv

)
for brevity. Since the same factor τo

ln(2) is included in

Rk (v) , ∀k, it can be ignored and the following two optimisation problems are formulated

Max-Sum : max
v

∑K

k=1
fk(v), s.t.

∣∣[v](n)
∣∣ = 1,∀n. (7.21)

Max-Min : max
v

min
k

fk(v), s.t.
∣∣[v](n)

∣∣ = 1,∀n. (7.22)

To successfully solve the above two problems under the MM algorithm framework,

tractable lower-bound surrogate functions need to be constructed for objective functions

in (7.21) and (7.22), and then closed-form optimal solutions are expected to be derived

via the surrogate functions.
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7.4.1 Max-Sum Problem

Lemma 10. For a fixed point vn, a lower bound of fk(v) is given by

fk(v) ≥ fk(v | vn) = constk +2 Re
{

(fnk )H v
}
, (7.23)

where

constk = fk (vn)− vHn Bvn
vHn Ckvn

− ψkvHn (λmax (Ck + B) IN − (Ck + B)) vn

−Nψkλmax (Ck + B) ,

(fnk )H = ωkv
H
n B− ψkvHn ((Ck + B)− λmax (Ck + B) IN ) ,

ωk =
1

vHn Ckvn
,

ψk =
vHn Bvn

(vHn Ckvn) (vHn Ckvn + vHn Bvn)
. (7.24)

Proof: Please refer to Appendix D.6. �

Then, the Max-Sum problem (7.21) can be directly solved based on the proposed

surrogate function fk(v | vn) in Lemma 10. Denoted by vn the solution in the n-th

iteration, the closed-form optimal solution in the (n+ 1)-th iteration is given by

vn+1 = arg max
v

∑K

k=1
fk (v | vn) = exp

{
j∠

(∑K

k=1
fnk

)}
. (7.25)

7.4.2 Max-Min Problem

Next, the Max-Min problem (7.22) is considered, which is more challenging since the

objective function min
k
fk(v) is non-differentiable. Therefore, firstly, the log-sum-exp

approximation in [89] is adopted to obtain a lower-bounded smooth objective function,
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as follows

min
k
fk(v) ≥ min

k
fk(v | vn) ≥ f̃ (v) , − 1

µ
ln

(∑K

k=1
exp

{
−µfk(v | vn)

})
, (7.26)

where µ > 0 is a constant for controlling the approximation accuracy, and the last

inequality can be proved similar to [89, (15)].

Lemma 11. For a fixed point vn, f̃ (v) in (7.26) is lower bounded by

f̃ (v) ≥ f̃ (v | vn) = c̃onst + 2 Re

{[(∑K

k=1
lnk (fnk )H

)
+

(
2µmax

k
‖fnk ‖

2

)
vHn

]
v

}
,

(7.27)

where

c̃onst = f̃ (vn)− 2 Re

{∑K

k=1
lnk (fnk )H vn

}
+ 2N

(
−2µmax

k
‖fnk ‖

2

)
, (7.28)

lnk =
exp

{
−µfk(vn | vn)

}∑K
k=1 exp

{
−µfk(vn | vn)

} . (7.29)

Proof: Please refer to Appendix D.7. �

Based on the MM algorithm, the Max-Min problem (7.22) can be solved by maxi-

mizing the lower bound f̃ (v | vn) in each iteration. Given the solution vn in the n-th

iteration, the closed-form optimal solution in the (n+ 1)-th iteration is

vn+1 = arg max
v

f̃ (v | vn) = exp

{
j∠

{(∑K

k=1
lnk fnk

)
+

(
2µmax

k
‖fnk ‖

2

)
vn

}}
.

(7.30)

Finally, the framework for solving Max-Sum problem (7.21) and Max-Min problem

(7.22) are summarised in Algorithm 5, where steps 4 − 9 are used to accelerate the

convergence speed of the MM technique[102].
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Algorithm 5 MM algorithm.

1: Initialize v0, n = 0;
2: repeat

3: Given vn, obtain solution v
(1)
n+1 from (7.25) or (7.30);

4: Given v
(1)
n+1, obtain solution v

(2)
n+1 from (7.25) or (7.30);

5: 4v1 = v
(1)
n+1 − vn, and 4v2 = v

(2)
n+1 − v

(1)
n+1 −4v1;

6: ρ = −‖4v1‖
‖4v2‖ , and vn+1 = − exp

{
j∠
(
vn − 2ρ4v1 + ρ24v2

)}
;

7: while vn+1 does not lead to an increasing objective value in (7.21) or (7.22) do
8: ρ = (ρ− 1) /2, and vn+1 = − exp

{
j∠
(
vn − 2ρ4v1 + ρ24v2

)}
;

9: end while
10: n← n+ 1;
11: until The objective value in (7.21) or (7.22) converges.

7.4.3 Convergence and Complexity Analysis

For both the Max-Sum and Max-Min problems, MM algorithms are utilized to optimise

variable v in each iteration. First, the monotonicity of the MM algorithm has been

proved in [103]. Second, in Corollary 31, it is proved that there is an upper bound for

the objective function of the optimisation problem. Therefore, the convergence of the

proposed algorithm is guaranteed.

The computational complexity of solving the Max-Sum problem based on (7.25) is

mainly caused by fnk , ∀k, in (7.24). By neglecting the lower-order terms, the approx-

imate computational complexity of λmax (B + Ck) , ∀k, is O
(
KN3 +K3 +NK2

)
[104,

C.1]. Note that parameters B and Ck do not need to be updated in each iteration.

Denote the number of iterations in Algorithm 5 as T . Then, given B and Ck, the

approximate computational complexity of the remaining terms in the expression for

fnk ,∀k, in (7.24) is O
(
KN2

)
which needs to be computed T times. Therefore, the

overall approximate complexity of solving the Max-Sum problem with Algorithm 5 is

O
(
TKN2 +KN3 +K3 +NK2

)
.

The computational complexity of solving the Max-Min problem based on (7.30)

mainly comes from parameters fnk ,∀k, in (7.24) and lnk , ∀k, in (7.29). The approximate

computational complexity of fnk ,∀k, is the same as that in solving the Max-Sum problem,

i.e., O
(
TKN2 +KN3 +K3 +NK2

)
. Besides, the parameters lnk , ∀k, in (7.29) has the
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approximate computational complexity of O
(
TKN2

)
. Therefore, the overall approxi-

mate complexity of solving the Max-Min problem with Algorithm 5 remains on the order

of O
(
TKN2 +KN3 +K3 +NK2

)
.

7.5 Numerical Results

This section verifies the correctness of the derived results and gives insights. Unless

otherwise stated, it is assumed that M = N = 64, δ = 1, τc = 196, τ = K, and µ = 10.

The transmit power of the pilot and data signals for each user is p = 30 dBm, and the

noise power is σ2 = −104 dBm. The BS and the RIS are located at (0, 0) and (0, 700 m),

respectively. The number of users is K = 8, and the users are randomly located in a

circle centred at (10 m, 700 m) of radius 10 m. Without loss of generality, denote the

users nearest to and furthest from the RIS as users 1 and 8, respectively. The path-loss

factors are calculated as αk = 10−3d−2uR,k, β = 10−3d−2.5RB , and γk = 10−3d−4uB,k, where

duR,k, dRB, and duB,k denote the distances between user k and the RIS, the RIS and

the BS, and user k and the BS, respectively. The AoA and AoD parameters used for

the LoS channels are generated randomly from [0, 2π). The convergence accuracy for

Algorithm 5 is set to 10−6. The theoretical result in (7.11) is verified via Monte-Carlo

simulations based on (7.8), and the corresponding results are referred to as “Simulation”

in the legends of the following figures. The MRC-based systems for perfect and imperfect

CSI are evaluated based on Chapter 3 and 4, respectively. Besides, the following four

types of RIS designs are considered as the benchmarks.

• Case 1: The phase shifts are aligned to the nearest user (user 1) so that aHNΦh1 =

N .

• Case 2: The phase shifts are aligned to the furthest user (user 8) so that aHNΦh8 =

N .

• Case 3: The phase shift of each RIS element is set randomly in [0, 2π).

• Case 4: The phase shift matrix is simply set as an identity matrix, i.e., Φ = IN .
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Figure 7.1: Achievable rate of a user under different RIS designs.

Fig. 7.1(a) illustrates the derived upper and lower bounds, and shows the rate of one

user when the RIS phase shifts are aligned to it. To be specific, the rate of user 1 in Case

1 and the rate of user 8 in Case 2 are respectively plotted. Firstly, it can be observed that

when the RIS phase shifts are aligned to user 1 or user 8, their rates tightly approach the

upper bound in (7.19), which validates that the derived scaling order O
(
log2

(
MN2

))
in

(7.19) is achievable. Secondly, the theoretical results match well with the Monte-Carlo

simulation results, which verifies the correctness of the derivatives. Besides, compared

with the rate of user 8 achieved in Case 2, aligning the phase shifts to user 1 in Case 1
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yields a higher achievable rate. This is because user 1 is located closer to the RIS and

thus has a smaller path-loss. Thirdly, it can be seen that the approximate lower bound

(7.15) perfectly matches with the accurate lower bound (7.14) for all considered values

of N , which verifies the reliability of the previous analysis based on (7.15). Finally, when

N is doubled from N = 200 to N = 400, the increment of the rate in lower bound and

that in Case 1 are almost τ o log2 (2) = 0.96 and τ o log2
(
22
)

= 1.92, respectively, which

confirms the derived theoretical scaling orders of O (log2 (MN)) and O
(
log2

(
MN2

))
.

Fig. 7.1(b) shows the achievable rate of user 1 when the RIS phase shifts are not

aligned to it, i.e., in Case 2 - 4. It can be observed that in these three cases, the

upper bound (7.18) and lower bound (7.14) are tight, which means that the rate scales

accurately on the order of O (log2 (MN)). This is because the RIS phase shifts can-

not be aligned simultaneously to many users. Then, only one user’s rate can scale as

O
(
log2

(
MN2

))
while the rates of all other users scale only as O (log2 (MN)). There-

fore, the scaling order O (log2 (MN)) obtained based on the lower bound is appropriate

for understanding the system capacity since it corresponds to the rate of most of the

users.

Next, the sum user rate and the minimum user rate are respectively examined when

using the proposed RIS design in Algorithm 5.

Fig. 7.2(a) illustrates the sum user rate. The RIS’s phase shifts are designed by

solving the Max-Sum problem (7.21), denoted as Case 5. For comparison, the RIS’s

phase shifts designs based on Case 1 (aligned to user 1), Case 2 (aligned to user 8) and

Case 3 (set randomly) are considered as well. Firstly, it can be observed that there exists

some performance loss caused by channel estimation errors. This is because the length of

the pilots is τ = K = 8, which is very small compared to the large M and N . However,

the ZF-based perfect and imperfect CSI cases have a similar growth rate (i.e., a nearly

constant gap). This is because the channel estimation error εk saturates for large N

and then does not degrade the scaling order. Secondly, it is seen that ZF-based systems

perform much better than MRC-based and RIS-free systems, especially when N is large.
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Figure 7.2: Sum user rate and minimum user rate.

This is consistent with the analytical results. Thirdly, the rate in Case 5 is much higher

than that in Case 3. However, a near-optimal performance is achieved by Case 1 and

Case 2. Especially, in Case 1 where the RIS phase shifts are aligned to the nearest user,

the rate is almost the same as the optimal result. This is because by aligning the RIS’s

phase shifts to a user, the rate of this user scales on the order of O
(
log2

(
MN2

))
, while

the rates of all other users scale still on the order of O (log2 (MN)), which corresponds to
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a large sum user rate when both M and N are large. Since directly setting aHNΦhk = N

is a very simple and low-complexity approach, aligning the RIS’s phase shifts to an

arbitrary user is a high-quality sub-optimal solution for practical systems.

Fig. 7.2(b) evaluates the minimum user rate. The RIS phase shifts are designed by

solving the Max-Min problem (7.22), denoted as Case 6. The RIS designs based on

Case 1 (aligned to user 1), Case 2 (aligned to user 8), Case 3 (set randomly), and Case

5 (Max-Sum) are also considered for comparison. It is seen that the optimal design in

Case 6 yields better minimum user rates compared with other cases. However, despite

some performance loss, Cases 1, 2, 3, and 5 also achieve relatively high minimum user

rates. This is because the dominant limitation, namely the multi-user interference, is

eliminated. Thus, even the lowest rate grows still on the order of O (log2 (MN)), which

is guaranteed to be high with large M and N .

Fig. 7.3(a) evaluates the trade-off between M and N with respect to the sum user

rate and the minimum user rate, respectively. As expected, in both cases, M can be

reduced inversely proportional to the increase of N while maintaining a constant rate.

Meanwhile, after the optimisation of Φ, M can be further decreased compared to the case

with random phase shift design. Besides, it can be seen that the reduction of M is more

obvious when the rate target is more stringent. This comes from the decreasing slope of

the logarithm function. Without the RIS, the rate is on the order of O (log2 (M)), and

very large M is needed to achieve a high rate target. However, if the rate is on the order

of O (log2 (MN)), the high data rate target can be met with moderate M but large N ,

since the product MN is very large.

Fig. 7.3(b) validates the derived power scaling law in (7.17), where the power is

scaled proportionally to p = 10/N . As N → ∞, it is verified that the rate tends to the

derived asymptotic limit, and it is larger than the lower bound. Also, it can be observed

that the asymptotic limit is improved significantly when M is doubled from 32 to 64.

This is because the asymptotic limit in (7.17) is on the order of O (log2 (M)).
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Figure 7.3: Trade-off between M and N and the power scaling law.

Finally, Fig. 7.4 illustrates the convergence behaviour of the proposed MM algorithms

for solving Max-Sum problem (7.21) and Max-Min problem (7.22), respectively. Both

the iteration number and the needed CPU time are shown for different numbers of

RIS reflecting elements. As can be seen, the proposed algorithms have a fast speed of

convergence (within 0.3 s) even though the values of M and N are large, and only a

few iterations are sufficient to achieve a large portion of the achievable rate after full
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Figure 7.4: The convergence behaviour, where M = 64.

convergence. This is because closed-form solutions (7.25) and (7.30) are exploited in each

iteration of the proposed algorithms. Therefore, the computation has low complexity, and

the convergence time is very short. Besides, it can be observed that the iteration number

and CPU time increase with N due to the increased number of optimised variables.
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7.6 Summary

This chapter demonstrates that RIS-aided MIMO with ZF detectors is a promising sys-

tem architecture for many applications. Theoretical expressions for the ergodic rate are

derived, based on which two low-complexity MM algorithms are proposed to respec-

tively optimise the sum user rate and the minimum user rate. It is demonstrated that by

aligning the RIS phase shifts to a user, the rate scaling order of that user can approach

O
(
log2

(
MN2

))
, while the rate scaling order of the other users is guaranteed to be

O (log2 (MN)). Therefore, high system capacity can be realized with a low-complexity

RIS design. It is also proved that by increasing N , the M required to maintain a con-

stant achievable rate can be reduced inverse proportionally. Besides, it is revealed that

as N → ∞, the transmit power of all users can be scaled proportionally to p = 1/N

while maintaining high rates.



Chapter 8

Conclusion

In this chapter, the contributions of this thesis are summarised and some possible future

work is presented.

8.1 Summary of Contributions and Insights

To provide higher spectral efficiency and improve the energy efficiency in the 5G and

beyond systems, this thesis focuses on the integration of RIS into conventional massive

MIMO systems. To achieve a good trade-off between the system performance and the

signalling overhead, a novel two-timescale transmission scheme is adopted, where the

instantaneous CSI is used for the design of BS detectors while the long-term CSI is

exploited for the design of the RIS phase shifts. Different BS detectors and different kinds

of the channel state information are considered in each chapter. Low-complexity MRC

detector is utilized in Chapters 3, 4 and 5 but with different kinds of CSI and different

channel models. To mitigate the multi-user interference, ZF detectors are considered in

Chapters 6 and 7 with perfect and imperfect CSI, respectively.

In Chapter 3, the two-timescale transmission scheme for RIS-aided massive MIMO

systems is studied with perfect CSI and low-complexity MRC detectors. Based on the

Rician fading channel model and using a complex number-based method, the closed-form

150
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expressions for the achievable rate are derived which hold for arbitrary numbers of the

BS antennas and the RIS reflecting elements. Then, relying on the derived expressions,

some insightful analytical results are provided. The power scaling law is revealed showing

that the transmission power of each user can be reduced inversely proportional to the

number of BS antennas. The average data rate is provided if the phase shifts of the

RIS are randomly adjusted in each coherence time, for both the continuous and discrete

phase shifts. Then, a GA-based method is proposed for solving both the sum user rate

maximisation problem and the minimum user rate maximisation problem. Simulation

results reveal the trade-off between the achievable spatial multiplexing and the channel

path loss. It also demonstrates the benefits of integrating the RIS into massive MIMO

systems.

In Chapter 4, with MRC detectors, the RIS-aided massive MIMO systems with imper-

fect CSI are investigated. An LMMSE-based channel estimation for the aggregated

user-RIS-BS channel is proposed. Then, the quality of the proposed channel estimation

algorithm is analysed. It is shown that the RIS can help reduce the NMSE due to its

capacity to strengthen the channel gain. It is also proved that the NMSE could decrease

with the number of RIS elements. Next, using a matrix-based method, the UatF bound

of the achievable rate is derived in the presence of the channel estimation error. The

power scaling laws are derived with respect to both the number of RIS elements and

the BS antennas, which shows that unlike the scaling law with M which is impacted by

the channel estimation error, the scaling law with N could be robust with the channel

estimation error. The analytical results also emphasise the benefits of guaranteeing suf-

ficient spatial multiplexing gain between the BS and the RIS. The power scaling law is

also provided in the case of a single user, which proves that LoS environment is benefi-

cial for the single user. Besides, the phase shifts of the RIS are respectively optimised

to maximise the minimum user rate in the scenario of a single user and multiple users.

Simulation results demonstrate the advantages of the two-timescale design due to the

reduced pilot overhead. The correctness of the analytical conclusions is verified as well.
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In Chapter 5, the impacts of spatial correlation and EMI on the RIS-aided massive

MIMO system are further studied with imperfect CSI and MRC detectors. Due to the

planar structure of the RIS, the spatial correlation can not be neglected. Therefore, the

channel estimation scheme is re-designed with spatial correlation, which demonstrates

that the spatial correlation could help the RIS play more roles in improving the channel

estimation quality. Then, using the new channel estimation results, the achievable rate

expression is re-derived and analysed to reveal the impact of spatial correlation and

EMI. It is proved that the EMI may lead to different power scaling laws if it is very

severe. Next, a low-complexity accelerated gradient ascent algorithm is proposed for

solving the minimum user rate maximisation problem with both the spatial-correlated

and spatial-independent channels. Simulations show that the spatial correlation can

be safely neglected if the element spacing is of half wavelength. The impact of spatial

correlation and EMI for other setups is revealed as well. Besides, it is shown that the

gain of the RIS is more obvious if it is deployed to serve some cell-edge users.

In Chapter 6, the ZF detector is utilized to solve the severe interference problem in

RIS-aided massive MIMO systems. The closed-form expression of the achievable rate

is first derived, by solving the challenging problem of calculating the expectation of the

matrix inversion. Then, using the derived results, the power scaling laws with respect

to the number of BS elements is revealed, which is the same as that in conventional

massive MIMO systems. The superiority of RIS-aided massive MIMO systems over the

conventional RIS-free massive MIMO systems is proved based on an insightful lower

bound. A complex variable-based gradient ascent method is proposed for solving the

sum user rate maximisation problem. Simulation results demonstrate the correctness

of the analytical conclusions and reveal the superiority of ZF detectors over the MRC

detectors for RIS-aided massive MIMO systems.

In Chapter 7, the ZF-based RIS-aided massive MIMO system is studied in the pres-

ence of the channel estimation error. A low-complexity aggregated channel estimation

method is first proposed, which has the same pilot overhead as the conventional massive
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MIMO systems. The impacts of several key system parameters on the channel estima-

tion quality are analysed. Then, the closed-form expression for the achievable rate is

derived. Based on the derived results, the upper and lower achievable rate scaling orders

are revealed, which are very promising for achieving extremely high system capacity.

The relationship between the RIS elements and the BS antennas is provided as well,

which demonstrates that ZF-based RIS-aided systems can help realize green communi-

cations. Besides, it is proved that the channel estimation error will not impact the rate

scaling order. Then, two low-complexity MM-based optimisation methods are proposed

for solving the sum user rate maximisation and the minimum user rate maximisation

problems, respectively. Simulation results verify the correctness of the derived rate scal-

ing orders and demonstrate the promising features of using ZF detectors to RIS-aided

massive MIMO system in the presence of the imperfect CSI.

8.2 Future Research

In this section, some possible extensions of this thesis are proposed in the following.

8.2.1 Near-Field

This thesis only focuses on the far-field communication scenario. The far-field assumption

holds when the RIS is not very large and when the distance between the users and the RIS

is not small. However, in practical scenarios, since the RIS should own a large surface to

overcome the double path loss effect, the communication between the RIS and the user is

very likely to happen in the near-field[58, 68, 105]. Under the near-field communication

assumption, the plane wave assumption would no longer hold, and the more practical

but more complex spherical wave assumption should be utilized, which may greatly

change the analytical frameworks. Meanwhile, the conclusion drawn based on far-field

assumptions should be re-examined fully in the near-field. Besides, it is meaningful to

study the boundary between the near-field and the far-field, i.e., the Rayleigh distance,

to provide further insights.
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8.2.2 Active RIS

This thesis investigates the massive MIMO systems aided by a passive RIS. By passively

reflecting the impinging signal and intelligently adjusting the phase shifts, received sig-

nals from different paths can be constructively superimposed and enhanced. Besides,

the passive RIS relies on low-power tunable electronic circuits (e.g., PIN diodes or var-

actors) to shift the phase, and therefore nearly zero power is consumed. However, the

passive nature also has some drawbacks. The signal reflected by the RIS needs to pass

through two paths, i.e., the BS-RIS and RIS-user paths. Without signal amplification,

the received signal suffers from the product/double path loss attenuation and therefore

becomes weak enough. This “double path loss” attenuation limits the potential of RIS to

a large extent[106]. To tackle this challenge, the concept of active RIS has been proposed

and investigated in [107–110]. The appealing feature of the active RIS is that it can not

only adjust the phase shifts but also amplify the received signal attenuated from the

first hop to a normal strength level. Accordingly, active RIS effectively circumvents the

double path loss attenuation. Therefore, it is meaningful to study the active RIS-aided

massive MIMO systems based on the two-timescale transmission scheme, and re-visit

the features such as the power scaling laws and the rate scaling orders.

8.2.3 Hardware Impairment

Even though this thesis demonstrates that the RIS could bring significant performance

improvement for the conventional massive MIMO systems, the gains may be limited by

the practical constraints of the hardware of the BS and the RIS. For example, with LoS

environment, contribution [111] proved that the low-resolution analog-digital converters

(ADCs) could limit the achievable rate of RIS-aided systems. Then, the impact of ADC,

BS phase noise, and low-resolution RIS reflectors on RIS-aided multi-user systems is

investigated in [51, 112]. This thesis mainly focuses on the ideal hardware condition

to simplify the analysis. Therefore, a general analytical framework, which provides a

comprehensive study of the impact of different kinds of the hardware impairments on

the RIS-aided massive MIMO systems with two-timescale design, could be useful for the
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further system design. It is also meaningful to study the impact of hardware impairment

in different scenarios with different kinds of channel models.

8.2.4 Distributed RISs

The RIS can be deployed in centralized and distributed ways. The centralized deploy-

ment is considered in this thesis, while some work has studied the distributed deployment

[49, 113, 114]. In the distributed deployment, a big RIS can be split into multiple small

RISs, and then deployed in different locations. A typical scenario is cell-free systems

aided by distributed RISs, and their gain over conventional centralized deployment has

been verified. Therefore, it is useful to further investigate the distributed RISs-aided

massive MIMO systems with different kinds of scenarios, channel state information,

channel models, and applications. The analytical comparison between centralized and

distributed RISs-aided systems would be necessary to understand the insights.

8.2.5 Other Scenarios and Constraints

Some further constraints in practical communication systems can be considered to extend

this thesis. Specifically, it is interesting to investigate the impact of high user mobility

and the imperfect statistical CSI on the performance of two-timescale design. The impact

of EMI and spatial correlation also deserves further study in more complex scenarios.

The non-linear coupling between the reflection amplitude and phase shifts of the RIS

could also be considered. Besides, it is valuable to investigate the benefit of ZF detection

in RIS-aided massive MIMO systems with more general channel models. There are also

some meaningful scenarios to be studied, such as the overload network with ZF detection,

joint uplink and downlink communications, and indoor scenarios.
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Appendix A

Proofs in Chapter 3

A.1 Proof of Theorem 1

The calculation is carried out by first focusing on terms unrelated to the direct links dk.

Specifically, three expectation terms, E
{
‖gk‖2

}
, E
{
‖gk‖4

}
and E

{∣∣gHk gi
∣∣2} will be

derived, respectively. According to the definition of Rician channels in (3.2) and (3.3),

the cascaded channels gk for user k and gi for user i can be expanded as follows

gk =H2Φhk =

√
βαk

(δ+1) (εk+1)

(√
δεkH2Φhk︸ ︷︷ ︸

g1
k

+
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δH2Φh̃k︸ ︷︷ ︸

g2
k

+
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εkH̃2Φhk︸ ︷︷ ︸

g3
k

+ H̃2Φh̃k︸ ︷︷ ︸
g4
k

)
,

(A.1)

gi = H2Φhi =

√
βαi

(δ + 1) (εi + 1)

(√
δεiH2Φhi︸ ︷︷ ︸

g1
i

+
√
δH2Φh̃i︸ ︷︷ ︸

g2
i

+
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εiH̃2Φhi︸ ︷︷ ︸

g3
i
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g4
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)
,

(A.2)

where H̃2, h̃k and h̃i are independent with each other, and H̃2, h̃k and h̃i are composed

of independent and identically distributed random variables following CN (0, 1).

The derivation of E
{
‖gk‖2

}
is first provided . Using the definition in (A.1), E

{
‖gk‖2

}
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can be written as

E
{
‖gk‖2

}
= E

{
gHk gk

}
= βαk

(δ+1)(εk+1)E
{∑4

ω=1 (gωk )H
∑4

ψ=1 gψk

}
. (A.3)

Based on the independence, it is arrived at E
{

(gωk )H gψk

}
= 0, ∀ω 6= ψ. Therefore, it

is obtained that

E
{
gHk gk
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where (a) utilizes the following results:

∥∥H2Φhk
∥∥2 = ‖aM (φar , φ

e
r)‖

2
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e
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Next, the derivation of E
{
‖gk‖4

}
is provided. Firstly, divide E

{
‖gk‖4

}
into the

following two parts

E
{
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}
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{(
M∑
m=1
|gkm|2
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(A.9)

where gkm is the m-th entry of gk.
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Next, E
{
|gkm|4

}
and E

{
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}
will be calculated, respectively.

Recalling (1) ∼ (4), rewrite gkm in the following form
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where aXi (ϑa, ϑe) is the i-th element of aX (ϑa, ϑe). Therefore, E
{
|gkm|4

}
can be

expanded as follows
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(A.11)

where (b) is obtained by removing the zero terms. Since each element in H̃2 and h̃k is

composed of independent real and imaginary parts following N
(
0, 12
)
, the zero items can

be filtered based on the property that the k-order raw moment E
{
sk
}

is equal to zero,

when k is odd and s is a normal distribution variable with zero mean[115].

Next, the above terms in (A.11) will be calculated one by one. Firstly, calculate
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(ϕat , ϕ

e
t ) e

jθn2 h̃kn2

∣∣∣2}


+4δ2
∑N−1

n1=1

∑N
n2=n1+1 E


Re

a∗Nn1
(ϕat , ϕ

e
t ) e

jθn1 × h̃kn1 h̃∗kn2
e−jθn2 aNn2 (ϕat , ϕ

e
t )




2,
(A.12)

where (c) and (d) are obtained by removing the zero expectation terms in binomial

expansion.

Denote h̃kn = s+ jt, where s ∼ N (0, 1/2) and t ∼ N (0, 1/2). Then, it is arrived at

E
{∣∣∣h̃kn∣∣∣4} = E

{
|s+ jt|4

}
= E

{
s4 + t4 + 2s2t2

}
= 2. (A.13)

Thus, it can be derived that

∑N
n=1 E

{∣∣∣a∗Nn (ϕat , ϕ
e
t ) e

jθn h̃kn

∣∣∣4} =
∑N

n=1 E
{∣∣∣h̃kn∣∣∣4} = 2N. (A.14)
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Likewise, it is arrived at

2
N−1∑
n1=1

N∑
n2=n1+1

E{∣∣∣a∗Nn1
(ϕat , ϕ

e
t ) e

jθn1 h̃kn1

∣∣∣2}× E{∣∣∣a∗Nn2
(ϕat , ϕ

e
t ) e

jθn2 h̃kn2

∣∣∣2}


= 2
N−1∑
n1=1

N∑
n2=n1+1

E
{∣∣∣h̃kn1

∣∣∣2}E{∣∣∣h̃kn2

∣∣∣2} = N(N − 1).

(A.15)

For ease of exposition, denote a∗Nn1
(ϕat , ϕ

e
t ) e

jθn1e−jθn2 aNn2 (ϕat , ϕ
e
t ) = σcn + jσsn,

where (σcn)2 + (σsn)2 = 1. Besides, denote h̃kn1 = skn1 + jtkn1 and h̃kn2 = skn2 + jtkn2 ,

then it is arrived at

4
N−1∑
n1=1

N∑
n2=n1+1

E


Re

a∗Nn1
(ϕat , ϕ

e
t ) e

jθn1 h̃kn1 × h̃∗kn2
e−jθn2 aNn2 (ϕat , ϕ

e
t )




2
= 4

N−1∑
n1=1

N∑
n2=n1+1

E


σcnskn1skn2 − σsntkn1skn2 + σcntkn1tkn2 + σsnskn1tkn2


2

= 4
N−1∑
n1=1

N∑
n2=n1+1

(
(σcn)2 + (σsn)2

)
1
4 × 2 = N(N − 1).

(A.16)

Substituting (A.14), (A.15) and (A.16) into (A.12), the calculation of E
{∣∣g2km∣∣4} is

completed as follows

E
{∣∣g2km∣∣4} = δ2(2N + 2N(N − 1)) = 2δ2N2. (A.17)

When ω = 3, 4, similarly, it is arrived at E
{∣∣g3km∣∣4} = ε2k(2N+2N(N−1)) = 2ε2kN

2,

and E
{∣∣g4km∣∣4} = 4N + 2N(N − 1) = 2N(N + 1).

Secondly,
3∑

ω=1

4∑
ψ=ω+1

E
{
|gωkm|2|g

ψ
km|

2
}

is considered. When ω = 1, it can be derived

that E
{∣∣g1km∣∣2 ∣∣g2km∣∣2} = δ2εk |fk(Φ)|2N , E

{∣∣g1km∣∣2 ∣∣g3km∣∣2} = δε2k |fk(Φ)|2N , and
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E
{∣∣g1km∣∣2 ∣∣g4km∣∣2} = δεk |fk(Φ)|2N .

When ω = 2, by utilizing the property of independence and removing the terms with

zero expectation, it is arrived at

E
{∣∣g2km∣∣2 ∣∣g3km∣∣2}

= δεkE


∑N

n=1

∣∣∣a∗Nn (ϕat , ϕ
e
t ) e

jθn h̃kn

∣∣∣2
×

∑N
n=1

∣∣∣[H̃2

]
mn

ejθnaNn (ϕakr, ϕ
e
kr)
∣∣∣2



= δεkE
{∑N

n=1

∣∣∣h̃kn∣∣∣2∑N
n=1

∣∣∣[H̃2

]
mn

∣∣∣2} = δεk
∑N

n=1 E
{∣∣∣h̃kn∣∣∣2}∑N

n=1 E
{[

H̃2

]
mn

∣∣∣2}
= δεkN

2,

(A.18)

and

E
{∣∣g2km∣∣2 ∣∣g4km∣∣2} = δE


∣∣∣∑N

n=1 a∗Nn (ϕat , ϕ
e
t ) e

jθn h̃kn

∣∣∣2 × ∣∣∣∑N
n=1

[
H̃2

]
mn

ejθn h̃kn

∣∣∣2


= δE

∑N
n1=1

∑N
n2=1,n2 6=n1

∣∣∣h̃kn1

∣∣∣2 ∣∣∣h̃kn2

∣∣∣2 ∣∣∣∣[H̃2

]
mn2

∣∣∣∣2 +
∑N

n1=1

∣∣∣h̃kn1

∣∣∣4 ∣∣∣∣[H̃2

]
mn1

∣∣∣∣2


= δN(N + 1).

(A.19)

When ω = 3, similarly, it is obtained that E
{∣∣g3km∣∣2 ∣∣g4km∣∣2} = εkN(N + 1).

Thirdly,
3∑

ω=1

4∑
ψ=ω+1

E{(Re{(gωkm)∗ gψkm})
2} is calculated. Using the similar methods in

(A.16), the real parts can be extracted and then the expectations of their square can be

calculated. Then the following results after some straightforward simplifications can be
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obtained:

E
{(

Re
{(

g1km
)∗

g2km

})2}
=
δ2εk

2
N |fk(Φ)|2 ,

E
{(

Re
{(

g1km
)∗

g3km

})2}
=
δε2k
2
N |fk(Φ)|2 ,

E
{(

Re
{(

g1km
)∗

g4km

})2}
=
δεk
2
N |fk(Φ)|2 ,

E
{(

Re
{(

g2km
)∗

g3km

})2}
=
δεk
2
N2,

E
{(

Re
{(

g2km
)∗

g4km

})2}
=
δ

2
N (N + 1),

E
{(

Re
{(

g3km
)∗

g4km

})2}
=
εk
2
N (N + 1).

(A.20)

The remaining two terms in (A.11) can also be derived similarly, which are presented

as follows

E
{

Re
{(

g1km
)∗

g2km

}
Re
{(

g3km
)∗

g4km

}}
=

1

2
δεk |fk(Φ)|2 , (A.21)

E
{

Re
{(

g1km
)∗

g3km

}
Re
{(

g2km
)∗

g4km

}}
=

1

2
δεk |fk(Φ)|2 . (A.22)

Substituting the above intermediate results into (A.11), the calculation of E
{
|gkm|4

}
can be completed, which is not related with its subscript m.

Then, the term of E
{
|gkm|2 |gkh|2

}
is derived. Similar to (A.10), gkh can be expressed
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as follows

gkh =

√
βαk

(δ + 1) (εk + 1)
×

√δεkaMh (φar , φ
e
r) fk(Φ)︸ ︷︷ ︸

g1
kh

+
√
δaMh (φar , φ

e
r)

N∑
n=1

a∗Nn (ϕat , ϕ
e
t ) e

jθn h̃kn︸ ︷︷ ︸
g2
kh

+
√
εk
∑N

n=1

[
H̃2

]
hn
ejθnaNn (ϕakr, ϕ

e
kr)︸ ︷︷ ︸

g3
kh

+
∑N

n=1

[
H̃2

]
hn
ejθn h̃kn︸ ︷︷ ︸

g4
kh

. (A.23)

Note that
[
H̃2

]
mn

is independent of
[
H̃2

]
hn

and both of them have zero mean. The

terms with non-zero expectation after the binomial expansion can be extracted as follows

E
{
|gkm|2 |gkh|2

}
=

(
βαk

(δ + 1) (εk + 1)

)2

E


∣∣∣∣∣

4∑
ω=1

gωkm

∣∣∣∣∣
2
∣∣∣∣∣∣

4∑
ψ=1

gψkh

∣∣∣∣∣∣
2

=

(
βαk

(δ + 1) (εk + 1)

)2

×

 4∑
ω=1

4∑
ψ=1

E
{
|gωkm|

2
∣∣∣gψkh∣∣∣2}

+ 4E
{

Re
{

g1km
(
g2km

)∗}
Re
{

g1kh
(
g2kh
)∗}}

+ 4E
{

Re
{

g1km
(
g2km

)∗}
Re
{

g3kh
(
g4kh
)∗}}

+ 4E
{

Re
{

g3km
(
g4km

)∗}
Re
{

g1kh
(
g2kh
)∗}}

+ 4E
{

Re
{

g3km
(
g4km

)∗}
Re
{

g3kh
(
g4kh
)∗}}

.

(A.24)

Next, the above terms in (A.24) will be calculated one by one.

Firstly, E
{
|gωkm|

2
∣∣∣gψkh∣∣∣2} , 1 ≤ ω, ψ ≤ 4 are considered. These terms can be derived
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following the similar process in the calculation of E
{
|gωkm|

2
∣∣∣gψkm∣∣∣2}. Therefore, the

following results can be directly obtained:

E
{∣∣g1km∣∣2 ∣∣g1kh∣∣2} = (δεk)

2 |fk(Φ)|4 ,E
{∣∣g1km∣∣2 ∣∣g2kh∣∣2} = δ2εkN |fk(Φ)|2 , (A.25)

E
{∣∣g1km∣∣2 ∣∣g3kh∣∣2} = δε2kN |fk(Φ)|2 ,E

{∣∣g1km∣∣2 ∣∣g4kh∣∣2} = δεkN |fk(Φ)|2 , (A.26)

E
{∣∣g2km∣∣2 ∣∣g1kh∣∣2} = δ2εkN |fk(Φ)|2 ,E

{∣∣g2km∣∣2 ∣∣g2kh∣∣2} = 2δ2N2, (A.27)

E
{∣∣g2km∣∣2 ∣∣g3kh∣∣2} = δεkN

2,E
{∣∣g2km∣∣2 ∣∣g4kh∣∣2} = δ(N2 +N), (A.28)

E
{∣∣g3km∣∣2 ∣∣g1kh∣∣2} = δε2kN |fk(Φ)|2 ,E

{∣∣g3km∣∣2 ∣∣g2kh∣∣2} = δεkN
2, (A.29)

E
{∣∣g3km∣∣2 ∣∣g3kh∣∣2} = ε2kN

2,E
{∣∣g3km∣∣2 ∣∣g4kh∣∣2} = εkN

2, (A.30)

E
{∣∣g4km∣∣2 ∣∣g1kh∣∣2} = δεkN |fk(Φ)|2 ,E

{∣∣g4km∣∣2 ∣∣g2kh∣∣2} = δ(N2 +N), (A.31)

E
{∣∣g4km∣∣2 ∣∣g3kh∣∣2} = εkN

2,E
{∣∣g4km∣∣2 ∣∣g4kh∣∣2}= N2 +N. (A.32)

Next, the remaining four parts in (A.24) will be derived. To begin with, the first one

is

E
{

Re
{

g1km
(
g2km

)∗}
Re
{

g1kh
(
g2kh
)∗}}

= E
{(

Re
{

g1km
(
g2km

)∗})2}
=
δ2εk

2
N |fk(Φ)|2 .

(A.33)

The second one is

E
{

Re
{

g1km
(
g2km

)∗}
Re
{

g3kh
(
g4kh
)∗}}

= δεkE
{

Re

{
N∑
n=1

(
fk(Φ)aNn (ϕat , ϕ

e
t ) e
−jθn

)
h̃∗kn

}
×Re

{
N∑
n=1

∣∣∣[H̃2

]
hn

∣∣∣2 aNn (ϕakr, ϕ
e
kr) h̃∗kn

}}
.

(A.34)

Denote fk(Φ)aNn (ϕat , ϕ
e
t ) e
−jθn = σtnc + jσtns , h̃kn = sn + jtn, and aNn (ϕakr, ϕ

e
kr) =
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σkrnc + jσkrns . After some algebraic simplifications, it can be obtained that

E
{

Re
{

g1km
(
g2km

)∗}
Re
{

g3kh
(
g4kh
)∗}}

= δεkE
{

N∑
n=1

σtnc σ
krn
c (sn)2 + σtns σ

krn
s (tn)2

}
= δεk

2

N∑
n=1

(
σtnc σ

krn
c + σtns σ

krn
s

)
= δεk

2

N∑
n=1

Re
{(
σtnc + jσtns

) (
σkrnc − jσkrns

)}
= δεk

2 Re
{
fk(Φ)aHN (ϕakr, ϕ

e
kr) ΦHaN (ϕat , ϕ

e
t )
}

= δεk
2 |fk(Φ)|2 .

(A.35)

Then, it can be readily found that E
{

Re
{

g3km
(
g4km

)∗}
Re
{

g1kh
(
g2kh
)∗}}

= δεk
2 |fk(Φ)|2.

The last one can be derived as follows

E
{

Re
{

g3km
(
g4km

)∗}
Re
{

g3kh
(
g4kh
)∗}}

= εkE

∑N
n=1

∣∣∣[H̃2

]
mn

∣∣∣2 ∣∣∣[H̃2

]
hn

∣∣∣2 × (Re
{

aNn (ϕakr, ϕ
e
kr) h̃∗kn

})2
= εk

∑N
n=1 E

{(
Re
{

aNn (ϕakr, ϕ
e
kr) h̃∗kn

})2}
= 1

2εkN.

(A.36)

Substituting the above intermediate results into (A.24), the expression of E
{
|gkm|2 |gkh|2

}
can be obtained, which is not related with its subscript m and h. Since the expressions

of E
{
|gkm|4

}
and E

{
|gkm|2 |gkh|2

}
are obtained, the derivatives of E

{
‖gk‖4

}
can be

completed by using

E
{
‖gk‖4

}
= ME

{
|gkm|4

}
+M(M − 1)E

{
|gkm|2 |gkh|2

}
. (A.37)

Finally, the derivation of E{|gHk gi|2} is presented. Before the proof, an important
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property is first provided as follows

E
{

Re
{

H̃2AH̃2

}}
= 0, (A.38)

where A ∈ CN×M is an arbitrary deterministic matrix. This conclusion can be readily

proved in a special case of one-dimensional variables (i.e., H̃2 ∈ C1×1), since for random

variable x = xr+jxi with xr, xi ∼ CN (0, 1/2), there is E
{
ax2
}

= aE
{
x2r − x2i + 2jxrxi

}
=

0. Then, for arbitrary dimensions, (A.38) can be proved by generalizing the result in

one dimension to high dimensions based on mathematical induction.

Recalling (A.1) and (A.2), when calculating E{|gHk gi|2}, the terms with zero expec-

tation can be neglected based on (A.38) and then have

E
{∣∣gHk gi

∣∣2}
= β2αkαi

(δ+1)2(εk+1)(εi+1)
E


∣∣∣∣∣ 4∑
ω=1

4∑
ψ=1

(gωk )H gψi

∣∣∣∣∣
2


= β2αkαi
(δ+1)2(εk+1)(εi+1)

×

(
E

{
4∑

ω=1

4∑
ψ=1

∣∣∣(gωk )H gψi

∣∣∣2}
+2E

{
Re
{(

g1
k

)H
g1
i

(
g3
i

)H
g3
k

}}
+ 2E

{
Re
{(

g1
k

)H
g2
i

(
g4
i

)H
g3
k

}}

+2E
{

Re
{(

g2
k

)H
g1
i

(
g3
i

)H
g4
k

}}
+ 2E

{
Re
{(

g2
k

)H
g2
i

(
g4
i

)H
g4
k

}}.

(A.39)

Then the above terms in (A.39) will be calculated one by one.

Firstly, E
{∣∣∣(gωk )H gψi

∣∣∣2} , 1 ≤ ω, ψ ≤ 4 are considered. When ω = 1, it is obtained
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that

E
{∣∣∣(g1

k

)H
g1
i

∣∣∣2} = δ2εkεiM
2 |fk(Φ)|2 |fi(Φ)|2 ,

E
{∣∣∣(g1

k

)H
g2
i

∣∣∣2} = δ2εkM
2 |fk(Φ)|2 E

{∣∣∣aHN (ϕat , ϕ
e
t ) Φh̃i

∣∣∣2} = δ2εkM
2N |fk(Φ)|2 ,

E
{∣∣∣(g1

k

)H
g3
i

∣∣∣2}=δεkεi |fk(Φ)|2 h
H
i ΦHMINΦhi = δεkεi |fk(Φ)|2MN,

E
{∣∣∣(g1

k

)H
g4
i

∣∣∣2} = δεk |fk(Φ)|2 aHM (φar , φ
e
r)× E

{
H̃2Φh̃ih̃

H
i ΦHH̃H

2

}
aM (φar , φ

e
r)

= δεk |fk(Φ)|2MN.

(A.40)

Similarly, when ω = 2, it is obtained that E{|
(
g2
k

)H
g1
i |2} = δ2εi |fi(Φ)|2M2N ,

E{|
(
g2
k

)H
g2
i |2} = δ2M2N2, E{|

(
g2
k

)H
g3
i |2} = δεiMN2, and E{|

(
g2
k

)H
g4
i |2} = δMN2.

When ω = 3, the first two terms can be readily obtained as E
{∣∣∣(g3

k

)H
g1
i

∣∣∣2} =

δεiεk |fi(Φ)|2MN and E
{∣∣∣(g3

k

)H
g2
i

∣∣∣2} = δεkMN2. The third term can be firstly

expanded as follows

E
{∣∣∣(g3

k

)H
g3
i

∣∣∣2} = εkεih
H
k ΦHE

{
H̃H

2 H̃2Φhih
H
i ΦHH̃H

2 H̃2

}
Φhk. (A.41)

Assuming that H̃2 = [J1, . . . ,Ji, . . . ,JN ] and
[
Φhih

H
i ΦH

]
mn

= αmn, the (n1, n2)-th

entry of H̃H
2 H̃2Φhih

H
i ΦHH̃H

2 H̃2 can be rewritten as follows

[
H̃H

2 H̃2Φhih
H
i ΦHH̃H

2 H̃2

]
n1,n2

=
N∑
h=1

N∑
m=1

JHn1JmαmhJ
H
h Jn2, (A.42)
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and then the non-diagonal and diagonal entries can be respectively calculated as follows

E
{[

H̃H
2 H̃2Φhih

H
i ΦHH̃H

2 H̃2

]
n1,n2

}
= E

{
JHn1Jn1αn1n2J

H
n2Jn2

}
= αn1n2M

2,

E
{[

H̃H
2 H̃2Φhih

H
i ΦHH̃H

2 H̃2

]
n1,n1

}

= E

JHn1Jn1αn1n1J
H
n1Jn1 +

N∑
m=1,m 6=n1

JHn1JmαmmJHmJn1


= M(M +N).

(A.43)

Accordingly, there is

E
{

H̃H
2 H̃2Φhih

H
i ΦHH̃H

2 H̃2

}
= M2Φhih

H
i ΦH +MNIN . (A.44)

Substituting (A.44) into (A.41) yields E{|
(
g3
k

)H
g3
i |2} = εkεiM(N2 +M |hHk hi|2).

Using (A.44), it is known that E
{

H̃H
2 H̃2INH̃H

2 H̃2

}
= M (M +N) IN . Therefore,

the fourth term can be obtained as E{|
(
g3
k

)H
g4
i |2} = εkMN(M +N).

When ω = 4, similarly, it is obtained that E{|
(
g4
k

)H
g1
i |2} = δεi |fi(Φ)|2MN ,

E{|
(
g4
k

)H
g2
i |2} = δMN2, E{|

(
g4
k

)H
g3
i |2} = εiMN(M + N), and E{|

(
g4
k

)H
g4
i |2} =

MN(M + N). Similar to the above derivation, the remaining four parts in (A.39) can

be derived as follows

E
{

Re
{(

g1
k

)H
g1
i

(
g3
i

)H
g3
k

}}
= δεkεiM

2 Re
{
fHk (Φ)fi(Φ)h

H
i hk

}
,

E
{

Re
{(

g1
k

)H
g2
i

(
g4
i

)H
g3
k

}}
= δεkM

2 |fk(Φ)|2 ,

E
{

Re
{(

g2
k

)H
g1
i

(
g3
i

)H
g4
k

}}
= δεiM

2 |fi(Φ)|2 ,

E
{

Re
{(

g2
k

)H
g2
i

(
g4
i

)H
g4
k

}}
= δM2N.

(A.45)

Substituting the above intermediate results into (A.39), the term E{|gHk gi|2} can be

obtained after some trivial simplifications.

The above part has completed the derivations of the expectation terms with respect
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to RIS-aided channels gk. Finally, to derive a closed-form expression of (3.11) in the pres-

ence of the direct links, it is needed to derive E
{
‖gk + dk‖4

}
, E
{∣∣(gHk + dHk

)
(gi + di)

∣∣2}
and E

{
‖gk + dk‖2

}
, respectively. Note that dk is independent of gk and di,∀i 6= k, and

dk is composed of i.i.d. entries with zero mean, the noise term can be firstly derived as

E
{
‖gk + dk‖2

}
= E

{
(gk + dk)

H (gk + dk)
}

= E
{
gHk gk + gHk dk + dHk gk + dHk dk

}
= E

{
gHk gk + dHk dk

}
= E

{
‖gk‖2

}
+ E

{
‖dk‖2

}
= E

{
‖gk‖2

}
+ γkM,

(A.46)

where E
{
‖gk‖2

}
has been derived above.

Next, the signal term E
{
‖gk + dk‖4

}
can be expanded as

E
{
‖gk + dk‖4

}
= E

{(
‖gk‖2 + 2 Re

{
dHk gk

}
+ ‖dk‖2

)2}
= E

{
‖gk‖4

}
+ 4E

{(
Re
{
dHk gk

})2}
+ E

{
‖dk‖4

}
+ 2E

{
‖gk‖2 ‖dk‖2

}
,

(A.47)

where E
{
‖gk‖4

}
has been obtained above. Assuming that [gk]m = vm + jwm and[

dHk
]
m

= sm + jtm, where both sm and tm independently follow N
(
0, γk2

)
, it can be

obtained that

E
{(

Re
{
dHk gk

})2}
= E

{(∑M
m=1 smvm − tmwm

)2}
= E

{∑M
m=1 (smvm − tmwm)2

}
= E

{∑M
m=1 (smvm)2 + (tmwm)2

}
= γk

2 E
{∑M

m=1 (vm)2 + (wm)2
}

= γk
2 E
{
‖gk‖2

}
.

(A.48)
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Then, the remaining two terms in (A.47) can be obtained as

E
{
‖dk‖4

}
= E

{(∑M
m=1 |[dk]m|

2
)2}

= E
{

M∑
m=1
|[dk]m|

4

}
+E

 M∑
m1=1

M∑
m2=1
m2 6=m1

∣∣[dk]m1

∣∣2 ∣∣[dk]m2

∣∣2
= 2Mγ2k +M(M − 1)γ2k =

(
M2 +M

)
γ2k ,

(A.49)

and

E
{
‖gk‖2‖dk‖2

}
=E

{
‖gk‖2

}
E
{
‖dk‖2

}
=MγkE

{
‖gk‖2

}
. (A.50)

Substituting (A.48), (A.49) and (A.50) into (A.47), the expression of signal term is

given by

E
{
‖gk + dk‖4

}
= E

{
‖gk‖4

}
+ 2(M + 1)γkE

{
‖gk‖2

}
+
(
M2 +M

)
γ2k . (A.51)

Finally, the interference term can be written as

E
{∣∣(gHk + dHk

)
(gi + di)

∣∣2}
= E

{∣∣gHk gi + dHk gi + gHk di + dHk di
∣∣2}

= E
{∣∣gHk gi

∣∣2}+E
{∣∣dHk gi

∣∣2}+E
{∣∣gHk di

∣∣2}+E
{∣∣dHk di

∣∣2} ,
(A.52)

where E
{∣∣gHk gi

∣∣2} has been obtained above, and

E
{∣∣dHk gi

∣∣2} = E
{
gHi E

{
dkd

H
k

}
gi
}

= γkE
{
‖gi‖2

}
,

E
{∣∣gHk di

∣∣2} = E
{
gHk E

{
did

H
i

}
gk
}

= γiE
{
‖gk‖2

}
,

E
{∣∣dHk di

∣∣2} = E
{
dHk E

{
did

H
i

}
dk
}

= γiγkM.

(A.53)

Then, the proof is finished by combining (A.46), (A.51) and (A.52) with (3.11) and

after some simplifications.
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A.2 Proof of Corollary 2

To begin with, it is needed to provide some necessary preliminary results. Firstly, for the

ideal RIS with continuous phase shifts, it is assumed that the phase shift of each reflecting

element θn is randomly and independently adjusted at each fading block following the

uniform distribution of U [0, 2π]. Then, for arbitrary k1, it is obtained that

E {cos (k1 + θn)} = 1
2π

∫ 2π
0 cos (k1 + θn) dθn = 0,

E
{

cos2 (k1 + θn)
}

= 1
2

(
1 + 1

2π

∫ 2π
0 cos (2k1 + 2θn) dθn

)
= 1

2 .

(A.54)

Next, for the non-ideal RIS with finite b bits resolution, it is assumed that each θn

is randomly and independently adjusted from the set
{

0, 2π
2b
, 2× 2π

2b
, . . . ,

(
2b − 1

)
2π
2b

}
.

When b > 1, for arbitrary k1, it is obtained that

E {cos (k1 + θn)} = 1
2b

∑2b−1
t=0 cos

(
k1 + t2π

2b

)
= 1

2b

∑2(b−1)−1
t=0

(
cos
(
k1 + t2π

2b

)
+cos

(
k1+

(
t+ 2(b−1)

)
2π
2b

))
(f)
= 0,

(A.55)

and

E
{

cos2 (k1 + θn)
}

= 1
2 (1 + E {cos (2k1 + 2θn)})

= 1
2

(
1 + 1

2b

∑2b−1
t=0 cos

(
2k1 + 2t2π

2b

))
= 1

2

(
1 + 1

2b

(∑2(b−1)−1
t=0 cos

(
2k1 + t 2π

2b−1

)
+
∑2b−1

t=2(b−1) cos
(
2k1 + t 2π

2b−1

)))
(g)
= 1

2

(
1 + 2

2b

∑2(b−1)−1
t=0 cos

(
2k1 + t 2π

2b−1

))
= 1

2

(
1 + E {cos (2k1 + θn)}|b=b−1

)
= 1

2 ,

(A.56)

where (f) and (g) come from cos(ϑ+π) = − cos(ϑ) and cos(ϑ+2π) = cos(ϑ), respectively.

(A.54) ∼ (A.56) demonstrate that E {cos (k1 + θn)} and E
{

cos2 (k1 + θn)
}

have the

same values for both continuous and discrete phase shifts when b > 1. Therefore, these

two cases will not be distinguished in the following derivation. Besides, since the above
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equations hold for arbitrary k1, the following results can be obtained from trigonometric

identities:

E {sin (k1 + θn)} = E
{

cos
((
k1 −

π

2

)
+ θn

)}
= 0, (A.57)

E
{

sin2 (k1 + θn)
}

= E
{

1− cos2 (k1 + θn)
}

=
1

2
. (A.58)

Since Φ is independent with the channel H2 and hk, the achievable rate under ran-

dom phase shifts can be derived by substituting the terms involving Φ in (3.12) with

their expectation. Thus, it is needed to further calculate E
{
|fk(Φ)|2

}
, E
{
|fi(Φ)|2

}
,

E
{
|fk(Φ)|4

}
, E
{
|fk(Φ)|2 |fi(Φ)|2

}
and E

{
Re
{
fHk (Φ)fi(Φ)h

H
i hk

}}
, respectively.

Recalling (3.16), fk(Φ) and fi(Φ) can be rewritten as fk(Φ) =
∑N

n=1 e
j(ζkn+θn) and

fi(Φ) =
∑N

n=1 e
j(ζin+θn), respectively. Then, using (A.54)∼ (A.58) and the independence

between θn1, θn2, ∀n1 6= n2, it is obtained that

E
{
ej(k1+θn1)

}
= E {cos (k1 + θn1)}+ jE {sin (k1 + θn1)} = 0,

E
{
ej(k1+θn1)ej(k2+θn2)

}
= E

{
ej(k1+θn1)

}
E
{
ej(k2+θn2)

}
= 0,

E
{

Re
{
ej(k1+θn1)e−j(k2+θn2)

}}
= E {cos ((k1 + θn1)− (k2 + θn2))} = 0,

E
{(

Re
{
ej(k1+θn1)e−j(k2+θn2)

})2}
= 1

2(1 + E{cos (2 (k1 + θn1)− 2 (k2 + θn2))})= 1
2 .

(A.59)

Utilizing (A.59), the expectation of terms involving Φ will be calculated one by one.

Firstly, the term E
{
|fk(Φ)|2

}
can be calculated as follows

E
{
|fk(Φ)|2

}
=
∑N

n=1 e
j(ζkn+θn)∑N

n=1 e
−j(ζkn+θn)

=
∑N

n=1 1 + E
{∑N

n1=1

∑N
n2=1,n2 6=n1 e

−j(ζkn1+θn1)ej(ζ
k
n2+θn2)

}
= N,

(A.60)

Similarly, E
{
|fi(Φ)|2

}
= N can be obtained. Secondly, the term E

{
|fk(Φ)|4

}
can
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be derived as follows

E
{
|fk(Φ)|4

}
= E

{∣∣∣∑N
n=1 e

j(ζkn+θn)∑N
n=1 e

−j(ζkn+θn)
∣∣∣2}

=E
{∣∣∣N + 2

∑N−1
n1=1

∑N
n2=n1+1Re

{
ej(ζ

k
n1+θn1−ζkn2−θn2)

}∣∣∣2}
= N2 + 4

∑N−1
n1=1

∑N
n2=n1+1 E

{(
Re
{
ej(ζ

k
n1+θn1−ζkn2−θn2)

})2}
= 2N2 −N.

(A.61)

Thirdly, the term E
{
|fk(Φ)|2 |fi(Φ)|2

}
can be calculated as

E
{
|fk(Φ)|2 |fi(Φ)|2

}
= E

{∣∣∣∑N
n=1 e

j(ζkn+θn)
∣∣∣2 ∣∣∣∑N

n=1 e
j(ζin+θn)

∣∣∣2}
=E
{(
N+2

∑N−1
n1=1

∑N
n2=n1+1Re

{
ej(ζ

k
n1+θn1−ζkn2−θn2)

})
×(

N + 2
∑N−1

n1=1

∑N
n2=n1+1 Re

{
ej(ζ

i
n1+θn1−ζin2−θn2)

})}
= N2+4

∑N−1
n1=1

∑N
n2=n1+1 E

{
cos
(
ζkn1 + θn1 − ζkn2 − θn2

)
× cos

(
ζin1 + θn1 − ζin2 − θn2

)}
(h)
=N2 + 2

∑N−1
n1=1

∑N
n2=n1+1 cos

(
ζkn1 − ζkn2 − ζin1 + ζin2

)
,

(A.62)

where (h) is obtained by using prosthaphaeresis. Since the second term in (A.62) is

bounded, it is obtained that E
{
|fk(Φ)|2 |fi(Φ)|2

}
→ N2 when N →∞. The final term

is derived as

E
{

Re
{
fHk (Φ)fi(Φ)h

H
i hk

}}
=E
{
Re
{(

h
H
i hk

)∑N
n1=1

∑N
n2=1 e

−j(ζkn1+θn1)ej(ζ
i
n2+θn2)

}}
= E

{
Re
{(

h
H
i hk

)∑N
n=1 e

−j(ζkn+θn)ej(ζ
i
n+θn)

}}
= Re

{(
h
H
i hk

)∑N
n=1 e

j(ζin−ζkn)
}
,

(A.63)

which is bounded when N →∞.

By substituting (A.60) ∼ (A.63) into the corresponding terms in rate expression
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(3.12), it can be seen that when M → ∞ and N → ∞, the dominant terms are those

which have the order of O
(
M2N2

)
. Thus, when M → ∞ and N → ∞, the proof can

be completed by selecting the dominant terms and after some simple algebraic simplifi-

cations.



Appendix B

Proofs in Chapter 4

B.1 Some Useful Results

Lemma 12. Consider a matrix X ∈ Cm×n, m,n ≥ 1, whose entries are i.i.d. random

variables with zero mean and vx variance. Consider a deterministic matrix W ∈ Cn×n.

Then, it is obtained that[65]

E
{
XWXH

}
= vx Tr{W}Im. (B.1)

Lemma 13. Consider the deterministic matrices W ∈ CN×N and vectors w1,w2 ∈

CN×1, and w3,w4 ∈ CM×1. Then, it is derived that[65]

E
{

H̃2WH̃2

}
= E

{
Re
{

H̃2WH̃2

}}
= 0, (B.2)

E
{

h̃Hk w1h̃
H
k w2

}
= E

{
Re
{

h̃Hk w1h̃
H
k w2

}}
= 0, (B.3)

E
{

wH
3 d̃kw

H
4 d̃k

}
= E

{
Re
{

wH
3 d̃kw

H
4 d̃k

}}
= 0. (B.4)

Lemma 14. For deterministic matrices C ∈ CM×M and W ∈ CN×N , if C = CH , it is

184
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obtained that[65]

E
{

H̃H
2 CH̃2WH̃H

2 CH̃2

}
= Tr{W}Tr

{
C2
}

IN + |Tr{C}|2W, (B.5)

E
{

H̃H
c,2CH̃c,2WH̃H

c,2CH̃c,2

}
= Tr {RrisW}Tr

{
C2
}

Rris + |Tr{C}|2RrisWRris. (B.6)

Lemma 15. For a deterministic matrix W ∈ CN×N , there are[65]

E
{

H̃H
2 AkH̃2WH̃H

2 AkH̃2

}
=e2k1M

2W+ek3M Tr{W}IN , (B.7)

E
{

H̃H
2 H̃2WH̃H

2 H̃2

}
= M2W +M Tr{W}IN , (B.8)

E
{
H̃H

2 aMaHMH̃2WH̃H
2 aMaHMH̃2

}
=M2W+M2Tr{W}IN . (B.9)

where Ak is defined in (4.12), and ek1 and ek3 are defined in Lemma 2. For a deter-

ministic matrix C ∈ CM×M and a random vector u ∼ CN (0, IM ), it can be obtained

that

E
{
uuHCuuH

}
= C + Tr{C}IM , (B.10)

E
{
‖u‖4

}
= Tr

{
E
{
uuHuuH

}}
= M2 +M. (B.11)

B.2 Proof of Lemma 1

Recalling the definition of qk in (4.4), where H̃2, h̃k, d̃k, and N are independent of each

other and composed of zero-mean entries, it can be derived that

E
{

ykp

}
= E {qk}+

1
√
τp
E {N} sk = E {qk} =

√
ckδεk H2Φhk. (B.12)

The covariance matrix between the unknown channel qk and the observation vector
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ykp can be written as

Cov
{
qk,y

k
p

}
= E

{
(qk − E {qk})

(
qk + 1√

τpNsk − E {qk}
)H}

= Cov {qk,qk} ,

(B.13)

and

Cov
{

ykp ,qk

}
=
(

Cov
{

qk,y
k
p

})H
= (Cov {qk,qk})H = Cov {qk,qk} .

(B.14)

Invoking the definition of qk, it is obtained that

Cov {qk,qk} = E
{

(qk − E {qk}) (qk − E {qk})H
}

= E

{
ckδH2Φh̃kh̃

H
k ΦHH

H
2 + ckεkH̃2Φhkh

H
k ΦHH̃H

2

+ckH̃2Φh̃kh̃
H
k ΦHH̃H

2 + γkd̃kd̃
H
k

}
(a)
=NckδaMaHM + (Nck (εk + 1) + γk) IM ,

(B.15)

where (a) exploits Lemma 12 and the mutual independence of H̃2 and h̃k.

Similarly, it is obtained that

Cov
{

ykp ,y
k
p

}
= E

{
(qk − E {qk}) (qk − E {qk})H

}
+

1

τp
E
{
Nsks

H
k NH

}
= Cov {qk,qk}+

σ2

τp
IM .

(B.16)

Finally, by introducing the auxiliary variables ak1 = Nckδ and ak2 = Nck (εk + 1) +

γk, the proof is completed.



Chapter B. Proofs in Chapter 4 187

B.3 Proof of Theorem 2

The LMMSE estimate of the channel qk based on the observation vector ykp can be

written as[87, Chapter 12.5]

q̂k = E {qk}+ Cov
{

qk,y
k
p

}
Cov−1

{
ykp ,y

k
p

}(
ykp − E

{
ykp

})
, (B.17)

where the mean and covariance matrices are given in Lemma 1.

Using the Woodbury matrix identity[87, Page 571], it is derived that

Cov−1
{

ykp ,y
k
p

}
=

(
ak2 +

σ2

τp

)−1
IM −

ak1

(
ak2 + σ2

τp

)−2
1 +Mak1

(
ak2 + σ2

τp

)−1aMaHM . (B.18)

As a result, it is obtained that

Cov
{

qk,y
k
p

}
Cov−1

{
ykp ,y

k
p

}
=

ak1
σ2

τp(
ak2 + σ2

τp

){(
ak2 + σ2

τp

)
+Mak1

}aMaHM +
ak2

ak2 + σ2

τp

IM

, ak3aMaHM + ak4IM , Ak = AH
k .

(B.19)

Since there is E {qk} = E
{
ykp
}

=
√
ckδεk H2Φhk, the LMMSE channel estimate in

(B.17) is calculated as

q̂k =
√
ckδεk H2Φhk + Ak

(
ykp −

√
ckδεk H2Φhk

)
= Aky

k
p + (IM −Ak)

√
ckδεk H2Φhk , Aky

k
p + Bk.

(B.20)
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Additionally, the above linear expression can be expanded and rewritten as

q̂k = Ak

(
qk +

1
√
τp

Nsk

)
+ Bk

= q1
k +

∑4

ω=2
Akq

ω
k +
√
γkAkd̃k +

1
√
τp

AkNsk.

(B.21)

Then, by exploiting the property AkH2 =
(
ak3aMaHM + ak4IM

)
aMaHN = (Mak3 + ak4) H2,

it is arrived at (4.11).

Based on the estimate q̂k, the estimation error ek = qk − q̂k can be obtained. By

direct inspection, the mean of ek is zero. Exploiting [87, Eq. (12.21)], Lemma 1 and

(B.19), the MSE matrix of the estimation error is calculated as

MSEk = E
{
eke

H
k

}
= Cov {qk,qk}

−Cov
{
qk,y

k
p

}
Cov−1

{
ykp ,y

k
p

}
Cov

{
ykp ,qk

}
= Cov {qk,qk} −Ak Cov {qk,qk}

= (IM −Ak) Cov {qk,qk}

= (ak1 (1− ak4)−Mak1ak3 − ak2ak3) aMaHM

+ak2 (1− ak4) IM

, ak5aMaHM + ak6IM ,

(B.22)

where ak5 =
ak1

(
σ2

τp

)2(
ak2+

σ2

τp

)(
ak2+

σ2

τp
+Mak1

) , and ak6 =
ak2

σ2

τp

ak2+
σ2

τp

. Based on the MSE matrix, the

NMSE of the estimation error is expressed as[2, Eq. (3.20)]

NMSEk =
Tr {MSEk}

Tr {Cov {qk,qk}}

=

σ2

τp

(
Mak1ak2 + a2k2 + (ak1 + ak2)

σ2

τp

)
(
ak2 + σ2

τp

)(
ak2 + σ2

τp +Mak1

)
(ak1 + ak2)

.

(B.23)

Hence, the proof is completed.
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B.4 Proof of Lemma 2

Recalling that Ak = ak3aMaHM + ak4IM , and H2 = aMaHN , it is obtained that

Tr {Ak} = M (ak3 + ak4) ,Mek1,

AkH2 = ak3aMaHMaMaHN + ak4IMaMaHN

= (Mak3 + ak4) H2 , ek2H2,

Tr {AkAk} =Tr
{
Ma2k3aMaHM + 2ak3ak4aMaHM + a2k4IM

}
= M

(
Ma2k3 + 2ak3ak4 + a2k4

)
,Mek3.

(B.24)

By direct inspection of ek1, ek2, ek3, it can be found that they are composed of non-

negative terms. Therefore, there are ek1, ek2, ek3 ≥ 0. Then, the objective is to prove

ek1, ek2, ek3 ≤ 1. Firstly, the parameter ek2 is focused. Using the expressions of ak3 and

ak4 in (4.14) and (4.15), ek2 can be expanded as

ek2 = Mak3 + ak4

=
ak2

(
ak2 + σ2

τp +Mak1

)
+Mak1

σ2

τp

ak2

(
ak2 + σ2

τp +Mak1

)
+Mak1

σ2

τp + σ2

τp

(
ak2 + σ2

τp

) . (B.25)

It is clear that the numerator in (B.25) is smaller than the denominator. Therefore,

ek2 ≤ 1 is proved. Then, ek1 ≤ ek2 ≤ 1 and ek3 ≤ e2k2 ≤ ek2 ≤ 1 can be directly

obtained. Finally, when τp → ∞ or N → ∞, it is obtained that ak3 → 0 and ak4 → 1,

which implies that ek1 = ek2 = ek3 → 1. When τp→ 0, it is obtained that ak3, ak4 → 0,

which gives ek1 = ek2 = ek3 → 0. This completes the proof.

B.5 Proof of Theorem 3

Firstly, the signal and noise terms are derived. According to the orthogonality property

of the LMMSE estimator, it is obtained that E
{

ek
(
ykp
)H}

= 0. Besides, since ek has

zero mean, it is obtained that E
{
q̂Hk ek

}
= E

{(
Aky

k
p + Bk

)H
ek

}
= 0. Therefore, it is
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derived that

E
{
q̂Hk qk

}
= E

{
q̂Hk q̂k

}
+ E

{
q̂Hk ek

}
= E

{
‖q̂k‖2

}
. (B.26)

Denote the intended signal in (4.29) as
∣∣E{q̂Hk qk

}∣∣2 , Esignal
k (Φ), and the noise in

(4.29) as E
{
‖q̂k‖2

}
, Enoise

k (Φ). Clearly, E
{
‖q̂k‖2

}
is a real variable. Then, from

(B.26), it is obtained that

Esignal
k (Φ) =

∣∣E{q̂Hk qk
}∣∣2 =

(
E
{
‖q̂k‖2

})2
=
(
Enoise
k (Φ)

)2
. (B.27)

Next, Enoise
k (Φ) is derived. Recall the expressions in (4.4) and (4.11). Since H̃2, h̃k,

d̃k and N are independent of each other and they all have zero mean, the term E
{
q̂Hk qk

}
can be derived by selecting the non-zero terms in the expansion as

Enoise
k (Φ) = E

{
‖q̂k‖2

}
= E

{
q̂Hk qk

}
=
∑4

ω=1 E
{

(q̂ωk )H qωk

}
+ γkE

{
d̃Hk AH

k d̃k

}
= ckδεkh

H
k ΦHH

H
2 H2Φhk + ek2ckδE

{
h̃Hk ΦHH

H
2 H2Φh̃k

}
+ckεkh

H
k ΦHE

{
H̃H

2 AH
k H̃2

}
Φhk

+ckE
{

h̃Hk ΦHE
{

H̃H
2 AH

k H̃2

}
Φh̃k

}
+ γkTr

{
AH
k

}
(b)
=M

{
|fk(Φ)|2 ckδεk +Nckδek2 + (Nck (εk+1) + γk) ek1

}
,

(B.28)

where (b) applies Lemma 12 and exploits the identities Tr{Ak} = Mek1, ΦHΦ = IN , and

Tr
{

H
H
2 H2

}
= MN . Substituting (B.28) into (B.27), the calculation of Esignal

k (Φ) and

Enoise
k (Φ) are completed. Besides, by using a procedure similar to that used for obtaining

(B.28), it is obtained that E
{
qHk qk

}
, E
{

q̂H
k

q̂
k

}
, E
{

qH
k

AkA
H
k q

k

}
, E
{

qH
i

AkA
H
k q

i

}
,

and E
{

q̂H
k

q
k

}
. The details are omitted for brevity.

Next, the interference term in (4.29) is derived. The interference term is denoted

by E
{∣∣q̂Hk qi

∣∣2} , Iki (Φ). First, it is worth noting that the derivation of the inter-
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ference term in the presence of imperfect CSI and double-Rician channels in RIS-aided

massive MIMO systems has two main differences compared to conventional massive

MIMO systems. Firstly, the channel qk and qi are not independent, since different users

experience the same RIS-BS channel. This can be readily validated by examining that

E
{
qHk qi

}
6= E

{
qHk
}
E {qi}. Secondly, the LMMSE error ek is uncorrelated with but

dependent on the estimate q̂k, since the cascaded channel is not Gaussian distributed.

To tackle these two challenges, the interference term is derived by decomposing it as

Iki (Φ) = E
{∣∣q̂Hk qi

∣∣2}
= E


∣∣∣∣∣
(

q̂
k

+ Akdk +
1
√
τp

AkNsk

)H (
q
i
+ di

)∣∣∣∣∣
2


= E

{∣∣∣∣∣q̂Hk q
i
+ q̂H

k
di + dHk AH

k q
i
+ dHk AH

k di

+
1
√
τp

sHk NHAH
k q

i
+

1
√
τp

sHk NHAH
k di

∣∣∣∣∣
2}

= E
{∣∣∣q̂H

k
q
i

∣∣∣2}+ E
{∣∣∣q̂H

k
di

∣∣∣2}+ E
{∣∣∣dHk AH

k q
i

∣∣∣2}
+ E

{∣∣dHk AH
k di

∣∣2}+
1

τp
E
{∣∣∣sHk NHAH

k q
i

∣∣∣2}
+

1

τp
E
{∣∣sHk NHAH

k di
∣∣2} . (B.29)

The derivation of the interference term follows by calculating the six expectations in

(B.29) one by one. Based on the independence between the noise and the channels, it is

not difficult to complete the derivation of the 2nd - 6th expectation terms. The details

are presented in [83]. To derive the first term E
{∣∣∣q̂H

k
q
i

∣∣∣2}, it is first expanded as

E
{∣∣∣q̂H

k
q
i

∣∣∣2} = E
{∣∣∣∑4

ω=1

∑4
ψ=1 (q̂ωk )H qψi

∣∣∣2}
=
∑4

ω=1

∑4
ψ=1 E

{∣∣∣(q̂ωk )H qψi

∣∣∣2}
+
∑4

ω1,ψ1,ω2,ψ2,
(ω1,ψ1)6=(ω2,ψ2)

E
{((

q̂ω1k
)H

qψ1i

)((
q̂ω2k
)H

qψ2i

)H}
,

(B.30)
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where q1
k - q4

k are defined in (4.4), and q̂1
k - q̂4

k are defined in (4.11).

Equation (B.30) can be derived by calculating the expectations of the 16 modulus-

square terms and the expectations of the other cross-terms. The derivations utilize

Lemma 12, Lemma 15, the independence between H̃2, h̃k, and h̃i, and some algebraic

manipulations. The derivation is lengthy. Therefore, the details are only provided for

some terms, as an example. Firstly, it is needed to derive the 16 modulus-square terms

in (B.30), i.e., E
{∣∣∣(q̂ωk )H qψi

∣∣∣2}, 1 ≤ ω ≤ 4, 1 ≤ ψ ≤ 4. When ω = 2 and ψ = 4, based

on the independence and using Lemma 12, it is obtained that

E
{∣∣∣ek2√ckδ√ci h̃Hk ΦHH

H
2 H̃2Φh̃i

∣∣∣2}
=e2k2ckciδE

{
h̃Hk ΦHH

H
2 E
{
H̃2ΦE

{
h̃ih̃

H
i

}
ΦHH̃H

2

}
H2Φh̃k

}
= e2k2ckciδE

{
h̃Hk ΦHH

H
2 E
{

H̃2H̃
H
2

}
H2Φh̃k

}
= e2k2ckciδN Tr

{
H
H
2 H2

}
= e2k2ckciδMN2.

(B.31)

When ω = 3 and ψ = 3, using Lemma 15, it is obtained that

E
{∣∣∣√ckεk√ciεi hHk ΦHH̃H

2 AH
k H̃2Φhi

∣∣∣2}
= ckciεkεi

×h
H
k ΦHE

{
H̃H

2 AH
k H̃2Φhih

H
i ΦHH̃H

2 AkH̃2

}
Φhk

= ckciεkεih
H
k ΦH

×
(
e2k1M

2Φhih
H
i ΦH + ek3M Tr

{
Φhih

H
i ΦH

}
IN

)
Φhk

= ckciεkεi

(
e2k1M

2h
H
k hih

H
i hk+ek3M Tr

{
hih

H
i

}
h
H
k hk

)
= ckciεkεi

(
e2k1M

2
∣∣∣hHk hi

∣∣∣2 + ek3MN2

)
.

(B.32)

For the remaining cross-terms in (B.30), even though they are 16× 15 in total, only

a few terms are non-zero. The non-zero terms can be identified by exploiting Lemma 13,

the independence, and the zero-mean of H̃2, h̃k and h̃i. Then, based on methods similar

to (B.31) and (B.32), the derivation can be completed. The details can be found in [83].
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Finally, the signal leakage term in (4.29) is derived as

Eleak
k (Φ) = E

{∣∣q̂Hk qk
∣∣2}− ∣∣E{q̂Hk qk

}∣∣2 , (B.33)

where E
{
q̂Hk qk

}
is given in (B.28). Therefore, it is only needed to derive the expectation

E
{∣∣q̂Hk qk

∣∣2}. By exploiting the zero-mean properties of dk and N, and exploiting the

independence between the cascaded channel, the direct channel, and the noise, this term

can be expanded and then the terms with zero expectation can be removed as follows

E
{∣∣q̂Hk qk

∣∣2}
= E

{∣∣∣(q̂H
k

+ dHk AH
k + 1√

τps
H
k NHAH

k

)(
q
k

+ dk

)∣∣∣2}

= E


∣∣∣∣∣q̂Hk q

k
+ q̂H

k
dk + dHk AH

k q
k

+ dHk AH
k dk

+ 1√
τps

H
k NHAH

k q
k

+ 1√
τps

H
k NHAH

k dk

∣∣∣∣∣
2


(c)
=E

{∣∣∣q̂H
k

q
k

∣∣∣2}+ E
{∣∣∣q̂H

k
dk

∣∣∣2}+ E
{∣∣∣dHk AH

k q
k

∣∣∣2}
+E

{∣∣dHk AH
k dk

∣∣2}+ E
{∣∣∣ 1√

τps
H
k NHAH

k q
k

∣∣∣2}
+E

{∣∣∣ 1√
τps

H
k NHAH

k dk

∣∣∣2}
+2 Re

{
E
{

q̂H
k

q
k

(
dHk AH

k dk
)H}}

,

(B.34)

where in (c) the cross-term E
{

q̂H
k

dk

(
dHk AH

k q
k

)H}
is zero due to Lemma 13, and the

cross-term E
{

q̂H
k

dk
(
dHk AH

k dk
)H}

is zero because the odd-order central moments of a

zero-mean Gaussian variable are zero[115, Eq. (12)].

The derivation of the signal leakage follows by calculating seven expectations in

(B.34). The derivations of the 2nd - 7th terms are not difficult and the details are
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omitted for brevity. On the other hand, the first term is expanded as

E
{∣∣∣q̂H

k
q
k

∣∣∣2} = E
{∣∣∣∑4

ω=1

∑4
ψ=1 (q̂ωk )H qψk

∣∣∣2}
=
∑4

ω=1

∑4
ψ=1 E

{∣∣∣(q̂ωk )H qψk

∣∣∣2}
+
∑4

ω1,ψ1,ω2,ψ2
(ω1,ψ1)6=(ω2,ψ2)

E
{((

q̂ω1k
)H

qψ1k

)((
q̂ω2k
)H

qψ2k

)H}
.

(B.35)

To derive (B.35), it is needed to calculate the 16 modulus-square terms E
{∣∣∣(q̂ωk )H qψk

∣∣∣2},

1 ≤ ω ≤ 4, 1 ≤ ψ ≤ 4, and the remaining cross-terms. Similar to the derivation of the

interference term, only some examples are provided. The details are presented in [83].

When ω = 2 and ψ = 4, using (B.10), it is arrived at

E
{∣∣∣ek2√ckδ√ck h̃Hk ΦHH

H
2 H̃2Φh̃k

∣∣∣2}
= c2kδe

2
k2E

{
h̃Hk ΦHH

H
2 H̃2Φh̃kh̃

H
k ΦHH̃H

2 H2Φh̃k

}
(d)
=c2kδe

2
k2Eh̃k

{
h̃Hk ΦHH

H
2 EH̃2

{
H̃2Φh̃kh̃

H
k ΦHH̃H

2

}
H2Φh̃k | h̃k

}
= c2kδe

2
k2Eh̃k

{
h̃Hk ΦHH

H
2 Tr

{
h̃kh̃

H
k

}
H2Φh̃k

}
(e)
=c2kδe

2
k2E

{
h̃Hk ΦHH

H
2 H2Φh̃k

(
h̃Hk h̃k

)}
= c2kδe

2
k2 Tr

{
ΦHH

H
2 H2ΦE

{
h̃kh̃

H
k h̃kh̃

H
k

}}
(f)
= c2kδe

2
k2 Tr

{
ΦHH

H
2 H2Φ(N + 1)IN

}
= c2kδe

2
k2MN(N + 1),

(B.36)

where (d) utilizes the law of total expectation, which calculates the conditional expecta-

tion of H̃2 given h̃k, and then calculates the expectation of h̃k. Since H̃2 is independent

of h̃k, the conditional expectation of H̃2 given h̃k is the same as its unconditional expec-

tation; (e) comes from Tr
{

h̃kh̃
H
k

}
= h̃Hk h̃k which is a scalar number and its place can

be arbitrarily moved; and (f) applies a special case of (B.10).
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When ω = 4 and ψ = 4, (B.37) is derived as follows

E
{∣∣∣√ck√ck h̃Hk ΦHH̃H

2 AH
k H̃2Φh̃k

∣∣∣2}
= c2kEh̃k

{
h̃Hk ΦHEH̃2

{
H̃H

2 AH
k H̃2Φh̃kh̃

H
k ΦHH̃H

2 AkH̃2

}
Φh̃k | h̃k

}
= c2kEh̃k

{
h̃Hk ΦH

(
e2k1M

2Φh̃kh̃
H
k ΦH + ek3M Tr

{
Φh̃kh̃

H
k ΦH

}
IN

)
Φh̃k

}
= c2kE

{
e2k1M

2h̃Hk h̃kh̃
H
k h̃k + ek3M h̃Hk h̃kh̃

H
k h̃k

}
(g)
=c2k

{
e2k1M

2N(N + 1) + ek3MN(N + 1)
}
,

(B.37)

where (g) uses (B.11).

Similar to the interference term, after the calculation of the 16 modulus-square terms,

the non-zero cross-terms are identified and their expectations are calculated. Interested

readers can find the details in [83].

B.6 Proof of Lemma 3

Recall the definition of fk(Φ) in (4.41). If N = 1, it is obtained that ζk1 = 0. Then, for

any θ1, there is |fk(Φ)| =
∣∣ejθ1∣∣ = 1. If N > 1, the target is to prove the inequalities

0 ≤ |fk(Φ)| ≤ N . Firstly, by invoking the triangle inequality, it is obtained that

|fk(Φ)| =
∣∣∣∣∑N

n=1
ej(ζ

k
n+θn)

∣∣∣∣ ≤∑N

n=1

∣∣∣ej(ζkn+θn)
∣∣∣ = N. (B.38)

The equality holds if the phase shifts of all the RIS elements are aligned as θn = −ζkn +

C0, ∀n, where C0 is an arbitrary constant. Next, the objective is to prove that the

minimum value of |fk(Φ)| is zero. Firstly, if N is even, the minimum value 0 is obtained

when θ2i−1 + ζk2i−1 =
(
θ2i + ζk2i

)
+ π, 1 ≤ i ≤ N

2 . Otherwise, if N is odd, the minimum

value 0 is still achievable for

θ2i−1 + ζk2i−1 =
(
θ2i + ζk2i

)
+ π, 1 ≤ i ≤ N−1

2 − 1,

θN−2 + ζkN−2 = π
3 , θN−1 + ζkN−1 = −π

3 , θN + ζkN = π.

(B.39)
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Next, the target is to prove that the term |fi(Φ)| for user i, i 6= k, is bounded as

N →∞ if the phase shifts of the RIS are designed to maximise |fk(Φ)|. This result can

be proved rigorously for the one-dimensional ULA model.

By ignoring the elevation direction of the USPA model, it is obtained that a one-

dimensional ULA model for hk and aN with ϕakr and ϕat being the AoA and the AoD,

respectively. Then, rewrite fk(Φ) as

hk,aN (ϕakr)=
[
1, ej2π

d
λ
sinϕakr , . . . , ej2π

d
λ
(N−1) sinϕakr

]T
,

aN ,aN (ϕat )=
[
1, ej2π

d
λ
sinϕat , . . . , ej2π

d
λ
(N−1) sinϕat

]T
,

fk(Φ) = aHNΦhk =
∑N

n=1 e
j2π d

λ
(n−1)(sinϕakr−sinϕ

a
t )+jθn .

(B.40)

If θn = 2π dλ(n− 1) (sinϕat − sinϕakr), it is obtained that |fk(Φ)| = N . Also, for user

i, it is derived that

fi(Φ) = aHNΦhi =
∑N

n=1
ej2π

d
λ
(n−1)(sinϕair−sinϕat )+jθn

=
∑N

n=1
ej2π

d
λ
(n−1)(sinϕair−sinϕat+sinϕat−sinϕakr)

=
∑N

n=1
ej2π

d
λ
(n−1)(sinϕair−sinϕakr).

(B.41)

Then, by using properties of geometric progressions, it is obtained that

|fi(Φ)| =
∣∣∣∣∑N

n=1

(
ej2π

d
λ(sinϕair−sinϕakr)

)(n−1)∣∣∣∣
=

∣∣∣∣∣1− ej2π
d
λ
N(sinϕair−sinϕakr)

1− ej2π
d
λ(sinϕair−sinϕakr)

∣∣∣∣∣
=

∣∣∣∣∣e−jπ
d
λ
N(sinϕair−sinϕakr) − ejπ

d
λ
N(sinϕair−sinϕakr)

e−jπ
d
λ(sinϕair−sinϕakr) − ejπ

d
λ(sinϕair−sinϕakr)

× ejπ
d
λ
N(sinϕair−sinϕakr)

ejπ
d
λ(sinϕair−sinϕakr)

∣∣∣∣∣
=

sin
(
π dλN (sinϕair − sinϕakr)

)
sin
(
π dλ
(
sinϕair − sinϕakr

)) .

(B.42)

Therefore, if the user i does not have the same AoA as user k, the term |fi(Φ)| is

bounded when N →∞. Using a similar process, it can be proved that the term
∣∣∣hHk hi

∣∣∣2
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is bounded when N →∞.



Appendix C

Proofs in Chapter 5

C.1 Proof of Theorem 5

To begin with, it is needed to derive the first and second order statistical properties

of the aggregated channel and the observation vector. The expectation is E
{
ykc,p

}
=

√
ĉkδH2Φhk. Aided by Lemma 12, the covariances between qc,k and ykc,p is given by

Cov
{

qc,k,y
k
c,p

}
= E

{
(qc,k − E {qc,k})

(
ykc,p − E

{
ykc,p

})H}
=E

{(√
ĉkH̃c,2Φhk +

√
γkd̃k

)(√
ĉkH̃c,2Φhk +

√
γkd̃k

)H}
= E

{
ĉkH̃2R

1/2
ris Φhkh

H
k ΦHR

1/2
ris H̃H

2 + γkd̃kd̃
H
k

}
=
(
ĉkh

H
k ΦHRrisΦhk + γk

)
IM .

(C.1)

Using Lemma 12, the definition of Hc,2 in (5.3), the fact V = R
1/2
emiṼ, and the

independence between the channels, noise, and EMI, the covariance of ykc,p is calculated

as

198
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Cov
{

ykc,p,y
k
c,p

}
= E

{(
ykc,p − E

{
ykc,p

})(
ykc,p − E

{
ykc,p

})H}
= E

{
ĉkH̃c,2Φhkh

H
k ΦHH̃H

c,2 + γkd̃kd̃
H
k +

Hc,2ΦVsksk
HVHΦHHH

c,2

τp
+

Nsksk
HNH

τp

}

=

(
ĉkh

H
k ΦHRrisΦhk + γk +

σ2

τp

)
IM + E

{
βδ
δ+1H2ΦVsksk

HVHΦHH
H
2

τp

}

+ E

{
β
δ+1H̃c,2ΦVsksk

HVHΦHH̃H
c,2

τp

}

=

(
ĉkh

H
k ΦHRrisΦhk + γk +

σ2

τp

)
IM +

σ2eβδH2ΦRemiΦ
HH

H
2

τp(δ + 1)

+ E

{
σ2eβH̃c,2ΦRemiΦ

HH̃H
c,2

τp(δ + 1)

}

=

(
ĉkh

H
k ΦHRrisΦhk + γk +

σ2

τp

)
IM +

σ2eβδH2ΦRemiΦ
HH

H
2

τp(δ + 1)

+
σ2eβ Tr

{
RemiΦ

HRrisΦ
}

τp(δ + 1)
IM .

(C.2)

Then, the LMMSE channel estimate for channel qc,k is given by

q̂c,k = E {qc,k}+ Cov
{

qc,k,y
k
c,p

}
Cov−1

{
ykc,p,y

k
c,p

}(
ykc,p − E

{
ykc,p

})
. (C.3)

Combining (C.3) with (C.1) and (C.2) completes the proof.
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C.2 Proof of Theorem 6

With the aid of Lemmas 12 and 14, the proof follows as the proof of Appendix B.5.

Using the orthogonal property, the noise is given by

Enoise
c,k = E

{
‖q̂c,k‖2

}
= E

{
q̂Hc,kqc,k

}
= ĉkδh

H
k ΦHH

H
2 H2Φhk + γkE

{
d̃Hk ΥH

k d̃k

}
+ E

{
ĉkh

H
k ΦHH̃H

c,2Υ
H
k H̃c,2Φhk

}
= Mĉkδh

H
k ΦHaNaHNΦhk + γkE

{
d̃Hk ΥH

k d̃k

}
+ ĉkh

H
k ΦHR

1/2
ris E

{
H̃H

2 ΥH
k H̃2

}
R

1/2
ris Φhk

= Mĉkδ |fk(Φ)|2 + ĉk Tr
{
ΥH
k

}
h
H
k ΦHRrisΦhk + γk Tr

{
ΥH
k

}
.

(C.4)

By substituting Hc,2 =
√

β
δ+1

(√
δH2 + H̃c,2

)
, the EMI is calculated as

E
{
q̂Hc,kHc,2ΦRemiΦ

HHH
c,2q̂c,k

}
=

β

δ + 1

(
δE
{

q̂Hc,kH2ΦRemiΦ
HH

H
2 q̂c,k

}
+ 2
√
δE
{

q̂Hc,kH2ΦRemiΦ
HH̃H

c,2q̂c,k

}
+ E

{
q̂Hc,kH̃c,2ΦRemiΦ

HH̃H
c,2q̂c,k

})
.

(C.5)

Equation (C.5) is derived by inserting the definition of q̂c,k from (5.8), using Lemmas

12 and 14, and utilizing the independence between H̃H
c,2, V, and N. Details of the proof

are omitted for brevity.

Next, the derivation of the multi-user interference is discussed. For notational sim-

plicity, define

q̂H
c,k

=
√
ĉkδh

H
k ΦHH

H
2 +

√
ĉkh

H
k ΦHH̃H

c,2Υ
H
k ,

q
c,i

=
√
ĉiδH2Φhi +

√
ĉiH̃c,2Φhi.

(C.6)

Then, based on the independence, the multi-user interference term can be decomposed
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as

E
{∣∣q̂Hc,kqc,i∣∣2} = E

{∣∣∣q̂Hc,kqc,i∣∣∣2}+ E
{∣∣∣√γiq̂Hc,kd̃i∣∣∣2} , (C.7)

where

E
{∣∣∣√γiq̂Hc,kd̃i∣∣∣2} = E

{
γiq̂

H
c,kd̃id̃

H
i q̂c,k

}
= γiE

{∥∥q̂Hc,k∥∥2} = γiE
noise
c,k , (C.8)

and

E
{∣∣∣q̂Hc,kqc,i∣∣∣2} = E

{∣∣∣q̂H
c,k

q
c,i

∣∣∣2}

+ E


∣∣∣∣∣∣∣∣
(
√
γkd̃

H
k ΥH

k +
sHk VHΦHHH

c,2Υ
H
k√

τp
+

sHk NHΥH
k√

τp

)
× q

c,i

∣∣∣∣∣∣∣∣
2

= E
{∣∣∣q̂H

c,k
q
c,i

∣∣∣2}+ E
{(

γk +
σ2

τp

)
qH
c,i

Υ2
kqc,i

}
+ E

{
σ2e
τp

qH
c,i

ΥkHc,2ΦRemiΦ
HHH

c,2Υ
H
k q

c,i

}
.

(C.9)

By utilizing Lemma 12 and Lemma 14 and utilizing steps similar to Appendix B.5, the

computation of the multi-user interference can be completed by calculating the three

expectations in (C.9).

Finally, the signal leakage is derived. Recall that Eleak
c,k = E

{∣∣∣q̂Hc,kqc,k∣∣∣2}−∣∣∣E{q̂Hc,kqc,k

}∣∣∣2
and E

{
q̂Hc,kqc,k

}
are derived in (C.4). Therefore, it is only needed to derive E

{∣∣∣q̂Hc,kqc,k∣∣∣2},

which can be decomposed as

E
{∣∣q̂Hc,kqc,k∣∣2} = E

{∣∣∣(q̂H
c,k

+
√
γkd̃

H
k ΥH

k

)
qc,k

∣∣∣2}

+E


∣∣∣∣∣sHk VHΦHHH

c,2Υ
H
k√

τp
qc,k

∣∣∣∣∣
2
+E

{∣∣∣∣sHk NHΥH
k√

τp
qc,k

∣∣∣∣2
}
,

(C.10)
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where

E
{∣∣∣(q̂H

c,k
+
√
γkd̃

H
k ΥH

k

)
qc,k

∣∣∣2}
= E

{∣∣∣q̂H
c,k

qc,k

∣∣∣2}+ E
{∣∣∣√γkd̃Hk ΥH

k qc,k

∣∣∣2}+ 2 Re
{√

γkE
{

q̂H
c,k

qc,kq
H
c,kΥkd̃k

}}
.

(C.11)

The calculation of the signal leakage follows from (C.10) and (C.11).

C.3 Proof of Lemma 4

Recall that Φ = diag{c} and c = ejθ. Then, Tr
{
AΦBΦH

}
can be expressed as

Tr
{
AΦBΦH

}
=
∑
i

[
AΦBΦH

]
ii

=
∑
i

∑
a

[A]ia[Φ]aa[B]ai
[
ΦH
]
ii

= cH
(
A�BT

)
c. (C.12)

Applying the chain rule, the gradient of Tr
{
AΦBΦH

}
with respect to the n-th

element of θ, i.e., θn, is

∂ Tr
{
AΦBΦH

}
∂θn

=
∂cH

∂θn

(
A�BT

)
c+ cH

(
A�BT

) ∂c
∂θn

= −je−jθn
[(

A�BT
)
c
]
n

+ j
[
cH
(
A�BT

)]
n
ejθn .

(C.13)

Equation (C.13) is the n-th element of
∂ Tr{AΦBΦH}

∂θ . Thus, the proof of (5.29) is

completed by casting (C.13) for all values of n in a vector. The proof of (5.30) follows

by noting that
{
ΦT

(
AT �B

)
c∗
}∗

= ΦH
(
AH �B∗

)
c = ΦH

(
A�BT

)
c if A and B

are unitary matrices.



Appendix D

Proofs in Chapter 7

D.1 Proof of Lemma 8

Based on the definitions of H1, H2, and D, the channel of user k can be expanded as

qk =

√
αkβδ

δ + 1
H2Φhk +

√
αkβ

δ + 1
H̃2Φhk +

√
γkd̃k. (D.1)

Firstly, since H̃2 consists of i.i.d. CN (0, 1) elements, vector
√

αkβ
δ+1H̃2Φhk is com-

prised of mutually independent elements. Secondly, the elements of vector
√

αkβ
δ+1H̃2Φhk

are linear combinations of independent Gaussian random variables. Therefore, vector√
αkβ
δ+1H̃2Φhk consists of i.i.d. Gaussian variables, following

√
αkβ
δ+1H̃2Φhk ∼ CN

(
0, N αkβ

δ+1IM

)
.

Meanwhile, it is obtained that
√
γkd̃k ∼ CN (0, γkIM ). Since the sum of independent

Gaussian vectors is still a Gaussian vector[96], it is derived that

√
αkβ

δ + 1
H̃2Φhk +

√
γkd̃k ∼ CN

(
0,

(
N
αkβ

δ + 1
+ γk

)
IM

)
. (D.2)

Combining (D.1) with (D.2), it is proved that qk is a Gaussian distributed vector,

where E {qk} =
√

αkβδ
δ+1 H2Φhk, and Cov {qk} = E{(qk − E {qk}) (qk − E {qk})H} =

203
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(
N αkβ

δ+1 + γk

)
IM .

Following a similar procedure, the distribution of the noise matrix 1√
τpNsk can be

derived, which is omitted here for brevity.

D.2 Proof of Theorem 7

Since the channel qk and the noise Nsk are Gaussian distributed random variables, the

considered observation vector ykp in (7.1) is consistent with the complex Bayesian linear

model [87, Eq. (15.63)][2, Lemma B.17]. Therefore, the results in [87] can be directly

applied to obtain the MMSE channel estimate of qk and the MSE matrix. In particular,

applying [87, Eq. (15.64)] and using the distribution in Lemma 8, it can be obtained

that

q̂k =

√
αkβδ

δ + 1
H2Φhk

+

(
N
αkβ

δ + 1
+ γk

)
IM

((
N
αkβ

δ + 1
+ γk +

σ2

τp

)
IM

)−1(
ykp −

√
αkβδ

δ + 1
H2Φhk

)
.

(D.3)

By substituting the observation vector ykp in (D.3) with its expression in (7.1), the

calculation of the MMSE channel estimate in (7.2) is completed. Next, applying [87, Eq.

(15.67)], the MSE matrix is obtained as

MSEk =

[((
N
αkβ

δ + 1
+ γk

)
IM

)−1
+
τp

σ2
IM

]−1
. (D.4)

After some straightforward simplifications, it is arrived at (7.3). Besides, since the

channel qk is a Gaussian vector, the channel estimate q̂k and the estimation error ek are

independent of each other, due to the orthogonality principle of the MMSE estimator[87].
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D.3 Proof of Theorem 8

To derive the lower bound in (7.10), term E{[(Q̂HQ̂)−1]kk} needs to be tackled, where

Q̂ is given in (7.4). It begins by proving that channel Q̂ is Gaussian distributed.

Lemma 16. [95] A random matrix X is complex Gaussian distributed as X ∼ CN (E,Σ⊗

Ψ), if vec
(
XH

)
∼ CN

(
vec
(
EH
)
,Σ⊗Ψ

)
. If X1 ∼ CN (E1,Σ1 ⊗ Ψ1) and X2 ∼

CN (E2,Σ2⊗Ψ2) are independent distributed, then X1+X2 ∼ CN (E1 + E2,Σ1 ⊗Ψ1 + Σ2 ⊗Ψ2).

For notional brevity, the estimated channel Q̂ is divided into three independent parts

Q̂ = Q̂RIS + Q̂BS + Q̂noise, where

Q̂H
RIS =

√
βδ

δ + 1
HH

1 ΦHH
H
2 +

√
β

δ + 1
ΥHH

1 ΦHH̃H
2 ,

Q̂H
BS = ΥΩ1/2D̃H ,

Q̂H
noise =

1
√
τp

ΥSHNH .

(D.5)

Recall that H̃2, D̃, and N are composed of i.i.d. Gaussian random variables. By

observing (D.5), it can be found that each column of matrices Q̂H
RIS , Q̂H

BS and Q̂H
noise

can be written as a linear transformation of mutually independent standard Gaussian

random vectors. Therefore, the columns of Q̂H
RIS , Q̂H

BS , and Q̂H
noise are independent

Gaussian vectors. As a result, after vectorization, the vectors vec(Q̂H
RIS), vec(Q̂H

BS), and

vec(Q̂H
noise) are still Gaussian distributed.

Next, their mean vector and covariance matrices are derived. First, consider the term

vec(Q̂H
RIS). Obviously, the mean vector is E{vec(Q̂H

RIS)} = vec(
√

βδ
δ+1HH

1 ΦHH
H
2 ), and
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the covariance matrix is

Cov
{

vec
(
Q̂H
RIS

)}
= E

{
vec

(√
β
δ+1ΥHH

1 ΦHH̃H
2 IM

)
vec

(√
β
δ+1ΥHH

1 ΦHH̃H
2 IM

)H}
(c)
=

(
IM ⊗

√
β
δ+1ΥHH

1 ΦH

)
E
{

vec
(
H̃H

2

)
vec
(
H̃H

2

)H}(
IM ⊗

√
β
δ+1ΦH1Υ

)
=

(
IM ⊗

√
β
δ+1ΥHH

1 ΦH

)(
IM ⊗

√
β
δ+1ΦH1Υ

)
(d)
= IM ⊗ β

δ+1ΥHH
1 H1Υ,

(D.6)

where (c) utilizes vec(ABC) =
(
CT ⊗A

)
vec(B) and (A ⊗ B)H = AH ⊗ BH . (d)

exploits (A ⊗ C)(B ⊗D) = (AB) ⊗ (CD) and ΦHΦ = IN . According to (D.6) and

Lemma 16, the distribution of Q̂RIS is given by

Q̂RIS ∼ CN

(√
βδ

δ + 1
H2ΦH1, IM ⊗

β

δ + 1
ΥHH

1 H1Υ

)
. (D.7)

Similarly, the distribution of Q̂BS and Q̂noise can be calculated as follows

Q̂BS ∼ CN
(
0, IM ⊗ΩΥ2

)
, (D.8)

Q̂noise ∼ CN
(

0, IM ⊗
σ2

τp
Υ2

)
. (D.9)

Then, using Lemma 16 and the property that A⊗B +A⊗C = A⊗ (B +C), the

estimated channel Q̂ is Gaussian distributed as follows

Q̂ ∼ CN


√

βδ

δ + 1
H2ΦH1, IM ⊗

(
β

δ + 1
ΥHH

1 H1Υ + ΩΥ2 +
σ2

τp
Υ2

). (D.10)

Lemma 17. [116, Definition 5.1] Let W = XHX, with n×m matrix X ∼ CN (E, In ⊗

Ψ). Then, W follows a complex non-central Wishart distribution with n degrees of

freedom, covariance matrix Ψ, and non-centrality parameter Σ = Ψ−1EHE, denoted by

W ∼ CWm(n,Ψ,Σ). Besides, its mean is E(W) = nΨ + ΨΣ[96, 10.3]. In particular,



Chapter D. Proofs in Chapter 7 207

if X ∼ CN (0, In⊗Ψ) has zero mean, W is complex central Wishart distributed, denoted

by W ∼ CWm(n,Ψ), where E(W) = nΨ and E(W−1) = 1
n−mΨ−1, n > m [99].

Since Q̂ is Gaussian distributed, from Lemma 17, the product Q̂HQ̂ follows a complex

non-central Wishart distribution denoted by

Q̂HQ̂ ∼ CWK (M,ΨRIS ,ΣRIS) , (D.11)

where ΨRIS = β
δ+1ΥHH

1 H1Υ+ΩΥ2+σ2

τpΥ
2 and ΣRIS = (ΨRIS)−1 βδ

δ+1HH
1 ΦHH

H
2 H2ΦH1.

The statistical property of (D.11) is very complex which encumbers further analysis and

optimisation. Fortunately, it has been proved that the non-central Wishart distribution

can be closely approximated by a central Wishart distribution[117]. Therefore, as in

[4, 97, 98], the non-central Wishart distribution (D.11) is approximated by a central one

with the same first-order moment. With Lemma 17, the mean of (D.11) is given by

E
{

Q̂HQ̂
}

= M

(
β

δ + 1
ΥHH

1 H1Υ + ΩΥ2 +
σ2

τp
Υ2

)
+

βδ

δ + 1
HH

1 ΦHH
H
2 H2ΦH1

= M

(
β

δ + 1
ΥHH

1 H1Υ + ΩΥ2 +
σ2

τp
Υ2

)
+M

βδ

δ + 1
HH

1 ΦHaNaHNΦH1.

(D.12)

Then, the central Wishart distribution with the same mean is given by

Q̂HQ̂ ∼ CWK

(
M,

β

δ + 1
ΥHH

1 H1Υ + ΩΥ2 +
σ2

τp
Υ2 +

βδ

δ + 1
HH

1 ΦHaNaHNΦH1

)
.

(D.13)

By using the property of complex central Wishart distribution in Lemma 17, it is

obtained that

E
{(

Q̂HQ̂
)−1}

=

(
β
δ+1ΥHH

1 H1Υ+ΩΥ2+ σ2

τpΥ
2+ βδ

δ+1HH
1 ΦHaNaHNΦH1

)−1
M −K

. (D.14)

The proof is completed by substituting (D.14) into (7.10).
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D.4 Proof of Corollary 26

Recall that Λ = β
δ+1ΥHH

1 H1Υ + ΩΥ2 + σ2

τpΥ
2. It is readily found that Λ = ΛH . Note

that the existence of direct links is assumed, therefore there is Ω � 0. Meanwhile, there

are β
δ+1ΥHH

1 H1Υ � 0, ΩΥ2 � 0, and σ2

τpΥ
2 � 0. Therefore, it is obtained that Λ � 0,

Λ−1 � 0, and
(
Λ−1

)H
= Λ−1. Then, applying the Woodbury’s identity and using the

fact that Λ−1 is positive definite and Hermitian, it is derived that

[(
Λ +

βδ

δ + 1
HH

1 ΦHaNaHNΦH1

)−1]
kk

=
[
Λ−1

]
kk
−

βδ
δ+1

[
Λ−1HH

1 ΦHaNaHNΦH1Λ
−1]

kk

1 + βδ
δ+1aHNΦH1Λ−1HH

1 ΦHaN

=
[
Λ−1

]
kk
−

βδ
δ+1

∣∣∣[Λ−1HH
1 ΦHaN

]
(k,1)

∣∣∣2
1 + βδ

δ+1

(
aHNΦH1

)
Λ−1

(
aHNΦH1

)H
≤
[
Λ−1

]
kk
. (D.15)

Substituting (D.15) into (4.37), the lower bound in (7.14) can be obtained.

Lemma 18. [4, 6, 65] When N →∞, the product of the LoS components h
H
k hi is still

bounded, unless user i has the same AoA as user k.

The diagonal and non-diagonal elements of Λ can be respectively calculated as follows

[Λ](k,k) =

(
N
αkβ

δ + 1
+ γk +

σ2

τp

)
κ2k, (D.16)

[Λ](k,i) =
β

δ + 1

√
αkαiκkκih

H
k hi, ∀i 6= k. (D.17)

When N is small, due to the small product-distance path loss αkβ and
√
αiαkβ com-

pared with γk, (D.17) is much smaller compared with (D.16). Therefore, Λ can be

approximated as a diagonal matrix for small N . When N increases, based on Lemma

18, (D.16) grows much faster than (D.17). Thus, (D.16) is still much larger than (D.17)

and it can be approximated that Λ is dominated by diagonal elements. Finally, when
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N → ∞, (D.16) tends to infinity but (D.17) does not. Therefore, Λ tends to a diago-

nal matrix for large N . Accordingly, for any N , Λ can be approximated as a diagonal

matrix diag{[Λ](1,1) , . . . , [Λ](K,K)} and then the approximate lower bound in (7.15) can

be obtained by using
[
Λ−1

]
kk
≈ ([Λ]kk)

−1 =
N
αkβ

δ+1
+γk+

σ2

τp(
N
αkβ

δ+1
+γk

)2 . Finally, by observing the

order of magnitude of the numerator and denominator of the SNR in (7.15), it can be

seen that the numerator is on the order of O
(
MN2

)
, but the denominator is only on

the order of O (N). Therefore, the rate is on the order of O (log2 (MN)). Besides, it

can be readily found that Rk (Φ) = Rk when δ = 0. Meanwhile, for an optimal solution

Φ∗∗ and a sub-optimal solution Φ∗, it is obtained that Rk (Φ∗∗) > Rk (Φ∗). Since Rk

is independent of Φ, it is obtained that Rk (Φ∗∗)−Rk > Rk (Φ∗)−Rk, which indicates

that the gap between Rk (Φ) and Rk will be enlarged if Φ is optimised. In other words,

the proposed bound Rk will be tight when the unoptimised phase shifts are used.

D.5 Proof of Corollary 31

Lemma 19. If X � 0,
[
X−1

]
kk
≥ 1

[X]kk
. The equality holds only if X is diagonal[118].

Recall that there are Λ � 0 and HH
1 ΦHaNaHNΦH1 � 0. Using Lemma 19 and (6.2),

it is obtained that [(
Λ +

βδ

δ + 1
HH

1 ΦHaNaHNΦH1

)−1]
kk

≥ 1[
Λ + βδ

δ+1HH
1 ΦHaNaHNΦH1

]
kk

=
1

[Λ]kk + αkβδ
δ+1

∣∣aHNΦhk
∣∣2≥ 1

[Λ]kk + αkβδ
δ+1 N

2

=
1(

N αkβ
δ+1 + γk + σ2

τp

)
κ2k + αkβδ

δ+1 N
2
,

(D.18)

where the last inequality holds by using the property that
∣∣aHNΦhk

∣∣ ≤ N from triangle

inequality[65, (149)], and the equality holds when θn = −∠
{[

aHN
]
n

[
hk
]
n

}
, ∀n.

The proof is completed by substituting (D.18) into (7.11) with a few additional sim-
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plifications.

D.6 Proof of Lemma 10

To begin with, a brief introduction is given for the optimisation under the MM framework[11,

101]. To maximise a function g(v) based on the MM algorithm, at a point vn, it is needed

to construct a lower bound g(v|vn) satisfying

g(vn) = g (vn | vn) , (D.19)

g (v) ≥ g (v | vn) , (D.20)

∇vg (v)|v=vn
= ∇vg (v | vn)

∣∣
v=vn

. (D.21)

Then, the value of the original function can be increased from g(vn) to g(vn+1) by

finding the point vn+1 which maximises the lower bound g(v|vn). Therefore, the success

of using the MM algorithm highly relies on the property of the constructed lower bound.

In the following, a tractable lower bound for fk(v) is derived which satisfies the above

three conditions and can successfully produce a closed-form solution. Firstly, fk(v) is

rewritten as

fk(v) = ln
(

1 + vHBv
vHCkv

)
= − ln

(
vHCkv

vHCkv+vHBv

)
= − ln

(
1− vHBv

vHCkv+vHBv

)
= − ln

(
1− vHBv

tk

)
, fk(v, tk),

(D.22)

where tk = vH(Ck + B)v > 0. Then, according to [101, (14)] and the composition rule

[104, (3.10)], fk(v, tk) is jointly convex in v and tk. Therefore, given a point (vn, t
n
k), a

lower bound of fk(v, tk) can be obtained by using its first-order Taylor expansion, which

automatically meets the three conditions needed for MM algorithms. Specifically, it is
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obtained that

fk(v, tk) ≥ fk (vn, t
n
k) + ∂fk(v)

∂vT

∣∣∣
v=vn

(v − vn)

+ ∂fk(v)
∂vH

∣∣∣
v∗=v∗n

(v∗ − v∗n) + ∂fk(v)
∂tk

∣∣∣
tk=t

n
k

(tk − tnk) ,
(D.23)

where ∂fk(v,tk)
∂vT

= vHB
tk−vHBv

, ∂fk(v,tk)
∂vH

= vTBT

tk−vHBv
, and ∂fk(v,tk)

∂tk
= − vHBv

(tk−vHBv)
1
tk

.

Substituting these three partial derivatives into (D.23) and using tk = vH(Ck + B)v

and tnk = vHn (Ck + B)vn, after some simplifications, it can be obtained that

fk(v) ≥ const1k +2 Re
{
ωkv

H
n Bv

}
− ψkvH (Ck + B) v, (D.24)

where const1k = fk (vn)− vHn Bvn
vHn Ckvn

, and ωk and ψk are defined in (7.24). Next, according

to the inequality in [101, (26)] and the property that Ck + B � λmax (Ck + B) IN , it is

obtained that

vH (Ck + B) v ≤ vHλmax (Ck + B) INv

+ 2 Re
{
vH ((Ck + B)− λmax (Ck + B) IN ) vn

}
+ vHn (λmax (Ck + B) IN − (Ck + B)) vn. (D.25)

Substituting (D.25) into (D.24) and using the fact that vHλmax (Ck + B) INv =

Nλmax (Ck + B), it can arrive at (7.23).

D.7 Proof of Lemma 11

Under the MM algorithm framework, given a point vn, the objective is to construct a

quadratic form lower bound f̃ (v | vn) of f̃ (v) as follows

f̃(v) ≥ f̃ (v | vn) = f̃ (vn) + 2 Re
{
uH (v − vn)

}
+ (v − vn)H M (v − vn) , (D.26)

where u and M are two parameters to be decided.
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Since condition f̃(vn) = f̃ (vn | vn) is already satisfied, next, it is needed to construct

parameters u and M satisfying conditions (D.20) and (D.21). Firstly, condition (D.21)

is used to design u. The differential of the left-hand side of (D.26) at point vn with

arbitrary increment dv = v − vn is

df̃(v)
∣∣∣
v=vn

=− 1
µ

∑
k

d
{
exp
{
−µ
(
constk +2Re

{
(fnk )

H
v
})}}∣∣∣∣

v=vn∑
k
exp
{
−µ
(
constk+2Re

{
(fnk )

H
vn
})}

=
∑
k

2 Re
{
lnk (fnk )H dv

}
,

(D.27)

where lnk is defined in (7.29). Next, the differential of the right-hand side of (D.26) at

point vn is

df̃ (v | vn)
∣∣∣
v=vn

= 2 Re
{
uHdv

}
. (D.28)

To satisfy condition (D.21), it is needed that
∑

k 2 Re
{
lnk (fnk )H dv

}
= 2 Re

{
uHdv

}
,

resulting in

u =
∑
k

lnk fnk . (D.29)

Next, the objective is to construct M using condition (D.20). Letting v = vn +

% (ṽ − vn), % ∈ [0, 1], and substituting it into (D.20), it is needed that

f̃ (vn + % (ṽ − vn)) ≥ f̃ (vn)

+ 2%Re
{
uH (ṽ − vn)

}
+ %2 (ṽ − vn)H M (ṽ − vn) (D.30)

to be satisfied for any % and any ṽ. Since it is known that f̃ (v) and f̃ (v | vn) have the

same value and differential at point vn, (D.20) can now be transformed to the condition

that the second-order derivative of the left-hand side of (D.30) is no smaller than that

of the right-hand side of (D.30) for any % ∈ [0, 1] and any ṽ[102].
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Specifically, the second-order derivative of the right-hand side of (D.30) is given by

∂

∂%2

{
f̃ (vn) + 2%Re

{
uH (ṽ − vn)

}
+ %2 (ṽ − vn)H M (ṽ − vn)

}
= 2 (ṽ − vn)H M (ṽ − vn) .

(D.31)

Then, the left-hand side of (D.30) is considered. Its first-order derivative is

∂

∂%
f̃ (vn + % (ṽ − vn)) =

∑
k

2 Re
{
unk(%) (fnk )H (ṽ − vn)

}
, (D.32)

where unk(%) = exp{−µl̃k(%)}∑
k
exp{−µl̃k(%)}

, l̃k(%) = constk +2 Re
{

(fnk )H (vn + % (ṽ − vn))
}

, and ∂l̃k(%)
∂% =

2 Re
{

(fnk )H (ṽ − vn)
}

. Then, the second-order derivative can be calculated as follows

∂

∂%2
f̃ (vn + % (ṽ − vn)) =

∑
k

2 Re

{
∂

∂%
{unk(%)} (fnk )H (ṽ − vn)

}
, (D.33)

where

∂unk (%)
∂% = −2µRe

{
unk(%) (fnk )H (ṽ − vn)

}
+µunk(%)

(∑
k

2 Re
{
unk(%) (fnk )H (ṽ − vn)

})
.

(D.34)

Substituting (D.34) into (D.33), the second-order derivative is obtained as follows

∂
∂%2 f̃ (vn + % (ṽ − vn))

= −µ
∑

k u
n
k(%)

(
2 Re

{
(fnk )H (ṽ − vn)

})2
+µ
(∑

k 2 Re
{
unk(%) (fnk )H (ṽ − vn)

})2
.

(D.35)

Define t = ṽ − vn. (D.35) can be rewritten as a quadratic form of t, as follows

∂

∂%2
f̃ (vn + % (ṽ − vn)) =

[
tH tT

]
W

 t

t∗

 , (D.36)
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where

W = −µ
∑
k

unk(%)

 fnk

(fnk )∗


 fnk

(fnk )∗


H

+ µ

 ∑k u
n
k(%)fnk∑

k u
n
k(%) (fnk )∗


 ∑k u

n
k(%)fnk∑

k u
n
k(%) (fnk )∗


H

. (D.37)

Besides, the second-order derivative in (D.31) can be rewritten as

2 (ṽ − vn)H M (ṽ − vn)

=

[
tH tT

] M 0

0 MT


 t

t∗

 . (D.38)

To satisfy condition (D.20), according to (D.37), M � λmin(W)IN can be selected,

where

λmin(W)
(e)

≥ −µ
∑
k

unk(%)λmax


 fnk

(fnk )∗


 fnk

(fnk )∗


H


(f)
= −µ

∑
k

unk(%)
(

(fnk )H fnk + (fnk )T (fnk )∗
)

= −2µ
∑
k

unk(%) ‖fnk ‖
2
(g)

≥ −2µmax
k
‖fnk ‖

2 , (D.39)

according to the following properties: (e)[119] : For Hermitian matrix X and rank one

Hermitian matrix T, it is obtained that λmin(X + T) ≥ λmin(X) + λmin(T) = λmin(X).

(f) : If X is rank one, λmax (X) = Tr {X}. (g) : For non-negative vector [b1, b2, ..., bn]

and [c1, c2, ..., cn], if ci ∈ (0, 1) and
∑n

i=1 ci = 1, then
∑n

i=1 cibi ≤
∑n

i=1 ci max1≤i≤n bi =

max1≤i≤n bi.

Based on (D.39), M =
(
−2µmaxk ‖fnk ‖

2
)

IN can now be constructed. Substituting

this M and u in (D.29) into (D.26) completes the proof.
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