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Abstract

Matrix models are ubiquitous in physics. Commonly arising due to the presence of gauge
symmetries in a system, they play an important role in establishing results within the
context of the AdS/CFT correspondence. They also capture the statistics of complex
systems in a remarkably diverse range of fields within the framework of random matrix
theory (RMT), these include nuclear physics, chaos, condensed matter physics, financial
correlations and biological networks. Inspired by both of these applications, and motivated
by the existence of physical matrix systems possessing discrete symmetries, is the study of
Gaussian matrix models invariant under SN , the symmetric group of all permutations of N
objects. We specialise the most general of these models to the case of symmetric matrices
with vanishing diagonal elements. This model is used to study an ensemble of financial
correlation matrices and as a tool to detect market states. This problem has a natural per-
mutation symmetry, and the observables of interest are permutation invariant polynomials
of the matrix variables (PIMOs). We find that the values of low order PIMOs are generally
closely matched by the predictions by the model, and vectors of PIMOs are shown to be
efficient indicators of the market state. Turning our attention to the general structure of
permutation invariant Gaussian matrix (PIGM) models of general matrices of size N , we
show that PIMOs of degree k are in one-to-one correspondence with equivalence classes
of the diagrammatic partition algebra Pk(N). On a subspace of the 13-parameter space
of general PIGM models there is an enhanced O(N) symmetry. At a special point within
this subspace exists the simplest O(N) invariant action, which we furnish with an inner
product on the PIMOs. We prove the large N factorisation of this inner product. Lastly,
we study the implications of permutation symmetry for the state space and dynamics of
quantum mechanical matrix systems. The general permutation invariant matrix quantum
harmonic oscillator Hamiltonian is solved and families of interacting Hamiltonians, which
are diagonalised by a representation theoretic basis for the permutation invariant subspace,
are described. These include Hamiltonians for which low-energy states are SN invariant
and can give rise to large ground state degeneracies related to the dimensions of partition
algebras.
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Chapter 1

Introduction

This thesis is about permutation invariant Gaussian matrix (PIGM) models. These models
constitute a class of universal statistical mechanics models, and are of potential relevance
to any system possessing the appropriate symmetry and Gaussianity properties. The
inception of, and continued development of such models is motivated, on the one hand by
theoretical physics and the study of holography, and on the other from data science and
its application to diverse data sets.

The motivation coming from physics stems from the abundance of systems involving matrix
degrees of freedom. In high energy physics these commonly involve matrices transforming
in the adjoint or bifundamental of a group, such as U(N), SU(N), SO(N), or Sp(N). This
group is commonly a gauge symmetry of the system and physical states are defined to be
those invariant under the action of G. The space of gauge invariants is populated by traces
of matrices, and is organised by algebras dual to G. For the case of G = U(N) the dual
algebras are based on the standard Schur-Weyl duality [5] between U(N) and Sk on V ⊗k the
k-fold tensor product of the fundamental representation of U(N). Applications of Schur-
Weyl duality to the computation of correlators in matrix models with U(N) symmetry
are developed in [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19] and short reviews are
[20, 21]. These multi-matrix applications involve dual algebras beyond the symmetric group
algebras. For example Brauer algebras, which have a basis of diagrams, are used in [7].
When U(N) is replaced by the permutation group, SN , as the invariance of interest, the
Schur-Weyl dual algebras are diagrammatic partition algebras Pk(N). Partition algebras
were first introduced in [22, 23, 24] in application to the statistical mechanics of Potts
models. Their relation to the representation theory of symmetric groups is an active area
of mathematical research [25, 26, 27, 28].

An important and persistent feature of matrix systems governed by continuous symme-
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tries, first pointed out by ’t Hooft in 1974 [29], is their simplification in the large N
limit. This simplification has played a major role in the development of gauge-string du-
ality in subsequent years including in low-dimensional non-critical string theories dual to
zero-dimensional QFTs (matrix models) [30, 31, 32], the string dual of two-dimensional
Yang-Mills theories [33], and the generalisation to higher dimensions in the AdS/CFT
correspondence [34]. A cornerstone of this simplicity is "large N factorisation". In the
context of AdS/CFT, large N factorisation for two-point functions involving gauge in-
variants built from a complex matrix is an expression of orthogonality for distinct trace
structures [35]. This plays an important role in the connection between multi-traces in
the CFT constructed from a small number of matrices and perturbative gravitons in the
AdS dual [36, 37]. The breakdown of this orthogonality when the number of matrices k
becomes comparable to N guides the identification of the CFT duals [35, 6, 38] of giant
gravitons [39, 40, 41], the dual Sk algebra can be used to neatly classify these operators in
terms of features of Young diagrams.

In addition to this holographic motivation, PIGMmodels were originally developed for their
direct application to data structures arising in computational linguistics [42, 43], and more
specifically in the field of distributional semantics. The study of distributional semantics
was originated by Firth [44] and Harris [45] in the 1950s and ’60s and was founded on
the precept that a word’s meaning can be gleaned from the frequency of its occurrence
among specific neighbouring words. In practice, words are represented by meaning vectors
recording the frequency of cooccurrence (in the same sentence say) with a set of commonly
occurring words that act as a basis for the vector space. As Firth would have it "You shall
know a word by the company that it keeps". More recent developments add grammatical
structure, represented in these linguistic vector spaces as higher order objects: matrices
and tensors. Composing words into phrases or sentences is equivalent to the contraction of
indices, the precise form of which is dictated by the grammatical role played by the word
in the sentence [46, 47]. Large ensembles of matrices arise naturally in this context as they
represent the grammatical role played by any lexical category that modifies a single noun
to return a noun phrase, for example adjectives and intransitive verbs. These matrices are
not invariant under any continuous symmetries, however, the order of the basis vectors in
these matrices is unimportant which gives the permutation invariance.

Since their initial introduction by Wigner [48] and Dyson [49] Gaussian matrix models
have demonstrated a remarkable degree of universality, capturing the statistic of a wide
variety of complex systems. At first used to explain the statistics of the energy levels of
complex nuclei, they have since been applied to chaos, condensed matter physics, biological
networks, feature-matrices in bio-statistics, data science, financial correlations and quan-
tum gravity [50, 51, 52, 53, 54]. In the same vein PIGM models were proposed to describe
the statistics of matrix ensembles arising in computational linguistics based on the general
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symmetries and properties of the matrices rather than their complex, precise relations.
The approaches diverge however, since applications of random matrix theory (RMT) typ-
ically focus on eigenvalue distributions of the random matrices, whereas PIGM models
concentrate on low order expectation values of observables. In this the PIGM approach
mirrors that of quantum field theory (QFT) as applied to particle physics: viewing the ma-
trix integrals as zero-dimensional QFTs and employing much of the same technology. Like
RMT, PIGM models capture a universal structure present in many systems and we expect
they will prove broadly applicable. Indeed, since the definition and solution of the most
general 13-parameter PIGM model in [43], they have already been successfully utilised in
a variety of computational linguistic applications: the Gaussianity analysed in [55] was
based on the construction of matrices by linear regression in [42] while [56] extended the
analysis of [55] and also analysed the matrices constructed by neural network methods in
[57]. Permutation invariant observables are more general functions of matrices than those
invariant under continuous symmetries, as such some traditional areas of application of
RMT may be enriched by the inclusion of the study of permutation invariant observables.

The structure of this thesis is as follows: in chapter 2 we briefly cover some basic finite group
representation theory before considering representation theory of the symmetric group SN
in particular. Key results include the correspondence between conjugacy classes and irre-
ducible representations of SN , which enables a labelling of the irreducible representations
by partitions of N or equivalently, Young diagrams containing N boxes. Many combina-
toric results used throughout are most easily expressed in terms of Young diagrams: the
Hook length formula for determining the dimension of a irreducible representation (2.16),
(2.23) giving the irreducible decomposition of an SN irreducible representation tensored
with the Hook representation, which in turn can be applied to find the decomposition of
tensors of the natural representation. Detailed reference material is signposted throughout.
This representation theory underpins the results of [43] which is the root of the material
in the succeeding chapters. Due to its central importance, we recap the definition and so-
lution of the 13-parameter Gaussian matrix model, originally in [43], albeit with a slightly
different presentation, more suitable for our purposes.

Akin to random matrix models, PIGM models are universal structures applicable to any
ensemble possessing the requisite symmetry and Gaussianity. Based on [4] chapter 3 moves
beyond the initial applications of these models in computation linguistics and applies them
to an ensemble of financial correlation data sourced from high frequency foreign exchange
(forex) market trades. In contrast to the general N × N matrices considered in [43] the
matrices here are symmetric and have vanishing diagonal elements. We find these models
are defined by four coupling parameters and give their solution in terms of the inverse cou-
plings and the size of the matrices. Using the data to fit the model to linear and quadratic
order we find a good agreement between the empirical cubic and quartic observable ex-
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pectation values and those predicted by the model. Observables that depart from these
predictions indicate informative structure beyond that captured by the random model.
Indeed, feature vectors constructed from these least Gaussian observables are shown to be
useful low dimensional representations of the high dimensional correlation matrices. This
usefulness is demonstrated in their application to market state anomaly detection.

In chapter 4 we extend a familiar large N factorisation property of inner products of
matrix observables invariant under continuous symmetry to the case of matrix observables
invariant under the discrete symmetry of permutations, based on the original work [2].
In order to prove this result we first establish a correspondence between permutation
invariant matrix observables and equivalence classes of partition algebra elements. The
correspondence is reminiscent of that between U(N) invariants and conjugacy classes of
the symmetric group. Indeed, both correspondences are consequences of the Schur-Weyl
duality between the two pairs of groups.

Polynomials in matrix variables Mij are closely related to quantum mechanical states con-
structed from matrix oscillators (a†)ij . This allows us to translate the technology developed
for zero-dimensional matrix models in the early chapters to the setting of matrix quan-
tum mechanics. Chapter 5 pursues this theme, based on the work in [3]. We begin by
giving a detailed description of the permutation invariant state space. The state space
can be organised by the order of the polynomial of matrix oscillators used to create the
state. Then at each order k, the partition algebra Pk(N) proves an important tool in
this description and gives an efficient construction of permutation invariant states. The
majority of our results up to this point are independent of any particular Hamiltonian.
Using Fourier transformation on Pk(N) we construct a representation theory basis which
forms an energy eigenbasis for the Hamiltonian of the free matrix quantum harmonic os-
cillator. We introduce an 11-parameter family of exactly solvable Hamiltonians which
define the most general matrix harmonic oscillator systems compatible with permutation
symmetry. In addition, interacting Hamiltonians are discussed which exhibit a variety of
spectral features controlled by sequences of partition algebras. We conclude by calculating
two- and three-point correlators, the former are shown to factorise (in an extension of the
factorisation result of chapter 4), and the latter are shown to obey selection rules based on
Clebsch-Gordan multiplicities of symmetric groups.



Chapter 2

Background

This chapter contains much of the background material utilised in the bulk of this the-
sis. First, we introduce some basic symmetric group representation theory including a
treatment of the natural representation VN of the symmetric group and its irreducible de-
composition. The natural representation is of particular importance as we will frequently
work with matricesMij transforming like VN⊗VN . The symmetric group acting on VN has
a Schur-Weyl dual algebra called the partition algebra. We spend some time introducing
this algebra as it is used to prove important results in chapters 4 and 5. The final sec-
tions of this chapter introduce permutation invariant matrix (PIGM) models themselves,
following the original papers [58] and [43].

Useful resources, giving a more comprehensive treatment of the representation theory of
the symmetric group, include [59, 5, 60]. A very good introduction to partition algebras is
given in [61].

2.1 Representation theory of finite groups

A representation of a group G on a vector space V is a group homomorphism DV from
the group to the space of invertible matrices on the vector space GL(V ), that is DV must
obey [59]

DV (g1g2) = DV (g1)DV (g2), ∀ g1, g2 ∈ G . (2.1)

14



2.1. Representation theory of finite groups 15

Choosing an alternative basis for the vector space V will replace the linear operators DV (g)

by their transforms by some matrix C. The transformed matrices

DV ′(g) = CDV (g)C−1 (2.2)

provide an equivalent representation to the original matrices DV (g), despite the matrices
themselves being different.

A subrepresentation of a representation V is a vector subspace W of V which is invariant
under the action of DV (g) for all g ∈ G. A representation V is irreducible if there exists
no proper nonzero invariant subspace W of V , i.e. V admits no subspaces other than the
trivial two: V itself and {0} [5]. Given two representations V and W , the direct sum
V ⊕W and the tensor product V ⊗W are also representations, the latter via the action

DV⊗W (g) = DV (g)⊗DW (g) . (2.3)

For any representation V of a finite group G there exists a decomposition

V ∼= V ⊕τ11 ⊕ V ⊕τ22 ⊕ · · · ⊕ V ⊕τkk , (2.4)

into irreducible representations. The irreducible representations are labelled Vi and each
appears with multiplicity τi. This decomposition is unique.

It is useful to work with quantities that are basis independent. An important example of
such a quantity is the character, or trace, of a linear operator

χV (g) ≡ TrV
(
D(g)

)
=
∑
i

DV (g)ii . (2.5)

Indeed, under a basis transformation we have∑
i,j,k

CijD
V (g)jkC

−1
ki =

∑
j,k

DV (g)jkδkj =
∑
j

DV (g)jj . (2.6)

Define the following inner product on characters of a group G [60]

〈
χVi , χVj

〉
=

1

|G|
∑
g∈G

χVi(g)χVj (g) . (2.7)

where the bar stands for complex conjugation and |G| is the order of G. Under this inner
product irreducible characters are orthogonal

〈
χVi , χVj

〉
= δ(Vi , Vj) . (2.8)
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This can be used to calculate the multiplicities in the irreducible decomposition of a general
representation (2.4)

〈
χV , χVi

〉
= τi . (2.9)

2.2 Representation theory of the symmetric group

A permutation on N objects is an invertible map σ : {1, · · · , N} → {1, . . . , N}. The
product of two permutations σ1, σ2, each acting on N objects is defined by composing the
maps: σ1σ2(i) = σ2(σ1(i)). As an example, consider the following two permutations acting
on the set {1, 2, 3}

σ1 : 1 7→ 2, 2 7→ 3, 3 7→ 1 ,

σ2 : 1 7→ 2, 2 7→ 1, 3 7→ 3 .
(2.10)

In this case
σ1σ2 : 1 7→ 1, 2 7→ 3, 3 7→ 2 . (2.11)

Permutations can also be written in cycle notation, in which each permutation map is
broken into cycles. Each element in each cycle is mapped to the next element in that cycle
under the given permutation, the last element in each cycle is mapped to the first. For
example the permutations above are

σ1 = (123) , σ2 = (12)(3) , σ1σ2 = (1)(23) . (2.12)

The set of all possible permutations acting on N objects, composed with the above product
rule, form a group: the symmetric group on N objects, denoted SN . There is one such
group for each N ∈ Z+. Conjugacy classes of SN are composed of all elements that share
the same cycle structure. For instance S3 has three conjugacy classes

{(1)(2)(3)} , {(1)(23) , (12)(3) , (13)(2)} , {(123) , (132)} . (2.13)

The number of irreducible representations of SN is equal to the number of conjugacy classes
of the group [5]. In turn this is equal to the number of integer partitions of N . An integer
partition λ of N is a way of writing N as a sum of integers. Partitions that differ only in
the order of their elements are the same, so that we choose a canonical ordering for the
elements from high to low. For instance, the partitions of four are given by

[4], [3, 1], [2, 2], [2, 1, 1], [1, 1, 1, 1] . (2.14)



2.2. Representation theory of the symmetric group 17

To each integer partition is commonly associated a Young diagram. Young diagrams are
composed of boxes such that the ith element of a partition is equal to the number of
boxes in the ith row of the Young diagram. The five partitions in (2.14) correspond to the
following Young diagrams

[4] : , [3, 1] : , [2, 2] : ,

[2, 1,1] : , [1, 1, 1, 1] : . (2.15)

There are many useful combinatoric results concerning Young diagrams and the represen-
tation theory of the symmetric group. The texts cited at the beginning of this chapter are
useful references for these. One such result we will make use of is that the dimension of an
SN irreducible representation can be calculated from its Young diagram λ using the Hook
length formula

Dim(Vλ) =
N !∏
hλ(i, j)

, (2.16)

where hλ(i, j) is the Hook length of the box indexed by (i, j) in the diagram λ. The Hook
length is the number of boxes directly to the right of or directly below the box in question
plus one (as the box itself is also counted once). For example, the boxes in the following
Young diagram are labelled by their respective Hook lengths

6 4 2 1
3 1
1

(2.17)

The diagram (2.16) labels an irreducible representation of S7. The dimension of the S7

irreducible representation corresponding to [4, 2, 1] is

Dim
(
V[4,2,1]

)
=

7!

6 · 4 · 2 · 3
= 35 . (2.18)

All representations of the symmetric groups can be expressed in real form. For any group
with only real irreducible representations we can choose the matrix representations DV (g)

to be real.

For the symmetric group SN the character orthogonality relation (2.8) can be written

〈χVi , χVj 〉 =
1

N !

∑
σ∈SN

χVi(σ)χVj (σ) , (2.19)



18 Chapter 2. Background

since we can always choose matrix representations of the symmetric group to be orthogonal,
and characters are constant on conjugacy classes, with σ and σ−1 belonging to the same
conjugacy class.

2.2.1 Stability of products of symmetric group irreducible representa-
tions

We begin by illustrating a remarkable stability property of tensors of irreducible symmetric
group representations first observed by Murnaghan [62, 63]. For large enough N we see
that the irreducible decomposition of the tensor product of SN irreducible representations
stabilises in the sense that only the first row of each of the components in the decomposition
changes [64]

V[1,1] ⊗ V[1,1] = V[2] ,

V[2,1] ⊗ V[2,1] = V[3] + V[2,1] + V[1,1,1] ,

V[3,1] ⊗ V[3,1] = V[4] + V[3,1] + V[2,1,1] + V[2,2] ,

V[4,1] ⊗ V[4,1] = V[5] + V[4,1] + V[3,1,1] + V[3,2] ,

V[5,1] ⊗ V[5,1] = V[6] + V[5,1] + V[4,1,1] + V[4,2] . (2.20)

That is, for any N ≥ 4, the decomposition is given by

V[(N−1),1] ⊗ V[(N−1),1] = V[((N−1)+1)] + V[(N−1),1] + V[((N−1)−1),1,1] + V[((N−1)−1),2] . (2.21)

This suggests a useful bijection between partitions that captures the stable part of the
decomposition we are interested in. On one side we have the original partitions λ ` N
with N large and on the other we have the same partition with the first row subtracted
[λ2, . . . , λl]. The second type of partitions are equivalent to partitions α ` m obeying
m < N and α1 ≤ N

2 . Then if α = [α1, α2, . . . , αl−1] ` m the bijection is given by

α = [N − |α|, α1, . . . , αl−1] ` N . (2.22)

The Murnaghan rule gives a prescription for constructing the multiplicity of terms in the
decomposition of the tensor of two irreducible representations [65]. Specialising this to the
case where one of the products in the tensor is the Hook representation we have

Vα ⊗ V[1]
= c(α)(Vα)⊕

⊕
β∈α±

V β , (2.23)
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where c(α) is the number of corner boxes (boxes with a Hook length of one) in α and α±

is the set of partitions β with β1 ≤ N
2 constructed by starting with α and either adding a

box, removing a box or moving a corner box to a different corner.

It will frequently be useful to find the irreducible decomposition of the kth tensor product
of the N dimensional natural representation of the symmetric group. Decomposing the
natural representation according to (2.31)

V ⊗kN
∼=
(
V0 ⊕ V[1]

)⊗k (2.24)

and applying (2.23) iteratively, gives us a way to calculate the irreducible decomposition
of tensor powers of the natural representation.

2.2.2 The natural representation

We consider the natural representation of the symmetric group, VN , as a span of N basis
vectors {e1, e2, . . . , eN} and a set of linear operators ρVN (σ), with σ ∈ SN , acting on this
basis as

ρVN (σ)ei = eσ−1(i) . (2.25)

and extended by linearity. Following [43], we form the linear combinations

E0 =
1√
N

(e1 + e2 + · · ·+ eN ) ,

E1 =
1√
2

(e1 − e2) ,

E2 =
1√
6

(e1 + e2 − 2e3) ,

...

Ea =
1√

a(a+ 1)
(e1 + e2 + · · ·+ ea − aea+1) ,

...

EN−1 =
1√

N(N − 1)
(e1 + e2 + · · ·+ eN−1 − (N − 1)eN ) . (2.26)

{E0} is an invariant under the action of SN . It is easily checked that {E1, E2, . . . , EN−1}
form an orthonormal basis of V[N−1,1], the Hook representation, by the orthonormality of
the ei. We define the overlap of these bases by Ca,i,

Ca,i = 〈Ea|ei〉 =
1√

a(a+ 1)

(
− aδi,a+1 +

a∑
j=1

δij

)
. (2.27)
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The V[N ] overlap with the original basis is given by

C0,i = 〈E0|ei〉 =
1√
N
. (2.28)

From
N−1∑
A=0

CA,iCA,j = C0,iC0,j +
N−1∑
a=1

Ca,iCa,j = δij (2.29)

we find
N−1∑
a=1

Ca,iCa,j =
(
δij −

1

N

)
= F (i, j) . (2.30)

F (i, j) is the projector in VN for V[N−1,1].

We have recovered the familiar result, that the natural representation is isomorphic to
the direct sum of two irreducible representations: the trivial representation V[N ] and the
Hook or standard representation V[N−1,1] (associated with partitions [N ] and [N − 1, 1]

respectively)
VN = V[N ] ⊕ V[N−1,1] . (2.31)

2.3 Partition algebras

We introduce the partition algebras in the diagram basis following the treatment in [61].
This is a convenient starting point because it gives the most straight-forward description
of multiplication in Pk(N). The partition algebra Pk(N) is an algebra of dimension B(2k):

Dim
(
Pk(N)

)
= B(2k) . (2.32)

The Bell number B(2k) is the number of possible partitions of a set with 2k distinct
elements. Bell numbers can be computed from the generating function

∞∑
k=0

B(k)

k!
xk = ee

x−1 , (2.33)

from which one finds B(2k) = 2, 15, 203, 4140 for k = 1, 2, 3, 4.

A set partition π of a set S is a set of disjoint subsets of S such that their union is all of S.
The diagram basis for Pk(N) is labelled by set partitions of the set {1, . . . , k, 1′, . . . , k′}.
The set of all set partitions of {1, . . . , k, 1′, . . . , k′} is denoted Π2k (see for example [66]
for further information on set partitions). For example, the set Π4 contains the following
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B(4) = 15 set partitions (subsets are separated by a vertical bar)

1|2|1′|2′ ,

11′|2|2′, 12′|1′|2, 12|1′|2′, 1′2′|1|2, 1′2|1|2′, 22′|1′|1 ,

11′2′|2, 121′|2′, 122′|1′, 1′2′2|1, 11′|22′, 12′|1′2, 12|1′2′ ,

121′2′ . (2.34)

Each π ∈ Π2k labels an element of the diagram basis of Pk(N). We write dπ for the diagram
basis element corresponding to π ∈ Π2k. As the name suggests, dπ should be thought of
as a diagram. It is a diagram with 2k vertices divided into two rows. The bottom vertices
are labelled 1, . . . , k from left to right and the vertices of the top row are labelled 1′, . . . , k′

from left to right. Two vertices are connected by an edge if they belong to the same subset
of π. The diagrams corresponding to the set partitions in (2.34) are

1′ 2′

1 2

,

1′ 2′

1 2

,

1′ 2′

1 2

,

1′ 2′

1 2

,

1′ 2′

1 2

,

1′ 2′

1 2

,

1′ 2′

1 2

,

1′ 2′

1 2

,

1′ 2′

1 2

,

1′ 2′

1 2

,

1′ 2′

1 2

,

1′ 2′

1 2

,

1′ 2′

1 2

,

1′ 2′

1 2

,

1′ 2′

1 2

. (2.35)

There is a redundancy in the diagram picture, arising from the fact that we are free to
choose any set of edges, as long as every vertex in a subset of the set partition can be
reached from any other vertex in the same subset, by a path along the edges. For example,
the following pairs of diagrams correspond to the same element in P3(N)

= and = . (2.36)

The partition algebras are so-called diagram algebras because multiplication can be defined
through diagram concatenation (in the diagram basis). The product in Pk(N) is indepen-
dent of the choice of representative diagram. Let dπ and dπ′ be two diagrams in Pk(N).
The composition dπ′′ = dπdπ′ is constructed by placing dπ above dπ′ and identifying the
bottom vertices of dπ with the top vertices of dπ′ . The diagram is simplified by following
the edges connecting the bottom vertices of dπ′ to the top vertices of dπ. Any connected
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components within the middle rows are removed and we multiply by N c, where c is the
number of these complete blocks removed. For example,

= N and = , (2.37)

where the factor of N in the first equation comes from removing the middle component
at vertex 1 and 2. For linear combinations of diagrams, multiplication is defined by linear
extension.

The subset of diagrams with k edges, each connecting a vertex at the top to a vertex at
the bottom, where every vertex has exactly one incident edge, span a subalgebra. This
subalgebra is isomorphic to the symmetric group algebra C[Sk]. For example, there is a
one-to-one correspondence between permutations in S3 and the following set of diagrams
in P3(N)

, , , , , . (2.38)

In the language of set partitions, these diagrams correspond to set partitions with subsets
of the form {ij′} for i, j ∈ 1, . . . , k.

The diagram dπ ∈ Pk(N) corresponds to an element of End(V ⊗kN ) through the following
action

dπ(ei1 ⊗ · · · ⊗ eik) =
∑

i1′ ,...,ik′

(dπ)
i1′ ...ik′
i1...ik

ei1′ ⊗ · · · ⊗ eik′ . (2.39)

The matrix elements (dπ)
i1′ ...ik′
i1...ik

correspond to the diagram representation by associating a
Kronecker delta to every edge connecting a pair of vertices. For example,

1′ 2′

1 2

= δi1i2δ
i2′
i2
δi2′ i1′ and

1′ 2′

1 2

= δi1i2δ
i1′
i1
. (2.40)

We define the following two operations on the partition algebras. Firstly, the tensor product
dπ1 ⊗ dπ2 is the diagram obtained by horizontal concatenation of dπ1 and dπ2 , for example

⊗ = . (2.41)

This can be viewed as an outer product on partition algebra diagrams which maps Pk1(N)×
Pk2(N) to Pk1+k2(N). It is a diagram with 2k1 + 2k2 vertices. Secondly, the join dπ1 ∨ dπ2

of two diagrams, each with 2k vertices, is obtained by adding all the edges of dπ1 to the
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edges of dπ2 (or vice versa), for example

∨ = . (2.42)

The resulting diagram also has 2k vertices. For general elements (linear combinations of
diagram basis elements) the two operations are defined by linear extension.

2.4 5-parameter PIGM models

Permutation invariant Gaussian matrix (PIGM) models were first developed to model the
statistics of large ensembles of matrices appearing in natural language processing [58]. The
matrices in these ensembles are N × N general real matrices M . The central objects of
study are Gaussian matrix integrals of the form∫

dMeL(M)+Q(M) , (2.43)

where L(M) is a linear function of the matrix variables Mij and Q(M) is a quadratic
function of the matrix variables, both of which are invariant under the diagonal action of
SN .

In [58] the authors define a five-parameter model comprised of two linear parameters J0, Js

controlling the diagonal and off-diagonal matrix elements respectively and three quadratic
parameters: a and b for the square of the off-diagonal matrix elements, c for the square of
the diagonal matrix elements. The partition function of this model is

Z(J0, JS , a, b, c) =

∫
dMeJ

0
∑N
i=1Mii+J

S
∑
i<j(Mij+Mji)− c2

∑N
i=1 M

2
ii

e−
1
4

(a+b)
∑
i<j(M

2
ij+M

2
ji)−

1
2

(a−b)
∑
i<jMijMji . (2.44)

The observables of the model are SN invariant polynomials in the matrix variables, that
is polynomials f(Mij) obeying

f
(
Mij

)
= f

(
Mσ(i)σ(j)

)
, ∀σ ∈ SN . (2.45)

Expectation values of these observables are defined in the usual fashion

〈f(M)〉 ≡ 1

Z

∫
dMf(M)e−S(5) , (2.46)

where we have written the term in the exponent of (2.44) as −S(5).
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The expectation values of observables can be calculated by directly performing the integra-
tion in (2.46). This is possible because the integral factorises into N single variable inte-
grals for the diagonal elements and N(N − 1)/2 two-variable integrals for the off-diagonal
elements.

The procedure utilises the following result from multidimensional Gaussian integration [67]∫ +∞

−∞
· · ·
∫ +∞

−∞
e−

1
2
xTΛx+JTxdx1dx2 . . . dxn =

(2π)n/2

(detΛ)1/2
e

1
2
JTΛ−1J , (2.47)

with x and J n-dimensional vectors, and Λ a symmetric, non-singular, n× n matrix. We
have n gaussian integrals, all coupled to each other through the action of Λ.

2.5 Counting of observables

The five-parameter model defined by (2.44) is not the most general permutation invariant
Gaussian matrix model. This can be seen by the following counting of degree k permutation
invariant polynomials in the matrix variablesMij originally given in [58] and reviewed here.
From (2.45) we see thatMij transforms like the tensor product of two copies of the natural
representation

Mij
∼= VN ⊗ VN . (2.48)

Since the matrix variables commute, the product of k copies of M transforms like

(Mij)
k ∼= Symk(VN ⊗ VN ) . (2.49)

The linear operator for σ ∈ SN on VN we call DVN (σ). The linear operator on V ⊗2k
N is

then

DV ⊗2k
N (σ) = DV ⊗2

N (σ)⊗ · · · ⊗DV ⊗2
N (σ) , (2.50)

where the product is over k factors. The symmetric subspace of (VN ⊗ VN )⊗k can be
projected to by averaging over permutations τ ∈ Sk which act by permuting each of the
(VN ⊗ VN ) factors. The dimension of the subspace of invariants within this symmetric
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subspace is

Dim(N, k) =
1

k!N !

∑
σ∈SN

∑
τ∈Sk

TrV ⊗2k
N

(
τDV ⊗2k

N (σ)
)

=
1

k!N !

∑
σ∈SN

∑
τ∈Sk

k∏
i=1

TrV ⊗2
N

(
DV ⊗2

N (σi)
)Ci(τ)

. (2.51)

Using

TrVN
(
DVN (σi)

)
=
∑
l|i

lCl(σ) , (2.52)

where the sum is taken over the divisors of i, we can rewrite the trace terms

Dim(N, k) =
1

k!N !

∑
σ∈SN

∑
τ∈Sk

k∏
i=1

(∑
l|i

lCl(σ)

)2Ci(τ)

. (2.53)

This is a function of the conjugacy classes of SN and Sk, which can be written in terms
of the partitions of N and k respectively. Write these p = {p1, p2, . . . , pN} and {q =

q1, q2, . . . , qN} where, for example pi is the number of i-cycles in the partition p. The
number of permutations σ ∈ SN belonging to a conjugacy class p is given by

N !∏N
i=1 i

pipi!
. (2.54)

Allowing us to write

Dim(N, k) =
1

k!N !

∑
p`N

∑
q`k

N !∏N
i=1 i

pipi!

k!∏k
i=1 i

qiqi!

k∏
i=1

(∑
l|i

lpl

)2qi

. (2.55)

For N ≥ 2k the dimension of this space stabilises, in this stable limit we have

Dim(2k, k) =
∑
p`2k

∑
q`k

1∏N
i=1 i

pi+qipi!qi!

k∏
i=1

(∑
l|i

lpl

)2qi

. (2.56)

For k = 1, 2, 3, 4 this evaluates to 2, 11, 52, 296. From this it is clear that the five-parameter
model is not the most general Gaussian permutation invariant model it is possible to
construct. It includes both possible linear terms, but is missing eight quadratic terms.

As noted in [58] these polynomials can be associated with graphs as follows: each summed
index corresponds to a vertex, and each matrix Mij to a directed edge from the vertex
corresponding to index i to the vertex corresponding to index j. The two linear polynomials
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are given by the following graphs

∑N
i=1Mii ,

∑N
i,j=1Mij ,

(2.57)

and the 11 quadratic terms correspond to the following graphs

,∑N
i=1MiiMii ,

∑N
i,j=1MijMij ,

∑N
i,j=1MijMji ,

∑N
i,j=1MiiMjj ,

∑N
i,j=1MiiMij ,

∑N
i,j=1MijMjj ,

∑N
i,j=1MijMjk ,

∑N
i,j,k=1MijMik ,

∑N
i,j,k=1MijMkj ,

∑N
i,j,k=1MijMkk ,

∑N
i,j,k,l=1MijMkl .

(2.58)

2.6 13-parameter PIGM models

In [43] a 13-parameter family of Gaussian matrix models consistent with permutation
invariance was constructed. The expectation values of linear and quadratic permutation
invariant polynomials in Mij were given as analytic expressions in N , the size of the
matrices. Expectation values for a sample of cubic and quartic invariant polynomials were
constructed using Wick’s theorem.

The schematic form of the PIGM model partition function Z(13) is

Z(13) =

∫
dM exp

(
−S(13)(M)

)
=

∫
dM exp

(
−

2∑
i=1

µiLi(M)−
11∑
i=1

giQi(M)

)
. (2.59)

The action S(13)(M) contains two linear terms: L1, L2; and eleven quadratic termsQ1, . . . , Q11,
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these are listed in (2.57) and (2.58). The measure is taken to be the measure on RN2 ,

dM ≡
N∏
i=1

dMii

N∏
i 6=j

dMij . (2.60)

It is the most general quadratic action invariant under the diagonal group action of SN
(the symmetric group on N objects),

S(13)(Mσ(i)σ(j)) = S(13)(Mij) , ∀σ ∈ SN . (2.61)

Again, we note that from this action the vector space spanned by Mij transforms in the
same way as VN ⊗ VN

Mij
∼= VN ⊗ VN . (2.62)

This is not an irreducible representation, instead it decomposes into several irreducible
components

VN ⊗ VN ∼= 2V[N ] ⊕ 3V[N−1,1] ⊕ V[N−2,1,1] ⊕ V[N−2,2] . (2.63)

Here V[N ] corresponds to the trivial one-dimensional representation of SN . The representa-
tions V[N−1,1], V[N−2,1,1], V[N−2,2] are non-trivial irreducible representations, which we label
by their corresponding integer partitions of N . Their dimensions can be calculated using
(2.16), they are

N − 1, (N − 1)(N − 2)/2, N(N − 3)/2 , (2.64)

respectively. Detailed descriptions, including explicit constructions of irreducible repre-
sentations of SN can be found in [60, 68]. Index these irreducible representations by Λ1

ranging over

Λ1 ∈ {[N ], [N − 1, 1], [N − 2, 1, 1], [N − 2, 2]} , (2.65)

and refer to the corresponding irreducible representations of SN as VΛ1 . The decomposition
(2.63) can be deduced using

VN ∼= V[N ] ⊕ V[N−1,1] , (2.66)

together with the tensor product rule (2.23) (for more detail see section 7.13 of [68]). See
also [60] for a dedicated treatment of symmetric group representation theory. The linear
transformation which reduces the LHS of (2.63) to a sum of irreducible representations is
called the Clebsch-Gordan decomposition. The matrix elements of this transformation are
called Clebsch-Gordan coefficients. These coefficients can be used to construct projection
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operators for the subspaces of (2.62) corresponding to particular irreducible representa-
tions. The application of these projectors effects a change of basis which diagonalises the
partition function of the 13-parameter model leaving it amenable to standard techniques
of multi-dimensional Gaussian integration.

Note that the multiplicity of V[N ] in (2.63) is precisely why there are two linear terms
L1, L2 in the action (2.59). Furthermore, the isomorphism in equation (2.63) implies the
existence of a set of linear combinations of matrix elements labelled by Λ1

SΛ1,α
a =

∑
i,j

CΛ1,α
a,ij Mij . (2.67)

The index a is a state index for each irreducible representation and α is a multiplicity
index

a ∈ {1, . . . ,DimVΛ1} ,

α ∈ {1, . . . ,Mult(VN ⊗ VN → VΛ1)} ,
(2.68)

where Mult(VN ⊗VN → VΛ1) is the multiplicity of VΛ1 in VN ⊗VN . The coefficients CΛ1,α
a,ij

are Clebsch-Gordan coefficients and they have the property∑
i,j

CΛ1,α
a,ij Mσ−1(i)σ−1(j) =

∑
b

DΛ1
ab (σ)SΛ1α

b , (2.69)

where the matrices DΛ1
ab (σ) are irreducible matrix representations of SN (background on

the Clebsch-Gordan coefficients for symmetric groups is available in [68]). Without loss
of generality, we can assume that the Clebsch-Gordan coefficients define an orthonormal
basis with respect to the inner product

(Mij ,Mkl) = δikδjl . (2.70)

Equivalently, the representation theoretic variables satisfy

(SΛ1,α
a , S

Λ′1,β
b ) = δabδ

Λ1Λ′1δαβ . (2.71)

Together with the fact that the inner product (2.70) is SN invariant, it follows that

DΛ1
ab (σ−1) = DΛ1

ba (σ) . (2.72)

Using the representation theory basis it immediately follows that the quadratic combination∑
a

SΛ1,α
a SΛ1,β

a =
∑
i,j,k,l

MijQ
Λ1,αβ
ijkl Mkl (2.73)
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is an invariant polynomial, where

QΛ1,αβ
ijkl =

∑
a

CΛ1,α
a,ij C

Λ1,β
a,kl . (2.74)

A useful observation is that, while the Clebsch-Gordan coefficients depend on a choice of
basis for every irreducible component on the RHS of (2.63), the tensors QΛ1,αβ

ijkl do not. For
all four Λ1, they can be constructed using only the explicit bases for the subspaces V[N ]

and V[N−1,1] in (2.63) [43]. Their construction using Clebsch-Gordan coefficients means
that they satisfy

QΛ,αβ
σ(i)σ(j)σ(k)σ(l) = QΛ,αβ

ijkl . (2.75)

This follows from the equivariance property (2.69)

QΛ,αβ
σ(i)σ(j)σ(k)σ(l) =

∑
a

CΛ,α
a,σ(i)σ(j)C

Λ,β
a,σ(k)σ(l) =

∑
a,b,c

CΛ,α
b,ij C

Λ,β
c,klD

Λ
ab(σ)DΛ

ac(σ)

=
∑
b,c

CΛ,α
b,ij C

Λ,β
c,kl δbc = QΛ,αβ

ijkl .
(2.76)

Going to the second line uses DΛ
ab(σ) = DΛ

ba(σ
−1) which follows from the fact that rep-

resentation matrices for SN can always be chosen to be real and unitary, i.e. orthogonal
matrices.

We may associate a unique parameter in the action to each invariant. Since∑
i,j,k,l

MijQ
Λ1,αβ
ijkl Mkl =

∑
i,j,k,l

MijQ
Λ1,βα
ijkl Mkl , (2.77)

there is a symmetric matrix of dimension Mult(VN ⊗ VN → V SN
Λ1

) parametrising the
quadratic part of the action, for every choice of Λ1. Using the multiplicities in the de-
composition (2.63), we have

11 =
2 · 3
2!

+
3 · 4
2!

+
1 · 2
2!

+
1 · 2
2!

. (2.78)

independent parameters, which agrees with the counting given by (2.56). The two linear
terms in (2.59) are given by

µ1L1 = µ1S
[N ],1 and µ2L2 = µ2S

[N ],2 . (2.79)

The quadratic part of (2.59) is∑
Λ1,a
α,β

SΛ1,α
a gΛ1

αβS
Λ1,β
a =

∑
i,j,k,l

Λ1,α,β

gΛ1
αβMijQ

Λ1,αβ
ijkl Mkl , (2.80)
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where the matrices gΛ1
αβ are the parameters of the model in the representation theory basis.

In this basis the partition function is

∫
dM exp

(
−S(13)(M)

)
=

∫
dS exp

− 2∑
α=1

µα

N∑
i,j=1

C
[N ],α
ij Mij −

∑
Λ1,α,β

gΛ1
αβ

N∑
i,j,k,l=1

MijQ
Λ1,αβ
ijkl Mkl



=

∫
dS exp

−µ1S
[N ],1 − µ2S

[N ],2 −
∑
Λ1,a
α,β

SΛ1,α
a gΛ1

αβS
Λ1,β
a

 ,

(2.81)
the change of measure has unit Jacobian since the SΛ1;α variables are given by an orthog-
onal change of basis, with

dS =
∏

Λ1,α,a

dSΛ1,α
a

= dSV[N ];1dSV[N ];1
N−1∏
a=1

dS
V[N−1,1];1
a dS

V[N−1,1];2
a dS

V[N−1,1];3
a

Dim(V2)∏
a=1

dS
V[N−2,2]
a

Dim(V3)∏
a=1

dS
V[N−2,1,1]
a ,

(2.82)

The matrices gΛ1
αβ must have non-negative eigenvalues to define a convergent integral.

The action S(13) written in terms of the representation theory variables, i.e. the RHS of
(2.81), is written in terms of the projectors and the [N ] Clebschs coefficients as

S(13) =

2∑
α=1

µα

N∑
i,j=1

C
[N ],α
ij Mij +

∑
Λ1,α,β

gΛ1
αβ

N∑
i,j,k,l=1

MijQ
Λ1,αβ
ijkl Mkl . (2.83)

The linear terms can be constructed with the VN ⊗ VN → V[N ] Clebschs

C
[N ],1
ij = C0,iC0,j =

1

N
, (2.84)

C
[N ],2
ij =

∑
a,b

Ca,iCb,jC
[N−1,1],[N−1,1]→[N ]
a,b

=
∑
a,b

Ca,iCb,j
δab√
N − 1

=
1√
N − 1

F (i, j) , (2.85)

where C [N−1,1],[N−1,1]→[N ]
a,b is the Clebsch coefficient from V[N−1,1] ⊗ V[N−1,1] to the trivial

representation, and F (i, j) is the projector for V[N−1,1] in VN defined in (2.30). In addition
to the two Clebschs above, the quadratic terms require the three following VN ⊗ VN →
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V[N−1,1] Clebschs

C
[N−1,1],1
a,ij = C0,iCa,j =

1√
N
Ca,j , (2.86)

C
[N−1,1],2
a,ij = Ca,iC0,j =

1√
N
Ca,i , (2.87)

C
[N−1,1],3
a,ij =

N−1∑
b,c=1

Cb,iCc,j

√
N

N − 2

N∑
p=1

Cb,pCc,pCa,p

=

√
N

N − 2

N∑
p=1

F (i, p)F (j, p)Ca,p . (2.88)

Detailed calculations of these Clebschs, particularly C [N ],2
ij and C [N−1,1],3

a,ij , can be found in
[43]. Using these Clebsch coefficients and (2.74) we can write down expressions for all but
the Λ1 = [N − 2, 2], [N − 2, 1, 1] Qs appearing in equation (2.83):

Q
[N ],11
ijkl = C

[N ],1
ij C

[N ],1
kl =

1

N2
, (2.89)

Q
[N ],12
ijkl = C

[N ],1
ij C

[N ],2
kl =

1

N
√
N − 1

F (k, l) , (2.90)

Q
[N ],21
ijkl = C

[N ],2
ij C

[N ],1
kl =

1

N
√
N − 1

F (i, j) , (2.91)

Q
[N ],22
ijkl = C

[N ],2
ij C

[N ],2
kl =

1

N − 1
F (i, j)F (k, l) , (2.92)

Q
[N−1,1],11
ijkl =

N−1∑
a=1

C
[N−1,1],1
a,ij C

[N−1,1],1
a,kl =

1

N
F (j, l) , (2.93)

Q
[N−1,1],12
ijkl =

N−1∑
a=1

C
[N−1,1],1
a,ij C

[N−1,1],2
a,kl =

1

N
F (j, k) , (2.94)

Q
[N−1,1],21
ijkl =

N−1∑
a=1

C
[N−1,1],2
a,ij C

[N−1,1],1
a,kl =

1

N
F (i, l) , (2.95)

Q
[N−1,1],22
ijkl =

N−1∑
a=1

C
[N−1,1],2
a,ij C

[N−1,1],2
a,kl =

1

N
F (i, k) , (2.96)

Q
[N−1,1],13
ijkl =

N−1∑
a=1

C
[N−1,1],1
a,ij C

[N−1,1],3
a,kl =

1√
N − 2

N∑
p=1

F (j, p)F (k, p)F (l, p) , (2.97)

Q
[N−1,1],31
ijkl =

N−1∑
a=1

C
[N−1,1],3
a,ij C

[N−1,1],1
a,kl =

1√
N − 2

N∑
p=1

F (i, p)F (j, p)F (l, p) , (2.98)

Q
[N−1,1],23
ijkl =

N−1∑
a=1

C
[N−1,1],2
a,ij C

[N−1,1],3
a,kl =

1√
N − 2

N∑
p=1

F (i, p)F (k, p)F (l, p) , (2.99)
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Q
[N−1,1],32
ijkl =

N−1∑
a=1

C
[N−1,1],3
a,ij C

[N−1,1],2
a,kl =

1√
N − 2

N∑
p=1

F (i, p)F (j, p)F (k, p) , (2.100)

Q
[N−1,1],33
ijkl =

N−1∑
a=1

C
[N−1,1],3
a,ij C

[N−1,1],3
a,kl =

N

N − 2

N∑
p,q=1

F (i, p)F (j, p)F (k, q)F (l, q)F (p, q) .

(2.101)

At first glance (2.74), along with the Qs appearing in the partition function (2.81), appear
to also demand the VN ⊗ VN → V[N−2,2] and VN ⊗ VN → V[N−2,1,1] Clebsch coefficients

C
[N−2,2]
a,ij =

N−1∑
b,c=1

Cb,iCc,jC
[N−1,1],[N−1,1]→[N−2,2]
b,c ; a , (2.102)

C
[N−2,1,1]
a,ij =

N−1∑
b,c=1

Cb,iCc,jC
[N−1,1],[N−1,1]→[N−2,1,1]
b,c ; a . (2.103)

Despite this, it is possible to find expressions for Q[N−2,2]
ijkl and Q[N−2,1,1]

ijkl directly, in terms
of simple projectors and others that we have already calculated.

2.6.1 Finding Q
[N−2,2]
ijkl and Q

[N−1,1,1]
ijkl

We begin by noting the orthogonal decomposition

V[N−1,1] ⊗ V[N−1,1]
∼= Sym2

(
V[N−1,1]

)
⊕ Λ2

(
V[N−1,1]

)
∼= V[N ] ⊕ V[N−1,1] ⊕ V[N−2,2] ⊕ V[N−2,1,1] . (2.104)

The symmetric and anti-symmetric subspaces decompose as

Sym2(V[N−1,1]) ∼= V[N ] ⊕ V[N−1,1] ⊕ V[N−2,2] , (2.105)

Λ2
(
V[N−1,1]

) ∼= V[N−2,1,1] . (2.106)

Denoting general symmetric group projectors from some representation Λ1 to another
representation Λ2 as PΛ1→Λ2 , and reserving QΛ2 for projectors from VN ⊗ VN to Λ2.
Equation (2.106) gives a straightforward construction of Q[N−2,1,1]

ijkl :

Q
[N−2,1,1]
ijkl =

(N−1)(N−2)/2∑
e=1

C
[N−2,1,1]
e,ij C

[N−2,1,1]
e,kl
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=

N−1∑
a,b,c,d=1

∑
e

C
[N−1,1]⊗[N−1,1]→[N−2,1,1]
e,ab C

[N−1,1]⊗[N−1,1]→[N−2,1,1]
e,cd Ca,iCb,jCc,kCd,l

=
N−1∑

a,b,c,d=1

P
[N−1,1]⊗[N−1,1]→[N−2,1,1]
ab,cd Ca,iCb,jCc,kCd,l

=
N−1∑

a,b,c,d=1

P
[N−1,1]⊗[N−1,1]→Λ2([N−1,1])
ab,cd Ca,iCb,jCc,kCd,l

=

N−1∑
a,b,c,d=1

(δacδbd − δadδbc)
2

Ca,iCb,jCc,kCd,l

=
1

2

(
F (i, k)F (j, l)− F (i, l)F (j, k)

)
. (2.107)

Similarly, the decomposition (2.104) can be used to calculate the V[N−2,2] projector

Q
[N−2,2]
ijkl =

N(N−3)/2∑
e=1

C
[N−2,2]
e,ij C

[N−2,2]
e,kl

=

N−1∑
a,b,c,d=1

∑
e

C
[N−1,1]⊗[N−1,1]→[N−2,2]
e,ab C

[N−1,1]⊗[N−1,1]→[N−2,2]
e,cd Ca,iCb,jCc,kCd,l

=
N−1∑

a,b,c,d=1

P
[N−1,1]⊗[N−1,1]→[N−2,2]
ab,cd Ca,iCb,jCc,kCd,l

=
N−1∑

a,b,c,d=1

((
1− P Sym2([N−1,1])→[N ] − P Sym2([N−1,1])→[N−1,1]

)

P [N−1,1]⊗[N−1,1]→Sym2([N−1,1])

)
ab,cd

Ca,iCb,jCc,kCd,l

=
N−1∑

a,b,c,d=1

(
Q

Sym2([N−1,1])
ijkl −Q[N ],22

ijkl −Q
[N−1,1],33
ijkl

)
=

1

2

(
F (i, k)F (j, l) + F (i, l)F (j, k)

)
− 1

N − 1
F (i, j)F (k, l)

− N

N − 2

N∑
p,q=1

F (i, p)F (j, p)F (k, q)F (l, q)F (p, q) , (2.108)

where we have used the expressions given in (2.92) and (2.101) in going to the final line.
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2.6.2 Expectation values

The expectation values of permutation invariant polynomials f(M) are defined by

〈f(M)〉 =
1

Z(13)

∫
dMf(M)e−S(13) . (2.109)

The non-vanishing expectation values of linear observables are those that transform like
V[N ] under the diagonal SN . These can be calculated with (2.47) in the usual way: intro-
duce linear generating terms for each of the S variables, take derivatives with respect to
the appropriate linear couplings, and then set to zero all but the S[N ];α linear couplings.
This procedure yields

〈S[N ];α〉 =
2∑

β=1

(
g−1

[N ]

)
αβ
µβ ≡ µ̃α . (2.110)

The expectation values of quadratic observables are given by

〈SΛ1;α
a SΛ2;β

b 〉 = 〈SΛ1;α
a SΛ2;β

b 〉conn + 〈SΛ1;α
a 〉〈SΛ2;β

b 〉

= δ(Λ1,Λ2)δab(g
−1
Λ1

)αβ + 〈SΛ1;α
a 〉〈SΛ2;β

b 〉 , (2.111)

where we have defined the connected two point function

〈SΛ1;α
a SΛ2;β

b 〉conn = 〈SΛ1;α
a SΛ2;β

b 〉 − 〈SΛ1;α
a 〉〈SΛ2;β

b 〉 . (2.112)

The expectation values of the observables in the original Mij basis can be recovered from
these. The linear expectation values are

〈Mij〉 =
∑
Λ1

∑
α

dimΛ1∑
a=1

CΛ1,α
a,ij 〈S

Λ1,α
a 〉

= C
[N ],1
ij 〈S[N ],1〉+ C

[N ],2
ij 〈S[N ],2〉

=
µ̃1

N
+

µ̃2√
N − 1

F (i, j) . (2.113)

Similarly, performing a change of basis for each of the Ms appearing in quadratic expec-
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tation values gives

〈MijMkl〉conn =
∑

Λ1,Λ2

∑
α,β

dimΛ1∑
a=1

dimΛ2∑
b=1

CΛ1,α
a,ij C

Λ2,β
b,kl 〈S

Λ1,α
a SΛ2,β

b 〉conn

=
∑

Λ1,Λ2

∑
α,β

dimΛ1∑
a=1

dimΛ2∑
b=1

CΛ1,α
a,ij C

Λ2,β
b,kl δ(Λ1,Λ2)δab(g

−1
Λ1

)αβ

=
∑
Λ1

∑
α,β

dimΛ1∑
a=1

CΛ1,α
a,ij C

Λ1,β
a,kl (g−1

Λ1
)αβ

=
∑
Λ1

∑
α,β

QΛ1,αβ
ijkl (g−1

Λ1
)αβ . (2.114)

Using the expressions for the Qs we have already given, and remembering that they are
symmetric in the multiplicity indices (see (2.77)), we can write the two-point function of
the S variables as

〈MijMkl〉conn =
1

N2
(g−1

[N ])11 +
(g−1

[N ])22

(N − 1)
F (i, j)F (k, l) +

(g−1
[N ])12

N
√
N − 1

(F (k, l) + F (i, j))

+
(g−1

[N−1,1])11

N
F (j, l) +

(g−1
[N−1,1])22

N
F (i, k)

+
N(g−1

[N−1,1])33

(N − 2)

N∑
p,q=1

F (i, p)F (j, p)F (k, q)F (l, q)F (p, q)

+
(g−1

[N−1,1])12

N
(F (j, k) + F (i, l)) +

(g−1
[N−1,1])13√
N − 2

( N∑
p=1

F (j, p)F (k, p)F (l, p)

+F (i, p)F (j, p)F (l, p)
)

+
(g−1

[N−1,1])23√
N − 2

 N∑
p=1

F (i, p)F (k, p)F (l, p) + F (i, p)F (j, p)F (k, p)


+(g−1

[N−2,2])

(
1

2
F (i, k)F (j, l) +

1

2
F (i, l)F (j, k)

− N

N − 2

N∑
p,q=1

F (i, p)F (j, p)F (k, q)F (l, q)F (p, q)− 1

(N − 1)
F (i, j)F (k, l)

)

+
(g−1

[N−2,1,1])

2
(F (i, k)F (j, l)− F (i, l)F (j, k)) . (2.115)

This can be used directly to calculate expectation values of the original matrix basis PIMOs
as analytic expressions in N , the dimension of the matrices. For example a few quadratic
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observables are ∑
i,j

〈MiiMjj〉 = µ̃2
1

+ 2µ̃1 µ̃2

√
N − 1 + µ̃2

2
(N − 1) , (2.116)

∑
i,j,k

〈MijMik〉 = N(g−1
[N ])11 +N(N − 1)(g−1

[N−1,1])22 + µ̃2
1
N , (2.117)

∑
i,j,k,l

〈MijMkl〉 = N2(g−1
[N ])11 + µ̃2

1
N2 . (2.118)

For a full list of quadratic observables along with some cubic and quartic, accompanied by
detailed calculations, see sections 3, 4 and 5 of [43].



Chapter 3

PIGM models for financial
correlations

The PIGM model described in section 2.6 uses an integration over N ×N general matrices
and has 13 parameters. An important subspace of these general matrices is that of sym-
metric matrices with vanishing diagonal. These restricted matrices are relevant to many
physical systems, for example correlation matrices are of this type (by subtracting the
identity). In this chapter, we study the most general PIGM model containing symmetric
matrices with vanishing diagonal. We find there is a reduction of the 13-parameter model
to a four-parameter model, which we explicitly construct, and solve to find analytic for-
mulae in N for the expectation values of permutation invariant polynomials of the matrix
variables, which form the observables of the theory. As an initial application of this model,
we construct and analyse financial correlation matrices for a sequence of days obtained
by calculating correlations between price movements in high frequency foreign exchange
(forex) market data. The correlation matrices are symmetric and have vanishing matrix
elements along the diagonal (by subtracting the identity). The PIGM model we define is
used to demonstrate approximate permutation invariant Gaussianity in this ensemble of
forex correlation matrices.

This application of PIGM models is in part motivated by a rich history of applying random
matrix theory (RMT) to the study of financial correlation matrices. In particular, the
eigenvalue distributions of these matrices have been studied, demonstrating close agreement
between the majority of eigenvalues and the eigenvalue distribution as given by the so-called
Marchenko-Pastur (M-P) law [69] applied to random correlation matrices [70, 71, 72].
Evidence has also been presented that the largest eigenvalues - those that deviate most
strongly from the M-P distribution - are associated with non-random overall market, sector

37



38 Chapter 3. PIGM models for financial correlations

and stock correlation structure (see [72] for example). Practical applications of these
findings have been developed such as cleaning/de-noising correlation matrices, amongst
others [73, 74, 75, 76].

The PIGM model provides a new approach to studying and describing financial correla-
tion matrices that is distinct from existing approaches based on RMT. It focuses on low
degree permutation invariant polynomial functions of matrices (observables) instead of
eigenvalue distributions, which are the focus of traditional RMT. This perspective is based
on the postulate that near-Gaussian permutation invariant sectors of real world matrix
data contain useful information. The PIGM model furnishes a parsimonious specification
of the probability density function of these matrices using only four free parameters for the
symmetric, vanishing diagonal model. This is close to the one or two parameters of the
simplest RMT and far smaller than a multi-variate Gaussian distribution for an N × N
matrix, which has order N2 parameters. It provides an analytic solution to the expecta-
tion values of permutation invariant products of matrix elements. The empirical higher
order observables (cubic, quartic etc.) that agree closely with the model - which is only
fit to linear and quadratic observables - reveal consistency with random matrices implied
by the fitted model. The empirical higher order observables that depart from theoretical
expectations indicate informative structure beyond that encoded in the random model.
A vector of observables therefore provides a signature for a particular correlation matrix,
which may provide a useful, low dimensional, permutation invariant representation of cor-
relation matrices. The effectiveness of this representation in anomaly detection is explored
as an initial example.

Motivation for investigating the broad theme of Gaussianity within a financial setting
comes from the known statistical properties of correlation matrices. Existing results es-
tablish the asymptotic N2-variate Gaussianity of the sampling distribution of N × N

dimensional correlation matrices under fairly general conditions for example (related to
finite fourth moments of the underlying observations from which the correlation matrices
are constructed, see [77], Theorem 3.4.4 and subsequent comments). This differs from our
non-asymptotic i.e. finite sample setting, but does imply that the distribution of ensembles
of correlation matrices approaches a multivariate Gaussian in the large observation sample
limit.

In section 3.1 we summarise the theoretical results concerning PIGM models contained
within the rest of this chapter. We define general permutation invariant Gaussian matrix
models and consider the restriction of these models appropriate to the financial data de-
scribed in section 3.3, namely that the matrices must be symmetric and have vanishing
diagonal elements. We also define the permutation invariant observables of the model and
explain a useful bijection between these observables and loopless graphs, examples of which
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are given.

Section 3.2 contains the bulk of the theory, the primary goal is to solve the most general
PIGM model of symmetric matrices with vanishing diagonal. This is achieved with the help
of representation theory of the symmetric group and builds on the results of [43] and [1].
We find that these models are characterised by one linear and three quadratic couplings.
Linear and quadratic expectation values of observables can be expressed simply in terms of
these coupling parameters, (3.75) and (3.74) respectively. Higher order expectation values
are simply constructed from these with the application of Wick’s theorem.

Section 3.3 gives details of the high-frequency forex data used to construct the matrix
ensemble studied in the remainder of the chapter, as well as the method by which the
members of this ensemble are constructed.

Section 3.4 contains a description of the empirical statistical properties of the observables.
This includes practical measures of their Gaussianity and comparison of their properties
with those predicted by the model presented in section 3.2.

In section 3.5 we construct vectors of observables for each correlation matrix. These ob-
servable vectors are low dimensional representations of the correlation matrices. There are
31 cubic and quartic observables for general matrix size N (as long as N ≥ 8, a condition
which is generally satisfied in large N applications such as the one here). In general, we
find that the observable vectors provide a good representation of the original correlation
matrices, performing well in anomaly detection applications. The best performances are
achieved by selecting subsets of the cubic and quartic observables, based on the ranking
of their small non-Gaussianities, and on the postulate that the more non-Gaussian ob-
servables are most informative of economic factors driving atypicality of the days. The
performance of observable vectors in these applications compares favourably with stan-
dard dimensionality reduction techniques, namely, Principal Component Analysis (PCA).
We conclude in section 3.6.

3.1 Summary of results on the 4-parameter Gaussian matrix
model

Here we summarise the main technical results of this chapter and outline the key ideas
behind the construction of the general PIGM model for an ensemble of symmetric matrices
which have vanishing matrix elements along the diagonal. This section is intended to
provide an understanding of the key theoretical points of the chapter, without getting into
the details of the construction of section 3.2. We will review the description of probability



40 Chapter 3. PIGM models for financial correlations

distributions using a Euclidean action which is Gaussian or near-Gaussian, using the simple
case of a one-variable statistics and motivate the measure of non-Gaussianity we use later
in the case of permutation invariant matrix distributions. We explain the structure of
the 4-parameter PIGM models and the connection between the permutation invariant
polynomial functions of the matrices with loopless graphs.

It is useful to recall that a one-variable Gaussian distribution, with mean µ and standard
deviation σ, for a random variable x, is described by a probability density function

f(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 . (3.1)

The moments of the distribution are expectation values 〈xk〉, defined as

〈xk〉 =

∫ ∞
−∞

dx f(x) xk . (3.2)

It is also useful to define, by analogy with statistical physics and quantum mechanical path
integrals, the action S = (x−µ)2

2σ2 . The partition function is

Z =

∫
dx e−S , (3.3)

while the moments are

〈xk〉 =
1

Z

∫
dx e−S xk . (3.4)

The action S is a quadratic function of x.

It is often the case that the action of a theory is approximately Gaussian - deviating from
Gaussianity by some small higher order terms. The full action of the system S′ can then
be written as a Gaussian piece S, plus an additional non-Gaussian piece δS

S′ = S + λδS . (3.5)

The smallness of the higher order terms is governed by the interaction strength λ, whose
smallness is required to ensure

〈Oα〉S − 〈Oα〉S′ < σ〈Oα〉S′ , (3.6)

i.e. the expectation value of some observable Oα, is largely insensitive to the non-Gaussian
contribution to the true action governing the theory, δS.

More concretely, take µ = 0 in the simple, pure Gaussian, one parameter toy model defined
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above. The partition function is

Z =

∫
dx e−S =

∫
dx e−

x2

2σ2 . (3.7)

View this as an approximation to some true physical partition function, which includes
some small non-Gaussian perturbation. We explain by way of a simple example which
captures the mechanism, that the absolute differences between expectation values of low
order polynomials in the random variables (observables) in the Gaussian model and the
perturbed model are small compared to the standard deviation of the observable. The
simple example consists of a Gaussian action perturbed by a small quartic correction, so
that the perturbed partition function Z ′ reads

Z ′ =

∫
dxe−S

′
=

∫
dxe−

x2

2σ2−
λ
4!
x4

= Z
(

1− λ

4!
〈x4〉+ . . .

)
. (3.8)

Using (3.4) we calculate the absolute difference between the fourth moment of each of the
theories. In the purely Gaussian case we have

〈x4〉 = 3σ4 , (3.9)

and in the perturbed theory

〈x4〉S′ =
Z

Z ′

(
〈x4〉 − λ

4!
〈x8〉+ . . .

)
≈ 〈x4〉+

λ

4!

(
〈x4〉2 − 〈x8〉

)
,

= 3σ4 +
λ

4!

(
9σ8 − 105σ8

)
= 3σ4 − 96

4!
λσ8 . (3.10)

Taking the difference of these values

∣∣〈x4〉 − 〈x4〉S′
∣∣ ≈ 96

4!
λσ8 . (3.11)

The standard deviation of the fourth moment in the perturbed theory requires

〈x8〉S′ =
Z

Z ′

(
〈x8〉 − λ

4!
〈x12〉+ . . .

)
≈ 〈x8〉+

λ

4!

(
〈x8〉〈x4〉 − 〈x12〉

)
= 105σ8 +

λ

4!

(
315σ12 − 11!!σ12

)
= 105σ8 − (11!!− 315)

4!
λσ12 . (3.12)
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Which gives

σ〈x4〉S′ =
√
〈x8〉S′ − 〈x4〉2S′ +O(

√
λ)

=

√
105σ8 −

(
3σ4
)2

≈
√

96σ4 . (3.13)

Finally, we see that the absolute difference between the fourth moments normalised by the
standard deviation is ∣∣〈x4〉 − 〈x4〉S′

∣∣
σ〈x4〉S′

∼ λσ4 . (3.14)

Therefore, as long as the physical theory is approximately Gaussian, i.e. λ is small, its
normalised fourth moment is well approximated by that of the purely Gaussian theory.

We postulate that real market effects governing the interactions between currency rates
included in this study are modelled analogously by a Gaussian action plus some small non-
Gaussian perturbation. The smallness of the non-Gaussian terms allows us to approximate
expectation values using a purely Gaussian theory. Evidence for this near-Gaussianity is
provided primarily by the smallness of the measured observable deviations from those
predicted by a purely Gaussian theory. These are listed in table 3.4 of section 3.4.

We show in section 3.2 that a general PIGM model for symmetric matrices is a 9-parameter
model, and for symmetric matrices with diagonally vanishing matrix elements the permuta-
tion invariant Gaussian model is a 4-parameter model. The 9-dimensional parameter space
for the symmetric matrices and the 4-dimensional parameter space for the symmetric diag-
onally vanishing matrices are subspaces of the 13-dimensional parameter space for generic
matrices. The embedding of the 4-dimensional parameter space in the 13-parameter space
is described in section 3.2.

An important ingredient in understanding permutation invariant random matrix models
is the structure of the permutation invariant polynomial functions of matrices, which are
closely related to graphs. For symmetric matrices with vanishing diagonal elements there
is one linear invariant function and three quadratic invariant functions, these are

, , , .∑N
i,jMij

∑N
i,jM

2
ij

∑N
i,j,kMijMjk

∑N
i,j,k,lMijMkl

(3.15)

Graphs are associated with these polynomials, however in contrast to the case of general
matrices (2.58), the edges are no longer directed - a consequence of the symmetry of the
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matrices - and they no longer contain loops - a consequence of their vanishing diagonal
elements.

For a fixed degree, the permutation invariant polynomial functions form a vector space. As
long as the matrix dimension is larger than twice the degree of the polynomial the graphs
are in one-to-one correspondence with basis elements of this vector space. In our present
financial application this degree condition is always satisfied. A detailed discussion of this
condition and the effects of going beyond it are given in [1].

The action of the reduced PIGM model is given by the most general combination of per-
mutation invariant linear and quadratic terms

SFX = µ
N∑

i,j=1

Mij + g1

N∑
i,j=1

MijMij + g2

N∑
i,j,k=1

MijMjk + g3

N∑
i,j,k,l=1

MijMkl , (3.16)

where µ is the linear coupling strength and g1, g2 and g3 are the quadratic couplings. Label
observables of this theory Oα(Mij), where α indexes the particular observable, they are
permutation invariant polynomials of the random matrix variables of symmetric matrices
with vanishing diagonal. Expectation values of these variables are defined as

〈Oα(Mij)〉 =

∫
dMOαe−S

FX∫
dMe−SFX . (3.17)

In order to solve (3.17) for any choice of Oα we must find a change of basis that factorises
the RHS. This is possible with the application of appropriate projectors Qphys. Given these
the action for the 4-parameter model can be written

SFX =

N∑
i,j,k,l=1

1

2

(
g[N ]MijQ

phys;[N ]
ijkl Mkl + g[N−1,1]MijQ

phys;[N−1,1]
ijkl Mkl + g[N−2,2]MijQ

phys;[N−2,2]
ijkl Mkl

)

−
N∑

i,j=1

µ[N ]C
phys;[N ]
ij Mij . (3.18)

Where µ[N ], g[N ], g[N−1,1] and g[N−2,2] are the couplings in the transformed basis. Perform-
ing the projections in (3.18) allows for the solution of the linear and quadratic expectation
values via standard techniques of Gaussian integration. Cubic, quartic and higher expec-
tation values can be calculated with the application of Wick’s theorem, which allows them
to be expressed as sums of products of linear and quadratic expectation values.

The equations relating the 13-parameters appearing in the action (2.81) to the 4-parameters
of the physical action (3.18) are given in (3.81) and (3.82). As expected both models give
consistent results for the expectation values of physical observables.
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To determine how well this PIGM model predicts the statistics of the forex correlation
data described in section 3.3 we first use the correlation matrices to define the Gaussian
model i.e. to fix the linear and quadratic couplings of the model. We then calculate
the theoretical expectation values 〈Oα(M)〉T defined by (3.17) using this action. These
are then compared to the experimental expectation values 〈Oα(M)〉E calculated from the
financial correlation matrices themselves using the following similarity measure

∆α =

∣∣〈Oα(M)〉T − 〈Oα(M)〉E
∣∣

σE,α(M)
, (3.19)

where σE,α is the standard deviation of the expectation value with respect to the ensemble
of correlation matrices. This measure of similarity is used to identify the observables which
deviate most significantly from Gaussianity. In section 3.5 these least Gaussian observables
are shown to be the optimal candidates for data reduction in a variety of anomaly detection
tests.

3.2 4-parameter Gaussian model: detailed construction

In this section we give a detailed account of the construction of the 4-parameter PIGM
model which was outlined in section 3.1. The aim is to model the statistics of the en-
semble of correlation matrices introduced in section 3.3. In addition this model should be
applicable to any matrix ensemble in the same universality class. This class is composed
of symmetric square matrices with zeros along the diagonal, for which physical quantities
are invariant under simultaneous permutations of the rows and columns. Given the uni-
versality of the model we label our matrices M and index them with lowercase indices
1 ≤ i, j ≤ N , to distinguish them from the financial correlation matrices specifically, which
we label ρ̂. We will refer to matrices with zeros on the diagonal as "diagonally vanishing".

We begin by defining the action of permutations on the matrix variables and establishing
their irreducible decomposition under this group action. We then define the most general
action of a PIGM model, containing diagonally vanishing symmetric matrices. It is pa-
rameterised by one linear and three quadratic couplings. Finding projectors that project
from the original matrix basis Mij to a basis transforming according to this irreducible
decomposition allows us to rewrite this action in a diagonalised form. In turn, this diago-
nalisation permits the use of standard multi-dimensional Gaussian integration techniques
which, along with the application of Wick’s theorem, produce analytic formulae for the
expectation values of observables as a function of N - the dimension of the matrices.
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3.2.1 Symmetric group representation theory and matrix variables

Recall the diagonal action of SN , which simultaneously permutes the rows and columns of
a matrix

Mij →Mσ(i)σ(j), ∀σ ∈ SN . (3.20)

We refer to the space of symmetric matrices with vanishing diagonal as the physical sub-
space V phys of general N ×N matrices and label matrices in the space with a superscript
i.e. Mphys ∈ V phys. They obey the conditions

Mphys
ij = Mphys

ji , Mphys
ii = 0, 1 ≤ i, j ≤ N . (3.21)

Since these conditions are SN equivariant with respect to the action defined in (3.20) the
physical subspace is invariant under SN

Mij ∈ V phys ⇒Mσ(i)σ(j) ∈ V phys, ∀σ ∈ SN . (3.22)

By physical we mean only to restrict to the non-trivial data of interest. In the correlation
matrices described in section 3.3 all the data is contained within symmetric matrices with
vanishing diagonal.

The space of diagonally vanishing symmetric matrices form a subspace of the represen-
tations in the decomposition (2.63). Firstly, symmetric matrices transform as Sym2(VN ).
This is a reducible representation with the following decomposition

Sym2(VN ) ∼= 2V[N ] ⊕ 2V[N−1,1] ⊕ V[N−2,2] . (3.23)

The matrix elements along the diagonal {Mii|1 ≤ i ≤ N} transform like the natural
representation VN . Removing a copy of VN ∼= V[N ] ⊕ V[N−1,1] from the symmetric product
of VN in (3.23) gives the following decomposition of the physical subspace

V phys ∼= Sym2(VN )/VN ∼= V[N ] ⊕ V[N−1,1] ⊕ V[N−2,2] . (3.24)

The decomposition (3.24) tells us that the enforcement of permutation invariance on the
action of a Gaussian theory containing symmetric N dimensional matrices without diag-
onal permits a single independent linear term (i.e. the number of trivial representations
appearing on the RHS). Quadratic products of physical matrices transform as

V phys ⊗ V phys ∼=
(
V[N ] ⊕ V[N−1,1] ⊕ V[N−2,2]

)
⊗
(
V[N ] ⊕ V[N−1,1] ⊕ V[N−2,2]

)
. (3.25)
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Using the orthogonality property of characters, as well as the reality property of irreducible
representations of the symmetric group, it can be shown that the tensor product of two
irreducible representations contains the trivial representation if and only if the irreducible
representations are identical - and in this case the decomposition contains exactly one copy
of the trivial representation. This enables us to count the number of independent quadratic
terms. We find three independent quadratic contributions to the action corresponding to
the following three terms in (3.25)

V[N ] ⊗ V[N ]
∼= V[N ] + . . . , (3.26)

V[N−1,1] ⊗ V[N−1,1]
∼= V[N ] + . . . , (3.27)

V[N−2,2] ⊗ V[N−2,2]
∼= V[N ] + . . . . (3.28)

Much of our task in solving the physical model for diagonally vanishing symmetric matrices
amounts to finding a change of basis for VN ⊗ VN from the original ei ⊗ ej to one which
transforms in the same manner as the irreducible decomposition of V phys, i.e. from the
LHS of (3.24) to the RHS. Once found, this diagonalises the physical action and conse-
quently permits the calculation of expectation values of observables. The coefficients that
define this change of basis are called Clebsch-Gordon coefficients. Define the following
Clebsch-Gordon coefficients Cphys;[N ]

ij , C
phys;[N−1,1]
ij, a , C

phys;[N−2,2]
ij, a , one for each irreducible

representation on the RHS of (3.24) respectively, where a is a state index running over the
dimension of the irreducible representation.

Note, that if we only imposed the condition of symmetry Mij = Mji on the matrices, we
would have two linear couplings, corresponding to the two copies of V[N ] in (3.23). We
would have three parameters of a 2× 2 symmetric matrix of couplings for quadratic terms
arising from the two copies of V[N ] in (3.23), three parameters of a 2× 2 symmetric matrix
of couplings for quadratic terms arising from the two copies of V[N−1,1] in (3.23), and finally
one parameter for V[N−2,2]. For symmetric matrices, therefore, there is a nine parameter
family of PIGM models. We will focus, in the following, on the four parameter models
which incorporate the symmetry conditionMij = Mji as well as the condition of vanishing
diagonal.

3.2.2 Projectors for V phys

The projectors to the trivial representations appearing in the quadratic products ofMij are
given by squaring the relevant Clebsch coefficients and summing over intermediate states,



3.2. 4-parameter Gaussian model: detailed construction 47

as in equation (2.74), i.e.

Q
phys;[N ]
ijkl = C

phys;[N ]
ij C

phys;[N ]
kl , (3.29)

Q
phys;[N−1,1]
ijkl =

N−1∑
a=1

C
phys;[N−1,1]
ij, a C

phys;[N−1,1]
kl, a , (3.30)

Q
phys;[N−2,2]
ijkl =

N(N−3)/2∑
a=1

C
phys;[N−2,2]
ij, a C

phys;[N−2,2]
kl, a . (3.31)

In this section we find explicit formulae for these projectors. The V[N ] and V[N−1,1] projec-
tors are constructed by finding the Clebschs on the RHS of (3.29) and (3.30) explicitly. In
the case of the V[N−2,2] projector things are not so simple, as the Clebsch is not so easily
to calculate, none-the-less we are able to construct the projector using general properties
of Clebsch coefficients and other known projectors, bypassing the need for knowledge of
the V[N−2,2] Clebsch. Thankfully we have seen this before: the V[N−2,2] projector is given
by (2.108)

To find C
phys;[N ]
ij and C

phys;[N−1,1]
ij, a we first write down a representation theory basis for

VN ⊗ VN given by the variables (2.67), in terms of the change of basis coefficients given in
(2.84), (2.85) and (2.86) - (2.88) as was done in [43] i.e. a basis that transforms like the
RHS of (2.63),

SV[N ];1 ≡
N∑

i,j=1

C0,iC0,jMij =
1

N

N∑
i,j=1

ei ⊗ ej , (3.32)

SV[N ];2 ≡ 1√
N − 1

N−1∑
a=1

N∑
i,j=1

Ca,iCa,jMij =
1√
N − 1

N−1∑
a=1

Ea ⊗ Ea , (3.33)

S
V[N−1,1];1
a ≡

N∑
i,j=1

C0,iCa,jMij =
1√
N

N∑
i=1

ei ⊗ Ea , (3.34)

S
V[N−1,1];2
a ≡

N∑
i,j=1

Ca,iC0,jMij =
1√
N

N∑
i=1

Ea ⊗ ei , (3.35)

S
V[N−1,1];3
a ≡

√
N

N − 2

N−1∑
b,c=1

N∑
i,j,k=1

Ca,kCb,kCc,kCb,iCc,jMij

=

√
N

N − 2

N−1∑
b,c=1

N∑
i=1

Ca,iCb,iCc,iEb ⊗ Ec . (3.36)

We also note the orthogonal decomposition

Mij
∼= VN ⊗ VN ∼= Sym2(VN )⊕ Λ2(VN ) ∼= V phys ⊕ V diag ⊕ Λ2(VN ) , (3.37)
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in which V diag is the subspace of diagonal matrix elements and Λ2(VN ) is the antisymmetric
subspace of VN ⊗ VN .

Define further representation variables Sdiag;V[N ] and S
diag;V[N−1,1]
a composed of the diagonal

elements of Mij , that transform according to the first and second terms on the RHS of the
V diag decomposition respectively

Sdiag;V[N ] ≡ 1√
N

N∑
i=1

ei ⊗ ei , (3.38)

S
diag;V[N−1,1]
a ≡ Ea ⊗ Ea . (3.39)

Using the inner product on VN ⊗VN in (2.70) we can express these in terms of the original
representation variables (3.32) - (3.36)

Sdiag;V[N ] = (Sdiag;V[N ] , SV[N ];1)SV[N ];1 + (Sdiag;V[N ] , SV[N ];2)SV[N ];2

=
1√
N
SV[N ];1 +

√
N − 1

N
SV[N ];2 , (3.40)

and

S
diag;V[N−1,1]
a =

1

2

N−1∑
b=1

(
(S

diag;V[N−1,1]
a , S

V[N−1,1];1

b )S
V[N−1,1];1

b + (S
diag;V[N−1,1]
a , S

V[N−1,1];2

b )S
V[N−1,1];2

b

)
+
N−1∑
b=1

(S
diag;V[N−1,1]
a , S

V[N−1,1];3

b )S
V[N−1,1];3

b

=
1

2

N−1∑
b=1

(√ 2

N
δabS

V[N−1,1];1

b +

√
2

N
δabS

V[N−1,1];2

b

)
+

N−1∑
b=1

√
N − 2

N
δabS

V[N−1,1];3

b

=
1√
2N

(
S
V[N−1,1];1
a + S

V[N−1,1];2
a

)
+

√
N − 2

N
S
V[N−1,1];3
a (3.41)

Detailed calculations of the inner products appearing in these expressions can be found
in appendix A. The physical variables Sphys;V[N ] and S

phys;V[N−1,1]
a span the orthogonal

complement of the diagonal variables in the V[N ] and V[N−1,1] subspaces (as given in (3.38))
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of Sym2(VN )

Sphys;V[N ] =

√
N − 1

N
SV[N ];1 − 1√

N
SV[N ];2

=

√
N − 1

N

N∑
i,j=1

C0,iC0,jMij −
1√

N(N − 1)

N−1∑
a=1

N∑
i,j=1

Ca,iCa,jMij , (3.42)

S
phys;V[N−1,1]
a =

√
N − 2

2N

(
S
V[N−1,1];1
a + S

V[N−1,1];2
a

)
−
√

2

N
S
V[N−1,1];3
a

=

√
N − 2

2N2

N∑
i,j=1

(
Ca,i + Ca,j

)
Mij −

√
2

N

N∑
i,j=1

N−1∑
b,c=1

Cb,iCc,jC
[N−1,1][N−1,1]→[N−1,1]
b,c a Mij .

(3.43)

From (3.42) and (3.43) we can read off the Clebsch coefficients needed in the construction
of the projectors (3.29) and (3.30):

Sphys;V[N ] =
∑
i,j

C
phys;[N ]
ij Mij ⇒ C

phys;[N ]
ij =

√
N − 1

N
C0,iC0,j −

1√
N(N − 1)

N−1∑
a=1

Ca,iCa,j ,

(3.44)

S
phys;V[N−1,1]
a =

∑
i,j

C
phys;[N−1,1]
ij, a Mij ⇒ C

phys;[N−1,1]
ij, a =

√
(N − 2)

2N2

(
Ca,i + Ca,j

)
−

√
2

(N − 2)

N−1∑
b,c=1

N∑
k=1

Cb,iCc,jCa,kCb,kCc,k .

(3.45)

The action of the physical V[N ], V[N−1,1] projectors, given by the square of the Clebsch
coefficients in (3.44) and (3.45), along with the V[N−2,2] projector given in (2.108) can be
found by acting on a generic state ei⊗ej in VN ⊗VN . Doing so leaves us with the following
delta expressions

Q
phys;[N ]
ijkl =

1

N(N − 1)

(
δij − 1

)(
δkl − 1

)
, (3.46)

Q
phys;[N−1,1]
ijkl =

1

2(N − 1)

(
1− δij

)(
1− δkl

)(
δik + δil + δjk + δjl −

4

N

)
, (3.47)

Q
phys;[N−2,2]
ijkl =

1

N − 2

(
−Nδijδjkδkl + δijδik + δijδil + δikδil + δjkδjl

+
1

N − 1

(
δij − 1

)(
δkl − 1

)
− 1

2

(
δik + δil + δjk + δjl

))
. (3.48)
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As a simple check of these expressions we write down the projector from VN ⊗ VN to the
entire physical subspace. This projects general N×N matrices onto the space of symmetric
matrices with vanishing diagonal. The action of this projector on a general state ek ⊗ el
can be written using the inner product (2.70),

Qphysek ⊗ el =
1

2

N∑
i<j

ei ⊗ ej(ei ⊗ ej , ek ⊗ el)

=
1

2
(ek ⊗ el + el ⊗ ek)− δkl(ek ⊗ el) . (3.49)

It can be written as a delta expression as

Qphys
ijkl =

1

2

(
δikδjl + δilδjk

)
− δijδjkδkl . (3.50)

As expected, given the orthogonality of the physical projectors (3.46) - (3.48)

Qphys = Qphys;[N ] +Qphys;[N−1,1] +Qphys;[N−2,2] . (3.51)

3.2.3 The action and physical projectors

Define the partition function of the most general permutation invariant Gaussian matrix
model of symmetric matrices with vanishing diagonal as

ZFX ≡
∫

dMphyse−S
FX
, (3.52)

where the action is given by (3.16) and the measure is

dMphys ≡
∏
i<j

dMij . (3.53)

We are interested in calculating permutation invariant expectation values of operators
composed of the Mij variables. These are defined as

〈Oα(M)〉 ≡ 1

Z

∫
dMphysOα(M)e−S

FX
. (3.54)

In order to evaluate (3.54) we must factorise the integral. The action, as written in (3.16),
contains N(N−1)

2 matrix variables mixed in a non-trivial way. The solution to this problem
exploits the decomposition (3.24), we write the action in terms of a basis for the RHS of
this decomposition using the Qphys,Λ1 projectors, where Λ1 runs over the set {[N ], [N −
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1, 1], [N − 2, 2]},

SFX =
∑
Λ1

gΛ1

N∑
i,j,k,l=1

MijQ
phys;Λ1

ijkl Mkl −
N∑

i,j=1

µ[N ]C
phys;[N ]
ij Mij

=
∑
i,j,k,l

1

2

(
g[N ]MijQ

phys;[N ]
ijkl Mkl + g[N−1,1]MijQ

phys;[N−1,1]
ijkl Mkl + g[N−2,2]MijQ

phys;[N−2,2]
ijkl Mkl

)
−
∑
i,j

µ[N ]C
phys;[N ]
ij Mij . (3.55)

Applying these projectors amounts to a change of basis, from the matrix variables Mij to
the representation theory variables Sphys;V[N ] , S

phys;V[N−1,1]
a , S

phys;V[N−2,2]
a :

SFX =− µ[N ]S
phys;V[N ] +

g[N ]

2
Sphys;V[N ]Sphys;V[N ] +

g[N−1,1]

2

N−1∑
a=1

S
phys;V[N−1,1]
a S

phys;V[N−1,1]
a

+
g[N−2,2]

2

N(N−3)/2∑
a=1

S
phys;V[N−2,2]
a S

phys;V[N−2,2]
a . (3.56)

With this the partition function reads

ZFX ≡
∫

dSphyse−S
FX
, (3.57)

with

dSphys = dSphys;V[N ]

N−1∏
a1=1

dS
phys;V[N−1,1]
a1

N(N−3)/2∏
a2=1

dS
phys;V[N−2,2]
a2 . (3.58)

The factorised expression permits the application of standard techniques of Gaussian in-
tegration. Substituting the expressions for the projectors into (3.55) and performing the
summations we can also write the action in terms of the full VN ⊗ VN representation
variables (3.32) - (3.36)

SFX =− µ[N ]

(√N − 1

N
SV[N ];1 − 1√

N
SV[N ];2

)
+
g[N ]

2

(√N − 1

N
SV[N ];1 − 1√

N
SV[N ];2

)2

+
g[N−1,1]

2

N−1∑
a=1

(√N − 2

2N
(S

V[N−1,1];1
a + S

V[N−1,1];2
a )−

√
2

N
S
V[N−1,1];3
a

)2

+
g[N−2,2]

2

N(N−3)/2∑
a=1

S
V[N−2,2]
a S

V[N−2,2]
a . (3.59)
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3.2.4 Observables and correlators

The observables of our theory Oα are permutation invariant functions of the matrix vari-
ables Mij , they obey

Oα(Mij) = Oα(Mσ(i)σ(j)), ∀σ ∈ SN . (3.60)

The physical permutation invariant observables of order k are in one-to-one correspon-
dence with undirected, loopless multigraphs with k edges. Each matrix describes an edge
connecting vertices labelled by the row and column indices of the matrix. Requiring the
matrices to be symmetric is equivalent to considering undirected edges. The further re-
quirement that the matrices have vanishing diagonal entries is equivalent to restricting to
loopless multigraphs.

Below we list the complete set of quadratic, cubic and quartic graphs of general matrices
that survive the projection to the physical subspace

Mphys
ij = Qphys

ijkl Mkl . (3.61)

The counting of these graphs organised by number of edges is given by the OEIS sequence
A050535 [78]. The three quadratic observables are

∑
i,jM

2
ij ,

∑
i,j,kMijMjk ,

∑
i,j,k,lMijMkl .

(3.62)

The eight cubic observables are

O1 =
∑

i,jM
3
ij , O2 =

∑
i,j,kM

2
ijMjk , O3 =

∑
i,j,kMijMikMjk ,

O4 =
∑

i,j,k,lM
2
ijMkl , O5 =

∑
i,j,k,lMijMjkMkl , O6 =

∑
i,j,k,lMijMikMil ,

O7 =
∑

i,j,k,l,mMijMjkMlm , O8 =
∑

i,j,k,l,
m,n

MijMklMmn .
(3.63)
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The 23 quartic observables are

O9 =
∑

i,jM
4
ij , O10 =

∑
i,j,kM

2
ijM

2
jk , O11 =

∑
i,j,kMijM

3
jk , O12 =

∑
i,j,kMijMikM

2
jk ,

O13 =
∑

i,j,k,lMijMkjM
2
lj , O14 =

∑
i,j,k,lMijM

3
kl , O15 =

∑
i,j,k,lMijM

2
jkMkl ,

O16 =
∑

i,j,k,lMijMjkM
2
kl , O17 =

∑
i,j,k,lMijMjkMikMkl , O18 =

∑
i,j,k,lM

2
ijM

2
kl ,

O19 =
∑

i,j,k,lMijMjkMklMli , O20 =
∑

i,j,k,l,mMikMjkMlkMmk ,

O21 =
∑

i,j,k,l,mMilMjkMlkMmk , O22 =
∑

i,j,k,l,mMijMklMlmMmk ,

O23 =
∑

i,j,k,l,mM
2
ijMklMlm , O24 =

∑
i,j,k,l,mMijMklM

2
lm ,

O25 =
∑

i,j,k,l,mMijMjkMklMlm , O26 =
∑

i,j,k,l,m,nMijMklMkmMkn ,

O27 =
∑

i,j,k,l,m,nMijMjkMlmMln , O28 =
∑

i,j,k,l,m,nM
2
ijMklMmn ,

O29 =
∑

i,j,k,l,m,nMijMklMlmMmn , O30 =
∑

i,j,k,l,m,n,oMijMjkMlmMno ,

O31 =
∑

i,j,k,l,m,n,o,pMijMklMmnMop .
(3.64)
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3.2.5 Expectation values

We can write the partition function in the following form

ZFX =

∫
dSphys exp

∑
Λ1,a

µΛ1,aS
phys;Λ1
a − 1

2

∑
Λ1,a

Sphys;Λ1
a gΛ1S

phys;Λ1
a


=

(2π)
N(N−1)

2

(detg)
1
2

exp

1

2

∑
Λ1

∑
a

µΛ1,ag
−1
Λ1
µΛ1,a

 , (3.65)

in which we have included linear couplings for all Sphys variables. This is the usual trick
employed to generate expectation values from the partition function. All linear couplings
are included to source expectation values of any observable by taking derivatives with
respect to the relevant linear coupling. In order to recover the permutation invariant
model all but the V[N ] linear coupling are set to zero. The integral in (3.65) is performed
using the result (2.47).

Expectation values of the physical variables O(S) are defined by

〈O(S)〉 ≡
∫

dSphysO(S)e−S
FX∫

dSphyse−SFX . (3.66)

Calculating these by taking derivatives of the RHS of (3.65), with respect to µΛ1,a we find
for example, the linear expectation values are given by

〈Sphys;Λ1
a 〉 =

1

ZFX

∫
dSphysSphys;Λ1

a e−S
FX

=
1

ZFX
∂ZFX

∂µΛ1,a

∣∣∣
µΛ1,a

6=0 iffΛ1=V[N ]

= g−1
Λ1
µΛ1δ(Λ1, V[N ]) . (3.67)

That is, the only non-zero linear expectation value is

〈Sphys;V[N ]〉 = g−1
[N ]µ[N ] . (3.68)

For later convenience we define

µ̃[N ] ≡ g−1
[N ]µ[N ] . (3.69)



3.2. 4-parameter Gaussian model: detailed construction 55

Similarly, we can calculate the two-point function by taking two derivatives of (3.65)

〈Sphys;Λ1
a Sphys;Λ2

b 〉 =
1

ZFX

∫
dSphysSphys;Λ1

a Sphys;Λ2

b e−S
FX

=
1

ZFX
∂

∂µΛ2,b

∂ZFX

∂µΛ1,a

∣∣∣
µΛ,a 6=0 iffΛ=V[N ]

=
1

ZFX
∂

∂µΛ2,b
(gΛ1)−1

cd µΛ1,cδacZFX
∣∣∣
µΛ,a 6=0 iffΛ=V[N ]

= g−1
Λ1
δabδ(Λ1,Λ2) + 〈Sphys;Λ1

a 〉〈Sphys;Λ2

b 〉

= g−1
Λ1
δabδ(Λ1,Λ2) + µ̃2

[N ]δ(Λ1, V[N ])δ(Λ2, V[N ]) . (3.70)

Again, we define the connected piece of the two point function

〈Sphys;Λ1
a Sphys;Λ2

b 〉conn = g−1
Λ1
δabδ(Λ1,Λ2) . (3.71)

We can find the one-point function of the Mphys
ij by writing it in terms of the physical S

variables and applying (3.68)

〈Mphys
ij 〉 = C

phys;[N ]
ij 〈Sphys;V[N ]〉

=

(√
N − 1

N3
− 1√

N(N − 1)
F (i, j)

)
µ̃[N ] . (3.72)

Similarly, we can find the two-point function of the Mphys
ij variables by writing each Mphys

in terms of the physical S variables and then using (3.68) and (3.70) to evaluate each of
the resulting expectation values

〈Mphys
ij Mphys

kl 〉conn =
∑

Λ1,Λ2

dimΛ1∑
a=1

dimΛ2∑
b=1

Cphys;Λ1
ij,a Cphys;Λ2

kl,b 〈Sphys;Λ1
a Sphys;Λ2

b 〉conn

=
∑

Λ1,Λ2

dimΛ1∑
a=1

dimΛ2∑
b=1

Cphys;Λ1
ij,a Cphys;Λ2

kl,b g−1
Λ1
δabδ(Λ1,Λ2)

=
∑
Λ1

dimΛ1∑
a=1

Cphys;Λ1
ij,a Cphys;Λ1

kl,a g−1
Λ1

=
∑
Λ1

Qphys;Λ1

ijkl g−1
Λ1
. (3.73)

Plugging in the expressions for the physical Qs in equations (3.46) - (3.48) and rewriting
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in terms of F s gives the entire two-point function as

〈Mphys
ij Mphys

kl 〉 =
(√N − 1

N3
− 1√

N(N − 1)
F (i, j)

)(√N − 1

N3
− 1√

N(N − 1)
F (k, l)

)
µ̃2

[N ]

+
1

N

( 1

N − 1
F (i, j)F (k, l)− 1

N

(
F (i, j) + F (k, l)

)
+
N − 1

N2

)
g−1

[N ]

+
1

2(N − 2)

(
1− δij

)(
1− δkl

)(
F (i, k) + F (j, k) + F (i, l) + F (j, l)

)
g−1

[N−1,1]

+

(
1

2
F (i, k)F (j, l) +

1

2
F (i, l)F (j, k)− N

N − 2

N∑
p,q=1

F (i, p)F (j, p)F (k, q)F (l, q)F (p, q)

− 1

N − 1
F (i, j)F (k, l)

)
g−1

[N−2,2] . (3.74)

Evaluating this expressions for the linear and quadratic PIMOs gives∑
i,j

〈Mphys
ij 〉 =

√
N(N − 1)µ̃[N ] , (3.75)

and∑
i,j

〈Mphys
ij Mphys

ij 〉 = µ̃2
[N ] + g−1

[N ] + (N − 1)g−1
[N−1,1] +

N(N − 3)

2
g−1

[N−2,2] , (3.76)

∑
i,j,k

〈Mphys
ij Mphys

jk 〉conn = (N − 1)µ̃2
[N ] + (N − 1)g−1

[N ] +
(N − 1)(N − 2)

2
g−1

[N−1,1] , (3.77)

∑
i,j,k,l

〈Mphys
ij Mphys

kl 〉conn = N(N − 1)µ̃2
[N ] +N(N − 1)g−1

[N ] . (3.78)

Since our theory is Gaussian, Wick’s theorem allows us to calculate higher point expecta-
tion values from the linear and quadratic expectation values.

3.2.6 Embedding within 13-parameter PIGM model

Previous work has solved the most general Gaussian matrix models for general N × N

matrices [43]. These models are defined by 2 linear and 11 quadratic coupling parameters.
We expect the 1 + 3 parameter model considered in this chapter to be embedded in the
larger 2 + 11 parameter model.

Indeed, we now compare the action of the of the physical model (3.59) written in terms of
S variables (3.32) - (3.36) to that of the 13-parameter model. For convenience we reprint
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the action of the physical model

SFX =− µ[N ]

(√N − 1

N
SV[N ];1 − 1√

N
SV[N ];2

)
+
g[N ]

2

(√N − 1

N
SV[N ];1 − 1√

N
SV[N ];2

)2

+
g[N−1,1]

2

N−1∑
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(√N − 2

2N
(S

V[N−1,1];1
a + S

V[N−1,1];2
a )−

√
2

N
S
V[N−1,1];3
a

)2

+
g[N−2,2]

2

N(N−3)/2∑
a=1

S
V[N−2,2]
a S

V[N−2,2]
a . (3.79)

We then express the action of the 13-parameter model in terms of the same variables,

S = −
2∑

α=1

µ
(13)
[N ],αS

V[N ];α +
1

2

2∑
α,β=1

SV[N ];α(g
(13)
[N ] )

αβ
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1

2
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3∑
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1
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g
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[N−2,2]

N(N−3)/2∑
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S
V[N−2,2]
a S

V[N−2,2]
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1

2
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(13)
V[N−2,1,1]

(N−1)(N−2)/2∑
a=1

S
V[N−2,1,1]
a S

V[N−2,1,1]
a ,

(3.80)

labelling the couplings of this model with a superscript ”(13)” here to distinguish them.
This expression (3.80) is obtained by plugging the Qs given in section 2.6 into the equation
for the 13-parameter action (2.83). We see the point at which the PIGM model of general
matrices reduces to that of the symmetric matrices with vanishing diagonal is given by

µ
(13)
[N ] = µ[N ]

[√
N−1
N − 1√

N

]
, (3.81)

and
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N
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√
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N

1
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]
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2N −2
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−2
√
N−2
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√
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2
N

 ,
g

(13)
[N−2,2] = g[N−2,2] , g

(13)
[N−2,1,1] = 0 . (3.82)

3.3 Daily correlation matrices from high-frequency forex data

The high-frequency forex data that we analyse pertain to 19 of the most liquidly traded
currency pairs and cover the date range from 1 April 2020 to 31 January 2022. The data is
sourced from TrueFX [79] and is comprised of all updates of the best price quotes at which
any market participant is willing to buy (top-of-book bid quotes) or sell (top-of-book offer
quotes). Market participants providing such price quotes include banks, brokers and asset
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managers on the Integral OCX platform1. The data precision is in milliseconds for time
stamps and fractions of a pip2 for prices. We exclude United States currency settlement
holidays (days where no settlements of prior transactions are made) due to the central
importance of the US Dollar to forex trading. We also exclude the 24th, 25th, 26th, 31st
of December and the 1st, 2nd of January due to reduced liquidity. In total, around one
billion pricing updates were analysed. For each currency pair, the mid-price series, p(I)

j , is
calculated from the bid and offer quotes as

p
(I)
j = (b

(I)
j + a

(I)
j )/2 I ∈ {1, . . . , 19}, j ∈ {1, . . . , nI} , (3.83)

where b(I) and a(I) are contemporaneous bid and offer quotes respectively, I ∈ {1, . . . , 19},
j indexes the quotes and nI corresponds to the number of quotes for the currency pair I
per day. Table 3.1 gives the mapping of these indices to actual currency pair names.

Index (I) Currency Pair

1 AUD/JPY
2 AUD/NZD
3 AUD/USD
4 CAD/JPY
5 CHF/JPY
6 EUR/CHF
7 EUR/GBP
8 EUR/JPY
9 EUR/PLN
10 EUR/USD
11 GBP/JPY
12 GBP/USD
13 NZD/USD
14 USD/CAD
15 USD/CHF
16 USD/JPY
17 USD/MXN
18 USD/TRY
19 USD/ZAR

Table 3.1: Currency pair mapping.

These mid-prices are then sampled on a regular time grid using the last-tick methodology,
where the most recent quotes in each currency pair are used to calculate the mid-price for

1This platform is an ECN i.e. an Electronic Communication Network
21 pip = 10−4
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that time interval. The regularly sampled mid-prices are then

p
(I)
t(1)
, . . . , p

(I)
t(n)

, t(i+1) − t(i) = 5 minutes, i ∈ {1, . . . , n} , (3.84)

where t(i), i ∈ {1, . . . , n} are the time stamps on a regularly sampled grid and n is the
number of 5 minute intervals per day. If we denote the time stamp of each quote as
τj , j ∈ {1, . . . , nI}, then the quote used for each 5 minute interval can be described as,

p
(I)
t(i)

= p
(I)

max{1≤j≤nI |τj≤t(i)}
. (3.85)

We note that the choice of 5 minutes as a time interval is common in high frequency
financial correlation analyses. We obtain the (log) mid-price returns via

r
(I)
(i) = log

p
(I)
t(i+1)

p
(I)
t(i)

, i ∈ {1, . . . , n− 1} . (3.86)

Note that the first time interval of each day, for all currency pairs, begins at 00:00:00.000
UTC/GMT and ends at 00:04:59:59.999 UTC/GMT. The last time interval begins at
23:55:00.000 UTC/GMT and ends at 23:59:59.999 UTC/GMT. The advantage of deter-
mining calendar date based on UTC/GMT is that the major forex trading sessions are
all captured on the same calendar date, namely Asia, then Europe, then North America.
There are n = 288 five minute intervals per day. The time intervals are not only regu-
lar, but also aligned across all the currency pairs. See table 3.2 for the statistics on the
number of quotes per time interval for each currency pair, aggregated across all days. See
table 3.3 for the descriptive statistics of the regularly sampled (log) returns per currency
pair, again aggregated across all days in the data set. It is readily apparent from the
descriptive statistics in table 3.3 that the means of the (log) return distributions are very
close to zero and that the standard deviations vary between currency pairs. In addition,
the returns have high kurtosis consistent with the expected behaviour of price movements
of financial instruments with a calendar time clock. The only currency pair that has a
markedly asymmetric distribution is USD/TRY as evidenced by a large negative skewness
(i.e. a left-skewed distribution). The large volatility, kurtosis and negative skewness of the
USD/TRY distribution can be related to the sharp depreciation of the Turkish Lira during
the Turkish currency and debt crisis which occurred during the period of analysis.

3.3.1 Correlation matrix methodology

In statistics, various measures of association between two random variables have been
defined. In our context, we apply certain measures of correlation to ascertain the degree to
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Currency Pair Mean Std Dev. Q1 Med. Q3

AUD/JPY 419 374.5 187 319 531
AUD/NZD 304 279.3 135 231 383
AUD/USD 404 396.9 165 296 511
CAD/JPY 272 257.0 113 197 348
CHF/JPY 287 271.7 118 212 368
EUR/CHF 269 295.5 90 173 338
EUR/GBP 308 316.7 103 206 407
EUR/JPY 506 435.8 202 387 685
EUR/PLN 277 487.4 47 125 296
EUR/USD 512 506.4 181 376 683
GBP/JPY 553 471.5 240 433 724
GBP/USD 492 472.6 174 361 668
NZD/USD 269 269.3 114 199 333
USD/CAD 373 371.7 152 271 470
USD/CHF 237 255.4 82 161 305
USD/JPY 322 319.9 135 234 399
USD/MXN 447 434.1 143 324 610
USD/TRY 205 580.4 9 36 138
USD/ZAR 445 498.5 139 325 588

Table 3.2: Descriptive statistics of number of quote updates per 5 minute time interval.

Currency Pair Mean (x 10−4) Std Dev. (x 10−4) Skewness Kurtosis

AUD/JPY 0.0 3.8 0.0 24.4
AUD/NZD 0.0 2.1 0.2 36.6
AUD/USD 0.0 3.8 0.0 15.3
CAD/JPY 0.0 3.1 0.1 16.2
CHF/JPY 0.0 2.4 0.0 12.5
EUR/CHF 0.0 1.8 -0.6 80.5
EUR/GBP 0.0 2.6 -0.2 37.5
EUR/JPY 0.0 2.4 0.1 16.8
EUR/PLN 0.0 2.7 0.0 31.1
EUR/USD 0.0 2.4 -0.2 32.9
GBP/JPY 0.0 3.1 0.0 20.0
GBP/USD 0.0 3.1 0.0 14.9
NZD/USD 0.0 3.8 0.1 19.8
USD/CAD 0.0 2.7 0.0 18.8
USD/CHF 0.0 2.5 -0.2 19.8
USD/JPY 0.0 2.1 0.2 17.3
USD/MXN 0.0 5.5 0.0 18.8
USD/TRY 0.1 11.7 -7.3 795.7
USD/ZAR 0.0 6.4 -0.1 17.2
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Table 3.3: Summary statistics of regular 5-minute (log) mid-price returns.

which currency (log) returns are concordant or discordant. Intuitively, this should capture
an important aspect of the relationship of one currency pair with another. Calculating
correlations on high frequency financial data is complicated by two main effects. The
first is the fact that observations occur irregularly in time and moreover, asynchronously
across instruments. The second is the presence of microstructure noise due to various
factors such as bid-ask bounce (relevant mainly for transaction based data), minimum tick
intervals, latency effects etc. See [80] and the references therein for more detail on these
two complicating issues and various approaches to address them. In this article we utilise
the correlation estimator (3.87) on (log) mid-price returns. This estimator is referred to
as the realised correlation estimator in the finance literature and is defined as,

ρ̂IJ =

∑n−1
i=1 r

(I)
(i) r

(J)
(i)√

(
∑n−1

i=1 r
(I)
(i) )2(

∑n−1
i=1 r

(J)
(i) )2

, I, J ∈ {1, . . . , 19} , (3.87)

where I, J are currency pair indices. This estimator captures the normalised, aggregated
co-movement (i.e. covariance) of two series of returns over a given time period (one day
in our case). It is well established that the realised correlation estimator is, in general,
sensitive to the issues described above. However, it is widely acknowledged in the literature
that the impact of these issues can be mitigated by sampling regularly at a lower frequency
i.e. 5 - 15 minute intervals. We utilise 5 minute time intervals in particular, as is common
in analysing high frequency financial data. We have also verified empirically that the
correlation results are not very sensitive to the choice of the time interval length (beyond
a certain length). We do acknowledge however that the procedure we have applied is
not likely to be the most efficient and discards some information (see [80] or [81, 82] for
approaches that are likely to be more efficient for example). However, the simplicity of the
realised correlation estimator is appealing and it allows us to make contact with asymptotic
Gaussian sampling properties as discussed in the introduction. The main focus of the
present chapter is to explore the phenomenological modelling of ensembles of correlation
matrices and not particular correlation estimators. The impact of using more sophisticated
and potentially more efficient estimators in our context can be explored in future research.
Note that the resultant ρ̂IJ correlation matrix is a symmetric, real matrix with 19(19 −
1)/2 = 171 independent entries. This figure accounts for the fact that the diagonal elements
are fixed and equal and do not contribute to the degrees of freedom (we subtract the identity
to get a correlation matrix with vanishing diagonal elements). As mentioned previously,
we are concerned with the ensemble statistics of such matrices. There are several ways
to construct such an ensemble. We choose to calculate the correlation matrix for each
trading day (aligned with UTC/GMT boundaries), and study the sampling distribution of
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Figure 3.1: Examples of realised daily correlation estimates over time.

the matrices. In particular, we study, ρ̂IJA , where A ∈ {1, . . . , ND} indexes trading dates.
In our data, there are 446 unique trading days, i.e. ND = 446. We plot examples of the
evolution of two elements of these correlation matrices over time in figure 3.1.

3.4 Matrix theory and matrix data: near-Gaussianity

In this section we apply the Gaussian model of section 3.2 to the ensemble of correlation
matrices defined in section 3.3. We show that the vast majority of cubic and quartic
observables closely match the predictions of the Gaussian theory.

We form a compact representation of the original correlation matrix data by defining a
vector of observables for each correlation matrix. The observable vectors are shown to
perform well in anomaly detection tasks in section 3.5. Optimal performance is achieved
in these tasks by constructing observable vectors from the least Gaussian observables.

3.4.1 Theory/experiment deviations normalised by standard deviations
of the observables

We begin by elucidating some empirical statistical properties of the observables - the
permutation invariant polynomials of the correlation matrix elements. These are listed in
table 3.4 and the distributions of their standardised values over the 446 days are plotted
in the histograms in figure 3.2. Many appear roughly Gaussian, while others exhibit a
right/positive skew along with heavier tails than the normal distribution. The estimated
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Figure 3.2: Histograms of the standardised values of each of the observables (one value
per correlation matrix i.e. per day).

Pearson product-moment correlation of the observable elements is plotted in figure 3.3. It
is noteworthy that all correlations are positive and that most correlations are very strongly
positive. The strength of the correlations is particularly relevant in our choice of statistical
distance measure in the anomaly detection analysis presented in section 3.5. Indeed, this
motivated utilising the Mahalanobis distance which typically performs well even in the
presence of such correlations.

Equipped with the Gaussian model and its solution, given in section 3.2, and the financial
data described in section 3.3 we now perform a variety of tests to assess how well this model
describes the statistics of the forex correlation data. Firstly, we calculate the normalised
absolute error

∆α =
|〈Oα〉T − 〈Oα〉E|

σE,α
, (3.88)

between the experimental cubic and quartic observable average values

〈Oα〉E =
1

nA

ND∑
A=1

Oα(ρ̂IJA ) , (3.89)

and the Gaussian model’s prediction of those expectation values 〈Oα〉T defined in (3.54).



64 Chapter 3. PIGM models for financial correlations

Figure 3.3: Pearson product-moment correlation of the observables.

In both equations α indexes the observables and in (3.88) we have normalised by the
standard deviation of the experimental observable values.

As argued in section 3.1 these normalised errors are expected to be small where the under-
lying data is approximately Gaussian. The normalised absolute error for each observable
is listed in the third column of table 3.4. In general these are in very good agreement:
only four observables differ from the theoretical prediction by more than one standard
deviation, and the average normalised absolute error of the cubic and quartic observables
is 0.42 standard deviations. This can be regarded as strong evidence for Gaussianity in
the permutation invariant sector of the FX-rate correlation matrix data.

The model defined in section 3.2 can be used to predict the standard deviation of cubic
and quartic observables. We call this the theoretical standard deviation, and define it for
each observable Oα as

σT,α ≡
√
|〈(Oα)2〉T − 〈Oα〉2T| . (3.90)
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In itself this is an interesting quantity to compare to the experimental observable standard
deviations σE,α. The ratio of the two standard deviations is shown for each observable
in the fourth column of table 3.4. The values of σT,3 and σT,22 provided by the model
are much smaller than the observed values. This is consistent with the finding in column
three of table 3.4, in which we see the expectation values of these observables deviating
the most from the model. It is these large deviations from Gaussianity that lend these
observables their power in the construction of lower-dimensional representations of the
correlation matrices (see section 3.5.3).

We briefly note an alternative approach to estimating the theoretical standard deviation,
also employed in [55] to give good theoretical predictions of the experimental standard
deviations of observables. This estimate is obtained by calculating the absolute difference
between 〈Oα〉T and 〈Oα〉T’, where 〈Oα〉T’ is the expectation value evaluated with the
quadratic couplings that parametrise the model shifted by one standard deviation. Taking
the average of this difference over all eight possible permutations of sign for the shifts of the
three parameters gives us our estimate of the standard deviation. This method was used
to estimate the standard deviations of O12 and O19 due to the prohibitive computational
demands of calculating the octic expectation values 〈O2

12〉 and 〈O2
19〉.

3.4.2 Day capture and balanced accuracy of theoretical typicality pre-
diction for days

The normalised errors presented in the previous section are encouragingly small, but rather
abstract. In order to get a more intuitive sense of the agreement between the data and
the Gaussian model, and with an eye toward developing useful applications, we consider a
more practical measure. We call this second measure as day capture and define it as the
proportion of days for which the value of an observable lies within two standard deviations
of the mean value. If the observables were exactly Gaussian distributed we would expect
the proportion of days captured to be close to 95.4%, in line with the expectation of a one-
variable Gaussian. This practical measure seems a sensible one given the approximately
Gaussian distributions in figure 3.2. First, we list the experimetal day capture of each of
the observables. These values are presented in the fifth column of table 3.4, all of which
are very close to the expected 95.4%.

Secondly, as a test of the Gaussian model we introduce the theoretical day capture and
define it as the proportion of days falling within two theoretical standard deviations of the
theoretical expectation value of an observable. To test the model’s predicted day capture
rates we calculate the balanced accuracy of the theoretical day capture for each observable.
The process for which we now describe.
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Label Observable ∆α σE/σT µE ± 2σE µT ± 2σT Balanced Accuracy

O1

∑
i,j ρ̂

3
ij 0.02 0.90 95.74 97.31 0.82

O2

∑
i,j,k ρ̂

2
ij ρ̂jk 0.33 1.49 95.29 85.87 0.95

O3

∑
i,j,k ρ̂ij ρ̂jkρ̂ki 2.04 9.39 95.07 0.22 0.50

O4

∑
i,j,k,l ρ̂

2
ij ρ̂kl 0.01 1.06 95.74 95.07 1.00

O5

∑
i,j,k,l ρ̂ij ρ̂jkρ̂kl 0.97 3.36 95.52 41.70 0.72

O6

∑
i,j,k,l ρ̂ij ρ̂ikρ̂il 0.33 0.73 95.74 98.43 0.68

O7

∑
i,j,k,l,m ρ̂ij ρ̂jkρ̂lm 0.12 1.05 95.96 94.62 0.99

O8

∑
i,j,k,l,m,n ρ̂ij ρ̂klρ̂mn 0.01 0.65 95.74 98.43 0.68

O9

∑
i,j ρ̂

4
ij 0.54 1.10 94.84 92.83 0.81

O10

∑
i,j,k ρ̂

2
ij ρ̂

2
jk 0.42 2.42 94.39 71.08 0.88

O11

∑
i,j,k ρ̂ij ρ̂

3
jk 0.05 1.30 95.29 93.50 0.99

O12

∑
i,j,k ρ̂ij ρ̂ikρ̂

2
jk 0.88 3.27* 95.07 45.74 0.74*

O13

∑
i,j,k,l ρ̂ij ρ̂kj ρ̂

2
lj 0.19 1.67 95.29 88.57 0.96

O14

∑
i,j,k,l ρ̂ij ρ̂

3
kl 0.04 0.64 95.96 97.98 0.75

O15

∑
i,j,k,l ρ̂ij ρ̂

2
jkρ̂kl 0.21 1.07 95.74 94.39 0.99

O16

∑
i,j,k,l ρ̂ij ρ̂jkρ̂

2
kl 0.49 2.45 95.07 73.32 0.89

O17

∑
i,j,k,l ρ̂ij ρ̂jkρ̂ikρ̂kl 1.00 7.44 95.29 20.85 0.61

O18

∑
i,j,k,l ρ̂

2
ij ρ̂

2
kl 0.07 2.06 94.84 76.68 0.90

O19

∑
i,j,k,l ρ̂ij ρ̂jkρ̂klρ̂li 1.24 8.57* 95.07 8.07 0.54*

O20

∑
i,j,k,l,m ρ̂ikρ̂jkρ̂lkρ̂mk 0.36 0.79 94.84 97.31 0.76

O21

∑
i,j,k,l,m ρ̂ilρ̂jkρ̂lkρ̂mk 0.39 1.67 96.19 86.10 0.95

O22

∑
i,j,k,l,m ρ̂ij ρ̂klρ̂lmρ̂mk 1.31 10.1 95.96 1.79 0.51

O23

∑
i,j,k,l,m ρ̂

2
ij ρ̂klρ̂lm 0.05 1.63 95.52 91.03 0.98

O24

∑
i,j,k,l,m ρ̂ij ρ̂klρ̂

2
lm 0.24 0.81 96.41 96.41 1.00

O25

∑
i,j,k,l,m ρ̂ij ρ̂jkρ̂klρ̂lm 0.79 5.98 95.52 38.57 0.70

O26

∑
i,j,k,l,m,n ρ̂ij ρ̂klρ̂kmρ̂kn 0.12 0.54 95.74 99.10 0.61

O27

∑
i,j,k,l,m,n ρ̂ij ρ̂jkρ̂lmρ̂ln 0.10 1.47 95.52 92.38 0.98

O28

∑
i,j,k,l,m,n ρ̂

2
ij ρ̂klρ̂mn 0.02 0.58 95.96 98.65 0.67

O29

∑
i,j,k,l,m,n ρ̂ij ρ̂klρ̂lmρ̂mn 0.65 2.10 95.96 76.01 0.90

O30

∑
i,j,k,l,m,n,o ρ̂ij ρ̂jkρ̂lmρ̂no 0.13 0.67 95.07 97.53 0.75

O31

∑
i,j,k,l,m,n,o,p ρ̂ij ρ̂klρ̂mnρ̂op 0.03 0.38 95.74 99.33 0.58

Average 0.42 2.50 0.80

Table 3.4: For each observable in the first two columns the third column lists the absolute
difference between the experimental value and theoretical prediction normalised by the
experimental standard deviation. The fourth column lists the ratio of the experimental
and theoretical standard deviations. The fifth and sixth columns list the experimental day
capture the theoretical day capture respectively. The seventh column gives the Balanced
Accuracy of the theoretical model’s day capture at ±2σ. The * values were obtained using
an estimate of σT described at the end of section 3.4.1.

Consider the following binary classification problem: classify a day as typical (positive) if
it falls within two standard deviations of the observable mean as calculated from the data,
and a day as atypical (negative) if it falls outside this range. Then define the True Positive
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Actual condition
Predicted condition Positive (typical) Negative (atypical)

Positive (typical) True Positive (TP) False Negative (FN)
Negative (atypical) False Positive (FP) True Negative (TN)

Table 3.5: Definitions of TP, TN, FP and FN in generic binary classification. In our case
positive is a day with an observable value falling within two standard deviations of the
mean and negative is a day with an observable value falling outside this range.

Rate (TPR) and True Negative Rate (TNR) as follows with reference to the quantities
defined in table 3.5

TPR =
TP

TP + FN
, TNR =

TN
TN + FP

. (3.91)

Translating back into the terminology of day capture we have

TPR =
Correctly predicted typical days
Total number of typical days

,

TNR =
Correctly predicted atypical days
Total number of atypical days

. (3.92)

From the average of these quantities we define the Balanced Accuracy of the model

Balanced Accuracy =
TPR + TNR

2
. (3.93)

The Balanced Accuracy of the day capture of each observable is listed in the seventh
column of table 3.4. Many observables have a Balanced Accuracy of, or very close to 1.
The average Balanced Accuracy of the theoretical day capture over all observables is 0.8,
which is generally considered to be a good score in data sciences. This agreement between
theory and experiment for day capture is robust to changes in the size of the sample used
for the analysis.

3.4.3 Absolute errors relative to standard deviations and standard er-
rors of observables

Thus far, we have analysed the differences between theoretical observable mean values and
experimental observable mean values, normalised by the experimental standard deviation of
the observable values. We have found that 27 out of 31 observables deviate from the model’s
prediction by less than one experimental standard deviation3. These normalised differences
have a physical interpretation. Small normalised differences in this case are suggestive of

3The four observables that differ by more than one standard deviation are O3,O17,O19 and O22.
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small coupling constants for higher order corrections in the action (see section 3.1) which is
evidence for near-Gaussianity of the experimental data generating process. Furthermore,
we have found that "physical" tests of the theoretical model versus experiment such as
calculating the proportion of days captured and balanced accuracy of a typicality classifier
provide additional evidence for the pure Gaussian model being a good approximation.

Another possible choice for normalising the differences between the theoretical observable
mean values and the experimental observable mean values is the experimental standard
error. The standard error in this case is the standard deviation of the experimental ob-
servable mean values. We denote the standard error, σx̄. Given the definition of the mean
estimator, i.e. x̄ = 1/n

∑n
i=1 xi, the standard error is equal to the standard deviation

of the permutation invariant polynomial values for each matrix, σE, divided by
√
n i.e.

σx̄ = σE/
√
n. The standard error is useful in determining whether the differences be-

tween the theoretical observable mean values and experimental observable mean values are
plausibly due to sampling variation. The larger the sample size, the smaller the depar-
tures between theory and experiment that can be distinguished from sampling variation
i.e. "experimental error". In particular, genuine departures correspond to large standard
errors e.g. larger than three standard errors. Such departures can be interpreted as highly
statistically significant differences.

In our data set, which has a fairly large sample size of 446, we have observed that 13 out of
31 observables have a difference between the theoretical observable mean and experimental
observable mean value of fewer than three standard errors (i.e. 18 out of 31 observables
exhibit a departure of more than three standard errors). To further explore the statistical
significance of differences in the theoretical versus experimental observable mean values
we have also calculated the percentile bootstrap confidence intervals of the experimental
observable mean values. The bootstrap procedure involved re-sampling from the original
set of observable values, uniformly with replacement, to construct 1000 bootstrap samples
of the same size as the original sample (i.e. 446). The mean of each such bootstrap sample
was then calculated. Given the asymptotic normality of the mean estimator, it is expected
that 99.7th percentile bootstrap confidence intervals will approximately correspond to three
standard errors on either side of the original experimental mean estimate. This is reflected
in our results, which reveal 12 of 31 observables with theoretical observable mean values
within this confidence interval and 19 of 31 observables with theoretical mean values outside
the interval. This is in close agreement with the aforementioned basic standard error results
where we had 13 of 31 observables with theoretical observable mean values lying within
three standard errors of the experimental observable mean values.

It is also worth noting that statistically significant differences may nevertheless be small
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in terms of relative error, which we recall is defined as

|〈Oα〉T − 〈Oα〉E|
〈Oα〉E

. (3.94)

Indeed we have observed that 20 out of 31 observables have a relative error of less than
30% when comparing theoretical versus experimental mean observable values.

The key point from this section is that when we consider the absolute error of observables
in comparison to the standard deviation, a measure motivated by consideration of per-
turbative corrections to the toy Gaussian model, we have 27 of 31 observables which are
within one standard deviation (all are within three standard deviations). On the other
hand six of 31 are within one standard error (13 are within three standard errors). This
suggests that developing computations of expectation values in theoretical models which
contain small cubic and quartic terms, as guided by the data, is likely to give statistically
significant improvement, given our current sample sizes, of the agreement between theoret-
ical and experimental expectation values of observables. This is technically more intricate
than computing in the Gaussian model and is left for future investigation.

3.5 Applications of matrix theory to matrix data: anomaly
detection

Observable vectors, formed using lists of permutation invariant polynomial functions la-
belled by graphs, provide the key bridge between permutation invariant Gaussian matrix
theory and the matrix data. The observable vectors associated with the correlation matri-
ces can be regarded as lower-dimensional representations of the correlation matrices. The
observable vectors themselves are random vectors, for which the statistics entailed by the
PIGM model are a good approximation in general. A natural question to ask is whether
the observable vectors provide a more compact representation of correlation matrices which
accentuate statistical "signal" in the data as opposed to noise. Such a representation would
be closely linked to an accurate characterisation of the market state and applications could
include classification/regression models, clustering analysis, anomaly/outlier detection etc.
In this section, we consider the task of anomaly detection.

We demonstrate that the observable vectors do indeed constitute a promising represen-
tation for anomaly/outlier detection. The task of anomaly/outlier detection pertains to
identifying observations that differ significantly from the majority of the data set. In our
context, we seek to identify unusual and noteworthy observable vectors, each of which is
associated with the correlation matrix of a particular date. To verify that a meaningful
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result has been obtained, we need a notion of unusual and noteworthy dates in the forex
market as a reference. The natural approach we take is to consider special dates in the
forex trading calendar corresponding to the highest impact economic news announcements.
These announcements often lead to a flurry of trading activity along with associated price
movements, market volatility and changes in the relationships between currency pairs.

3.5.1 Anomaly detection algorithm

A common approach to detecting anomalous/outlier observations, is to utilise a statistical
distance measure to determine the distance of each random vector from the mean vector
(a natural multivariate measure of centrality), see [83] for example. One can equivalently
think of this as determining the length of the random vectors as measured from the ori-
gin for centred data. We will utilise the Mahalanobis distance measure to assess these
distances. The Mahalanobis distance is similar to the Euclidean distance, when the Eu-
clidean distance is applied to vectors where each element has been scaled by the respective
standard deviation, but it better handles the fact that different elements of the vector are
correlated in general. Geometrically, surfaces of constant Euclidean distance are spheres,
whereas surfaces of constant Mahalanobis distance are ellipsoids in general. The Maha-
lanobis distance better treats the case of highly correlated elements in the random vectors,
as is the case for the observable vectors (as noted in section 3.4.1, see figure 3.3 in partic-
ular). Concretely, given a multivariate probability distribution F on RN (i.e. generating
random vectors ~y ∈ RN ), with mean vector ~µ and covariance matrix Σ, the Mahalanobis
distance of a point ~x ∈ RN from the mean ~µ is defined as,

d(~x, ~µ) =
√

(~x− ~µ)Σ−1(~x− ~µ) , (3.95)

where µi = E(yi) and Σij = E [(yi − µi)(yj − µj)] . The utility of the Mahalanobis
distance in anomaly detection is thus in identifying points that are far from the mean,
accounting for the covariance structure implied by the distribution F . If the distribution
F is a multivariate normal distribution for example, there is a particularly direct link
between the Mahalanobis distance at a point ~x and the probability density at ~x. Distant
points have exponentially lower probability density in this case. The Mahalanobis distance
can be fruitfully applied even when the distribution F is not known to be a multivariate
normal distribution however and we will not need to make this assumption.
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3.5.2 Economically significant dates

It is well known amongst forex trading practitioners that there are certain currencies and
certain types of economic announcements that typically have the highest impact on the
forex markets (see [84] for example). These currencies are associated with the countries or
blocs with the largest economies, namely the US Dollar, Chinese Renminbi, Japanese Yen,
European Union Euro (Germany is the largest economy in the EU at time of writing) and
Great British Pound.

Four of the most important classes of economic announcements are the following,

• Central bank meetings and announcements relating to interest rate decisions etc.
These include the FOMC (Federal Open Market Committee), ECB (European Cen-
tral Bank), BoE (Bank of England), PBoC (People’s Bank of China) and BoJ
(Bank of Japan) meetings associated with the United States, European Union, Great
Britain, China and Japan respectively.

• Unemployment data releases. One of the most important examples of this is the US
Non-Farm Payrolls release.

• Consumer price index releases. The most important release in this category is the
US consumer price index release.

• Unplanned forex news including special central bank meetings and speeches, political
speeches etc.

In our subsequent analyses we utilise the economic calendar sourced from [85] of high im-
pact events and filter for only those events pertaining to the aforementioned currencies
(and associated economies) and economic announcements specifically. The exact strings
used for filtering the events based on event name are: "ECB Press Conference", "BoE
MPC", "FOMC Press Conference", "BoJ Press Conference", "PBoC Interest Rate Deci-
sion", "Nonfarm Payrolls", "Consumer Price Index ex Food & Energy", "European Council
Meeting", "EU Leaders Special Summit" and "ECB Special Strategy Meeting". During
the period 2020-04-01 to 2022-01-31 one or more of these high impact events occurred on
approximately 27% of business days.

3.5.3 Dimensionality reduction

The construction of lower-dimensional representations of the correlation matrices - namely
the observable vectors - is effectively a dimensionality reduction procedure. As is common
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Figure 3.4: Distances of observable vectors and raw correlation vectors from the origin
using the standardised Euclidean and Mahalanobis metrics.

with such procedures (e.g. Principal Component Analysis (PCA) ), there is a trade-off
between reducing dimensionality and preserving information content. Balancing these
trade-offs through a good choice of the number of components often leads to better results
in various applications. In PCA, the cumulative variance of the first principal components
is typically used as an organising quantity to select how many such components to include.
In our case, we take the normalised magnitude of the differences between the empirical
expectation values of the cubic and quartic observables and the theoretical predictions
of the PIGM model (3.19), as an organising quantity for determining which observables
to retain. The thesis is that the empirical higher order observables that depart from
theoretical expectations indicate additional information beyond the linear and quadratic
structure encoded in the PIGM model. We have empirically determined that the 12 "least
Gaussian" observables yield optimal anomaly detection results (i.e. statistical significance
and odds-ratios). Notably, the results broadly improve as more observables are added
starting from a small number of observables, reach a peak and then decline somewhat
as more observables are added. These "least Gaussian" observables are listed in table
3.6. We have also observed that useful information remains in the other observables
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Obervable Label Observable Def. Observable Order

O3

∑
i,j,k ρ̂ij ρ̂jkρ̂ki Cubic

O5

∑
i,j,k,l ρ̂ij ρ̂jkρ̂kl Cubic

O9

∑
i,j ρ̂

4
ij Quartic

O10

∑
i,j,k ρ̂

2
ij ρ̂

2
jk Quartic

O12

∑
i,j,k ρ̂ij ρ̂ikρ̂

2
jk Quartic

O16

∑
i,j,k,l ρ̂ij ρ̂jkρ̂

2
kl Quartic

O17

∑
i,j,k,l ρ̂ij ρ̂jkρ̂ikρ̂kl Quartic

O19

∑
i,j,k,l ρ̂ij ρ̂jkρ̂klρ̂li Quartic

O21

∑
i,j,k,l,m ρ̂ilρ̂jkρ̂lkρ̂mk Quartic

O22

∑
i,j,k,l,m ρ̂ij ρ̂klρ̂lmρ̂mk Quartic

O25

∑
i,j,k,l,m ρ̂ij ρ̂jkρ̂klρ̂lm Quartic

O29

∑
i,j,k,l,m,n ρ̂ij ρ̂klρ̂lmρ̂mn Quartic

Table 3.6: The 12 cubic and quartic observables that have the largest normalised difference
from the PIGM predictions.

however. The cubic and quartic observables that are best predicted by the PIGM model
still have reasonable effectiveness in anomaly detection for example, as do random subsets
of observables and the complete set of observables. This aligns with our overarching findings
that the PIGM model is a good fit overall and captures meaningful statistical structure.
There does appear to be additional information captured in the least well fit observables
however as supported by the results below.

3.5.4 Longest observable vectors and economically significant dates

We assess how strongly the lengths of the observable vectors constructed from the observ-
ables in table 3.6 are associated with the presence or absence of economically significant
events. To investigate the utility of the observable representation, we also compare to the
results obtained for the original correlation matrices, applying both standardised Euclidean
and Mahalanobis distance measures. Finally, we compare the observable representation to
a representation obtained by applying PCA to the original correlation matrices. In partic-
ular, we select the smallest number of principal components that captures at least 70% of
the variance, corresponding to the first 10 principal components in this case (this value also
matches the number of components to retain as determined by the elbow method [86]).
Only the standardised Euclidean metric is applied to the PCA vector since the principal
components are uncorrelated and thus the Mahalanobis distance yields equivalent results.
The methodology is as follows.



74 Chapter 3. PIGM models for financial correlations

1. Calculate the standardised Euclidean and Mahalanobis vector lengths for the ob-
servable vector associated with each date in the dataset (representing distance from
the mean observable vector or equivalently the origin in this case). The maximal
dimension of the vector space considered here is D = 31 while the optimal number
of least Gaussian observables, as stated earlier, is 12.

2. Calculate the standardised Euclidean and Mahalanobis vector lengths for the correla-
tion feature vector associated with each date in the dataset. The correlation feature
vector for each date is comprised of the 171 pairwise correlations calculated between
all 19 currency pairs. We term these features raw correlations.

3. Calculate the standardised Euclidean vector lengths for the PCA feature vector as-
sociated with each date in the dataset.

4. Rank the dates in the dataset by Euclidean and Mahalanobis vector length, in de-
scending order for the observable vectors, raw correlation and PCA feature vectors.

5. Assess whether the top 25, 50 and 100 dates have a statistically significantly higher
number of economically significant events than the bottom 25, 50 and 100 dates or-
dered by distance in a descending manner. In addition, we calculate the ratio between
the odds of observing an economically significant news event in the top/most anoma-
lous 25, 50, 100 dates and the odds of such an event occurring in the bottom/most
typical 25, 50, 100 dates. This odds-ratio (OR) is defined as,

OR =
PT /(1− PT )

PB/(1− PB)
, (3.96)

where PB corresponds to the proportion of the 25, 50, 100 closest dates to the origin
that are associated with economically significant events. Similarly, PT corresponds
to the proportion of the 25, 50, 100 furthest dates from the origin that are associated
with economically significant events.

The distances for the respective metrics and features are presented in figure 3.4. Notably,
the observable feature vectors appear to have more distinct outlier days and less noise.
In addition, we note that the PCA vector lengths yield a fairly similar pattern to the
observable vector lengths with the Mahalanobis distance. The results of comparing the
top 25, 50, 100 dates by distance from the origin with the bottom 25, 50, 100 dates
respectively are collected in table 3.7. The best contrast of the number of economic events
appearing in the furthest days from the origin compared to the closest days from the origin
respectively is given by the Mahalanobis distance evaluated on observable vectors. Indeed,
for the Mahalanobis distance on observable vectors, there is a higher degree of statistical
significance and higher odds-ratios than the other combinations of metric and features in
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almost all cases. The high odds-ratios imply that the odds of a economically significant
event occurring in the anomalous groups (most distant) are much higher than the odds in
the typical groups (least distant). This provides evidence that the observable vectors are
a good, low-dimensional characterisation of the market state and accentuate meaningful
financial "signal".

An additional note relates to the correlation matrices and associated observable vectors for
February 2022. During this period, there were several extremely anomalous dates (with
extreme vector lengths), coinciding with the beginning of the war in Ukraine. These had
the effect of masking the anomalous nature of earlier events and reducing the sensitivity
of the detection algorithm. This is a well known consequence of applying the Mahalanobis
distance to anomaly detection, termed the masking effect [83]. We therefore excluded
February 2022 from all our analyses. The analysis conducted thus far can be regarded as
pertaining to in-sample anomaly detection. We also conducted an out-of-sample analysis
using the same observables and number of principal components for PCA as the in-sample
analysis, now for the date range 2022-03-01 to 2023-03-31. The results are collected in
table 3.8 and reveal that the in-sample anomaly detection results generalise well, and the
Mahalanobis distance calculated on observable vectors continues to out-perform the alter-
natives in the majority of cases. Two other robustness checks that were conducted include
rerunning the analysis with correlation matrices constructed with 10 and 15 minute sam-
pling intervals for the log returns (as opposed to 5 minutes) as well as testing subsets of the
most important economic announcements. The results of these analyses were qualitatively
similar to those already presented.

Metric Features Subset Size PT PB p-value Odds-Ratio
Euclidean Observables 25 0.40 0.20 10.8×10−2 2.67
Euclidean Observables 50 0.38 0.24 9.7×10−2 1.94
Euclidean Observables 100 0.38 0.28 8.8×10−2 1.58
Mahalanobis Observables 25 0.44 0.16 3.1×10−2* 4.12
Mahalanobis Observables 50 0.38 0.16 1.2×10−2* 3.22
Mahalanobis Observables 100 0.39 0.13 0.0×10−2*** 4.28
Euclidean PCA Correlations 25 0.60 0.32 4.4×10−2* 3.19
Euclidean PCA Correlations 50 0.46 0.24 1.8×10−2* 2.70
Euclidean PCA Correlations 100 0.41 0.23 0.5×10−2** 2.33
Euclidean Raw Correlations 25 0.52 0.32 12.6×10−2 2.30
Euclidean Raw Correlations 50 0.44 0.28 7.2×10−2 2.02
Euclidean Raw Correlations 100 0.39 0.22 0.7×10−2** 2.27
Mahalanobis Raw Correlations 25 0.24 0.16 36.3×10−2 1.66
Mahalanobis Raw Correlations 50 0.32 0.14 2.8×10−2* 2.89
Mahalanobis Raw Correlations 100 0.28 0.20 12.3×10−2 1.56
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Table 3.7: In-sample anomaly detection results. In the table above, the proportions, PB, PT
and the odds-ratio, OR, are as defined in equation (3.96). The p-value is obtained using
Fisher’s exact one-sided test. The * symbol following a p-value indicates significance at
the 0.05 level, ** indicates significance at the 0.01 level and *** indicates significance at
the 0.001 level.

Metric Features Subset Size PT PB p-value Odds-Ratio
Euclidean Observables 25 0.44 0.20 6.4×10−2 3.14
Euclidean Observables 50 0.44 0.24 2.8×10−2* 2.49
Euclidean Observables 100 0.29 0.23 21.0×10−2 1.37
Mahalanobis Observables 25 0.56 0.16 0.4×10−2** 6.68
Mahalanobis Observables 50 0.50 0.10 0.0×10−2*** 9.00
Mahalanobis Observables 100 0.37 0.12 0.0×10−2*** 4.31
Euclidean PCA Correlations 25 0.48 0.20 3.6×10−2* 3.69
Euclidean PCA Correlations 50 0.48 0.14 0.0×10−2*** 5.67
Euclidean PCA Correlations 100 0.42 0.13 0.0×10−2*** 4.85
Euclidean Raw Correlations 25 0.48 0.20 3.6×10−2* 3.69
Euclidean Raw Correlations 50 0.48 0.16 0.1×10−2*** 4.85
Euclidean Raw Correlations 100 0.42 0.14 0.0×10−2*** 4.45
Mahalanobis Raw Correlations 25 0.28 0.16 24.8×10−2 2.04
Mahalanobis Raw Correlations 50 0.36 0.20 5.9×10−2 2.25
Mahalanobis Raw Correlations 100 0.31 0.25 21.6×10−2 1.35

Table 3.8: Out-of-sample anomaly detection results. In the table above, the proportions,
PB, PT and the odds-ratio, OR, are as defined in equation (3.96). The p-value is obtained
using Fisher’s exact one-sided test. The * symbol following a p-value indicates significance
at the 0.05 level, ** indicates significance at the 0.01 level and *** indicates significance
at the 0.001 level.

3.6 Discussion

We have developed the most general four-parameter PIGM models appropriate for ensem-
bles of matrices which are symmetric and diagonally vanishing. We have used the models
to find evidence for near-Gaussianity in ensembles of matrices, one matrix for every day
over a period, constructed from high-frequency foreign exchange price quotes. The near-
Gaussianity was found to be robust against changes in how the ensemble was constructed:
we varied the time intervals between the quote updates used to construct the daily averages,
as well as the number of days used in our ensemble.

The near-Gaussianity is used to motivate a data-reduction technique based on the use
of low degree permutation invariant functions of matrices (observables) as characteristics
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of the entities represented by the matrices in the ensemble, in this case the days in the
period under consideration. The small non-Gaussianities of each observable were used
to rank the observables in order of decreasing non-Gaussianity and to find an optimal
number of least Gaussian observables for data analysis. The degree of non-Gaussianity is
thus being used as an analog of the magnitude of singular values in principal component
analysis (PCA). The sets of observables considered, either the full set of observables up
to quartic degree or the subsets with optimal number of least Gaussian observables, are
much smaller than the number of matrix elements in the matrices. We found successful
results in anomaly detection based on the observables to find the most atypical and the
most typical days in the ensemble. We demonstrated statistically significant matching
between these typicality/atypicality results extracted from the data of financial correlation
matrices and corresponding results based on human economic judgement of significant
events affecting foreign exchange markets. We propose that the success of the use of a
set of least Gaussian observables in anomaly detection should be interpreted as indicating
that these ensembles of daily foreign exchange matrices capture an economic reality best
described by the Gaussian model perturbed by specific small cubic and quartic couplings
in the action. The non-Gaussianities capture system-specific non-universalities while the
overall approximate Gaussianity is a universal characteristic which holds across diverse
systems, as indeed already evidenced in ensembles of words [55, 56].



Chapter 4

Hidden symmetries and large N
factorisation

In this chapter, we develop the theme of large N factorisation for PIGM models. The
formulation of large N factorisation we use is similar to the one in [35]. We will use the
simplest inner product on the space of PIMOs. It comes from a special point on the moduli
space of PIGM models of general N ×N matrices where the action has an enhanced O(N)

symmetry. This is the first sense in which hidden symmetries appear in this chapter. We
note that this large N factorisation result carries over to the quantum mechanical regime.
In fact, in section 5.6 of the next chapter we generalise this result to show the large N
factorisation of quantum mechanical permutation invariant states.

The second kind of hidden symmetry appearing in this chapter is based on Schur-Weyl
duality. Observables invariant under the action of a symmetry group G are organised
by algebras dual to G. For the case of U(N) symmetry the dual algebras are based on
the standard Schur-Weyl duality [5] between U(N) and Sk in the k-fold tensor product
V ⊗k of the fundamental representation V of U(N). Applications of Schur-Weyl duality to
the computation of correlators in matrix models with U(N) symmetry are developed in
[6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19] and short reviews are [20, 21]. The U(N) case
serves as a powerful source of analogies throughout the chapter. When U(N) is replaced by
SN as the invariance of interest, the Schur-Weyl dual algebras are diagrammatic partition
algebras Pk(N). An introduction to these algebras suitable for our purposes can be found
in section 2.3, more detailed information can be found in the references therein.

The chapter is organised as follows. In section 4.1 we review the counting of PIMOs
described in section 2.5. We give a new description of the counting, which emphasises
the underlying hidden partition algebra symmetry arising as a consequence of Schur-Weyl
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duality. We then give a derivation of the O(N) symmetric point in the moduli space of
SN invariant one-matrix models.

Section 4.2 is dedicated to the construction of PIMOs by means of partition algebras. The
analogous construction of U(N) invariants using symmetric group algebras is reviewed as
a warm-up exercise. This is generalised to give a map from partition algebra elements to
PIMOs (equation (4.51)), leading to a correspondence between PIMOs and equivalence
classes of partition algebra elements. These equivalence classes are defined in equation
(4.54). The simplest O(N) invariant action is used to define an inner product on the space
of PIMOs, which can be written as a trace of partition algebra elements (equation (4.56)).

Section 4.3 proves the large N factorisation of the inner product on PIMOs thus defined.
That is, we show the inner product obeys

〈
ÔiÔj

〉
= δij +O(1/

√
N) , (4.1)

where Ôi, Ôj are normalised PIMOs labelled by indices i, j running over equivalence classes
of partition algebra elements. The proof of large N factorisation relies on the existence
of a partial ordering on the diagram basis for the partition algebra. The partial ordering
is related to an inclusion of diagrams, and can itself be described by another diagram of
diagrams called a Hasse diagram [87]. Equation (4.1) generalises a familiar large N factori-
sation property of inner products of matrix traces invariant under continuous symmetries.
We also extend the proof to show the large N factorisation of multi-matrix observables.

4.1 Hidden symmetries in permutation invariant Gaussian
matrix models

This section begins with a counting of PIMOs which emphasises the role played by the
dual algebra to SN acting on V ⊗kN , this dual algebra is called the partition algebra. After
this we derive the parameter limit of the 13 parameter space of general PIGM models in
which there is an enhanced O(N) symmetry.

4.1.1 Counting matrix observables using partition algebras

Permutation invariant matrix polynomials are defined to obey

O(Mσ(i)σ(j)) = O(Mij) , ∀σ ∈ SN . (4.2)
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These PIMOs can be organised by their degree. At degree k, the matrix monomials

Mi1i1′Mi2i2′ . . .Mikik′ , (4.3)

form a basis for a vector space isomorphic to Symk(VN ⊗ VN ). The symmetric group Sk
acts on (VN ⊗ VN )⊗k by permuting the k tensor factors. The subspace Symk(VN ⊗ VN )

is the subspace of Sk invariants in (VN ⊗ VN )⊗k. This Sk invariance is imposed by the
bosonic symmetry of the matrix variables Mij . The PIMOs form the SN × Sk invariant
subspace of (VN ⊗ VN )⊗k:

Matrix polynomials of degree k invariant under SN
= Invariants SN×Sk

(
(VN ⊗ VN )⊗k

)
≡ [(VN ⊗ VN )⊗k]SN×Sk

= {v ∈ (VN ⊗ VN )⊗k : σv = v, τv = v | ∀σ ∈ SN , τ ∈ Sk} . (4.4)

Note that the action of τ ∈ Sk on (VN ⊗VN )⊗k commutes with the action of σ ∈ SN . This
follows since the same σ is applied to all tensor factors.

In 2.5 we saw the dimension of the space of independent PIMOs for matrices of size N and
polynomial degree k was given by

N (N, k) =
1

N !k!

∑
p`N

∑
q`k

N !∏N
i=1 i

pipi!

k!∏k
i=1 i

qiqi!

k∏
i=1

(∑
l|i

lpl
)2qi . (4.5)

The initial sums run over integer partitions (Young diagrams) p ofN , and integer partitions
q of k while the final sum is over the integer divisors l of i. The equation (4.5) computes the
multiplicity of the trivial representation of SN × Sk in the decomposition of (VN ⊗ VN )⊗k,
which is the dimension of [(VN ⊗ VN )⊗k]SN×Sk . There exists an isomorphism

(VN ⊗ VN )⊗k ∼=
⊕

Λ1,Λ2

V SN
Λ1
⊗ V Sk

Λ2
⊗ VΛ1Λ2 , (4.6)

organising the space into irreducible representations of SN ×Sk, with multiplicities VΛ1Λ2 .
Let V[N ] ⊗ V[k] denote the trivial representation of SN × Sk with multiplicity space V[N ][k],
then the dimension of SN × Sk invariants is given by

N (N, k) = DimV[N ][k] . (4.7)

The generalisation to multi-matrix observables and a proof of their correspondence with
colored directed graphs was developed in [1]. The approach we use in this chapter is based
on a new way of counting PIMOs, utilising the connection between dual algebras and
matrix invariants.
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We begin by reviewing this connection in the case of U(N) invariants. Tensor products
of the defining representation V of U(N) have a multiplicity free decomposition into irre-
ducible representations of U(N)× Sk labelled by Young diagrams

V ⊗k ∼=
⊕
Λ`k

l(Λ)≤N

V
U(N)

Λ ⊗ V CSk
Λ . (4.8)

The sum runs over Young diagrams Λ with k boxes, and for k > N is restricted such that
the number of rows l(Λ) in the Young diagram Λ is not greater than N . In the remainder
of this chapter we will assume N ≥ k for discussions of the unitary group. This result is
known as Schur-Weyl duality (see chapter 6 in [5]). On the left-hand side of this equation
we have a basis ei1⊗ei2⊗· · ·⊗eik with each index i running from 1 to N . On the right-hand
side we have a basis EΛ

Mm with

m ∈ {1, . . . ,DimV CSk
Λ } ,

M ∈ {1, . . . ,DimV
U(N)

Λ } .
(4.9)

For a fixed Young diagram Λ and a fixed state M in V
U(N)

Λ , there is a multiplicity of
DimV CSk

Λ . That is, we have

Mult(V ⊗k → V
U(N)

Λ ) = DimV CSk
Λ . (4.10)

It is well-known that U(N) invariant matrix observables have a basis of multi-traces. These
traces can be parameterised by conjugacy classes of permutations. A description of the
connection between gauge invariant observables and equivalence classes of permutations
for single matrix as well as multi-matrix problems, with applications to AdS/CFT is given
in [21]. We review the connection here with an emphasis on Schur-Weyl duality from the
outset. This framework, as explained in [21], can be used to give a description of finite N
effects on the counting and construction of gauge invariant observables, but we focus here,
as previously mentioned, on the case N ≥ k. For the unitary group the matrix elements
Mij are isomorphic to V ⊗ V ∗, where V ∗ is the complex conjugate representation of V . In
other words, U ∈ U(N) acts on M by conjugation,

M 7→ UMU † . (4.11)

Since (V ⊗ V ∗)⊗k ∼= V ⊗k ⊗ (V ∗)⊗k, we have

(V ⊗ V ∗)⊗k ∼=

(⊕
Λ`k

V
U(N)

Λ ⊗ V CSk
Λ

)
⊗

(⊕
Λ′`k

(V ∗)
U(N)
Λ′ ⊗ V CSk

Λ′

)
. (4.12)
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U(N) invariants appear in a tensor product V U(N)
Λ ⊗ (V ∗)

U(N)
Λ′ (with multiplicity 1) if and

only if Λ = Λ′:
Dim[V

U(N)
Λ ⊗ (V ∗)

U(N)
Λ′ ]U(N) = δΛΛ′ . (4.13)

We are using [W ]U(N) to refer to the U(N) invariant subspace of the representation W .
We have

[(V ⊗ V ∗)⊗k]U(N) ∼=
⊕

Λ,Λ′`k
[V

U(N)
Λ ⊗ (V ∗)

U(N)
Λ′ ]U(N) ⊗ V CSk

Λ ⊗ V CSk
Λ′

∼=
⊕

Λ,Λ′`k
δΛΛ′V

CSk
Λ ⊗ V CSk

Λ′

∼=
⊕
Λ`k

V CSk
Λ ⊗ V CSk

Λ ,

(4.14)

where the second line follows from Schur’s Lemma which implies equation (4.13). Since we
are looking for U(N) invariant polynomials of degree k inMij , the counting is given by the
U(N) invariant subspace of Symk(V⊗V ∗). Equivalently this is the space [(V ⊗ V ∗)⊗k]U(N)×Sk .
There is a one-dimensional space of Sk invariants in V CSk

Λ ⊗ V CSk
Λ for each Λ. Hence the

counting is given by

Dimension of the space of U(N) invariant polynomials of degree k in Mij

=
∑
Λ`k

1

= Number of integer partitions of k
= Number of multi-trace structures with k copies of M . (4.15)

Thus the counting of U(N) invariants is controlled by the symmetric group algebra, which
appeared through Schur-Weyl duality.

Similarly, in the case of SN invariant observables there is a dual algebra at play. The dual
algebra for the natural representation of SN is called the partition algebra, denoted Pk(N)

[22, 24]. The representations of the partition algebra determine the multiplicities of SN
irreducible representations through the decomposition (see section 2.5 in [28])

V ⊗kN
∼=

k⊕
l=0

⊕
Λ#

1 `l

V SN[
N−l,Λ#

1

] ⊗ V Pk(N)[
N−l,Λ#

1

] . (4.16)

The Young diagram Λ1 = [N − l,Λ#
1 ], which is an integer partition of N , is constructed

by placing the diagram Λ#
1 below a first row of N − l boxes. Of course Λ1 must be a valid

Young diagram, this imposes some constraints on Λ#
1 which are not manifest in (4.16).

This occurs for N < 2k as we explain, while it does not occur for N ≥ 2k. The latter
is called the stable limit. To understand this, we denote the first row length of Λ#

1 by
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r1(Λ#
1 ). For N ≥ 2k, all values of l and all choices of Λ#

1 give valid Young diagrams Λ1,
since N − l ≥ r1(Λ#

1 ). Indeed writing N = 2k + a for some a ≥ 0, we have

N − l = 2k + a− l ≥ k + a . (4.17)

The inequality follows since l ≤ k in equation (4.16). We also have

k + a ≥ r1(Λ#
1 ) , (4.18)

which follows because Λ#
1 has no more than k boxes. For N < 2k, the condition N − l ≥

r1(Λ#
1 ) imposes a non-trivial N -dependent restriction on Λ#

1 . Indeed let N = 2k − a for
a > 0, then the condition N − l ≥ r1(Λ#

1 ) becomes

k − a ≥ r1(Λ#
1 ) . (4.19)

This is non-trivial condition since Λ#
1 can have up to k boxes.

Note that the symmetric group algebra CSk is a subalgebra of Pk(N) (permutations of the
tensor factors commute with the action of SN on V ⊗kN ), see section 2.3 a detailed description
of this. We can restrict any representation V Pk(N)

Λ1
to CSk to give a decomposition of the

form
V
Pk(N)

Λ1

∼=
⊕
Λ2`k

V Sk
Λ2
⊗ V Pk(N)→CSk

Λ1Λ2
. (4.20)

The dimension of V Pk(N)→CSk
Λ1Λ2

is the branching multiplicity

Dim
(
V
Pk(N)→CSk

Λ1Λ2

)
= Mult

(
V
Pk(N)

Λ1
→ V

C(Sk)
Λ2

)
. (4.21)

Since (VN ⊗ VN )⊗k ∼= V ⊗kN ⊗ V ⊗kN we have

(VN⊗VN )⊗k ∼=

⊕
Λ1`N
Λ2`k

V SN
Λ1
⊗ V Sk

Λ2
⊗ V Pk(N)→CSk

Λ1Λ2

⊗
⊕

Λ′1`N
Λ′2`k

V SN
Λ′1
⊗ V Sk

Λ′2
⊗ V Pk(N)→CSk

Λ′1Λ′2

 .

(4.22)
There is a single SN invariant state in every tensor product VΛ1 ⊗ VΛ′1

if and only if
VΛ1
∼= VΛ′1

, and similarly for Sk. Therefore

[(VN ⊗ VN )⊗k]SN×Sk ∼=
⊕

Λ1`N
Λ2`k

V
Pk(N)→CSk

Λ1Λ2
⊗ V Pk(N)→CSk

Λ1Λ2
, (4.23)
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and considering the dimension of this subspace of SN × Sk invariants, V[N ][k], we find

DimV[N ][k] = N (N, k) =
∑

Λ1`N

∑
Λ1`k

Mult
(
V
Pk(N)

Λ1
→ V

C(Sk)
Λ2

)2
. (4.24)

The sum of squares is indicative of a matrix (Artin-Wedderburn) decomposition [88, 89] of
a hidden algebra parametrising PIMOs (we found the exposition of the Artin-Wedderburn
decomposition in [90] to be useful). We will turn to an explicit construction of PIMOs us-
ing partition algebra elements in line with the counting (4.24) in section 4.2. This sum of
squares form of counting invariants, and their connection to the Artin-Wedderburn struc-
ture of algebras, has been used in a number of multi-matrix and tensor model applications,
e.g. [91, 92, 93, 94, 95].

4.1.2 Enhanced O(N) symmetry in parameter space

The quadratic GOE (Gaussian Orthogonal Ensemble) is determined by the probability
density function

exp(−SGOE(M)) = exp
(
−Tr

(
MMT

))
, (4.25)

on the space of real symmetric matrices (see definition 2.3.1. in [96]). The matrix elements
Mij for i ≤ j in this ensemble of matrices are statistically independent. There are no
mixing terms. Here we consider the underlying space to be the space of real matrices, with
no symmetry constraint. There is a four-parameter family of O(N) invariant quadratic
actions1

SO(N)(M) = NεTr(M)−
(
NαTr

(
MMT

)
+Nβ Tr(MM) + γ(TrM)2

)
. (4.26)

In this model, the matrix elements are not statistically independent, but the linear and
quadratic moments are readily solvable, as we now show. Higher moments can be obtained
using Wick’s theorem.

This four parameter family is a special case of the general PIGM models considered in 2.6.
We now solve for the second moments of matrix variables for the model defined by (4.26)
and compare with the second moments of the 13 parameter PIGM model. This gives the
limit in which the 13 parameter PIGM model reduces to the O(N) invariant matrix model.

1Note, this is a different four-parameter subspace to that considered in chapter 3.
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We begin by rewriting the action:

SO(N)(M) = Nε
∑
i

Mii

−N(α+ β)
∑
i

M2
ii −Nα

∑
i 6=j

M2
ij −Nβ

∑
i 6=j

MijMji − γ
∑
i,j

MiiMjj .

(4.27)

Let

z = (M11,M22, . . . ,MNN ,M12,M21,M13,M31, . . . ,MN−1N ,MNN−1) , (4.28)

then the action can be expressed as

SO(N)(z) = zµ− zGzT . (4.29)

The vector µ is

µ =



Nε
...
Nε

0
...
0


(4.30)

with the first N terms equal to ε and the rest 0 and

G =


G1

G2

. . .

G2

 , G1 = N


α+ β

. . .

α+ β

+


γ . . . γ
...

...
...

γ . . . γ

 ,

G2 = N

(
α β

β α

)
.

(4.31)
The inverse of G2 is

(
G2

)−1
=

1

N
(
α2 − β2

)( α −β
−β α

)
(4.32)
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while the inverse of G1 is given by

(
G1

)−1

ij
=


1
N2

(
N−1
α+β + 1

α+β+γ

)
, if i = j ,

− 1
N2

(
γ

(α+β)(α+β+γ)

)
, if i 6= j .

(4.33)

From the form of these inverse matrices we can write down the connected two-point function

〈MijMkl 〉O(N) = δijδklδil
1

N2

(N − 1

α+ β
+

1

α+ β + γ

)
−
(
δijδkl − δijδklδil

) 1

N2

γ

(α+ β)(α+ β + γ)

+
(
δikδjl − δikδjlδij

) 1

N

α

α2 − β2
−
(
δilδkj − δilδkjδij

) 1

N

β

α2 − β2
. (4.34)

Defining

a =
1

N2

(N − 1

α+ β
+

1

α+ β + γ

)
, b =

1

N2

γ

(α+ β)(α+ β + γ)

c =
1

N

α

α2 − β2
, d =

1

N

β

α2 − β2
(4.35)

and collecting like terms we are left with the following expression for the two-point function

〈MijMkl 〉O(N) = δijδklδil
(
a+ b− c+ d

)
− δijδklb+ δikδjlc− δilδkjd . (4.36)

The parameters a, b, c, d satisfy a + b + d = c, therefore the two-point function can be
simplified to

〈MijMkl 〉O(N) = −δijδklb+ δikδjl(a+ b+ d)− δilδkjd . (4.37)

Comparing this to the two-point function of the 13 parameter PIGM model (2.115) we find
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that it is reproduced in the following parameter limit

(
g−1

[N ]

)
11

= a ,(
g−1

[N ]

)
22

= a− (N − 2)b ,(
g−1

[N ]

)
12

= −
√
N − 1b ,(

g−1
[N−1,1]

)
11

= a+ b+ d ,(
g−1

[N−1,1]

)
22

= a+ b+ d ,(
g−1

[N−1,1]

)
33

= a+ b ,(
g−1

[N−1,1]

)
12

= −d ,(
g−1

[N−1,1]

)
13

= 0 ,(
g−1

[N−1,1]

)
23

= 0 ,(
g−1

[N−2,2]

)
= a+ b ,(

g−1
[N−2,1,1]

)
= a+ b+ 2d . (4.38)

There is a special point in this limit that recovers the two-point function

〈MijMkl〉GOE = δikδjl (4.39)

for the simple O(N) model with action

SGOE(M) = Tr
(
MMT

)
. (4.40)

Setting ε = β = γ = 0 in equation (4.26) reproduces this action. Therefore, the relevant
limit of the permutation invariant Gaussian model is found by taking a = 1 and b = d = 0

in (4.38) leaving us with

(
g−1

[N ]

)
11

=
(
g−1

[N ]

)
22

=
(
g−1

[N−1,1]

)
11

=
(
g−1

[N−1,1]

)
22

=
(
g−1

[N−1,1]

)
33

=
(
g−1

[N−2,2]

)
=
(
g−1

[N−2,1,1]

)
= 1

(4.41)

as the only non-zero parameters.

A quick check on the above computation is the following. Using Clebsch-Gordan coefficients
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we have

Tr
(
MMT

)
=
∑
i,j

MijMij =
∑
i,j

∑
a,b,Λ1Λ′1,α,β

CΛ1,α
a,ij C

Λ′1,β
b,ij S

Λ1,α
a S

Λ′1,β
b

=
∑

a,b,Λ1Λ′1,α,β

δabδ
Λ1Λ′1δαβSΛ1,α

a S
Λ′1,β
b =

∑
a,Λ1,α

SΛ1,α
a SΛ1,α

a ,

(4.42)
where the second line uses orthogonality of the Clebsch-Gordan coefficients. Comparing
with equation (2.81) recovers the parameter limit (4.41).2

4.2 Permutation invariant matrix observables (PIMOs)

We now describe how PIMOs of order k can be constructed from the Sk invariant subalgebra
of Pk(N). Properties of the partition algebra [23, 22, 24, 61] will allow us to prove large
N factorisation of PIMOs in the O(N) symmetric matrix model.

4.2.1 Construction of PIMOs

Before constructing degree k PIMOs from elements d ∈ Pk(N), as a warm-up, we recap
the construction of U(N) invariants using elements in CSk. See [21] for a review of the
background literature.

For this construction it will be useful to rewriteMij asM i
j and think of these as the matrix

elements of a linear operator acting on V , the defining representation of U(N). Define M
to be the linear operator M : V → V with matrix elements

Mei =
∑
j

M j
i ej , (4.43)

in a basis ei for V . In diagram notation the linear operator M is represented by a box
labelled M , with one incoming and one outgoing edge (read from top to bottom),

M j
i =

i

j

M (4.44)

2Immediate comparison gives a parameter limit for the coupling matrices, as opposed to their inverses
as in equation (4.41). In this case, they are identical.
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The operator M⊗k acts on V ⊗k as

M⊗kei1 ⊗ · · · ⊗ eik = Mei1 ⊗ · · · ⊗Meik . (4.45)

Diagrammatically, tensor products of operators are represented by horizontally composing
the diagrams,

(M⊗k)j1...jki1...ik
= M j1

i1
. . .M jk

ik
=

i1 ik

j1 jk

M M . (4.46)

When viewed as a matrix polynomial, the trace

Oτ = TrV ⊗k(M⊗kτ) =
∑
i1,...,ik
i1′ ,...,ik′

(τ)
i1′ ...ik′
i1...ik

M i1
i1′
. . .M ik

ik′
= τ

M M

, (4.47)

is a unitary invariant of degree k. The horizontal lines in equation (4.47) are used to
indicate that the incoming and outgoing edges are identified, as expected from a trace.
The matrix elements of the permutation τ as a linear operator on V ⊗k are

(τ)
i1′ ...ik′
i1...ik

= δ
i1′
iτ(1)

. . . δ
ik′
iτ(k)

. (4.48)

The diagram representing τ is obtained by associating an edge with every Kronecker delta.
For example, for τ = (12) we have the diagram

i1 i2

i1′ i2′

= δ
i2′
i1
δ
i1′
i2
. (4.49)

Invariance under the action of U(N) follows because τ ∈ Sk commutes with any U(N)

acting on V ⊗k. The correspondence between gauge invariant operators and permutations
has a redundancy given by,

Oγτγ−1 = Oτ , for all γ ∈ Sk . (4.50)

This follows because γ−1M⊗kγ = M⊗k. Therefore, a basis of multi-trace observables is in
one-to-one correspondence with conjugacy classes of Sk, as expected from the counting in
equation (4.15).
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The construction of degree k PIMOs is analogous, only now the dual algebra in the partition
algebra Pk(N). For any d ∈ Pk(N), the matrix polynomial

Od = TrV ⊗kN
(M⊗kd) =

∑
i1,...,ik
i1′ ,...,ik′

(d)
i1′ ...ik′
i1...ik

M i1
i1′
. . .M ik

ik′
= d

M M

, (4.51)

is a PIMO, because d commutes with the action of SN on V ⊗kN . The matrix elements
(d)

i1′ ...ik′
i1...ik

also correspond to the diagram representation by associating every Kronecker
delta to an edge connecting a pair of vertices. For example,

1′ 2′

1 2

= δi1i2δ
i2′
i2
δi2′ i1′ and

1′ 2′

1 2

= δi1i2δ
i1′
i1
. (4.52)

As before, for any γ ∈ Sk we have

Oγdγ−1 = Od . (4.53)

Degree k PIMOs are in one-to-one correspondence with the Sk invariant subalgebra of
Pk(N). A basis is given by the set of distinct equivalence classes

[d] = {γdγ−1 | ∀γ ∈ Sk} . (4.54)

4.2.2 Inner product on PIMOs

The simplest O(N) invariant matrix model has the quadratic expectation value

〈M i
jM

k
l 〉 = δikδjl . (4.55)

Let d1, d2 ∈ Pk(N), and define the two-point function of PIMOs Od1 ,Od2 using Wick’s
theorem and equation (4.55), keeping only Wick contractions between the two observables
i.e. we are treating them as “normal-ordered”. There is a trace expression for this two-point
function

〈Od1Od2〉 =
∑
γ∈Sk

TrV ⊗kN
(d1γd

T
2 γ
−1) , (4.56)

where dT is the transpose of the diagram d, obtained from d by flipping the top and bottom
vertices. The permutations γ parameterise the Wick contractions. The proof of (4.56) goes
as follows. Note that the quadratic expectation value (4.55) diagrammatically corresponds
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to the replacement 〈
j

i

M

l

k

M

〉
=

j l

i k

, (4.57)

where the Kronecker deltas appearing on the RHS of (4.55) have been replaced by edges.
The two-point function in equation (4.56) can be represented by the diagram in the first
line below

〈Od1Od2〉 =

〈
d1

M M

d2

M M

〉

=
∑
γ∈Sk

γ−1

γ

d1 d2

=
∑
γ∈Sk

γ−1

γ

d1

dT2

(4.58)

The second line is the sum over Wick contractions parameterised by γ ∈ Sk. The last
equality comes from straightening the diagram. Following the lines and recording the
operators encountered on the way, we recognise the last diagram as the representation of
TrV ⊗kN

(d1γd
T
2 γ
−1).

The symmetry of the two-point function is proved by observing that∑
γ∈Sk

TrV ⊗kN
(d1γd

T
2 γ
−1) =

∑
γ∈Sk

TrV ⊗kN
(γd2γ

−1dT1 ) =
∑
γ∈Sk

TrV ⊗kN
(d2γd

T
1 γ
−1) . (4.59)

We have used the invariance of the trace under transposition, cyclicity of the trace and a
relabelling of γ → γ−1. The non-degeneracy of the two-point function at large N follows
from the factorisation property in the next section. The non-degeneracy at all orders in
1/
√
N is proved in [3] by exhibiting an orthogonal basis constructed using representation

theory data. This shows that the two-point function defines an inner product.
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4.3 Large N factorisation

In this section, we show that normalised PIMOs

Ôd =
Od√
〈OdOd〉

, (4.60)

factorise at large N

〈
Ôd1Ôd2

〉
=

1 +O(1/
√
N) if [d1] = [d2] ,

0 +O(1/
√
N) if [d1] 6= [d2] .

(4.61)

To prove large N factorisation we will study the powers of N appearing in the two-point
function, written as on the RHS of equation (4.56)

TrV ⊗kN
(d1γd

T
2 γ
−1) . (4.62)

It is instructive to first consider the simpler case

TrV ⊗kN
(d1d

T
2 ) . (4.63)

This trace can be computed in terms of the number of connected components in the diagram
d1 ∨ d2, given by a diagram with all the edges of d1 and d2. In the mathematics literature,
this operation is called the join on the partition lattice (see [87]). It is given by

TrV ⊗kN
(d1d

T
2 ) = N c(d1∨d2) . (4.64)

where c(d) is the number of connected components in the diagram d. Examples of the join
operation are

∨ = , and ∨ = . (4.65)

Examples of c(d) are
c
( )

= 2, c
( )

= 3 . (4.66)

To illustrate equation (4.64) consider the following pair of diagrams( )i1′ i2′
i1i2

= δ
i1′
i1
,
( )i1′ i2′

i1i2
= δ

i2′
i2
. (4.67)

The join is given by (
∨

)i1′ i2′
i1i2

=
( )i1′ i2′

i1i2
= δ

i1′
i1
δ
i2′
i2
. (4.68)



4.3. Large N factorisation 93

Diagram multiplication in the partition algebra gives

TrV ⊗2
N

( ( )T)
= TrV ⊗2

N

  = TrV ⊗2
N

( )
= N2 , (4.69)

while the corresponding expression using the join gives

TrV ⊗2
N

( ( )T)
= N

c

(
∨

)
= N

c

( )
= N2 . (4.70)

To prove this equivalence in general, recall that every edge in a diagram corresponds to a
Kronecker delta when acting on V ⊗kN (see examples in (4.52)). Consequently

(d1 ∨ d2)
i1′ ...ik′
i1...ik

= (d1)
i1′ ...ik′
i1...ik

(d2)
i1′ ...ik′
i1...ik

. (4.71)

It follows that

TrV ⊗kN
(d1d

T
2 ) =

∑
i1,...,ik
i1′ ,...ik′

(d1)
i1′ ...ik′
i1...ik

(dT2 )i1...iki1′ ...ik′
=

∑
i1,...,ik
i1′ ,...ik′

(d1)
i1′ ...ik′
i1...ik

(d2)
i1′ ...ik′
i1...ik

=
∑
i1,...,ik
i1′ ,...ik′

(d1 ∨ d2)
i1′ ...ik′
i1...ik

.
(4.72)

Equivalently, the diagrammatic representation of a trace identifies the bottom vertices with
the top vertices,

TrV ⊗kN
(d1d

T
2 ) =

d1

dT2
(4.73)

Taken literally, this means that we identify the bottom vertices of dT2 with the top vertices
of d1, and the top vertices of dT2 with the bottom vertices of d1. The diagram constructed
in this manner has all the edges of d1 together with all the edges of d2, which is precisely
equal to d1 ∨ d2. See figure 4.1 for an illustration.

To complete the proof we show that

TrV ⊗kN
(d1d

T
2 ) =

d1

dT2
=

∑
i1,...,ik
i1′ ,...ik′

(d1 ∨ d2)
i1′ ...ik′
i1...ik

= N c(d1∨d2) . (4.74)
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identifyidentify

d1

dT2

−→ d1 ∨ d2

Figure 4.1: By identifying the bottom vertices of dT2 with the top vertices of d1, and the
top vertices of dT2 with the bottom vertices of d1, we have constructed a diagram with all
the edges of d1 together with all the edges of d2.

Let b1, . . . , bl be sets containing the vertices of connected components of d1 ∨ d2. Then,

∑
i1,...,ik
i1′ ,...,ik′

(d1 ∨ d2)
i1′ ...ik′
i1...ik

=

∑
b1

1

∑
b2

1

 . . .

∑
bl

1

 = N c(d1∨d2) , (4.75)

where the sums over connected components correspond to sums where the indices in each
component are set equal. For example, if b1 = {1, 3, 5′, 8} then∑

b1

1 ≡
∑

i1,i3,i5′ ,i8

δi1i3δi3i5′ δi5′ i8 =
∑

i1=i3=i5′=i8

1 = N . (4.76)

4.3.1 Factorisation for trace form on Pk(N)

The proof of the following version of factorisation

TrV ⊗kN
(d1d

T
2 )√

TrV ⊗kN
(d1dT1 ) TrV ⊗kN

(d2dT2 )
=

1 +O(1/
√
N) if d1 = d2 ,

0 +O(1/
√
N) if d1 6= d2 ,

(4.77)
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contains most of the essential ingredients necessary for the one-matrix case. This is a
useful warm-up exercise and, as we will see in section 4.3.2, a special case of factorisation
in multi-matrix models. This equation (4.77) is related to the properties of the distance
function defined in proposition 3.1 of [97].3

The factorisation in equation (4.77) is a consequence of the following

2c(d1 ∨ d2) = c(d1 ∨ d1) + c(d2 ∨ d2) = c(d1) + c(d2) if d1 = d2 ,

2c(d1 ∨ d2) < c(d1 ∨ d1) + c(d2 ∨ d2) = c(d1) + c(d2) if d1 6= d2 ,
(4.78)

where we have used c(d1 ∨ d1) + c(d2 ∨ d2) = c(d1) + c(d2) since d ∨ d = d. We will prove
(4.78) by separating the general pairs d1, d2 into three distinct cases:

1. If d1 only contains edges that are also contained in d2, but d1 6= d2, we write d1 < d2.
For example,

< , and < . (4.79)

In this case, d1 ∨ d2 = d2 and it follows that,

c(d1 ∨ d2) = c(d2) . (4.80)

Note that d1 < d2 implies c(d1) > c(d2). Therefore,

2c(d1 ∨ d2) = c(d2) + c(d2) < c(d1) + c(d2) . (4.81)

Since the LHS and RHS are symmetric under exchanging d1 ↔ d2, the inequality
2c(d1 ∨ d2) < c(d1) + c(d2) holds for d2 < d1 as well.

2. Suppose d1 6= d2 and that there is no set of edges that can be added to d1 to turn
it into d2, nor is there a set of edges that can be added to d2 to obtain d1. Then,
we say that d1 and d2 are incomparable. We denote this by d1 6S d2. The following
diagrams are examples of incomparable diagrams

6S , and 6S . (4.82)

In this incomparable case, we have

c(d1 ∨ d2) < c(d1) and c(d1 ∨ d2) < c(d2) (4.83)

since forming the join involves adding to d1, additional edges creating connections
which did not exist in d1, or alternatively adding to d2 additional edges that did not

3We thank Franck Gabriel for this observation.
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exist in d2. Consequently we have the inequality

2c(d1 ∨ d2) < c(d1) + c(d2) . (4.84)

3. If d1 = d2 we have

c(d1 ∨ d2) = c(d1 ∨ d1) = c(d1) = c(d2) , (4.85)

and therefore,
2c(d1 ∨ d2) = c(d1) + c(d2) . (4.86)

To summarise, 2c(d1 ∨ d2) ≤ c(d1) + c(d2) with equality if and only if d1 = d2.

As a corollary of the above discussion, which will be useful in the next sub-section, note
that if we consider a fixed diagram d1 and a family of diagrams d3 with fixed c(d3) such
that c(d1) > c(d3), then we have for each d3 in the family one of the following

c(d1 ∨ d3) < c(d3) if d1 6S d3

c(d1 ∨ d3) = c(d3) if d1 < d3 (4.87)

This follows from (4.80) and (4.83).

4.3.2 Factorisation for PIMOs

The one-matrix connected two-point function (4.56) includes a sum over γ ∈ Sk,

〈
Ôd1Ôd2

〉
=

∑
γ1∈Sk N

c(d1∨γ1d2γ
−1
1 )√∑

γ2∈Sk N
c(d1∨γ2d1γ

−1
2 )
∑

γ3∈Sk N
c(d2∨γ3d2γ

−1
3 )

. (4.88)

Large N factorisation of PIMOs follows from the inequalities

2 max
γ1

c(d1 ∨ γ1d2γ
−1
1 ) = max

γ2

c(d1 ∨ γ2d1γ
−1
2 ) + max

γ3

c(d2 ∨ γ3d2γ
−1
3 ) if [d1] = [d2] ,

2 max
γ1

c(d1 ∨ γ1d2γ
−1
1 ) < max

γ2

c(d1 ∨ γ2d1γ
−1
2 ) + max

γ3

c(d2 ∨ γ3d2γ
−1
3 ) if [d1] 6= [d2] .

(4.89)

The first step in proving equation (4.89) is to simplify the terms on the RHS. The inequal-
ities in equation (4.78) imply that c(d∨ γdγ−1) is maximised when d = γdγ−1. Of course,
the identity permutation always satisfies this equality. Therefore,

max
γ

c(d ∨ γdγ−1) = c(d) . (4.90)
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We are left with proving

2 max
γ

c(d1 ∨ γd2γ
−1) = c(d1) + c(d2) if [d1] = [d2] ,

2 max
γ

c(d1 ∨ γd2γ
−1) < c(d1) + c(d2) if [d1] 6= [d2] .

(4.91)

We employ the same strategy as before, and consider three distinct cases:

1. Suppose c(d1) > c(d2), and consider the diagrams γd2γ
−1 for γ ∈ Sk. We have

c(d1) > c(γd2γ
−1) = c(d2). Assume d1, d2 are such there exists some γ∗ such that

d1 < γ∗d2(γ∗)−1. For any such γ∗, the equality in (4.87) implies that

2c(d1 ∨ γ∗d2(γ∗)−1) = 2c(d2) < c(d1) + c(d2) . (4.92)

Any γ not satisfying this condition leads to d1 6S γd2γ
−1, and the inequality in (4.87)

implies that

2c(d1 ∨ γd2γ
−1) < 2c(d2) . (4.93)

This implies that

2 max
γ

c(d1 ∨ γd2γ
−1) = 2c(d1 ∨ γ∗d2(γ∗)−1) = 2c(d2) < c(d1) + c(d2) . (4.94)

The pair
d1 = , d2 = , (4.95)

exemplify this case since

< = . (4.96)

The argument is identical for the case where c(d1) < c(d2), and there exists some
γ∗ ∈ Sk such that d2 < γ∗d1(γ∗)−1. Here, by renaming d1 ↔ d2 in (4.94), we have

2 max
γ

c(d2 ∨ γd1γ
−1) = 2c(d2 ∨ γ∗d1(γ∗)−1) = 2c(d1) < c(d1) + c(d2) . (4.97)

Using the symmetry of the inner product (4.59) it follows

2 max
γ

c(d1 ∨ γd2γ
−1) < c(d1) + c(d2) . (4.98)
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2. Secondly, consider the case of incomparability,

d1 6S γd2γ
−1 ∀γ ∈ Sk . (4.99)

Recall that for incomparable diagrams (4.84),

2c(d1 ∨ γd2γ
−1) < c(d1) + c(γd2γ

−1) = c(d1) + c(d2) , (4.100)

where the last equality follows because conjugation by a permutation does not change
the number of connected components. Therefore

2 max
γ

c(d1 ∨ γd2γ
−1) < c(d1) + c(d2) , (4.101)

in this case as well.

3. When d1 = γd2γ
−1 for some γ ∈ Sk, the bound is saturated and

2 max
γ

c(d1 ∨ γd2γ
−1) = 2c(d1) . (4.102)

The condition d1 = γd2γ
−1 implies [d1] = [d2]. We have proven the inequalities in equation

(4.89) and consequently have proven permutation invariant matrix observables factorise at
large N .

4.3.3 Factorisation for multi-matrix observables

The above argument generalises to multi-matrix models. Let M (f) be n matrices with
flavour label f = 1, . . . , n and second moment〈

(M (f))ij(M
(f ′))kl

〉
= δff

′
δikδjl . (4.103)

Permutation invariant multi-matrix observables of degree k = k1 +k2 + · · ·+kn, where kf is
the degree of matrix M (f), are constructed using partition algebra elements. Multi-matrix
observables are labelled by ~k = (k1, . . . , kn) and d ∈ Pk(N)

O~k,d = TrV ⊗kN
((M (1))⊗k1 . . . (M (n))⊗knd) . (4.104)
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As before, we have bosonic symmetry. For any γ ∈ S~k ≡ Sk1 × · · · × Skn observables are
invariant

O~k,γdγ−1 = TrV ⊗kN
((M (1))k1 ⊗ · · · ⊗ (M (n))knγdγ−1)

= TrV ⊗kN
(γ−1(M (1))k1 ⊗ · · · ⊗ (M (n))knγd)

= TrV ⊗kN
((M (1))k1 ⊗ · · · ⊗ (M (n))knd)

= O~k,d . (4.105)

Multi-matrix observables are in one-to-one correspondence with partition algebra equiva-
lence classes

[d] = {γdγ−1 | γ ∈ S~k} . (4.106)

Wick contractions vanish unless the flavour indices match, and the sum over γ ∈ Sk reduces
to a sum over γ ∈ S~k〈

O~k,d1
O~k′,d2

〉
= δ~k~k′

∑
γ∈S~k

TrV ⊗kN
(d1γd2γ

−1) = δ~k~k′
∑
γ∈S~k

N c(d1∨γd2γ−1) . (4.107)

The same argument holds for the inequality

2 max
γ

c(d1∨γd2γ
−1) ≤ max

γ
c(d1∨γd2γ

−1)+max
γ

c(d1∨γd2γ
−1) = c(d1)+c(d2) . (4.108)

It is saturated if and only if there exists a γ ∈ S~k such that d1 = γd2γ
−1. That is, if and

only if [d1] = [d2] or
O~k,d1

= O~k,d2
. (4.109)

To summarise we have

〈
Ô~k,d1

Ô~k′,d2

〉
= δ~k~k′ ×

1 +O(1/
√
N) if [d1] = [d2],

0 +O(1/
√
N) if [d1] 6= [d2] ,

(4.110)

for permutation invariant multi-matrix observables in the above Gaussian O(N) model.

Note that in the case n = k, kf = 1 (all matrices distinct), we have

S~k = S1 × · · · × S1︸ ︷︷ ︸
n

. (4.111)

Therefore, the sum over Wick contractions reduces to a single element (the identity el-
ement). The corresponding two-point function is the first case we considered (equation
(4.77)).
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Finally, we observe that the proof of factorisation presented here for general observables
labelled by partition algebra diagrams specialises to a new way of thinking about factorisa-
tion in the case of matrix invariants with continuous symmetry, where the partition algebra
diagrams specialise to permutations. The previously known proof based on permutation
products can be understood, in the one-matrix case, from the equation

〈Oσ1(Z)Oσ2(Z†)〉 =
k!

|T1||T2|
∑
σ′1∈T1

∑
σ′2∈T2

∑
σ3∈Sk

δ(σ′1σ
′
2σ3)NCσ3 (4.112)

This equation is derived and explained as equation (2.12) in [21] (multi-matrix general-
isations are discussed in references therein). Gauge invariant operators are labelled by
permutations σ1, σ2 in conjugacy classes T1, T2, while |T1|, |T2| are the sizes of these con-
jugacy classes. Large N factorisation follows from the fact that the largest power of N
comes from the case where σ3 is the identity and this only occurs when T1 = T2. In the
present way of looking at permutations as special cases of partition algebra diagrams, per-
mutations belonging to distinct conjugacy classes are always incomparable in the partial
order on set partitions associated to the diagrams. This corresponds to case 2 in of the
proofs in sections 4.3.1 and 4.3.2.

4.4 Discussion

In this chapter we considered SN invariant matrix models, viewed as generalisations of
their more familiar cousins invariant under continuous symmetries. We have shown that
there exists a four-dimensional subspace of the most general 13-dimensional parameter
space of PIGM models in which the SN symmetry is enhanced to O(N). The parameter
limit in which this enhancement takes place is given by equation (4.38). The special case
of the simplest O(N) invariant Gaussian (4.40) arises at the parameters given in (4.41).

The factorisation property of multi-trace matrix observables invariant under continuous
symmetries such as U(N) in the large N limit is a well known result. We have shown that
this continues to hold for SN invariant observables. In the U(N) case this can be seen
using properties of the symmetric group by exploiting the Schur-Weyl duality of U(N)

and Sk in order to establish a correspondence between observables and conjugacy classes
of Sk. Analogously, we gave a description of the permutation invariant matrix polynomial
functions in terms of a diagram basis for partition algebras. We used the inner product
on the permutation invariant polynomials arising from the simplest O(N) invariant action,
and proved large N factorisation.



Chapter 5

Permutation symmetry in large N

matrix quantum mechanics

Regarding PIGM models as zero-dimensional quantum field theories, in this chapter we
take the natural next step of considering one-dimensional QFTs, i.e. matrix quantum
mechanical systems with permutation symmetry. We pay particular attention to methods
which are applicable for general N and allow large N expansions. We give a general
description of the permutation invariant subspace in matrix quantum mechanical systems,
drawing on relevant results from the mathematical literature on partition algebras. This
is followed by a discussion of interesting Hamiltonians for many-body quantum physics.
This is motivated by the vibrant interplay between holography and many-body quantum
mechanical systems which manifests itself, for example, in the connection between free
fermions and large N two-dimensional Yang Mills theory [98]; free fermions and the half-
BPS sector of N = 4 SYM [6, 99]; free fermions and supersymmetric indices [100], bosons
in a 3D harmonic oscillator and eighth BPS states in N = 4 SYM [101, 102, 103]; quantum
mechanical spin matrix theory which is used as a simplified set-up to study the emergence
mechanisms of AdS/CFT [104, 105]. This interplay is also visible in the prominent role of
coherent states, a technique widely used in many body quantum physics, in the study of
large N systems. This theme appears in early work on large N (e.g. [106, 107]) as well as
more recent developments (e.g. [108, 109, 110]).

Many aspects of large N simplifications in matrix systems are consequences of Schur-Weyl
duality. The standard instance of Schur-Weyl duality [5] concerns the tensor product V ⊗k

of the fundamental representation V of U(N). The symmetric group Sk of all permutations
of k objects acts on V ⊗k by permuting the factors of the tensor product. Schur-Weyl
duality states that the algebra of operators commuting with the standard U(N) action on

101
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the tensor product V ⊗k is the group algebra CSk. This has important implications for
the classification of U(N) gauge invariant polynomial functions of matrix variables, where
a matrix X transforms as X → UXU † for U ∈ U(N). Schur-Weyl duality relates this
problem to the rich combinatorics and representation theory of symmetric groups (see e.g.
[68]). For example, the gauge invariant polynomial functions of degree k for one matrix
of size N , taking N > k for simplicity, are labelled by conjugacy classes of Sk. Finite N
effects are captured with the use of Young diagrams. Schur-Weyl duality has been used
as a powerful tool in the construction of gauge invariant observables in one-matrix and
multi-matrix systems in connection with the AdS/CFT correspondence. This played an
important role in identifying the CFT duals [35, 6, 99] of giant gravitons [39, 40, 41] in the
AdS/CFT correspondence. The Schur-Weyl duality framework has been further applied
to the computation of 1-matrix and multi-matrix correlators [6, 7, 8, 9, 10, 12, 11, 13, 15,
14, 16, 111, 18, 17]. A short review is [21]. These multi-matrix applications involve dual
algebras beyond the symmetric group algebras. For example Brauer algebras, which have a
basis of diagrams, are used in [7]. The symmetric group algebra CSk can also be viewed as
a diagram algebra with multiplication given by the composition of diagrams. For example
the following six diagrams give a basis of CS3, the corresponding permutations are given
in cycle notation

(1)(2)(3) =

1 2 3

1 2 3

, (12)(3) =

1 2 3

1 2 3

, (13)(2) =

1 2 3

1 2 3

,

(1)(23) =

1 2 3

1 2 3

, (132) =

1 2 3

1 2 3

, (123) =

1 2 3

1 2 3

. (5.1)

The same general philosophy can be applied to the case where we are considering polyno-
mial functions of a matrix X invariant under the transformation X → MσXM

T
σ , where

Mσ is a matrix representing the permutation σ ∈ SN in the N -dimensional natural repre-
sentation of SN , satisfying MT

σ = M−1
σ . Matrix systems with SN symmetry together with

partition algebras allow us to study large N simplifications in the case of discrete (finite)
groups.

Polynomials in matrix variables M i
j are closely related to quantum mechanical states con-

structed from matrix oscillators (a†)ij . This allows us to translate the technology devel-
oped for zero-dimensional matrix models in the preceding chapters to the setting of matrix
quantum mechanics. We will give a detailed description of the space of SN invariant states
constructed from matrix oscillators. Polynomials in matrix oscillators can be organised
by the degree of the polynomials. At degree k, the state space is isomorphic to an Sk
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symmetric subspace H(k) of End(V ⊗kN ):

H(k) → End(V ⊗kN ) . (5.2)

There is a one-to-one correspondence between tensors

〈ei1 · · · eik |T |ej1 · · · ejk〉 = T i1···ikj1···jk (5.3)

and elements in End(V ⊗kN ). The bosonic symmetry of the oscillators imposes an invariance
under simultaneous re-ordering of the upper and lower indices. Commuting with the Sk
action is the SN action on V ⊗kN which we denote L(σ), and is made explicit here in order
to avoid confusion with other permutation group actions. The SN permutation invariance
translates to an invariance of T under an adjoint action

Ad(σ)[T ] = L(σ)TL(σ−1) . (5.4)

Many of our results on the SN invariant state space of matrix oscillators, particularly in
section 5.2 are independent of the Hamiltonian. They can be viewed as a detailed account
of the SN invariant subspace in matrix quantum mechanics using partition algebras and
representation theory. The use of the partition algebra Pk(N) to study operators and
quantum states in H(k) allows us to take advantage of simplifications in the limit where k
is kept fixed as N →∞.

The representation theoretic approach allows the construction of solvable algebraic Hamil-
tonians where the SN invariant states are resolved according to representation theoretic
characteristics. Sections 5.4 and 5.5 discuss different classes of solvable SN invariant Hamil-
tonians obeying

Ad(σ)H = HAd(σ) . (5.5)

The chapter is organised as follows. For concreteness, section 5.1 contains a review of
the simplest quantum mechanical model with matrix degrees of freedom. This is the free
matrix quantum harmonic oscillator. It is a model containing N2 decoupled harmonic
oscillators Xij , i, j = 1, . . . , N with a global U(N2) symmetry. The Hilbert space of this
model is a Fock space H of states constructed using matrix oscillators (a†)ij . This model
also serves as a good place to introduce the diagram notation that we will use in the rest
of the chapter.

In section 5.2 we consider the SN invariant subspace Hinv of the total Hilbert space H
of a general quantum mechanics matrix system. This is the subspace of states invariant
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under a† → Mσa
†MT

σ , where Mσ is a permutation matrix of size N . We explain the
correspondence between permutation invariant matrix states of degree k and partition
algebras Pk(N). The partition algebras have three natural bases, and each one gives rise
to a different basis for Hinv. The diagram basis is natural when discussing inner and outer
products. The factorisation property proven in the previous chapter (and originally in [2])
translates to orthogonality of the diagram basis at large N . The second basis is the so-
called orbit basis which gives rise to an orthogonal basis for all N . We call the third basis
the representation basis. In the mathematical literature, the representation basis is called
a complete set of matrix units. The product in the matrix unit basis is a generalisation
of the product for elementary matrices for matrix algebras. The representation basis can
be constructed using Fourier transformation on Pk(N) and is a direct analogue of the
Schur basis for U(N) invariants. Appendix B contains some necessary results for Fourier
transforms on semi-simple algebras, closely following [90] but with some modifications
that are important for our application, the proofs of many of these results can be found in
appendix A of [3]. Physically, the representation basis can be understood as a basis that
diagonalises a set of algebraic commuting charges.

Section 5.3 is devoted to the construction and diagonalisation of these charges, which can
be used to give the explicit transformation from the diagram basis to the representation
basis at large N . We illustrate the method for small k and large N . These are tabulated
in appendix D. The representation basis forms an energy eigenbasis for the Hamiltonian
of the free matrix quantum harmonic oscillator presented in section 5.1.

In section 5.4 we introduce an 11 parameter family of exactly solvable quantum matrix sys-
tems. The potential in these systems is the most general permutation invariant quadratic
function of the matrix variables. These quantum systems can therefore be viewed as gen-
eral matrix harmonic oscillator systems compatible with permutation symmetry. We find
the spectrum for general choices of the parameters by adapting the representation theoretic
techniques which have been used to compute correlators in PIGM models throughout the
previous chapters and introduced in [43]. Further, we write the canonical partition function
in a simple closed form. The representation basis states from section 5.2 do not form an
eigenbasis for the general Hamiltonians considered here. The action of the Hamiltonians on
the representation basis states leads to a mixing which is constrained by Clebsch-Gordan
multiplicities for the symmetric groups. We briefly discuss this mixing.

In section 5.5 we discuss interacting Hamiltonians, parametrised by a positive integer K,
constructed using partition algebra elements, with the property that the ground states are
all permutation invariant states and have degeneracies controlled by a sequence of partition
algebras Pk(N) for k ∈ {0, 1, . . . ,K}. The energy gap between the ground states and the
lowest excited state is also determined by K. By deforming these Hamiltonians with other
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partition algebra elements, we design Hamiltonians where the degeneracy of the ground
states is broken by small amounts - these two scenarios are illustrated in figure 5.1. We also
include a general description of permutation invariant Hamiltonians, finding an interesting
relation to the counting of two-matrix permutation invariants of the kind considered in
[1]. We conclude this section with an interpretation of the oscillators (a†)ji as creation
operators on a square lattice with sites labelled (i, j).

We compute a set of two- and three-point correlators of invariant operators in section
5.6. The two-point correlators have a large N factorisation property described in the
context of matrix models in the previous chapter. The three-point functions are similar
to extremal correlators which are relevant to quantum mechanical models considered in
AdS/CFT. The extremal correlators are shown to obey selection rules based on Clebsch-
Gordan multiplicities (Kronecker coefficients) of symmetric groups.

5.1 Review: matrix harmonic oscillator

This section is a review of the simplest matrix quantum harmonic oscillator. The La-
grangian (5.6) describes N2 free harmonic oscillators. The corresponding Hamiltonian has
a global U(N2) symmetry. This has a U(N) × U(N) subgroup of unitary matrices act-
ing by left and right multiplication. There is also a smaller SN × SN subgroup of the
U(N) × U(N) which plays an important role in subsequent sections. The simplest, non-
interacting U(N2) invariant model will serve as an ideal set-up to introduce the notation
used in the rest of the chapter. In particular, we describe how to construct states and
operators in H, the Hilbert space of the theory, by considering the oscillators aij , a

†
ij as

endomorphisms on VN . We frequently have this view in mind when manipulating states
and operators and it is often practical to employ diagrammatic notation in order to do so.
The basics of this diagrammatic notation is introduced at the end of this section.

The simplest matrix harmonic oscillator is described by the Lagrangian

L0 =
1

2

(
N∑

i,j=1

∂tXij∂tXij −XijXij

)
. (5.6)

It describes N2 decoupled oscillators. The conjugate momenta are

Πij =
∂L0

∂(∂tXij)
=

∂

∂t
Xij . (5.7)
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The Hamiltonian corresponding to L0 is

H0 =
1

2

(
N∑

i,j=1

ΠijΠij +XijXij

)
. (5.8)

The canonical commutation relations are

[Xij ,Πkl] = iδikδjl . (5.9)

The Hamiltonian given in (5.8) is diagonalised in the usual way - introducing oscillators
a†ij , aij defined by

Xij =

√
1

2

(
a†ij + aij

)
,

Πij = i

√
1

2

(
a†ij − aij

)
,

(5.10)

with commutation relations [
aij , a

†
kl

]
= δikδjl . (5.11)

Normal ordering H0 gives

H0 =
N∑

i,j=1

a†ijaij , (5.12)

the number operator.

H0 is invariant under a U(N2) symmetry that acts on oscillators as

aij →
N∑

k,l=1

Uij;klakl , (5.13)

a†ij →
N∑

k,l=1

U †kl;ija
†
kl , (5.14)

with Uij;kl an N2 ×N2 unitary matrix satisfying

N∑
k,l=1

Uij;klU
†
kl;mn = δimδjn . (5.15)
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Under the U(N2) transformation H0 is invariant,

H0 →
∑

i,j,k,l,m,n

U †kl;ijUij;mna
†
klamn

=
∑

k,l,m,n

δkmδlna
†
klamn

=
∑
k,l

a†klakl . (5.16)

The oscillator states ∏
i,j

(a†ij)
kij√

kij !
|0〉 (5.17)

labelled by non-negative integers kij with i, j = 1, . . . , N are energy eigenstates of H0.
The total Hilbert (Fock) space H decomposes into subspaces H(k) with fixed number of
oscillators (degree) k,

H ∼=
∞⊕
k=0

H(k) . (5.18)

The subset of states with k =
∑

i,j kij form an eigenbasis for the subspace H(k) and have
energy k. In general the spectrum is highly degenerate. The number of states with energy
k is

DimH(k) =

(
N2 + k − 1

k

)
=
N2(N2 + 1) . . . (N2 + k − 1)

k!
. (5.19)

This is the number of ways to choose k elements from a set of N2 with replacement. It is
also the dimension of the symmetric part of a k-fold tensor product of a vector space with
dimension N2. Equivalently, it is the dimension of the vector space of states composed of
k bosonic oscillators a†ij . For fixed k and N � 2k the dimension grows as N2k.

5.1.1 Diagram notation

Throughout this chapter we use diagrammatic notation to describe states and operators
in H(k). For this purpose, it is useful to introduce the following matrices of oscillators
(a†)ij = a†ji and a

i
j = aij which satisfy[

aij , (a†)lk

]
= δikδ

l
j . (5.20)

Let VN be an N -dimensional vector space with basis {e1, . . . , eN}. The matrices of oscil-
lators can be viewed as (operator-valued) elements in End(VN ), where End(VN ) is the set
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of all linear maps VN → VN . In this language, the above oscillators are matrix elements,

a†(ei) =

N∑
j=1

(a†)jiej and a(ei) =

N∑
j=1

ajiej . (5.21)

Consequently, a general degree one state in H can be written as

TrVN (Ta†) |0〉 =

N∑
i,j=1

T ij (a
†)ji |0〉 ≡ |T 〉 , (5.22)

where T ∈ End(VN ) (i.e. an N -by-N matrix) and the last equality is a definition of the
state |T 〉.

The degree k subspace is given by

H(k) ∼= SpanC

{
(a†)i1j1 . . . (a

†)ikjk |0〉
}
, (5.23)

and general states are parametrised by tensors T j1...jki1...ik
. It is convenient to view these

tensors as elements of End(V ⊗kN ). That is, in the usual basis for tensor product spaces

T (ei1 ⊗ ei2 ⊗ . . .⊗ eik) =
N∑

j1,j2,...,jk=1

T j1...jki1...ik
ej1 ⊗ ej2 ⊗ . . .⊗ ejk . (5.24)

Generalising the degree one case, a general state |T 〉 ∈ H(k) can be written as a trace

|T 〉 = TrV ⊗kN
(T (a†)⊗k) |0〉 =

∑
i1,...,ik
j1,...,jk

T j1...jki1...ik
(a†)i1j1 . . . (a

†)ikjk |0〉 , (5.25)

for T ∈ End(V ⊗kN ) and (a†)⊗k = a† ⊗ · · · ⊗ a† with matrix elements

(a†)⊗k(ej1 ⊗ · · · ⊗ ejk) =
∑
i1,...,ik

(a†)i1j1 . . . (a
†)ikjkei1 ⊗ · · · ⊗ eik . (5.26)

It should be emphasised that, due to the bosonic symmetry of the oscillators, T j1...jki1...ik
is

a symmetric tensor (under simultaneous permutations of upper and lower indices), for
example T j1j2...jki1i2...ik

= T j2j1...jki2i1...ik
.

It is useful to formulate this restriction in terms of Sk invariance. An element τ ∈ Sk,
viewed as a bijective map τ : {1, . . . , k} → {1, . . . , k} defines a linear operator Lτ−1 which
acts on V ⊗kN as

Lτ−1(ei1 ⊗ · · · ⊗ eik) = eiτ(1)
⊗ · · · ⊗ eiτ(k)

. (5.27)
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The symmetry of T is equivalent to the statement

LτTLτ−1 = T , ∀ τ ∈ Sk , (5.28)

or with indices
T
jτ(1)...jτ(k)

iτ(1)...iτ(k)
= T j1...jki1...ik

, ∀ τ ∈ Sk . (5.29)

Therefore, states in H(k) are in one-to-one correspondence with elements T ∈ EndSk(V ⊗kN ),
the subspace of linear maps that commute with the action of Sk.

We introduce diagrammatic notation to simplify manipulations involving tensor equations
with many indices. A map T ∈ End(V ⊗kN ) is represented by a box

T j1...jki1...ik
= T

j1 . . . jk

i1 . . . ik

(5.30)

where the incoming and outgoing edges correspond to states in V ⊗kN . Internal lines in
a diagram correspond to contracted indices. For example, the state |T 〉 ∈ H(k) can be
represented diagrammatically as

|T 〉 =

T

(a†)⊗k

|0〉 . (5.31)

Again, the horizontal lines identify the top edge with the bottom edge to give a trace,
and the line between the (a†)⊗k and T boxes signifies that the corresponding indices are
identified and summed over. This diagram should be compared to (5.25).

5.2 Permutation invariant sectors for quantum matrix sys-
tems

In this section we consider the action of SN on the subspace H(k), spanned by degree
k polynomials in matrix oscillators (a†)ij acting on the vacuum. The adjoint action of
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permutations σ ∈ SN on the quantum mechanical matrix variables

σ : Xi
j → (MσXMσ−1)ij = X

σ(i)
σ(j) (5.32)

translates into action on oscillators

σ : (a†)ij → (a†)
σ(i)
σ(j) . (5.33)

We turn our attention to the subspace H(k)
inv ⊂ H(k) of SN invariant states constructed

from polynomials in these oscillators. We will construct bases for H(k)
inv, for general k,

taking inspiration from the construction of representation theory bases for PIGM models
in chapter 4 (originally [2]). There, a basis for the space of SN invariant polynomials in
matrix indeterminates Xi

j of degree k was given in terms of elements of the diagrammatic
partition algebra Pk(N) [61]. With the identification

Xi
j ↔ (a†)ij , (5.34)

we can employ these techniques to construct SN invariant states in matrix quantum me-
chanics.

The algebra EndSN (V ⊗kN ), of linear operators on V ⊗kN that commute with SN , is of central
importance in understanding the implications of permutation invariance in quantum me-
chanical matrix systems. For N ≥ 2k this algebra is isomorphic to the partition algebra
Pk(N) [61]

EndSN (V ⊗kN ) ∼= Pk(N) . (5.35)

The Hilbert space H(k)
inv spanned by degree k polynomials in the oscillators is isomorphic

to an Sk invariant subalgebra of Pk(N):

H(k)
inv
∼= EndSN×Sk(V ⊗kN ) ⊆ EndSN (V ⊗kN ) , (5.36)

The partition algebras are finite-dimensional associative algebras with dimension B(2k),
the Bell numbers, (2.32). Notably, B(2k) does not depend on N . Consequently, DimH(k)

inv

does not grow with N for N ≥ 2k. This is in contrast to DimH(k), which grows like N2k

for N � 2k.

We have chosen to construct states using the oscillators (a†)ij . This produces a basis for
Hinv that is simultaneously an energy eigenbasis of H0, given by (5.8). However, it is
worth emphasising that the resulting description of the state space Hinv is applicable to
any quantum matrix system, not only the system with Hamiltonian H0. For example, the



5.2. Permutation invariant sectors for quantum matrix systems 111

description of Hinv in terms of partition algebras holds equally well if the Hamiltonian is
a perturbation of H0 by a polynomial in the matrix creation and annihilation operators.

We begin this section in 5.2.1 by reviewing the connection between partition algebras and
states in Hinv. In section 5.2.2 we explore this connection in the diagram basis of partition
algebras, and rephrase important results from chapter 4 in the language of matrix quantum
mechanics. In section 5.2.3 we introduce the representation basis for the partition algebras,
so called because it is labelled by a set of representation theoretic data. This basis uses
Fourier transforms [90] on Pk(N) to construct an all-orders orthogonal basis for N ≥ 2k,
which diagonalises a set of algebraic charges. These charges are discussed in detail in
section 5.3, and used in section 5.5 to construct algebraic Hamiltonians with interesting
spectra.

5.2.1 Partition algebras and invariant tensors

For any σ ∈ SN we have a linear operator L(σ) ∈ End(V ⊗kN ) defined by

L(σ−1)(ei1 ⊗ ei2 ⊗ . . .⊗ eik) = eσ(i1) ⊗ eσ(i2) ⊗ . . .⊗ eσ(ik) . (5.37)

Here σ ∈ SN is a bijective map {1, . . . , N} → {1, . . . , N}. This is used to define the adjoint
action Ad(σ) of σ ∈ SN on states |T 〉 ∈ H(k)

Ad(σ) |T 〉 = TrV ⊗kN
[L(σ)TL(σ−1)(a†)⊗k] |0〉

=
∑
i1,...,ik
j1,...,jk

T j1...jki1...ik
(a†)

σ−1(i1)
σ−1(j1)

. . . (a†)
σ−1(ik)
σ−1(jk)

|0〉

=
∑
i1,...,ik
j1,...,jk

T
σ(j1)...σ(jk)
σ(i1)...σ(ik) (a†)i1j1 . . . (a

†)ikjk |0〉 . (5.38)

This adjoint action on the tensor coefficients of the oscillators corresponds to the adjoint
action on the oscillators which follows from (5.33). States |T 〉 ∈ H(k)

inv are SN invariant if
they satisfy

Ad(σ) |T 〉 = |T 〉 . (5.39)

That is, all states in H(k)
inv can be constructed from tensors satisfying

T
σ(j1)...σ(jk)
σ(i1)...σ(ik) = T j1...jki1...ik

, ∀σ ∈ SN , (5.40)

or equivalently
L(σ)TL(σ−1) = T . (5.41)
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For N ≥ 2k, EndSN (V ⊗kN ) is isomorphic to the partition algebra Pk(N)

EndSN (V ⊗kN ) = SpanC{T ∈ End(V ⊗kN ) : L(σ)TL(σ−1) = T, ∀σ ∈ SN} ∼= Pk(N) . (5.42)

For tensors labelling states we have a further Sk invariance. The vector space of SN × Sk
invariant linear maps is denoted

EndSN×Sk(V ⊗kN ) =

SpanC{T ∈ End(V ⊗kN ) : L(σ)TL(σ−1) = LτTLτ−1 = T, ∀σ ∈ SN , τ ∈ Sk} . (5.43)

and we have the correspondence

H(k)
inv
∼= EndSN×Sk(V ⊗kN ) . (5.44)

The partition algebra Pk(N) contains a subalgebra SPk(N), spanned by elements that
commute with CSk ⊂ Pk(N), called the symmetrised partition algebra. For N ≥ 2k,
SPk(N) is isomorphic to EndSN×Sk(V ⊗kN ), and by extension H(k)

inv

H(k)
inv
∼= EndSN×Sk(V ⊗kN ) ∼= SPk(N) . (5.45)

This motivates a description of the state space in terms of SPk(N), the symmetrised
subalgebra of Pk(N), which we turn to in the next subsection.

To summarise the above steps in words, we are investigating the adjoint action of permu-
tations in SN on N × N quantum mechanical matrix variables Xi

j . The corresponding
oscillators inherit the adjoint SN action. Oscillator states with k oscillators correspond
to tensors T with k upper and lower indices, subject to an Sk symmetry permuting the
k upper-lower index pairs of T . This Sk symmetry has its origin in the bosonic nature of
the oscillators. The SN invariant k-oscillator states correspond to tensors having k upper
and k lower indices, subject to an SN × Sk invariance. This subspace of tensors can be
described as a symmetrised sub-algebra SPk(N) of the partition algebra Pk(N).

5.2.2 Diagram basis

Every state in H(k)
inv corresponds to an element in the Sk invariant sub-algebra of Pk(N),

which we call the symmetrised partition algebra and denote SPk(N). Consider the action
of Sk on the diagrams given by

τ : dπ → τdπτ
−1 . (5.46)
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for any τ ∈ Sk, dπ ∈ Pk(N). A basis for SPk(N) is labeled by distinct orbits under this
action. We denote by [dπ] ∈ SPk(N) the invariant element obtained by averaging over the
Sk orbit of dπ

[dπ] =
1

k!

∑
τ∈Sk

τdπτ
−1 =

1

|[dπ]|
∑

dπ′∈[dπ ]

dπ′ , (5.47)

where |[dπ]| is the size of the orbit. The equality follows because |[dπ]| is equal to k! divided
by the number of permutations τ leaving dπ fixed (orbit stabiliser theorem). It follows that
a basis for H(k)

inv is labeled by [dπ] ∈ SPk(N) through the correspondence

|[dπ]〉 = TrV ⊗kN
([dπ](a†)⊗k) |0〉 =

∑
i1,...,ik
i1′ ,...,ik′

([dπ])
i1′ ...ik′
i1...ik

(a†)i1i1′
. . . (a†)ikik′

|0〉 . (5.48)

Note that

|dπ〉 = TrV ⊗kN
(dπ(a†)⊗k) |0〉 = |[dπ]〉 , (5.49)

and so, for the sake of notational efficiency, we will often label states with dπ instead of
[dπ]. For example, ∣∣∣[ ]〉

=
∣∣∣ 〉

=
∑
i

(a†)ii(a
†)ii |0〉 , (5.50)

and ∣∣∣[ ]〉
=
∣∣∣1
2

(
+

)〉
=
∣∣∣ 〉

=
∑
i,j

(a†)ii(a
†)ij |0〉 . (5.51)

States obtained by acting with the annihilation operators aij on the dual vacuum 〈0| can
similarly be labelled by partition algebra diagrams

〈dπ| = 〈0|TrV ⊗kN
(dTπ a

⊗k)

= 〈0|TrV ⊗kN
([dTπ ]a⊗k)

= 〈0|
∑
i1,...,ik
i1′ ,...,ik′

([dπ])
i1′ ...ik′
i1...ik

a
i1′
i1
. . . a

ik′
ik

= 〈0|
∑
i1,...,ik
i1′ ,...,ik′

([dTπ ])i1...iki1′ ...ik′
a
i1′
i1
. . . a

ik′
ik
, (5.52)

where dTπ is the transpose of dπ. As a diagram, dTπ is the reflection of dπ across a horizontal
line, for example ( )T

= . (5.53)
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The use of the transpose in this definition is motivated by the orthonormality property
below (5.56). As shown in section 4.2.2 the inner product can be written as a trace of
products of elements in SPk(N),

〈dπ|dπ′〉 =
∑
τ∈Sk

(dTπ τdπ′τ
−1)i1...iki1...ik

=
∑
τ∈Sk

TrV ⊗kN
(dTπ τdπ′τ

−1) . (5.54)

The large N factorisation result (4.61) derived in chapter 4 (and originally in [2]) implies
that the normalised states

|d̂π〉 =
1√
〈dπ|dπ〉

|dπ〉 , (5.55)

are orthonormal at large N (to leading order in 1/
√
N)

〈d̂π|d̂π′〉 =

1 +O(1/
√
N) if [dπ] = [dπ′ ] ,

0 +O(1/
√
N) otherwise .

(5.56)

5.2.3 Representation basis

The connection between SN invariant states and partition algebras gives rise to a natural
basis, labelled by representation theoretic data. The representation basis diagonalises a set
of commuting algebraic charges that we introduce in section 5.3. This observation gives
a concrete construction algorithm for the change of basis matrix (from diagram basis to
representation basis).

Recall the Schur-Weyl decomposition of V ⊗kN (4.16) given in the previous chapter. In the
limit N ≥ 2k we can write this in a simplified form

V ⊗kN =
⊕

Λ1∈YS(k)

V SN
Λ1
⊗ V Pk(N)

Λ1
, (5.57)

in which the sum can be labelled by the set of all Young diagrams Λ#
1 having up to k

boxes: these are inserted below a first row to form Young diagrams with N boxes. This
stable set of Young diagrams having N boxes is denoted YS(k). We work within this limit
throughout.

Equation (5.38) implies that we can identify

End(V ⊗kN ) ∼= V ⊗kN ⊗ V ⊗kN , (5.58)

as a representation of SN . We use Schur-Weyl duality (5.57) to decompose each factor on
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the RHS as

V ⊗kN ⊗ V ⊗kN =

 ⊕
Λ1∈YS(k)

V SN
Λ1
⊗ V Pk(N)

Λ1

⊗
 ⊕

Λ′1∈YS(k)

V SN
Λ′1
⊗ V Pk(N)

Λ′1

 , (5.59)

where we are assuming the stable limit. Projecting to SN invariants on both sides gives

Pk(N) ∼= EndSN (V ⊗kN ) ∼=
⊕

Λ1∈YS(k)

V
Pk(N)

Λ1
⊗ V Pk(N)

Λ1
. (5.60)

This follows because the decomposition of V SN
Λ1
⊗ V SN

Λ′1
contains an invariant if and only if

Λ1 = Λ′1.

As noted underneath (4.24) in chapter 4, the RHS of (5.60) reflects a decomposition of
Pk(N) into a direct sum of matrix algebras. Such a decomposition always exists for a
semi-simple algebra by the Artin-Wedderburn theorem. This implies that there exists a
basis of generalised elementary matrices (also called a complete set of matrix units) for
Pk(N). A complete set of matrix units is a basis

QΛ1
αβ, Λ1 ∈ YS(k), α, β ∈ {1, . . . ,Dim(V

Pk(N)
Λ1

)} , (5.61)

with the property
QΛ1
αβQ

Λ′1
α′β′ = δΛ1Λ′1δβα′Q

Λ1
αβ′ . (5.62)

In other words, Pk(N) can be realised as block-diagonal matrices, with each block labelled
by an irreducible representation Λ1 of Pk(N). The Artin-Wedderburn decomposition im-
plies

Dim (Pk(N)) = B(2k) =
∑

Λ1∈YS(k)

(
DimV

Pk(N)
Λ1

)2
, (5.63)

which is analogous to the expression

|G| =
∑

R∈Rep(G)

(
DimV G

R

)2 (5.64)

for the order of a finite group G in terms of its irreducible representations R.

As is proven in Appendix A of [3], the following set of linear combinations of elements in
Pk(N) form a complete set of matrix units for Pk(N),

QΛ1
αβ =

B(2k)∑
i=1

Dim(V SN
Λ1

)DΛ1
βα((b∗i )

T )bi . (5.65)
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The coefficients DΛ1
βα(d) are matrix elements of the representation of Pk(N), labelled by

Λ1 ` N . The sum is over a basis bi, i ∈ {1, . . . , B(2k)} for Pk(N) (for example the diagram
basis). The element b∗i is called the dual of bi. It has an explicit construction in terms of
the inverse of the Gram matrix defined by

gij = TrV ⊗kN
(bib

T
j ) . (5.66)

The dual of bi is

b∗i =

B(2k)∑
j=1

g−1
ij bj , (5.67)

and the inverse of the Gram matrix in the diagram basis can be written as a series expansion
in N .

To construct a representation basis for H(k)
inv, we need to construct matrix units for SPk(N).

They can be constructed from matrix units for Pk(N) as follows. The partition algebra
Pk(N) contains a subalgebra CSk. Consequently, we can restrict an irreducible representa-
tion V Pk(N)

Λ1
to a representation of CSk, which in general is reducible. Letting V CSk

Λ2
be an

irreducible representation of CSk labelled by a Young diagram Λ2 with k boxes, we have

V
Pk(N)

Λ1

∼=
⊕
Λ2`k

V CSk
Λ2
⊗ V Pk(N)→CSk

Λ1Λ2
. (5.68)

The dimension of V Pk(N)→CSk
Λ1Λ2

is the branching multiplicity

Dim
(
V
Pk(N)→CSk

Λ1Λ2

)
= Mult

(
V
Pk(N)

Λ1
→ V CSk

Λ2

)
, (5.69)

In the rest of the chapter we will use Λ1 to label irreducible representations of SN and
Pk(N). Irreducible representations of Sk are denoted by Λ2. Inserting the decomposition
(5.68) into equation (5.60) and projecting to Sk invariants gives

H(k)
inv
∼= EndSN×Sk(V ⊗kN ) ∼=

⊕
Λ1∈YS(k)

Λ2`k

V
Pk(N)→CSk

Λ1Λ2
⊗ V Pk(N)→CSk

Λ1Λ2
. (5.70)

This should be understood as an Artin-Wedderburn decomposition of SPk(N).

Equation (5.68) points us towards a construction of matrix units for SPk(N) from matrix
units of Pk(N). On the LHS we have a basis

EΛ1
α , α ∈ {1, . . .Dim(V

Pk(N)
Λ1

)} , (5.71)
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where the representation of d ∈ Pk(N) is irreducible,

d(EΛ1
α ) =

∑
β

DΛ1
βα(d)EΛ1

β . (5.72)

The RHS has a basis

EΛ1,µ
Λ2,p

, p ∈ {1, . . . ,Dim(V CSk
Λ1

)} ,

µ ∈ {1, . . . ,Dim(V
Pk(N)→CSk

Λ1Λ2
)} ,

(5.73)

where µ is a multiplicity label for V CSk
Λ2

in the decomposition. We demand that the repre-
sentation of τ ∈ CSk is irreducible in this basis,

τ(EΛ1,µ
Λ2,p

) =
∑
q

DΛ2
qp (τ)EΛ1,µ

Λ2,q
, (5.74)

where DΛ2
qp (τ) is an irreducible representation of τ ∈ CSk. The change of basis coefficients

are called Branching coefficients

EΛ1,µ
Λ2,p

=
∑
α

B
Pk(N)→CSk
Λ1,α→Λ2,p;µ

EΛ1
α , (5.75)

or in braket notation
B
Pk(N)→CSk
Λ1,α→Λ2,p;µ

=
〈
EΛ1
α

∣∣∣EΛ1,µ
Λ2,p

〉
. (5.76)

The elements
QΛ1

Λ2,µν
=
∑
α,β,p

QΛ1
αβB

Pk(N)→CSk
Λ1,α→Λ2,p;µ

B
Pk(N)→CSk
Λ1,β→Λ2,p;ν

, (5.77)

form a complete set of matrix units for SPk(N). The sum over p implements the projection
to Sk invariants. The above elements satisfy (see appendix A of [3] for a proof of this)

QΛ1
Λ2,µν

Q
Λ′1
Λ′2,µ

′ν′ = δΛ1Λ′1δΛ2Λ′2
δνµ′Q

Λ1
Λ2µν′

, (5.78)

and orthogonality of states

|QΛ1
Λ2,µν

〉 = TrV ⊗kN
(QΛ1

Λ2,µν
(a†)⊗k) (5.79)
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follows from the form of the inner product (5.54). The proof goes as follows

〈
QΛ1

Λ2,µν

∣∣QΛ′1
Λ′2,µ

′ν′

〉
=
∑
τ∈Sk

TrV ⊗kN

(
QΛ1

Λ2,µν
τ
(
Q

Λ′1
Λ′2,µ

′ν′

)T
τ−1

)
=
∑
τ∈Sk

TrV ⊗kN
(QΛ1

Λ2,µν
τQ

Λ′1
Λ′2,ν

′µ′τ
−1)

= k! TrV ⊗kN
(QΛ1

Λ2,µν
Q

Λ′1
Λ′2,ν

′µ′)

= k!δΛ1Λ′1δΛ2Λ′2
δνν′ TrV ⊗kN

(QΛ1
Λ2,µµ′

) .

(5.80)

In the second equality we used
(
Q

Λ′1
Λ′2,µ

′ν′

)T
= Q

Λ′1
Λ′2,ν

′µ′ which follows from equation (B.13).
Note that

TrV ⊗kN
(QΛ1

Λ2,µµ′
) = TrV ⊗kN

(QΛ1
Λ2,µ1Q

Λ1
Λ2,1µ′

)

= TrV ⊗kN
(QΛ1

Λ2,1µ′
QΛ1

Λ2,µ1)

= δµµ′ TrV ⊗kN
(QΛ1

Λ2,11)

= δµµ′NΛ1Λ2 ,

(5.81)

such that the normalisation (see equation (B.27))

NΛ1Λ2 = DimV SN
Λ1

DimV Sk
Λ2

, (5.82)

only depends on irreducible representations Λ1,Λ2, which proves orthogonality.

To summarise, we have shown that there exists an orthogonal basis for H(k)
inv labelled by

representation theoretic data, for arbitrary N ≥ 2k, using Fourier transforms on semi-
simple algebras. The detailed proofs of these results can be found in the appendices of
[3]. In the next section we will provide explicit formulas for the change of basis from the
diagram basis to the basis of matrix units. We leave the elucidation of finite N effects (the
case N < 2k which lies beyond the stable limit) in the representation basis for future work.

5.3 Representation basis and algebraic charges

In this section we discuss the construction of the representation basis elements QΛ1
Λ2,µν

as
linear combinations of diagrams in Pk(N). These can, in principle, be computed using
equation (5.77) by first computing the branching coefficients. The computation of these
requires explicit choices of basis in the representations V Pk(N)

Λ1
and V C[Sk]

Λ2
. Such choices can

be bypassed. The basic idea is to find the QΛ1
Λ2,µν

as eigenvectors of appropriate elements
of Pk(N) which can be viewed as operators on Pk(N) acting by the algebra multiplication.
The subspaces labelled by Λ1,Λ2, associated with irreducible representations of SN and Sk
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respectively, are identified using central elements (Casimirs) in the group algebras C[SN ]

and C[Sk]. These Casimirs can be expressed as elements of Pk(N) using Schur-Weyl
duality. This is particularly useful in the large N limit where k is kept fixed and N � k,
since the dimension of Pk(N) does not grow with N . The more refined determination of
subspaces labelled by µ and ν is achieved by picking non-central elements of Pk(N) which
nevertheless generate a maximally commuting subalgebra.

We explicitly construct the change of basis for the special cases of degree k = 1, 2. Tables
of these basis elements are found in appendix D. The expansion coefficients are given as
functions of N and are therefore valid for all N ≥ 2k.

Analogous constructions in multi-matrix systems with continuous gauge symmetry, rele-
vant to AdS/CFT, are given in [12, 112]. They also played a role, using developments in
tensor models with U(N) symmetries, in [95] in giving a combinatorial interpretation of
Kronecker coefficients.

5.3.1 Central elements in the partition algebra

For a fixed pair Λ1,Λ2, the linear span of QΛ1
Λ2,µν

for µ, ν = 1, . . . ,DimV
Pk(N)→C[Sk]

Λ1Λ2
forms

a subspace of SPk(N). We now describe how this subspace can be identified with simul-
taneous eigenspaces of Casimirs associated with C[SN ] and C[Sk].

First, we define Casimirs of C[SN ], and explain their relation to Pk(N). The center
Z(C[SN ]) of C[SN ] consists of elements

Z(C[SN ]) = {z ∈ C[SN ] : zσ = σz, ∀σ ∈ C[SN ]} . (5.83)

Elements in the center are called central elements. For a central element z, the homomor-
phism property of representations implies

L(z)L(σ) = L(σ)L(z), ∀σ ∈ SN , (5.84)

and it follows that L(z) is an element of the algebra of operators acting on V ⊗kN which
commutes with SN , i.e. L(z) ∈ EndSN (V ⊗kN ).

As we reviewed in the previous section, Pk(N) ∼= EndSN (V ⊗kN ) for N ≥ 2k. This estab-
lishes a connection between Z(C[SN ]) and Pk(N) as linear operators acting on V ⊗kN . In
particular, for every z ∈ Z(C[SN ]), there exists an element z̄ ∈ Pk(N) defined by

z̄(ei1 ⊗ · · · ⊗ eik) = L(z)(ei1 ⊗ · · · ⊗ eik) . (5.85)
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Note that the definition of z̄ depends on k. Further, observe that

L(z)d(ei1 ⊗ · · · ⊗ eik) = dL(z)(ei1 ⊗ · · · ⊗ eik) , (5.86)

for all d ∈ Pk(N) because Pk(N) and C[SN ] are mutual commutants in End(V ⊗kN ). This
implies that z̄ is automatically in the center of Pk(N), which we denote Z(Pk(N)). In
other words, equation (5.85) defines a homomorphism from Z(C[SN ]) to Z(Pk(N)). As a
particular case of being central in Pk(N), z̄ commutes with C[Sk] ⊂ Pk(N).

Central elements play a special role in representation theory. Schur’s lemma implies that
an irreducible matrix representation of a central element is proportional to the identity
matrix. The proportionality constant is a normalised character. In particular we have

DΛ1
ab (z) = χ̂Λ1(z)δab , (5.87)

where we have introduced the short-hand

χ̂Λ1(z) =
χΛ1(z)

DimV SN
Λ1

(5.88)

for normalised characters. In this sense central elements are Casimirs, they act by con-
stants on irreducible subspaces, and the constants can be used to determine the particular
representation.

The element of C[SN ] formed by summing over all elements in a distinct conjugacy class
of SN is central. For example, we define the element T2 ∈ Z(C[SN ]) as

T2 =
∑

1≤i<j≤N
(ij) , (5.89)

where the sum is over all transpositions. By the argument in the previous paragraph, there
exists an element T̄ (k)

2 ∈ Z(Pk(N)) such that

T̄
(k)
2 (ei1 ⊗ · · · ⊗ eik) = L(T2)(ei1 ⊗ · · · ⊗ eik)

= =∑
i1′ ...ik′

(T̄
(k)
2 )

i1′ ...ik′
i1...ik

ei1′ ⊗ · · · ⊗ eik′ =
∑
σ=(ij)

1≤i<j≤N

eσ−1(i1) ⊗ · · · ⊗ eσ−1(ik) .
(5.90)

As we will explain, the eigenvalues of the central element T̄ (k)
2 can be used to distinguish

the label Λ1 on matrix units. Since T̄ (k)
2 is an element of SPk(N), it has an expansion in
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terms of diagrams (see [61, Equation 3.32, Theorem 3.35])

T̄
(k)
2 =

∑
π∈Π2k

(T̄
(k)
2 )πdπ . (5.91)

The equality in (5.90) implies a radical simplification for large N . The element T2 contains
order N2 transpositions, while T̄ (k)

2 contains at most B(2k) diagrams. The dependence on
N is incorporated in the coefficients (T̄

(k)
2 )π, which are polynomial functions of N . Explicit

examples are (5.118) and (5.123).

There exist similar elements t(k)
2 ∈ Z(C[Sk]) ⊂ Z(Pk(N)) defined by summing over trans-

position diagrams. For example,

t
(2)
2 = , t

(3)
2 = + + . (5.92)

The eigenvalues of t(k)
2 will be used to distinguish the label Λ2.

Equation (5.90) together with equation (5.87) gives

DΛ1
αβ(T̄

(k)
2 ) =

χΛ1(T̄
(k)
2 )

DimV
Pk(N)

Λ1

δαβ = χ̂Λ1(T2)δαβ , (5.93)

where the distinction between the two characters is

χΛ1(T̄
(k)
2 ) =

DimV
Pk(N)

Λ1∑
α=1

DΛ1
αα(T̄

(k)
2 ), and χΛ1(T2) =

DimV
SN
Λ1∑

a=1

DΛ1
aa (T2) . (5.94)

That is, the first character is a character of Pk(N), the second is a character of C[SN ].
Similarly,

DΛ2
pq (t

(k)
2 ) = χ̂Λ2(t

(k)
2 )δpq , (5.95)

where

χ̂Λ2(t
(k)
2 ) =

χΛ2(t
(k)
2 )

DimV Sk
Λ2

. (5.96)

Normalised characters of T2 and t(k)
2 can be expressed in terms of combinatorial quantities

(known as the contents) of boxes of Young diagrams (see example 7 in section I.7 of [113]).
Let YΛ1 , YΛ2 be the Young diagrams corresponding to integer partitions Λ1 ∈ YS(k),Λ2 ` k.
Then

χ̂Λ1(T2) =
∑

(i,j)∈YΛ1

(j − i), χ̂Λ2(t
(k)
2 ) =

∑
(i,j)∈YΛ2

(j − i) , (5.97)

where (i, j) corresponds to the cell in the ith row and jth column of the Young diagram



122 Chapter 5. Permutation symmetry in large N matrix quantum mechanics

(the top left box has coordinate (1, 1)).

With the above facts at hand, we can understand how the Λ1,Λ2 labels correspond to eigen-
values of T̄ (k)

2 , t
(k)
2 . Pk(N) matrix units have the following property (proven in appendix

A of [3])
dQΛ1

αβ =
∑
γ

DΛ1
γα(d)QΛ1

γβ , for d ∈ Pk(N) , (5.98)

and therefore

QΛ1
αβT̄

(k)
2 = T̄

(k)
2 QΛ1

αβ =
∑
γ

DΛ1
γα(T̄

(k)
2 )QΛ1

γβ = χ̂Λ1(T2)QΛ1
αβ . (5.99)

We derive a similar equation for t(k)
2 acting on QΛ1

Λ2,µν
using the definition in (5.77). From

the definition we have

t
(k)
2 QΛ1

Λ2,µν
=
∑
α,β,p

t
(k)
2 QΛ1

αβB
Pk(N)→C[Sk]
Λ1,α→Λ2,p;µ

B
Pk(N)→C[Sk]
Λ1,β→Λ2,p;ν

=
∑

α,β,γ,γ′,p

DΛ1
γα(t

(k)
2 )δγγ′Q

Λ1
γ′βB

Pk(N)→C[Sk]
Λ1,α→Λ2,p;µ

B
Pk(N)→C[Sk]
Λ1,β→Λ2,p;ν

.
(5.100)

We re-write the Kronecker delta using the completeness relation∑
Λ′2,p

′,µ′

B
Pk(N)→C[Sk]
Λ1,γ→Λ′2,p

′;µ′B
Pk(N)→C[Sk]
Λ1,γ′→Λ′2,p

′;µ′ = δγγ′ . (5.101)

Inserting this into (5.100) gives∑
α,β,γ,γ′,p

DΛ1
γα(t

(k)
2 )δγγ′Q

Λ1
γ′βB

Pk(N)→C[Sk]
Λ1,α→Λ2,p;µ

B
Pk(N)→C[Sk]
Λ1,β→Λ2,p;ν

=

∑
α,β,γ,γ′,p

∑
Λ′2,p

′,µ′

DΛ1
γα(t

(k)
2 )B

Pk(N)→C[Sk]
Λ1,γ→Λ′2,p

′;µ′B
Pk(N)→C[Sk]
Λ1,γ′→Λ′2,p

′;µ′Q
Λ1
γ′βB

Pk(N)→C[Sk]
Λ1,α→Λ2,p;µ

B
Pk(N)→C[Sk]
Λ1,β→Λ2,p;ν

.

(5.102)
Now note that∑
γ,α

DΛ1
γα(t

(k)
2 )B

Pk(N)→C[Sk]
Λ1,γ→Λ′2,p

′;µ′B
Pk(N)→C[Sk]
Λ1,α→Λ2,p;µ

= δΛ2Λ′2
δµ′µD

Λ2
p′p(t

(k)
2 ) = δΛ2Λ′2

δµ′µδp′pχ̂
Λ2(t

(k)
2 ) .

(5.103)
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We substitute this into (5.102) and find∑
α,β,γ,γ′,p

∑
Λ′2,p

′,µ′

DΛ1
γα(t

(k)
2 )B

Pk(N)→C[Sk]
Λ1,γ→Λ′2,p

′;µ′B
Pk(N)→C[Sk]
Λ1,γ′→Λ′2,p

′;µ′Q
Λ1
γ′βB

Pk(N)→C[Sk]
Λ1,α→Λ2,p;µ

B
Pk(N)→C[Sk]
Λ1,β→Λ2,p;ν

=

(5.104)∑
β,γ′,p

∑
Λ′2,p

′,µ′

δΛ2Λ′2
δµ′µδp′pχ̂

Λ2(t
(k)
2 )B

Pk(N)→C[Sk]
Λ1,γ′→Λ′2,p

′;µ′Q
Λ1
γ′βB

Pk(N)→C[Sk]
Λ1,β→Λ2,p;ν

= (5.105)

∑
β,γ′,p

χ̂Λ2(t
(k)
2 )QΛ1

γ′βB
Pk(N)→C[Sk]
Λ1,γ′→Λ2,p;µ

B
Pk(N)→C[Sk]
Λ1,β→Λ2,p;ν

= χ̂Λ2(t
(k)
2 )QΛ1

Λ2,µν
, (5.106)

which proves the analogue of (5.99) in the case of t(k)
2 .

We define linear operators on SPk(N) using multiplication by T̄ (k)
2 , t

(k)
2

T̄
(k)
2 (QΛ1

Λ2,µν
) = T̄

(k)
2 QΛ1

Λ2,µν
= χ̂Λ1(T2)QΛ1

Λ2,µν
, (5.107)

and
t
(k)
2 (QΛ1

Λ2,µν
) = t

(k)
2 QΛ1

Λ2,µν
= χ̂Λ2(t

(k)
2 )QΛ1

Λ2,µν
. (5.108)

That is, the matrix units for SPk(N) are eigenvectors of the linear operators associated
with T̄ (k)

2 and t(k)
2 . The eigenvalues are sufficient to determine the subspaces labelled by

irreducible representations Λ1,Λ2 for k = 1, 2 and general N . As discussed in detail in
[112], a larger set of central elements is needed to distinguish different pairs Λ1,Λ2 for
general k and N .

5.3.2 Multiplicity labels and maximal commuting subalgebras

In the previous subsection we described how the subspace spanned by QΛ1
Λ2,µν

for fixed

Λ1,Λ2 is a simultaneous eigenspace of central elements T̄ (k)
2 , t

(k)
2 . The subspaces labeled

by fixed µ, ν are not eigenspaces of any central elements of SPk(N). Nevertheless, they are
eigenspaces of elements that (multiplicatively) generate a maximal commutative subalgebra
of SPk(N).

We illustrate this in the simple case of a single matrix algebra. This is directly relevant,
because the matrix units QΛ1

Λ2,µν
form (are isomorphic to) a matrix algebra Mn with n =

DimV
Pk(N)→C[Sk]

Λ1Λ2
, for fixed Λ1,Λ2. The matrix algebra Mn has a basis of matrix units

Ers for r, s = 1, . . . , n. These are just the elementary matrices with zeroes everywhere
except in row r, column s where there is a one. In this explicitly realised algebra, it is
straight-forward to verify that

ErsEr′s′ = δsr′Ers′ . (5.109)
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It follows from equation (5.109) that

EttErs = δtrEts =

Ers if r = t ,

0 otherwise .
(5.110)

This fact will be useful in what follows.

We now define a pair of linear operators acting onMn whose eigenvalues uniquely determine
the indices r, s on Ers. Let

T = 1E11 + 2E22 + · · ·+ nEnn , (5.111)

and TL, TR be the linear operators onMn defined by left and right action of T respectively,

TL(Ers) = TErs, TR(Ers) = ErsT . (5.112)

The n2×n2 matrix (TL)turs associated with the linear operator TL has eigenvalues {1, 2, . . . , n}
(each one is n-fold degenerate) with eigenvectors Ers,∑

t,u

(TL)tursEtu = TL(Ers) = rErs . (5.113)

Similarly for the matrix (TR)turs associated with the linear operator TR,∑
t,u

(TR)tursEtu = TR(Ers) = sErs . (5.114)

The operators TL and TR commute, and their simultaneous eigenvectors Ers have eigen-
values r and s, respectively.

The algebra spanned by {E11, E22, . . . , Enn} is a maximal commuting subalgebra of Mn.
It is multiplicatively generated by T . In particular (see [112, Lemma 3.3.1] or [114,
Lemma 2.1])

Err =
∏
s 6=r

(T − s)
(r − s)

. (5.115)

These ideas generalise to QΛ1
Λ2,µν

, and in the next section we will give the appropriate
operators corresponding to TL, TR for SP2(N).
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5.3.3 Construction of low degree representation bases

We now use the tools presented in this section to explicitly construct the representation
basis elements as sums of diagrams, for k = 1, 2 and large N . Tables of the representation
basis elements expanded in terms of diagrams are found in appendix D.

Degree one basis

For k = 1 it is enough to use T̄2
(1) to distinguish the irreducible representations. We expect

to find matrix units
Q

[N ]
[1] , Q

[N−1,1]
[1] , (5.116)

since S1 only has the trivial representation and the decomposition in (5.57) only contains
irreducible representations [N ] and [N − 1, 1] of P1(N).

The map
T2 7→ T̄

(1)
2 (5.117)

is given by (see the section called Murphy elements for CAk(N) in [61])

T̄
(1)
2 =

N(N − 3)

2
+ . (5.118)

It is straight-forward to diagonalise T̄ (1)
2 acting on P1(N) from the left. Define

Q
[N ]
[1] =

1

N
, Q

[N−1,1]
[1] = − 1

N
, (5.119)

they satisfy

Q
[N ]
[1] Q

[N−1,1]
[1] = 0, Q

[N ]
[1] Q

[N ]
[1] = Q

[N ]
[1] , Q

[N−1,1]
[1] Q

[N−1,1]
[1] = Q

[N−1,1]
[1] . (5.120)

and have eigenvalues

T̄
(1)
2 Q

[N ]
[1] =

N(N − 1)

2
Q

[N ]
[1] ,

T̄
(1)
2 Q

[N−1,1]
[1] =

N(N − 3)

2
Q

[N−1,1]
[1] ,

(5.121)

which are exactly equal to the normalised characters. Note that S1 has no non-trivial
representations, and t(1)

2 = 0, which is consistent with the normalised character k(k−1)
2 = 0

of the trivial representation.
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The orthogonal basis elements for H(1)
inv, corresponding to these matrix units, are∣∣∣Q[N ]

[1]

〉
=

1

N

∑
i1,i1′

(a†)
i1′
i1
|0〉 , and

∣∣∣Q[N−1,1]
[1]

〉
=
∑
i1

(a†)i1i1 −
1

N

∑
i1,i1′

(a†)
i1′
i1
|0〉 . (5.122)

Degree two basis

The procedure was particularly easy at degree one because S1 is trivial, and there were
no multiplicities appearing. For k = 2 we have the sign representation [1, 1] and the
trivial representation [2] of S2, and pairs of irreducible representations Λ1,Λ2 appear with
multiplicity larger than one. To distinguish multiplicities we will have to introduce non-
central elements, as discussed in subsection 5.3.2.

At degree two, the partition algebra element we use to distinguish Λ1 is [61]

T̄
(2)
2 =

(N − 2)(N − 3)− 4

2
+ + + + +N

− − − − .
(5.123)

As a linear map (acting on the left or right) on P2(N), it has eigenvalues

T̄
(2)
2 (Q

[N ]
Λ2,µν

) =
N(N − 1)

2
Q

[N ]
Λ2,µν

,

T̄
(2)
2 (Q

[N−1,1]
Λ2,µν

) =
N(N − 3)

2
Q

[N−1,1]
Λ2,µν

,

T̄
(2)
2 (Q

[N−2,2]
Λ2,µν

) =
(N − 1)(N − 4)

2
Q

[N−2,2]
Λ2,µν

,

T̄
(2)
2 (Q

[N−2,1,1]
Λ2,µν

) =
N(N − 5)

2
Q

[N−2,1,1]
Λ2,µν

. (5.124)

The element we use to distinguish Λ2 is

t
(2)
2 = . (5.125)

The eigenvalues of the corresponding linear map are 1 for [2] and −1 for [1, 1].

The non-central element we will use to distinguish multiplicities is

T̄
(2)
2,1 = + . (5.126)

It is closely related to T̄ (1)
2 ∈ Z(P1) in equation (5.118) because

T̄
(1)
2 ⊗ 1 + 1⊗ T̄ (1)

2 = + +N(N − 3) . (5.127)
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Roughly speaking, T̄ (2)
2,1 comes from the embedding of T̄ (1)

2 into SP2(N) by adding strands.
Symmetrisation has been used to ensure that we have an element in SP2(N).

To determine the multiplicity labels we need to act from the left as well as the right using
T̄

(2)
2,1 . We define T̄ (2),L

2,1 and T̄ (2),R
2,1 acting on d ∈ P2(N) by

T̄
(2),L
2,1 d = T̄

(2)
2,1 d, T̄

(2),R
2,1 d = dT̄

(2)
2,1 . (5.128)

Appendix D gives a representation theoretic argument for why these operators fully distin-
guish all labels on matrix units, together with a complete table of all k = 2 matrix units.
As an example, we find a matrix unit (see (D.30))

(Q
[N−2,1,1]
[1,1] )22 =

1

N
− 1

N
− 1

N
+ +

1

N
− , (5.129)

which corresponds to the (unnormalised) SN invariant state

∣∣∣(Q[N−2,1,1]
[1,1] )22

〉
=

2

N

( N∑
i,j,k=1

[
(a†)ii(a

†)jk − (a†)ji (a
†)ik

]
+

N∑
i,j=1

[
(a†)ij(a

†)ji − (a†)ii(a
†)jj

])
|0〉 .

(5.130)

5.4 Exactly solvable permutation invariant matrix harmonic
oscillator

The simplest quantum mechanical matrix Hamiltonian (5.8), considered in section 5.1, is
invariant under the symmetric group action

σ : Xij → Xσ(i)σ(j) , ∀σ ∈ SN . (5.131)

It is also invariant under the much larger symmetry of continuous transformations by
U(N2). In this section we generalise the quadratic potential to the most general quadratic
function V (X) invariant under the above permutation symmetry. We will thus present
a quantum mechanical model of N2 matrix variables Xij in a permutation invariant
quadratic potential V (X). The most general permutation invariant quadratic action in
a zero-dimensional matrix model was constructed in [43] using representation theory. Bor-
rowing these techniques, we explicitly construct an 11 parameter family of permutation
invariant quadratic potentials. The corresponding Hamiltonian is exactly diagonalisable.
We describe the spectrum of the full Hamiltonian and discuss the degeneracy when the
quanta of energy are generic, and when they satisfy integrality properties. In the former
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case we are able to give a lower bound on the order of the degeneracy, this is given in equa-
tion (5.155). In the latter case, the degeneracy is given in terms of an integer partition
problem. The integer partition problem has a solution in terms of a canonical partition
function (generating function) given by equation (5.158). We end this section in 5.4.4 with
a brief discussion of the role that the representation basis could play in simplifying the
diagonalisation of H, given in equation (5.147), on Hinv.

5.4.1 Construction

A matrix harmonic oscillator in a potential V (X) is described by the Lagrangian

L =
1

2

N∑
i,j=1

∂tXij∂tXij −
1

2
V (X) . (5.132)

We take the potential to be a general quadratic SN invariant potential

V (Xij) = V (Xσ(i)σ(j)) , ∀σ ∈ SN . (5.133)

The action of SN on Xij defined in (5.133) corresponds to the diagonal action on the tensor
product VN ⊗VN . This is given in (5.37) for general k, for the k = 2 case at hand we have

L(σ−1)(ei ⊗ ej) = eσ(i) ⊗ eσ(j) . (5.134)

The vector space VN ⊗VN is reducible with respect to the diagonal action, and the decom-
position is given by (2.63). Again, we take the RHS of this isomorphism to be a vector
space with orthonormal basis XΛ,α

a labelled by

Λ ∈
{

[N ], [N − 1, 1], [N − 2, 2], [N − 2, 1, 1]
}
,

a ∈
{

1, . . . ,DimV SN
Λ

}
,

α ∈
{

1, . . . ,Mult(VN ⊗ VN → V SN
Λ )

}
.

(5.135)

In the representation basis the potential has a simple form,

V (X) =
∑

Λ,α,β,a

XΛ,α
a gΛ

αβX
Λ,β
a , (5.136)

which we can again write in terms of the original matrix variables Xij and projectors QΛ,αβ
ijkl
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defined in section 2.6
V (X) =

∑
Λ,α,β

∑
i,j,k,l

QΛ,αβ
ijkl g

Λ
αβXijXkl . (5.137)

5.4.2 Spectrum

The full Hamiltonian with quadratic potential given in (5.137) can be diagonalised using
oscillators. We will see that diagonalising the Hamiltonian only requires the diagonalisation
of a set of small parameter matrices (one 3 × 3 and another 2 × 2), despite having a
potentially large number of harmonic oscillators (N2).

The full Lagrangian in the representation basis is

L =
∑

Λ,α,β,a

δαβ∂tX
Λ,α
a ∂tX

Λ,β
a −XΛ,α

a gΛ
αβX

Λ,β
a . (5.138)

It describes a set of coupled harmonic oscillators. We write the Lagrangian in decoupled
form in the usual way. Let ΩΛ

αβ = (ωΛ
α )2δαβ be the diagonal matrix1 such that

gΛ
αβ =

∑
γ,δ

UΛ
αγΩΛ

γδU
Λ
βδ , (5.139)

where UΛ are orthogonal change of basis matrices. In the decoupled basis

SΛ,α
a =

∑
β

XΛ,β
a UΛ

βα , (5.140)

we have
L =

∑
Λ,α,a

1

2
∂tS

Λ,α
a ∂tS

Λ,α
a − 1

2
(ωΛ
α )2SΛ,α

a SΛ,α
a . (5.141)

The canonical momenta are given by

ΣΛ,α
a = ∂tS

Λ,α
a . (5.142)

The new canonical coordinates satisfy[
ΣΛ,α
a , SΛ′,β

b

]
= iδΛΛ′δαβδab , (5.143)

since UΛ are orthogonal matrices.
1We assume the eigenvalues are positive such that the spectrum of the Hamiltonian is bounded from

below. Therefore, we may write the eigenvalues as squares without loss of generality.
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The corresponding Hamiltonian,

H =
1

2

∑
Λ,α,a

ΣΛ,α
a ΣΛ,α

a + (ωΛ
α )2SΛ,α

a SΛ,α
a , (5.144)

is diagonalised by introducing oscillators

SΛ,α
a =

√
1

2ωΛ
α

((A†)Λ,α
a +AΛ,α

a ) ,

ΣΛ,α
a = i

√
ωΛ
α

2
((A†)Λ,α

a −AΛ,α
a ) ,

(5.145)

which satisfy [
AΛ,α
a , (A†)Λ′,α′

a′

]
= δΛΛ′δαα

′
δaa′ . (5.146)

In the oscillator basis, the normal ordered Hamiltonian has the form

H =
∑

Λ,α,a

ωΛ
α (A†)Λ,α

a AΛ,α
a . (5.147)

Defining number operators N̂Λ,α
a and N̂Λ,α as

N̂Λ,α
a = (A†)Λ,α

a AΛ,α
a , (5.148)

N̂Λ,α =
∑
a

N̂Λ,α
a , (5.149)

we may write

H =
∑

Λ,α,a

N̂Λ,α
a =

∑
Λ,α

N̂Λ,α . (5.150)

The energy quanta ωΛ
α do not depend on the oscillator state index a. This is a manifestation

of the SN invariance of the Hamiltonian H.

The Hilbert space H(k) has a basis of energy eigenstates

∏
Λ∈{[N ],[N−1,1],[N−2,2],[N−2,1,1]}
α∈{1,...Mult(VN⊗VN→V

SN
Λ )}

a∈{1,...,DimV
SN
Λ }

[
(A†)Λ,α

a

]NΛ,α
a√

NΛ,α
a !

|0〉 (5.151)
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where k =
∑

Λ,α,aN
Λ,α
a is the eigenvalue of the (total) number operator

N̂ =
∑

Λ,α,a

N̂Λ,α
a , (5.152)

and NΛ,α
a is the eigenvalue of N̂Λ,α

a .

Since the Hamiltonian (5.147) is a linear combination of number operators N̂Λ,α, it is nat-
ural to organise H(k) into eigenspaces of N̂Λ,α with eigenvalues NΛ,α =

∑
aN

Λ,α
a satisfying

k =
∑

Λ,αN
Λ,α. Diagonalising the number operators N̂Λ,α organises H(k) into subspaces

H(k) ∼=
⊕

ΣNΛ,α=k

⊗
Λ,α

H[NΛ,α] , (5.153)

where
H[NΛ,α] ∼= SymNΛ,α

(V SN
Λ ) . (5.154)

Each summand in (5.153) is a vector space of dimension

Dim

⊗
Λ,α

H[NΛ,α]

 =
∏
Λ,α

(
DimV SN

Λ +NΛ,α − 1

NΛ,α

)
=

(
1 +N [N ],1 − 1

N [N ],1

)(
1 +N [N ],2 − 1

N [N ],2

)
×(

N − 1 +N [N−1,1],1 − 1

N [N−1,1],1

)(
N − 1 +N [N−1,1],2 − 1

N [N−1,1],2

)(
N − 1 +N [N−1,1],3 − 1

N [N−1,1],3

)
×(

(N − 1)(N − 2)/2 +N [N−2,2] − 1

N [N−2,2]

)(
N(N − 3)/2 +N [N−2,1,1] − 1

N [N−2,2]

)
=(

N − 2 +N [N−1,1],1

N [N−1,1],1

)(
N − 2 +N [N−1,1],2

N [N−1,1],2

)(
N − 2 +N [N−1,1],3

N [N−1,1],3

)
×(

N(N − 3)/2 +N [N−2,2]

N [N−2,2]

)(
N(N − 3)/2− 1 +N [N−2,1,1]

N [N−2,2]

)
. (5.155)

Vectors in
⊗

Λ,αH[NΛ,α] have energy

E({NΛ,α}) =
∑
Λ,α

NΛ,αωΛ
α . (5.156)

Equation (5.155) thus gives the degeneracy of energy eigenstates for the specified integers
{NΛ,α}, associated with Λ, α as given in (5.135). This puts a lower bound on the degeneracy
of energy eigenstates. Further degeneracy may occur for particular choices of the constants
ωΛ
α , which can lead to the same numerical value of E({NΛ,α}) for different choices of
{NΛ,α}.
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5.4.3 Canonical partition function

The canonical partition function is defined as

Z(β) = TrH e−βH =
∑
E
N(E)e−βE , (5.157)

where N(E) is the degeneracy of eigenstates at energy E and β is the inverse temperature.

The binomial factors in (5.155) arise in the expansion of simple rational functions. Defining
x = e−β for convenience, we can therefore write

Z(β) =
1

(1− xω
[N ]
1 )(1− xω

[N ]
2 )

1

(1− xω
[N−1,1]
1 )N−1(1− xω

[N−1,1]
2 )N−1(1− xω

[N−1,1]
3 )N−1

×

1

(1− xω[N−2,2]
)(N−1)(N−2)/2(1− xω[N−2,1,1]

)N(N−3)/2
.

(5.158)
When the quanta of energy (ωΛ

α ) in (5.147) are integers, the possible state energies E
are integers and N(E) is related to what we refer to as an integer partition problem. The
integer partition problem is the following: pick any integer E , enumerate the set of solutions
(choices of NΛ,α

a ) to
E =

∑
Λ,α,a

NΛ,α
a ωΛ

α . (5.159)

The number of solutions is equal to N(E) and a single solution is denoted NΛ,α
a (E). This

problem depends on N because the state label a ranges over {1, . . . ,DimV SN
Λ }. For-

tunately, the N -dependence can be factorised due to the SN symmetry, which greatly
simplifies the problem.

To see this, consider the N -independent integer partition problem

E =
∑
Λ,α

NΛ,αωΛ
α , (5.160)

where a solution is given by a list of seven integers NΛ,α(E). For every solution NΛ,α(E)

to (5.160) the number of solutions to the integer partition problem in (5.159) is given by

Dim

⊗
Λ,α

H[NΛ,α(E)]

 . (5.161)

In this sense, the N -dependence in the problem has factorised: we only need to find
solutions to the N -independent equation (5.160) and multiply each solution by a known
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N -dependent factor. The total number of solutions to (5.159) is given by

∑
NΛ,α(E)

Dim

⊗
Λ,α

H[NΛ,α(E)]

 , (5.162)

where the sum is over the set of solutions to (5.160).

5.4.4 Energy eigenbases

We have observed that the oscillator states constructed using partition algebra diagram
operators in tensor space, contracted with oscillators (a†)ji obeying (5.11), are eigenstates
of the simplest matrix hamiltonian H0, given by (5.12). Contracting representation basis
elements in the partition algebra with oscillators produces quantum states,

∣∣QΛ1
Λ2,µν

〉
= TrV ⊗kN

(QΛ1
Λ2,µν

(a†)⊗k) |0〉 , (5.163)

which are eigenstates of H0 and which also diagonalise algebraic conserved charges.

The representation basis states are not eigenstates of the general permutation invariant
harmonic oscillator Hamiltonians H in (5.144). There is mixing of the representation
basis labels (Λ1,Λ2, µ, ν) caused by the different weights for the representations Λ ap-
pearing in the expansion of the SN invariant harmonic oscillator Hamiltonian defined in
equation (5.147). We expect this mixing of the labels in the (Λ1,Λ2, µ, ν) basis to be
constrained, for example by the SN Clebsch-Gordan decompositions of Λ ⊗ Λ1. Such
constrained mixing of representation theory bases for matrix systems arises in Hamiltoni-
ans of interest in AdS/CFT. A number of representation theory bases for U(N) invariant
multi-matrix systems have been described which capture information about finite N ef-
fects and are eigenstates of the Hamiltonian (in radial quantisation) in the free Yang-Mills
limit [7, 8, 9, 10, 11, 12]. However, the one-loop dilatation operator defines a non-trivial
Hamiltonian which is, in general, not diagonalised by these representation theoretic bases
(although there are some interesting exceptions to this statement, see [115]). Represen-
tation theoretic constraints on the mixing caused by the one-loop dilatation operator are
described in [116, 117, 118, 115, 119], following earlier work on one-loop mixings related
to strings attached to giant gravitons, e.g. [120, 121].
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5.5 Algebraic Hamiltonians and permutation invariant ground
states

So far our discussion of SN invariant subspaces in quantum mechanical matrix systems
has largely (with the exception of the previous section) been independent of any choice
of Hamiltonian acting on the Hilbert space. It can be viewed as a general description of
the kinematics of SN invariance, independent of the dynamics determined by the Hamil-
tonian. In this section we present Hamiltonians which realise the eigenspectrum scenarios
depicted in figure 5.1, this includes Hamiltonians for which the low energy eigenstates are
permutation invariant states.

The Hamiltonians we consider preserve the SN invariant subspace Hinv defined as

Hinv = {|T 〉 ∈ H : Ad(σ) |T 〉 = |T 〉 , ∀σ ∈ SN} . (5.164)

The adjoint action of permutations σ ∈ SN on the tensors T labelling the states simul-
taneously transforms the upper and lower indices of T according to (5.38). For any state
|T 〉 ∈ Hinv the Hamiltonians H obey the condition

H |T 〉 ∈ Hinv . (5.165)

A sufficient condition for H to satisfy (5.165) is for H itself to be SN invariant i.e.
[Ad(σ), H] = 0 for all σ ∈ SN .

We show how to construct Hamiltonians HK of this type, depending on an integer pa-
rameter K, with finite-dimensional space of SN invariant ground states. Both the energy
gap between the ground states and the lowest non-zero energy level, and the ground state
degeneracy depend on K in a way that is determined by the algebraic construction. As
sketched in the left-hand figure of 5.1a, HK has an energy gap of order K. The construc-
tion of HK can be viewed as including, in the Hamiltonian, central elements in CSN acting
on H(k) using Ad(σ) for k ≤ K. This can be related to the action of elements of P2k(N)

acting on H(k) for k ≤ K. We will briefly mention some analogies between the present
construction and the phenomenon of topological degeneracy which is widely studied in
condensed matter physics.

The ground state degeneracy of HK can be resolved by adding a term Hres, made from
the central algebraic charges discussed in section 5.3. This breaks the degeneracy of the
invariant ground states as illustrated in the spectrum on the right of figure 5.1a. The
representation basis

∣∣QΛ1
Λ2,µν

〉
presented in section 5.2.3 diagonalises these Hamiltonians in

the invariant subspace, and the state energies depend on labels Λ1,Λ2.
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Multiplicity labels µ, ν are not distinguished by the central algebraic charges. Distin-
guishing multiplicity labels requires more general elements of Pk(N). Generalising the
construction of Hres naturally leads to a large class of SN invariant Hamiltonians related
to the left action of elements of Pk(N), which can be used to break the degeneracy as-
sociated with multiplicity labels. Hamiltonians of this type can have non-trivial spectra,
in which invariant states are distributed across the energy spectrum, with no discernible
pattern of difference compared to non-invariant states, as illustrated in figure 5.1b.

The 11-parameter Hamiltonians in section 5.4 typically have such non-trivial spectra.
Given the non-trivial index contractions in (5.137),∑

i,j,k,l

QΛ,αβ
ijkl XijXkl −→ (a†)ija

k
l Q

Λ,αβ
ijkl , (5.166)

these Hamiltonians are not of the kind involving only the left action of Pk(N). Similarly,
HK is not of this kind. This implies that a more general construction of SN invariant
Hamiltonians exists. We give a description of this more general construction, which in-
volves elements of P2k(N). We end the section with a lattice interpretation of the matrix
oscillators.

E HK +HresHK

0

K

(a)

E

(b)

Figure 5.1: The figure illustrates the type of spectra that can be engineered using the
algebraic Hamiltonians discussed in this section. Blue (light) lines correspond to states
that are invariant under the adjoint action of SN . Black (dark) lines are non-invariant
states.

5.5.1 Partition algebra elements as quantum mechanical operators

We now translate much of the discussion in section 5.3 into the language of quantum me-
chanical operators on H. Finding representation bases corresponds to the diagonalisation
of commuting operators on H. Notably, elements of SPk(N) naturally correspond to op-
erators for fixed k, or maps H(k) → H(k). However, it will be useful to have expressions
for these fixed k operators in terms of oscillators, which act on the entire Hilbert space H.
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These two kinds of operators are related by projectors Pk : H → H(k) to fixed k subspaces.
We use this in the construction of Hamiltonians in the remainder of section 5.5.

For a general state |T 〉 ∈ H(k) (see (5.25)) and element [d] ∈ SPk(N) there is a correspond-
ing operator defined as

[d]L |T 〉 = |[d]T 〉 = |dT 〉 , (5.167)

where the superscript L stands for left action, and

(dT )i1...iki1′ ...ik′
=

∑
j1,...,jk

di1...ikj1...jk
T j1...jki1′ ...ik′

. (5.168)

The second equality in (5.167) follows since

|[d]T 〉 = TrV ⊗kN
([d]T (a†)⊗k) |0〉 =

1

k!

∑
γ∈Sk

TrV ⊗kN
(LγdLγ−1T (a†)⊗k) |0〉

= TrV ⊗kN
(dT (a†)⊗k) |0〉 = |dT 〉 ,

(5.169)

where L(σ) is defined in equation (5.37). We have used LγT = TLγ together with
Lγ(a†)⊗k = (a†)⊗kLγ to go to the second line. We may also define operators corresponding
to right action,

[d]R |T 〉 = |Td〉 . (5.170)

We extend [d]L to an operator on H, expressible in terms of oscillators and projectors
Pk : H → H(k) as

[d]L =
1

k!
Pk TrV ⊗kN

((a†)⊗kda⊗k)Pk . (5.171)

Similarly, we can extend [d]R to an operator on H,

[d]R =
1

k!
Pk TrV ⊗kN

(d(a†)⊗ka⊗k)Pk . (5.172)

In what follows we will prove results explicitly for the left action. For the sake of brevity
we omit the analogous proofs for the right action.

The definition of Pk in the oscillator basis is

Pk′(a†)i1j1 . . . (a
†)ikjk |0〉 = δkk′(a

†)i1j1 . . . (a
†)ikjk |0〉 . (5.173)

We now prove
1

k!
Pk TrV ⊗kN

((a†)⊗kda⊗k)Pk |T 〉 = |dT (k)〉 , (5.174)

where |T 〉 =
∑∞

k=0 |T (k)〉 and |T (k)〉 ∈ H(k). The projector immediately gives Pk |T 〉 =
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|T (k)〉. It remains to prove

1

k!
Pk TrV ⊗kN

((a†)⊗kda⊗k)|T (k)〉 = |dT (k)〉 . (5.175)

We prove this diagrammatically, using the state definition in terms of diagrams (5.31)

1

k!
TrV ⊗kN

((a†)⊗kda⊗k)|T (k)〉 = d

(a†)⊗k

a⊗k (a†)⊗k

T (k) |0〉 =
1

k!

∑
γ∈Sk

(a†)⊗k

d T (k)

Lγ Lγ−1

|0〉

=
1

k!

∑
γ∈Sk

Lγ−1

Lγ

(a†)⊗k

d

T (k)

|0〉

= |dT (k)〉 .

(5.176)

In the second equality we have moved all annihilation operators past the creation oper-
ators, giving a sum over contractions. The sum over γ ∈ Sk encodes the contractions
and in the second line we have straightened the diagram. The last identification follows
since Lγ−1T (k)Lγ = T (k). Because |dT (k)〉 ∈ H(k) we have Pk |dT (k)〉 = |dT (k)〉, which
establishes the equality in (5.174).

As we now show, the Hermitian conjugate of the operator [dπ]L is [dTπ ]L, where dTπ is the
element obtained by flipping the diagram dπ horizontally. This follows from the inner
product 〈

T ′
∣∣T〉 =

∑
γ∈Sk

TrV ⊗kN
((T ′)TγTγ−1) , (5.177)

defined in (5.54)) and

〈
T ′
∣∣dπT〉 =

∑
γ∈Sk

TrV ⊗kN
((T ′)TγdπTγ

−1) = k! TrV ⊗kN
((T ′)TdπT )

=
∑
γ∈Sk

TrV ⊗kN
((dTπT

′)Tγ−1Tγ) = 〈dTπT ′|T 〉 . (5.178)

As operators on H the central elements introduced in section 5.3.1, T2 ∈ Z(CSN ), T̄2 ∈
Z(Pk(N)) and t2 ∈ Z(CSk) can be written as oscillators. From the definition of the action
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of T2 in (5.90) we have

T
(k),L
2 ≡ 1

k!
Pk TrV ⊗kN

[
(a†)⊗kL(T2)a⊗k

]
Pk

=
1

k!
Pk

∑
σ=(ij)

1≤i<j≤N

TrV ⊗kN

[
(a†)⊗kL(σ)a⊗k

]
Pk

=
1

k!
Pk

∑
σ=(ij)

1≤i<j≤N

∑
i1...ik
i1′ ...ik′

(a†)
i1′
σ−1(i1)

. . . (a†)
ik′
σ−1(ik)

ai1i1′
. . . aikik′

Pk . (5.179)

Similarly, the fixed k operators corresponding to T̄2 are

T̄2
(k),L

=
1

k!
Pk TrV ⊗kN

[
(a†)⊗kT̄2a

⊗k
]
Pk

=
1

k!
Pk

∑
i1...ik
j1...jk
j1′ ...jk′

(a†)i1i1′
. . . (a†)ikik′

(T̄2)
i1′ ...ik′
j1...jk

aj1i1 . . . a
jk
ik
Pk , (5.180)

where T̄2 can be expanded in in the diagram basis as in (5.91). Finally, the fixed k operators
corresponding to t2 are

t
(k),L
2 =

1

k!
Pk

∑
τ=(ij)

1≤i<j≤k

TrV ⊗kN

[
(a†)⊗kLτ−1a⊗k

]
Pk

=
1

k!
Pk

∑
τ=(ij)

1≤i<j≤k

∑
i1...ik
i1′ ...ik′

(a†)
i1′
iτ(1)

. . . (a†)
ik′
iτ(k)

ai1i1′
. . . aikik′

Pk . (5.181)

All three of these operators are Hermitian, because (T2)T = T2 and (t2)T = t2, and
consequently their eigenvectors with distinct eigenvalues are orthogonal. They are difficult
to diagonalise over the entirety of H(k), since the dimension grows as N2k for N � k. But
the diagonalisation over H(k)

inv is feasible since the dimension is bounded by B(2k), which
does not scale with N . Further simplification arises when acting on states |d〉 ∈ H(k)

inv, since
the action can be formulated as multiplication in SPk(N), thus bypassing the computation
of large index contractions. That is, for |d〉 ∈ H(k)

inv

T̄2
(k),L |d〉 = |T̄2d〉 , (5.182)

where the product T̄2
(k)
d can be taken in Pk(N). It follows that,

T̄2
(k),L

∣∣∣QΛ1
Λ2,µν

〉
=
∣∣∣T̄2Q

Λ1
Λ2,µν

〉
= χ̂Λ1(T2)

∣∣∣QΛ1
Λ2,µν

〉
, (5.183)
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and similarly for t(k),L
2 .

The free Hamiltonian H0 in equation (5.8) is just the number operator. The above opera-
tors conserve the number of particles. Consequently,[

H0, T
(k),L
2

]
=
[
H0, T̄2

(k),L
]

=
[
H0, t

(k),L
2

]
= 0 , (5.184)

and the corresponding charges are conserved.

5.5.2 Decoupling invariant sectors and invariant ground states

We now present a Hermitian operator with algebraic origin that can be used to control the
energies of states invariant under the adjoint action of SN on H(k). We use the operator
to construct a Hamiltonian with a large number of invariant ground states.

The adjoint action of σ ∈ SN on H(k) is defined in equation (5.38) as

Ad(σ) |T 〉 = TrV ⊗kN
(L(σ)TL(σ−1)(a†)⊗k) |0〉 =

∑
i1,...,ik
j1,...,jk

T
σ(j1)...σ(jk)
σ(i1)...σ(ik) (a†)i1j1 . . . (a

†)ikjk |0〉 .

(5.185)
We may write Ad(σ) in terms of oscillators and projectors Pk : H → H(k) defined in
equation (5.173). For |T 〉 ∈ H(k),

Ad(σ) |T 〉 =
1

k!
Pk TrV ⊗kN

(L(σ−1)(a†)⊗kL(σ)a⊗k)Pk |T 〉 . (5.186)

We note that the the ordering of a† relative to a is understood to be as shown in the above
equation. To understand the equality in (5.186), we evaluate

TrV ⊗kN
(L(σ−1)(a†)⊗kL(σ)a⊗k) |T 〉 , (5.187)

where we take |T 〉 ∈ H(k) (there is no loss of generality since Pk projects to H(k)). Dia-
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grammatically we have

a⊗k (a†)⊗k

T

L(σ)

(a†)⊗k

L(σ−1)

|0〉 =
∑
γ∈Sk

(a†)⊗k

Lγ Lγ−1

L(σ−1)

L(σ) T |0〉 =
∑
γ∈Sk

Lγ

Lγ−1

L(σ)

L(σ−1)

(a†)⊗k

T

|0〉

= k! TrV ⊗kN
(L(σ)TL(σ−1)(a†)⊗k) |0〉 .

(5.188)

The first equality follows by encoding the contraction of annihilation/creation operators
in a sum over γ ∈ Sk, and the last equality follows by LγT = TLγ . This establishes the
equality (5.186).

We are now in a position to define the Hermitian operator of interest. Let C(k)
3 be the

operator defined to act on |T 〉 ∈ H(k) as

C
(k)
3 |T 〉 =

1

3

∑
σ=(ijk)

1≤i 6=j 6=k≤N

Ad(σ) |T 〉 =
1

3

∑
σ=(ijk)

1≤i 6=j 6=k≤N

T

(a†)⊗k

L(σ−1)

L(σ)

|0〉 , (5.189)

where the sum is over all 3-cycles. It commutes with the adjoint action of SN ,

Ad(γ)C
(k)
3 = C

(k)
3 Ad(γ) , ∀ γ ∈ SN , (5.190)

because C(k)
3 is a sum over an entire conjugacy class. We now use a sequence of diagram-

matic manipulations to show that the action of C(k)
3 can equivalently be expressed using

an element T̄ (2k)
3 ∈ P2k(N). A useful way to rewrite the diagram in (5.189) is

1

3

∑
σ=(ijk)

1≤i 6=j 6=k≤N

T

(a†)⊗k

L(σ−1)

L(σ)

|0〉 =
1

3

∑
σ=(ijk)

1≤i 6=j 6=k≤N
T

L(σ)L(σ)

(a†)⊗k

|0〉 , (5.191)
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where we have gone from a trace in V ⊗kN to a trace in V ⊗2k
N . By arguments analogous to

those in section 5.3.1, the action of

1

3

∑
σ=(ijk)

1≤i 6=j 6=k≤N

L(σ) , (5.192)

on V ⊗2k
N is related to an element in P2k(N), that we call T̄ (2k)

3 . Diagrammatically, this is
understood from the following sequence of identifications,

1

3

∑
σ=(ijk)

1≤i 6=j 6=k≤N
T

L(σ)L(σ)

(a†)⊗k

|0〉 =
1

3

∑
σ=(ijk)

1≤i 6=j 6=k≤N
T ⊗ 1

(a†)⊗k ⊗ 1

L(σ)

|0〉 =
T ⊗ 1

T
(2k)
2

(a†)⊗k ⊗ 1

|0〉 . (5.193)

That is, we have

C
(k)
3 |T 〉 = TrV ⊗2k

N

(
c(T ⊗ 1)T̄

(2k)
3 ((a†)⊗k ⊗ 1))

)
|0〉 , (5.194)

where c ∈ P2k(N) is the bottom box in the diagram on the RHS of (5.193) and

(c)i1...i2kj1...j2k
= δi1ik+1 . . . δiki2kδj1jk+1

. . . δjkj2k . (5.195)

The explicit formula for T̄ (2k)
3 could be derived using steps similar to the derivation of the

relation between T̄ (k)
2 and T (k)

2 in section 5.3.1. Relating C(k)
3 to an element T̄ (2k)

3 using
P2k(N) allows for two kinds of large N simplification. Firstly, in place of N !/(N − 3)!3!

terms in C
(k)
3 we have no more than B(2k) terms in T̄

(2k)
3 , where B(2k) are the Bell

numbers. Additionally, index contractions ranging overN can be replaced by multiplication
in the partition algebra P2k(N) when |T 〉 ∈ Hinv, the complexity of this multiplication
scales with k.

We now move on to discuss the spectrum of C(k)
3 . Since H(k) is reducible with respect

to the adjoint action of SN , it decomposes into irreducible representations of SN , labeled
by Young diagrams Y with N boxes. By Schur’s lemma the action of C(k)

3 on each ir-
reducible subspace of this decomposition is proportional to the identity. The constant of
proportionality is the normalised character of C(k)

3 in the irreducible representation Y ,

χ̂Y (C
(k)
3 ) =

χY (C
(k)
3 )

DimV SN
Y

. (5.196)
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Normalised characters of C(k)
3 are known [122, Theorem 4] to equal

χ̂Y (C
(k)
3 ) =

∑
(p,q)∈Y

(q − p)2 − N(N − 1)

2
, (5.197)

where the sum is over all cells in the Young diagram Y , using coordinates (p, q) for rows
and columns respectively. For example, the largest eigenvalue of C(k)

3 corresponds to the
trivial representation (Young diagram with all N boxes in the first row) where

∑
(p,q)∈Y

(q − p)2 = 02 + 12 + 22 + · · ·+ (N − 1)2 =
N(N − 1)(2N − 1)

6
, (5.198)

which gives the eigenvalue N(N−1)(N−2)
3 in (5.197). In what follows it will be useful to shift

the eigenvalue of the trivial representation to zero by considering the operator

Ĉ
(k)
3 =

N(N − 1)(N − 2)

3
− C(k)

3 . (5.199)

In terms of oscillators and projectors, Ĉ(k)
3 is written as

Ĉ
(k)
3 =

1

k!
Pk

N(N − 1)(N − 2)

3
−

∑
σ=(ijk)

1≤i 6=j 6=k≤N

TrV ⊗kN
(L(σ−1)(a†)⊗kL(σ)a⊗k)

Pk .
(5.200)

We can use Ĉ(k)
3 to construct Hamiltonians with interesting spectra. Consider the family

of Hamiltonians (depending on K)

HK =

K∑
k=0

Ĉ
(k)
3 H0 +

∞∑
k=K+1

PkH0 , (5.201)

where H0 is the free Hamiltonian (number operator) defined in (5.8). In this model, all
invariant states of degree k ≤ K have zero energy, while non-invariant states have energies
that scale with N . For example, degree k ≤ K states in the representation [N − 1, 1] of
SN have energies kN(N − 2). More generally, degree k ≤ K states in the representation
[N − a, a] for 1 ≤ a < bN/2c have energy k(N − a+ 1)(N − 2)a. States of degree k > K

have energy k. The spectrum of HK is illustrated on the left hand side of figure 5.1a.
Taking N � K, there is a K-dependent degeneracy of invariant ground states and a gap
of order K. In this scenario, the subspace of ground states has dimension

K∑
k=0

DimH(k)
inv = 1 +

K∑
k=1

DimSPk(N) , (5.202)
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where H(k)
inv is the degree k subspace of Hinv (see equation B.11 in [58] for explicit for-

mulas computing DimH(k)
inv). By taking N � K � 1, we can have a large degeneracy

of ground states alongside the interesting correlations between the degeneracy of ground
states and the energy gap. A large ground state degeneracy associated with elements of a
diagrammatic algebra, in this case the partition algebras SPk(N) for k ≤ K, is reminis-
cent of topological degeneracy and its links to anyons [123, 124]. We leave a more detailed
investigation of the analogies between the present algebraic constructions and topological
degeneracy for the future.

5.5.3 Resolving the invariant spectrum

In the previous section we discussed a Hamiltonian (5.201) with degenerate ground state.
We will now use the commuting algebraic charges T̄ (k)

2 , t
(k)
2 ∈ Pk(N), constructed in section

5.3, to resolve this degeneracy. Note that the charges commute with Ad(σ) and in particular
they commute with Ĉ(k)

3 . We prove this in the next subsection, where we consider more
general operators coming from elements of Pk(N). Note that because T̄ (k)

2 and t
(k)
2 are

central elements of Pk(N), and the representation basis states |QΛ1
Λ2,µν

〉 correspond to
elements in Pk(N), the left and right actions of the charges are equivalent on these basis
states.

The algebraic charges can be written in terms of oscillators and projectors as in (5.180)
and (5.181). Importantly, the representation basis states |QΛ1

Λ2,µν
〉 are eigenstates of

T̄
(k),L
2 , t

(k),L
2 . The eigenvalues are normalised characters of the representations Λ1 of SN

and Λ2 of Sk respectively (see (5.183)). That is

T̄
(k),L
2

∣∣QΛ1
Λ2,µν

〉
=
∣∣T̄ (k)

2 QΛ1
Λ2,µν

〉
= T̄

(k),R
2

∣∣QΛ1
Λ2,µν

〉
= χ̂Λ1(T2)

∣∣QΛ1
Λ2,µν

〉
, (5.203)

t
(k),L
2

∣∣QΛ1
Λ2,µν

〉
=
∣∣t(k)

2 QΛ1
Λ2,µν

〉
= t

(k),R
2

∣∣QΛ1
Λ2,µν

〉
= χ̂Λ2(t2)

∣∣QΛ1
Λ2,µν

〉
, (5.204)

where the normalised characters χ̂ are defined in (5.97). Note that the eigenvalues of the
operator t(k),L

2 range between ±k(k−1)
2 , and those of T̄ (k),L

2 between ±N(N−1)
2 , including an

infinite number of such operators in a Hamiltonian may result in a spectrum that is not
bounded from below. By adding these algebraic charges to the Hamiltonian (5.201) the
energy of the states

∣∣QΛ1
Λ2,µν

〉
labeled by distinct pairs Λ1,Λ2 will split. The multiplicity

labels µ, ν are not distinguished by these central algebraic charges. Hamiltonians that
resolve more detailed information such as multiplicity labels are discussed in the next
subsection.
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For concreteness consider the spectrum of the Hamiltonian

H ′K = HK +Hres

= HK −
2

N(N − 1)

K∑
k=1

T̄
(k),L
2

=
K∑
k=0

Ĉ
(k)
3 H0 +

∞∑
k=K+1

PkH0 −
2

N(N − 1)

K∑
k=1

T̄
(k),L
2 . (5.205)

The ground state degeneracy is reduced compared to HK . The lowest energy states are
degree k ≤ K states |Q[N ]

Λ2,µν
〉 with energy −1. The highest energy state with degree k ≤ K

is |Q[N−K,1K ]

[1K ]
〉, it has degree K and energy − (N−2K−1)

(N−1) . The gap of order K remains, as

illustrated on the right of figure 5.1a. The label Λ2 can be resolved by including t(k),L
2 in

the Hamiltonian.

To fully resolve the labels Λ1,Λ2 for general k and N , new charges are necessary. Detailed
discussions of the problem of using such charges in the centre of the symmetric group
algebra C[Sn], with motivations coming from a model for information loss in AdS/CFT
[125], are given in [112, 126]. It can be proven that {T2, T3, · · · , Tn} provide an adequate
set of charges and these also provide a multiplicative generating set for the centre of
the group algebra. Typically, a smaller set {T2, T3, · · · , Tk∗(n)} suffices. For example
k∗(5) = 2, k∗(14) = 3, k∗(80) = 6. In the present discussion these results can be applied by
choosing n = k and n = N respectively.

5.5.4 Precision resolution of the invariant spectrum

In the previous section we presented Hamiltonians involving commuting algebraic charges,
constructed from central elements in Pk(N), that resolve the representation labels Λ1,Λ2

of representation basis elements
∣∣QΛ1

Λ2,µν

〉
. As discussed in section 5.3.2, and illustrated

in an explicit example in section 5.3.3, more general elements of SPk(N) are necessary to
resolve the multiplicity labels µ, ν. We will use this observation to construct SN invariant
Hamiltonians, involving operators [d]L and [d]R constructed from non-central elements
[d] ∈ SPk(N), with non-degenerate eigenvalues.

Since we want to construct Hamiltonians H satisfying [Ad(σ), H] = 0, built from oper-
ators [d]L, [d]R, we will now prove that [Ad(σ), [d]L] = [Ad(σ), [d]R] = 0. To show that
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[d]L Ad(σ) = Ad(σ)[d]L we combine equation (5.167) with equation (5.185)

Ad(σ)[d]L |T 〉 = TrV ⊗kN
(L(σ)dTL(σ−1)(a†)⊗k) |0〉

= TrV ⊗kN
(dL(σ)TL(σ−1)(a†)⊗k) |0〉

= [d]L Ad(σ) |T 〉 ,

(5.206)

where the second line follows since L(σ)d = dL(σ) as elements of End(V ⊗kN ) (linear maps
V ⊗kN → V ⊗kN ). The argument is identical for [d]R Ad(σ) = Ad(σ)[d]R.

To construct Hamiltonians H, using the above operators, we need to ensure that any
operator we include in H is Hermitian. The operators [d]L, [d]R are not Hermitian in
general, unless [dT ] = [d]. Taking this into account, we can parametrise a large family of
SN invariant Hamiltonians using the diagram basis for Pk(N). We write

H =
1

2

∞∑
k=1

∑
[dπ ]

(
Lk,π[dπ]L + L∗k,π[dTπ ]L +Rk,π[dπ]R +R∗k,π[dTπ ]R

)
, (5.207)

where the sum over [dπ] runs over a basis for SPk(N) and Lk,π, Rk,π are complex parameters
with the constraint L∗k,π = Lk,π′ and R∗k,π = Rk,π′ if dTπ = dπ′ . The equivalent expression
for H in terms of oscillators and projectors is

H =
1

2

∞∑
k=1

∑
[dπ ]

Pk TrV ⊗kN

(
(a†)⊗k

Lk,πdπ + L∗k,πd
T
π

k!
a⊗k

)
Pk

+
1

2

∞∑
k=1

∑
[dπ ]

Pk TrV ⊗kN

(
Rk,πdπ +R∗k,πd

T
π

k!
(a†)⊗ka⊗k

)
Pk .

(5.208)

Progressively turning on parameters in equation (5.207) will tend to break degeneracy in
the spectrum. Eventually, the spectrum may take the form in figure 5.1b where invariant
and non-invariant states are mixed, and most of the degeneracy is broken.

5.5.5 General invariant Hamiltonians from partition algebras

The Hamiltonian H in (5.207) is not the most general Hamiltonian satisfying [H,Ad(σ)] =

0. For example, it does not include the Hamiltonian (5.147) constructed in section 5.4 nor
HK in (5.201). As we noticed in (5.193), C(k)

3 is related to an element in P2k(N). We now
generalise this observation to give a construction of general SN invariant operators from
elements in P2k(N).

General degree preserving operators that commute with Ad(σ) can be constructed from
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elements d ∈ P2k(N) as

1

k!
Pk TrV ⊗2k

N
(d(a†)⊗k ⊗ a⊗k)Pk ↔

1

k!
Pk

d

(a†)⊗k a⊗k

Pk . (5.209)

The action of these operators on |T 〉 ∈ H(k) is

1

k!

∑
γ∈Sk

(a†)⊗k

d T

Lγ Lγ−1

|0〉 =

d

(a†)⊗k T
|0〉 . (5.210)

Commutativity with Ad(σ) follows from the following diagrammatic manipulations

1

k!
d

T

L(σ−1)

L(σ)
(a†)⊗k a⊗k

(a†)⊗k

|0〉 =

(a†)⊗k

d T

L(σ−1)

L(σ)

Lγ Lγ−1

=

d

L(σ−1)

L(σ)

(a†)⊗k

T |0〉

=

d

L(σ−1)

L(σ)

T

(a†)⊗k

|0〉 =

d

L(σ−1)

L(σ)

(a†)⊗k

T

|0〉 =

d

T

L(σ)

(a†)⊗k

L(σ−1)

|0〉 ,

(5.211)

where the first equality uses equation (5.210). The second line introduces an identity
operator of the form L(σ−1)L(σ) acting on the left-hand vector space V ⊗kN . The third
equality follows from L(σ−1)d = dL(σ−1) and the cyclicity of the trace. The last line
removes the identity operator L(σ)L(σ−1) acting on the right-hand vector space V ⊗kN .
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The last diagram is equal to

Ad(σ)
1

k!
TrV ⊗2k

N
(d(a†)⊗k ⊗ a⊗k) |T 〉 , (5.212)

which proves that they commute.

The construction readily generalises to operators that do not preserve the degree of states.
Consider

1

k1!
Pk2 TrV ⊗2k

N
(d(a†)⊗k2 ⊗ a⊗k1)Pk1 , (5.213)

this gives a map d : H(k1) → H(k2) labeled by elements d ∈ Pk1+k2(N). Note that
these operators have an Sk2 × Sk1 symmetry, which permutes the creation operators and
annihilation operators separately. Therefore, the dimension of the space of these operators
is related to the counting of two-matrix permutation invariants, which was studied in
section 2 of [1].

5.5.6 Bosons on a lattice

The Fock space of matrix oscillators can be interpreted as the Fock space of bosons on
a two-dimensional lattice of size N2. The lattice is parameterised by ordered pairs (i, j)

for i, j = 1, . . . , N which label the site in the ith row, jth column as in figure 5.2. The

i

j

Figure 5.2: Matrix oscillators are naturally associated with a N -by-N square lattice. The
creation operator (a†)ji creates a quanta of excitation at row i column j in the lattice.

creation operator (a†)ji creates a quantum of excitation at the site (i, j). In our conventions,
aij annihilates a quantum at site (i, j). Permutation invariant states naturally contain
excitations spread throughout the entire lattice. For example, the state

∣∣∣ 〉 =

N∑
i=1

(a†)ii |0〉 , (5.214)
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contains an excitation of every site on the diagonal, and the state∣∣∣ 〉− ∣∣∣ 〉 =
∑
i 6=j

(a†)ij |0〉 , (5.215)

contains an excitation on every off-diagonal site.

Most choices of SN invariant Hamiltonians constructed in equation (5.207) contain non-
local interactions, connecting sites at opposite sides of the lattice. Note that the left acting
terms in the Hamiltonian (5.207) leave the columns fixed while the right acting terms fix
the rows. An example of the non-locality is seen by considering

H = P1 TrVN (a† a)P1 = P1

N∑
i,j,k=1

(a†)ij(a)ki P1 . (5.216)

This interaction moves a single excitation at site (i, j) to every row in column j. In
particular,

H(a†)1
1 |0〉 =

N∑
i=1

(a†)1
i |0〉 , (5.217)

contains the state (a†)1
N .

We can enumerate a set of diagrams that give local SN invariant terms, through left and
right action, as follows. First note that the identity element in Pk(N) gives a local term.
For example, in k = 2

TrV ⊗2
N

((a†)⊗2 a⊗2) =

N∑
i1,i2,j1,j2=1

(a†)i1j1(a†)i2j2(a)j1i1 (a)j2i2 . (5.218)

It follows that any diagram that can be constructed from the identity element by adding
additional edges is local. For example

TrV ⊗2
N

((a†)⊗2 a⊗2) =
N∑

i1,i2,j=1

(a†)i1j (a†)i2j (a)ji1(a)ji2 , (5.219)

which is still local.
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5.6 AdS/CFT inspired extremal correlators in matrix quan-
tum mechanics

Extremal correlators in N = 4 SYM form interesting sectors having non-renormalisation
properties [127]. They are closely connected to representation theoretic quantities such as
Littlewood-Richardsson coefficients, and form a crucial set of examples for checking the
AdS/CFT correspondence. In the quantum mechanical model presented in this chapter,
vacuum expectation values similar to extremal correlators can be computed exactly. In
this section we make use the factorisation result concerning the two-point function of
permutation invariant matrix observables (4.61) proven in the previous chapter - this is
used to demonstrate that a similar factorisation property holds for quantum mechanical
permutation invariant states. We then compute an expression for extremal three-point
correlators associated with SN invariant states, which are simple in the diagram basis, and
obey representation theoretic selection rules.

5.6.1 Two-point correlators

The equation (5.48) can be interpreted as a quantum mechanical operator-state correspon-
dence for SN invariant states labelled by [dπ] ∈ SPk(N),

|dπ〉 ←→ Oπ = TrV ⊗kN
([dπ](a†)⊗k) . (5.220)

From equation (5.52) we have

O†π = TrV ⊗kN
([dTπ ]a⊗k) , (5.221)

where the transpose dTπ is the diagram obtained by reflecting dπ across a horizontal line,
as illustrated in (5.53). The time-dependent operators are given by

Oπ(t) = e−iH0tOπeiH0t = e−iktOπ , (5.222)

where H0 is the free Hamiltonian, defined in equation (5.12).

In section 4.3 the two-point function of permutation invariant matrix observables was shown
to factorise in the large N limit. Here, this result is used to show an equivalent factorisation
property for the two-point function of permutation invariant quantum mechanical states.
Let [dπ1 ] ∈ SPk1(N), [dπ2 ] ∈ SPk2(N), and define the two-point correlator to be the
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vacuum expectation value

〈0| O†π1
(t1)Oπ2(t2) |0〉 =

eik1t1−ik2t2 〈0|Tr
V
⊗k1
N

([dTπ1
]a⊗k1) Tr

V
⊗k2
N

([dπ2 ](a†)⊗k2) |0〉 .
(5.223)

Ignoring the trivial time dependence and taking normalised operators [d̂π1 ], [d̂π2 ], as defined
in (5.55), in the large N limit we have

〈0|Tr
V
⊗k1
N

([d̂Tπ1
]a⊗k1) Tr

V
⊗k2
N

([d̂π2 ](a†)⊗k2) |0〉 = δk1k2

∑
γ∈Sk1

Tr
V
⊗k2
N

(γ−1d̂Tπ1
γd̂π2)

=

1 +O(1/
√
N) if [dπ1 ] = [dπ2 ] ,

0 +O(1/
√
N) otherwise .

(5.224)
In the first line we have absorbed the Sk1 averaging into the sum over γ ∈ Sk1 arising from
the Wick contractions of a and a†. In the second line we have used the factorisation result
(4.61).

5.6.2 Three-point correlators

Let [dπ1 ] ∈ SPk1(N), [dπ2 ] ∈ SPk2(N), [dπ] ∈ SPk(N), and define the extremal three-point
correlator to be the vacuum expectation value

〈0| O†π1
(t1)O†π2

(t2)Oπ(t) |0〉 =

eik1t1+ik2t2−ikt 〈0|Tr
V
⊗k1
N

([dTπ1
]a⊗k1) Tr

V
⊗k2
N

([dTπ2
]a⊗k2) TrV ⊗kN

([dπ](a†)⊗k) |0〉 , (5.225)

with the constraint that k = k2 + k1. As we now show, extremal correlators are simple
when expressed in the diagram basis. We compute (5.225) by Wick contractions, which
are encoded in a sum over γ ∈ Sk. Once again, ignoring the trivial time-dependence we
have

〈0|Tr
V
⊗k1
N

([dTπ1
]a⊗k1) Tr

V
⊗k2
N

([dTπ2
]a⊗k2) TrV ⊗kN

([dπ](a†)⊗k) |0〉

=
∑
γ∈Sk

TrV ⊗kN
(γ−1(dTπ1

⊗ dTπ2
)γdπ)

=
∑
γ∈Sk

N c(γ−1(dπ1⊗dπ2 )γ∨dπ) . (5.226)

We will now derive a set of representation theoretic selection rules for the extremal corre-
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lators. To state the result we are going to prove, we define the operators

OΛ1
Λ2,µν

= TrV ⊗kN
(QΛ1

Λ2,µν
(a†)⊗k) , (5.227)

associated with representation basis elements QΛ1
Λ2,µν

∈ SPk(N). Consider the extremal
correlator (the time-independent part of it)

〈0| (OΛ1
Λ2,µν

)†(OΛ′1
Λ′2,µ

′ν′)
†OΛ′′1

Λ′′2 ,µ
′′ν′′ |0〉 = k! TrV ⊗kN

((
QΛ1

Λ2,νµ
⊗QΛ′1

Λ′2,ν
′µ′

)
Q

Λ′′1
Λ′′2 ,µ

′′ν′′

)
, (5.228)

for QΛ1
Λ2,µν

∈ SPk1(N), Q
Λ′1
Λ′2,µ

′ν′ ∈ SPk2(N), Q
Λ′′1
Λ′′2 ,µ

′′ν′′ ∈ SPk(N). The factor of k! follows
since the matrix units for SPk(N) are invariant under conjugation by Sk. Note that the
multiplicity labels are exchanged under diagram transposition, which follows from (B.13).
The resulting selection rule tells us that the trace in (5.228) vanishes if C(Λ1,Λ

′
1,Λ

′′
1) = 0,

where C(Λ1,Λ
′
1,Λ

′′
1) is the Kronecker coefficient for tensor products of irreducible repre-

sentations of SN .

We start with the simpler, but analogous expression for matrix units of Pk(N),

TrV ⊗kN
((QΛ1

βα ⊗Q
Λ′1
β′α′)Q

Λ′′1
α′′β′′) =

Q
Λ′′1
α′′β′′

QΛ1
αβ Q

Λ′1
α′β′

(5.229)

Using (see e.g. equation (5.98))

(QΛ1
βα ⊗Q

Λ′1
β′α′)Q

Λ′′1
α′′β′′ =

∑
γ′′

D
Λ′′1
γ′′α′′(Q

Λ1
βα ⊗Q

Λ′1
β′α′)Q

Λ′′1
γ′′β′′ , (5.230)
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we have

TrV ⊗kN
((QΛ1

βα ⊗Q
Λ′1
β′α′)Q

Λ′′1
α′′β′′) =

∑
γ′′

D
Λ′′1
γ′′α′′(Q

Λ1
βα ⊗Q

Λ′1
β′α′) TrV ⊗kN

(Q
Λ′′1
γ′′β′′)

= D
Λ′′1
β′′α′′(Q

Λ1
βα ⊗Q

Λ′1
β′α′) DimV SN

Λ′′1

= DimV SN
Λ′′1

QΛ1
αβ ⊗Q

Λ′1
α′β′

Λ′′1

Λ′′1

β′′

α′′

(5.231)

The second equality uses (B.26).

To further simplify, we want to turn the RHS into a product of matrix elements. This is
achieved by inserting a resolution of the identity using representations of Pk1(N)⊗Pk2(N).
This resolves to a set of branching coefficients for Pk(N)→ Pk1(N)⊗ Pk2(N). We denote
these by

B
Λ′′1→Λ̃1⊗Λ̃′1,ξ
γ′′→γγ′ (5.232)

where it is implicit that k = k1 + k2. The ranges of the labels are

γ ∈ [1, . . . ,Dim
(
V
Pk1

(N)

Λ̃1

)
] ,

γ′ ∈ [1, . . . ,Dim
(
V
Pk2

(N)

Λ̃′1

)
] ,

γ′′ ∈ [1, . . . ,Dim
(
V
Pk(N)

Λ′′1

)
] ,

ξ ∈ [1, . . . ,Mult
(
V
Pk(N)

Λ′′1
→ V

Pk1
(N)

Λ̃1
⊗ V Pk2

(N)

Λ̃′1

)
] , (5.233)

the final label, ξ, gives the multiplicity of Λ′′1 in the decomposition. Branching coefficients
are represented by the following diagrams

B
Λ′′1→Λ̃1⊗Λ̃′1,ξ
γ′′→γγ′ =

Λ′′1

γ′′

Λ̃1 Λ̃′1

ξ

γ γ′

(5.234)

It is worth noting that by Schur-Weyl duality the branching multiplicities for partition
algebras are related to the multiplicities C(Λ̃1, Λ̃

′
1,Λ

′′
1), known as Kronecker coefficients, of

irreducible representations Λ′′1 in tensor products of SN representations Λ̃1 ⊗ Λ̃′1 (see eq.
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(3.1.3) of [128])

Mult
(
V
Pk(N)

Λ′′1
→ V

Pk1
(N)

Λ̃1
⊗ V Pk2

(N)

Λ̃′1

)
= C(Λ̃1, Λ̃

′
1,Λ

′′
1) . (5.235)

For simiplicity we are assuming N ≥ (2k1 + 2k2). For comparison, in Schur-Weyl duality
between U(N) and CSk, Littlewood-Richardson coefficients are branching multiplicities
for Sk1+k2 → Sk1 × Sk2 but correspond to decomposition of tensor products of U(N)

representations.

Branching coefficients are equivariant:

D
Λ′′1
γ′′δ′′(dπ1 ⊗ dπ2) =

∑
Λ̃1,Λ̃′1,γ,δ,γ

′,δ′,ξ

B
Λ′′1→Λ̃1⊗Λ̃′1,ξ
γ′′→γγ′ DΛ̃1

γδ (dπ1)D
Λ̃′1
γ′δ′(dπ2)B

Λ′′1→Λ̃1⊗Λ̃′1,ξ
δ′′→δδ′ , (5.236)

for dπ1 ∈ Pk1(N), dπ2 ∈ Pk2(N). Setting dπ1 = QΛ1
αβ, dπ2 = Q

Λ′1
α′β′ , equation (5.236) corre-

sponds to the diagram identity

QΛ1
αβ ⊗Q

Λ′1
α′β′

Λ′′1

Λ′′1

β′′

α′′

=
∑

Λ̃1,Λ̃′1,ξ

Λ′′1

β′′

QΛ1
αβ Q

Λ′1
α′β′

Λ′′1

α′′

Λ̃1

Λ̃1

Λ̃′1

Λ̃′1
ξ

ξ

(5.237)

Inserting this into equation (5.231) gives

TrV ⊗kN
((QΛ1

βα ⊗Q
Λ′1
β′α′) Q

Λ′′1
α′′β′′) =

DimV SN
Λ′′1

∑
Λ̃1,Λ̃′1,γ,η,γ

′,η′,ξ

B
Λ′′1→Λ̃1⊗Λ̃′1,ξ
γ′′→γγ′ DΛ̃1

γη (QΛ1
αβ)D

Λ̃′1
γ′η′(Q

Λ′1
α′β′)B

Λ′′1→Λ̃1⊗Λ̃′1,ξ
η′′→ηη′ . (5.238)

Matrix elements of irreducible representations are orthogonal (see equation (B.12)). This
implies

D
Λ̃′′1
η′′γ′′(Q

Λ′′1
α′′β′′) = δΛ̃′′1 Λ′′1 δη′′β′′δγ′′α′′ (5.239)
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or the equivalent diagrammatic expression

Q
Λ′′1
α′′β′′

η′′

γ′′

Λ̃1

Λ̃1

= δΛ′′1 Λ̃′′1

η′′

γ′′

β′′

α′′
(5.240)

Substituting this identity into (5.238) reduces it to

∑
ξ

DimV SN
Λ′′1

B
Λ′′1→Λ1⊗Λ′1,ξ
α′′→αα′ B

Λ′′1→Λ1⊗Λ′1,ξ
β′′→ββ′ =

∑
ξ

DimV SN
Λ′′1

Λ′′1

β′′

Λ′′1

α′′

Λ1

ξ

ξ
Λ′1

Λ′1Λ1

α α′

β β′
(5.241)

This gives the final result for matrix units of Pk(N).

The full expression for (5.228) - extremal three-point correlators in the representation
basis - is given by (5.241) together with branching coefficients from the partition algebras
to symmetric group algebras (see (5.75)),

TrV ⊗kN

((
QΛ1

Λ2,νµ
⊗QΛ′1

Λ′2,ν
′µ′

)
Q

Λ′′1
Λ′′2 ,µ

′′ν′′

)
= DimV SN

Λ′′1

∑
α,β,α′,β′,α′′,β′′,

p,p′,p′′,ξ

B
Λ′′1→Λ1⊗Λ′1,ξ
α′′→αα′ B

Λ′′1→Λ1⊗Λ′1,ξ
β′′→ββ′

B
Pk1

(N)→CSk1
Λ1,α→Λ2,p;µ

B
Pk1

(N)→CSk1
Λ1,β→Λ2,p;ν

B
Pk2

(N)→CSk2

Λ′1,α
′→Λ′2,p

′;µ′B
Pk2

(N)→CSk2

Λ′1,β
′→Λ′2,p

′;ν′B
Pk(N)→CSk
Λ′′1 ,α

′′→Λ′′2 ,p
′′;µ′′B

Pk(N)→CSk
Λ′′1 ,β

′′→Λ′′2 ,p
′′;ν′′ .

(5.242)

Introducing the following diagram representation of these branching coefficients,

B
Pk(N)→CSk
Λ1,α→Λ2,p;µ

=

Λ1

µ

Λ2

p

α

, (5.243)
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we can write (5.242) as the following diagram

TrV ⊗kN

((
QΛ1

Λ2,νµ
⊗QΛ′1

Λ′2,ν
′µ′

)
Q

Λ′′1
Λ′′2 ,µ

′′ν′′

)
=

Λ′′1

Λ′′1

Λ1

ξ

ξ
Λ′1

Λ′1Λ1

ν

µ

Λ2

ν ′

µ′

Λ′2
ν ′′

µ′′

Λ′′2
(5.244)

From (5.244) we can read off the claimed result, that the extremal correlator vanishes if the
Kronecker coefficient of the operator irreducible representations does C(Λ1,Λ

′
1,Λ

′′
1) = 0.

Analogous results for extremal correlators in general quiver gauge theories are described
in [13].

5.7 Discussion

In this chapter we investigated the effects of permutation symmetry on the state space
and dynamics of quantum mechanical systems of N × N matrix variables. After a brief
review of the matrix harmonic oscillator and introduction of notation in section 5.1, we
explored the SN invariant Hilbert spaceHinv of generic matrix quantum mechanics systems
at large N in section 5.2. We found a one-to-one correspondence between SN invariant
states of degree k and elements in the symmetrised partition algebra SPk(N). Two bases
of SPk(N) were discussed: the diagram basis and the representation basis. A construction
of the latter was explained in section 5.3 in terms of diagonalising commuting algebraic
charges.

Having discussed the SN invariant state space, we moved on to interesting SN invariant
Hamiltonians. The general permutation invariant harmonic matrix oscillator was described
and solved (diagonalised) in section 5.4. This was achieved with the introduction of oscil-
lators labelled by representation theoretic quantities, as in (5.147). In section 5.5 we de-
scribed a set of algebraic Hamiltonians for matrix quantum mechanics that preserve the SN
invariant subspace of the Hilbert space. These Hamiltonians, given by equations (5.201),
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(5.205) and (5.207) realise the three dynamical scenarios illustrated on the left hand side
of figure 5.1a, the right hand side of figure 5.1a, and figure 5.1b respectively. The repre-
sentation basis introduced in section 5.2.3 diagonalises all of these algebraic Hamiltonians.
We provided a lattice interpretation of the matrix oscillators in section 5.5.6. The diagram
basis is the most efficient basis for describing inner and outer products. As a consequence
extremal correlators, defined in (5.225), which are analogues of three-point extremal cor-
relators in N = 4 SYM are simple in the diagram basis. The extremal correlators satisfy
representation theoretic selection rules, based on Kronecker coefficients, which were derived
in the representation basis. The selection rules are based on exact expressions for extremal
correlators, involving Kronecker coefficients and Littlewood-Richardson coefficients, given
in equation (5.242).



Chapter 6

Discussion and conclusion

In this thesis we have developed results on the theme of permutation invariant Gaussian
matrix models. In chapter 3 we specialised the PIGM models consisting of general ma-
trices to those consisting of symmetric matrices with vanishing diagonal. In this case the
13 parameters of the general matrix model are reduced to just four: one linear and three
quadratic. Observables of this model are permutation invariant polynomials in the matrix
variables. They are in 1-1 correspondence with undirected, loop-less multi-graphs (3.62).
We found an analytic formula in N for the two-point function of the matrix Mij (3.74),
in combination with Wick’s theorem this can be used to calculate the expectation value of
higher-order observables. This model was used to demonstrate approximate permutation
invariant Gaussianity in an ensemble of financial correlation matrices constructed from
correlations between price movements in foreign exchange market data. We concluded
this chapter by constructing vectors of observables to act as low-dimensional representa-
tions of the matrices in the ensemble. The observable vectors performed well in anomaly
detection tasks, comparing favourably with both the original matrices and the standard
dimensionality reduction technique of principal component analysis.

In chapter 4 we began by establishing a correspondence between permutation invariant
matrix observables and equivalence classes of partition algebra elements. This relied on
the Schur-Weyl duality between the symmetric group SN and the partition algebra Pk(N)

acting on VN the natural representation of the symmetric group. It is analogous to a
similar organisation of U(N) invariants by the conjugacy classes of Sk due to the classic
instance of Schur-Weyl duality. The description of PIMOs in terms of the partition algebra
was used to prove the large N factorisation of these observables under the simplest O(N)

inner product (4.61).

Finally, in chapter 5 we considered permutation invariant matrix quantum mechanics, in
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which matrix oscillators (a†)ij took the place of matrix elements Mij . We first gave a de-
scription of the permutation invariant state space. The partition algebra again played a
key role in the construction of these states through (5.48). We then introduced a repre-
sentation basis for the invariant state space Hk, this basis could be understood as a basis
that diagonalises a set of algebraic commuting charges. These charges were constructed
in section 5.3.1 and used to define classes of Hamiltonians with a variety of ground state
behaviours illustrated in figure 5.1. We concluded by calculating two- and three-point cor-
relators, the former enjoy a similar large N factorisation property proven for the matrix
observables in chapter 4 (5.224), the latter were shown to obey selection rules based on
the Kronecker coefficients for tensor products of irreducible representations of SN .

A natural future direction following this work would be to extend the results to permutation
invariant models for tensor variables Tijk transforming as VN ⊗ VN ⊗ VN . This is further
motivated by the application of these models in type-driven compositional distributional
semantics in which three-index tensors are used to represent transitive verbs [46]. Explicit
machine-learning algorithms for constructing ensembles of these three-index tensors, as well
as two-matrix ensembles, from natural language data have been designed [129, 130, 131].
In chapters 4 and 5 frequent use was made of Schur-Weyl dual algebras. These principles
can be exploited in a number of natural generalisations of the results in these chapters,
including to tensor models: this is being developed in as yet unpublished work [132].

The discussion of observables lies at a rich intersection of representation theory, combina-
torics, graph theory and group theory. The explicit formulae and theoretical perspective
developed here for the enumeration of graphs can potentially be useful in other applica-
tions of graphs within theoretical physics: for example an interesting recent application of
graphs is in jet algorithms [133].

An interesting future direction of the factorisation property proven in chapter 4 would
be to investigate the large N factorisation properties of the inner product of permuta-
tion invariant observables arising from the most general SN invariant action. Progress in
this direction has already been made in that the SN invariant two-point function of the
fundamental fields Mij is known (2.115) [43]). The form of the simplest O(N) invariant
two-point function of the fundamental fields, given in (4.55), allowed us to write a simple
expression for the associated two-point function of PIMOs of general order k, equation
(4.56). In contrast, the form of the SN invariant two-point function of the fundamental
fields involves many more terms and is much more complicated.

Throughout our default position was to assume N ≥ 2k, known as the stable limit. This
lead to considerable simplifications, including the construction of a basis for the SN in-
variant subspace Hinv, a simplification related to the existence of a kernel free map from
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Pk(N) to End(V ⊗kN ). However, it would be interesting to uncover any finite N effects
appearing in the permutation invariant quantum mechanical matrix systems of chapter
5. At finite N the diagrams in Pk(N) provide an over complete basis of operators. That
is, there are some linear relations between operators. The precise form of these relations
can be found using the orbit basis. The question remains of how to use this knowledge
in order to construct a representation theoretic basis for 2k < N . This would involve a
detailed study of the Artin-Wedderburn decomposition in (5.70) below the stable limit.
The detailed study includes putting constraints on the irreducible representations appear-
ing in the decomposition below the stable limit, as well as computing the dimension of the
multiplicity spaces.

A very interesting avenue towards applications of the Hilbert spaces and Hamiltonians
considered in chapter 5 is to find systems where the permutation invariant sectors described
using partition algebras are naturally selected by the physics. For example, in a Bose-
Einstein condensate composed of N identical bosons, excited by vibrational modes between
pairs of particles, oscillators (a†)ji exciting the pair (i, j) of particles with i, j ∈ {1, · · · , N}
would naturally be subject to the kind of SN invariance we have considered here. This
would provide links between the theoretical application of partition algebras as considered
here with the phenomenological modelling of Bose-Einstein physics, e.g. along the lines of
[134].



Appendix A

Inner product calculations

Here we present some inner products which are useful in arriving at equations for the
physical variables Sphys;V[N ] and S

phys;V[N−1,1]
a obtained in (3.42) and (3.43) of section 3.2.

Using the inner product on the orthonormal basis of the natural representation

(ei, ej) = δij . (A.1)

We calculate the following inner products used to determine the Clebsch coefficients from
VN ⊗ VN to the physical V[N ] and V[N−1,1] irreducible representations

(Sdiag;V[N ] , SV[N ];1), (Sdiag;V[N ] , SV[N ];2), (S
diag;V[N−1,1]
a1 , S

V[N−1,1];1,2
a2 ), (S

diag;V[N−1,1]
a1 , S

V[N−1,1];3
a2 ) .

(A.2)

The normalised representation theory states are given by

SV[N ];1 =
1

N

N∑
i,j=1

ei ⊗ ej , (A.3)

SV[N ];2 =
1√
N − 1

N−1∑
a=1

Ea ⊗ Ea , (A.4)

Sdiag;V[N ] =
1√
N

N∑
i=1

ei ⊗ ei , (A.5)

S
V[N−1,1];1,2
a =

1√
2N

N∑
i=1

(
ei ⊗ Ea + Ea ⊗ ei

)
, (A.6)

S
V[N−1,1];3
a =

1

2

√
N

N − 2

N−1∑
b,c=1

N∑
i=1

Ca,iCb,iCc,i
(
Eb ⊗ Ec + Ec ⊗ Eb

)
, (A.7)
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S
diag;V[N−1,1]
a = Ea ⊗ Ea . (A.8)

The non-zero inner products are given by the following

(Sdiag;V[N ] , SV[N ];1) = N−
3
2

N∑
i,j,k=1

(ei ⊗ ei, ej ⊗ ek) = N−
3
2

N∑
i,j,k=1

δijδik =
N∑
i=1

N−
3
2

=
1√
N
, (A.9)

(Sdiag;V[N ] , SV[N ];2) =
1√

N
√
N − 1

N∑
i=1

N−1∑
a=1

(ei ⊗ ei, Ea ⊗ Ea)

=
1√

N
√
N − 1

N∑
i,j,k=1

N−1∑
a=1

Ca,jCa,k(ei ⊗ ei, ej ⊗ ek)

=
1√

N
√
N − 1

N∑
i,j,k=1

N−1∑
a=1

Ca,jCa,kδijδik

=
1√

N
√
N − 1

N∑
j=1

N−1∑
a=1

Ca,jCa,j

=
N−1∑
a=1

1√
N
√
N − 1

=

√
N − 1√
N

, (A.10)

(S
diag;V[N−1,1]
a1 , S

V[N−1,1];1,2
a2 ) =

1√
2N

N∑
i,j,k=1

Ca1,jCa2,k

(
ej ⊗ ej , (ei ⊗ ek + ek ⊗ ei)

)
=

1√
2N

N∑
i,j,k=1

Ca1,jCa2,k

(
δijδjk + δjkδij

)
=

√
2

N

N∑
i,j=1

Ca1,jCa2,jδij

=

√
2

N
δa1a2 , (A.11)
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(S
diag;V[N−1,1]
a1 , S

V[N−1,1];3
a2 ) =

1

2

√
N

N − 2

N−1∑
b,c=1

N∑
i,j,k,l=1

Ca1,iCb,iCc,iCa2,jCb,kCc,l
(
ej ⊗ ej , (ek ⊗ el + el ⊗ ek)

)
=

√
N

N − 2

N−1∑
b,c=1

N∑
i,j,k,l=1

Ca1,iCb,iCc,iCa2,jCb,kCc,lδjkδjl

=

√
N

N − 2

N−1∑
b,c=1

N∑
i,j=1

Ca1,iCb,iCc,iCa2,jCb,jCc,j

=

√
N

N − 2

N∑
i,j=1

Ca1,iCa2,j

(
δij −

1

N

)(
δij −

1

N

)

=

√
N

N − 2

N∑
i,j=1

Ca1,iCa2,j

(
δij

(
1− 2

N

)
+

1

N2

)

=

√
N

N − 2

[
N∑
i=1

Ca1,iCa2,i

(
1− 2

N

)
+

1

N2

N∑
i,j=1

Ca1,iCa2,j

]

=

√
N

N − 2

(
1− 2

N

)
δa1,a2 . (A.12)



Appendix B

Matrix units and Fourier inversion
from inner product

In this appendix we list the results used in section 5.2.3 on representation bases. The proofs
of many of these results are to be found within the appendices of [3] (the paper on which
chapter 5 is based). We start by discussing non-degenerate bilinear forms on algebras and
how they define dual elements through (B.10). The existence of dual elements is used in
proving the orthogonality of matrix elements of irreducible representations of Pk(N), which
we merely state in (B.12). Orthogonality is essential for the construction of matrix units of
Pk(N) using the Fourier inversion formula (B.14). Matrix units for SPk(N) are constructed
using branching coefficients, as in (B.18). These results represent minor modifications to
the constructions in [90], which defines a non-degenerate bilinear using the trace in the
regular representation of Pk(N). Throughout chapter 5, the physical trace relevant to
the inner product (5.54) and two point function, is a trace in V ⊗kN . The two traces are
related in (B.7), through a so-called Ω-factor, and the basic formulae following from this
are similarly affected by minor changes.

B.1 Schur-Weyl duality and non-degenerate bilinear forms

The construction of matrix units for Pk(N) relies on the existence of a non-degenerate
bilinear form on Pk(N). The bilinear form used in [90] is defined using the trace in the
regular representation of Pk(N). In this chapter the physical trace, associated with inner
products, is a trace in V ⊗kN including a transposition as in equation (5.54). Here we state,
without proof the result that this trace also defines a non-degenerate bilinear form and
give the relation between the two traces (B.7).
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Let B = {b1, . . . , bB(2k)} be a basis for Pk(N). The regular representation of Pk(N) is
defined by the left action of Pk(N) on itself. The matrix representation of bi is defined by
the structure constants Ckij

bibj =

B(2k)∑
k=1

Ckijbk . (B.1)

Consequently, the trace in the regular representation can be written as

tr(bi) =

B(2k)∑
j=1

Cj
ij =

B(2k)∑
j=1

Coeff(bj,bibj) , (B.2)

where Coeff(bj , d) is the coefficient of bj in the expansion of d ∈ Pk(N) in the basis B.

For N ≥ 2k, Pk(N) is semi-simple (see [61, Theorem 3.27]) and therefore,

Gij ≡ tr(bibj) (B.3)

is an invertible matrix. We say that the trace in the regular representation defines a
non-degenerate bilinear form on Pk(N) (see [61, Equation 5.9]). It will be useful to use
the following equivalent definition of non-degeneracy in what follows. A bilinear form on
Pk(N) is non-degenerate if there exists no non-zero element d ∈ Pk(N) such that

tr(bid) = 0 , ∀ i = 1, . . . ,B(2k) . (B.4)

We can relate the two traces

TrV ⊗kN
(d) =

∑
Λ1

DimV SN
Λ1

χΛ1(d) =
∑
Λ1

DimV SN
Λ1

DimV
Pk(N)

Λ1

tr(pΛ1d) , (B.5)

where pΛ1 ∈ Pk(N) are projection operators and the sum is over all irreducible represen-
tations of Pk(N). It is convenient to define

Ω =
∑
Λ1

DimV SN
Λ1

DimV
Pk(N)

Λ1

pΛ1 . (B.6)

such that equation (B.5) becomes

TrV ⊗kN
(d) = tr(Ωd) . (B.7)

The bilinear form (−,−) : Pk(N)× Pk(N)→ C given by

(bi, bj) = TrV ⊗kN
(bibj) (B.8)
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is non-degenerate. It immediately follows (use proof by contradiction again) that the
bilinear form given by

〈bi, bj〉 = TrV ⊗kN
(bib

T
j ) ≡ gij , (B.9)

is non-degenerate and gij is invertible. The inverse matrix is used to define elements dual
to bi which we denote b∗i

b∗i =

B(2k)∑
j=1

(g−1)ijbj . (B.10)

Dual elements satisfy
〈b∗i , bj〉 = δij . (B.11)

B.2 Orthogonality of matrix elements

The matrix elements DΛ1
αβ(bi) of irreducible representations of Pk(N) are orthogonal. This

is a generalisation of the corresponding orthogonality theorem for group algebras (see
section 3.15 in [68]). The definition of dual elements given in the previous subsection is
such that

B(2k)∑
i=1

DΛ1
αβ(bi)D

Λ′1
ρσ ((b∗i )

T ) =
1

DimV SN
Λ1

δβρδασδ
Λ1Λ′1 . (B.12)

and we can always choose irreducible representations satisfying

DΛ1
αβ(dT ) = DΛ1

βα(d), for d ∈ Pk(N) , (B.13)

where dT is as in (5.53).

B.3 Matrix units for Pk(N)

The orthogonality of matrix elements (B.12) can be used so show

QΛ1
αβ =

∑
i

Dim(V SN
Λ1

)DΛ1
βα((b∗i )

T )bi , (B.14)

multiply like a generalised matrix algebra. That is,

QΛ1
αβQ

Λ′1
ρσ = δΛ1Λ′1δβρQ

Λ1
ασ . (B.15)
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Elements d ∈ Pk(N) act on QΛ1
αβ from the left and right as

dQΛ1
αβ = DΛ1

ασ(dT )QΛ1
σβ , (B.16)

QΛ1
αβd = QΛ1

ασD
Λ1
σβ(dT ) . (B.17)

respectively.

B.4 Matrix units for SPk(N) and normalisation constants

The matrix units for SPk(N) are constructed from QΛ1
αβ using Branching coefficients.

QΛ1
Λ2,µν

=
∑
α,β,p

QΛ1
αβB

Pk(N)→C[Sk]
Λ1,α→Λ2,p;µ

B
Pk(N)→C[Sk]
Λ1,β→Λ2,p;ν

. (B.18)

Branching coefficients are understood as follows. The partition algebra Pk(N) has a sub-
algebra (isomorphic to) C[Sk] (for example, see equation (2.38)). For any given irreducible
representation V Pk(N)

Λ1
there exists a basis where the action of C[Sk] ⊂ Pk(N) is manifest

and irreducible. That is, we consider the decomposition

V
Pk(N)

Λ1

∼=
⊕
Λ2`k

V
C[Sk]

Λ2
⊗ V Pk(N)→C[Sk]

Λ1Λ2
. (B.19)

On the LHS we have a basis

EΛ1
α , α ∈ {1, . . .Dim(V

Pk(N)
Λ1

)} , (B.20)

where the representation of d ∈ Pk(N) is irreducible,

d(EΛ1
α ) =

∑
β

DΛ1
βα(d)EΛ1

β . (B.21)

The RHS has a basis

EΛ1,µ
Λ2,p

, p ∈ {1, . . . ,Dim(V
C[Sk]

Λ1
)},

µ ∈ {1, . . . ,Dim(V
Pk(N)→C[Sk]

Λ1Λ2
)} ,

(B.22)

where µ is a multiplicity label for V C[Sk]
Λ2

in the decomposition. We demand that the
representation of τ ∈ C[Sk] is irreducible in this basis,

τ(EΛ1,µ
Λ2,p

) =
∑
q

DΛ2
qp (τ)EΛ1,µ

Λ2,q
, (B.23)
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where DΛ2
qp (τ) is an irreducible representation of τ ∈ C[Sk]. The change of basis coefficients

are called Branching coefficients

EΛ1,µ
Λ2,p

=
∑
α

B
Pk(N)→C[Sk]
Λ1,α→Λ2,p;µ

EΛ1
α . (B.24)

The matrix unit property

QΛ1
Λ2,µν

Q
Λ′1
Λ′2,µ

′ν′ = δΛ1Λ′1δΛ2Λ′2δνµ′Q
Λ1
Λ2,µν′

, (B.25)

of the SPk(N) basis follows from that of the Pk(N) units together with orthogonality of
EΛ1,µ

Λ2,p
.

TrV ⊗kN
(QΛ1

αβ) is given by

TrV ⊗kN
(QΛ1

αβ) =
∑

Λ′1`N

DimV SN
Λ′1

χΛ′1(QΛ1
αβ) =

∑
Λ′1`N

DimV SN
Λ′1

δαβδ
Λ1Λ′1 = DimV SN

Λ1
δαβ .

(B.26)
Consequently,

TrV ⊗kN
(QΛ1

Λ2,µν
) =

∑
α,β,p

B
Pk(N)→Sk
Λ1,α→Λ2,p;µ

B
Pk(N)→Sk
Λ1,β→Λ2,p;ν

TrV ⊗kN
(QΛ1

αβ)

=
∑
α,β,p

B
Pk(N)→Sk
Λ1,α→Λ2,p;µ

B
Pk(N)→Sk
Λ1,β→Λ2,p;ν

δαβ DimV SN
Λ1

=
∑
p

δppδµν DimV SN
Λ1

= δµν DimV SN
Λ1

DimV Sk
Λ2

,

(B.27)

where the last two equalities hold if and only if the branching coefficients are non-zero.

Finally, we note that this construction gives Sk invariant elements, i.e.

τQΛ1
Λ2,µν

τ−1 = QΛ1
Λ2,µν

for τ ∈ Sk . (B.28)



Appendix C

Orbit basis

In section 5.2 we described two bases for the partition algebra Pk(N): a diagram basis and
a representation basis. Here we describe another basis, in terms of combinatorially explicit
linear combinations of the diagrams from section 5.2.2. This basis is called the orbit basis
[23]. We also show that it is orthogonal for any N and k. This makes it a suitable basis
to describe permutation invariant matrix quantum mechanics in the N < 2k regime, a
preliminary discussion of which concludes this appendix. A possible future direction is to
use the orbit basis to describe how the representation basis is modified in this regime.

As in the diagram basis, the orbit basis is indexed by the set partitions Π2k of {1, . . . , k, 1′, . . . , k′}.
These are partially ordered under the relation

π � π′ if every block of π is contained within a block of π′ , (C.1)

in this case we say that π is a refinement of π′ or equivalently that π′ is a coarsening of π.
Since we are already familiar with the diagram basis of Pk(N) we express the orbit basis
in terms of the diagram basis using the above partial ordering

dπ =
∑
π�π′

xπ′ (C.2)

with {xπ|π ∈ Π2k}. The diagram basis element dπ is a sum of all orbit basis elements
labelled by set partitions equal to or coarser than π, for example

= + + + + . (C.3)

We will continue to distinguish the diagram and orbit bases by drawing diagram basis
elements with black vertices and labelling them with the letter d, and drawing orbit basis
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elements with white vertices and labelling them with the letter x. The transition matrix
determined by (C.2) is ζ2k and is called the zeta matrix of the partially ordered set Π2k.
It is upper triangular, with ones on the diagonal and hence invertible.

The inverse of ζ2k is given in [27]. It is the matrix µ2k

xπ =
∑
π�π′

µ2k(π, π
′)dπ′ . (C.4)

If π � π′ and π′ consists of l blocks such that the ith block of π′ is the union of bi blocks
of π then

µ2k(π, π
′) =

l∏
i=1

(−1)bi−1(bi − 1)! (C.5)

For example, this gives the following expansion of the orbit basis element labelled by
π = {1|2|3|4}

= − − − − − − + + +

+ 2 + 2 + 2 + 2 − 6 . (C.6)

The orbit basis is orthogonal with respect to the inner product (5.54). We will prove,

〈xπ|xπ′〉 =

|Gπ|N(|π|) if [xπ′ ] = [xπ] ,

0 otherwise.
(C.7)

where π, π′ are set partitions of {1, . . . , k, 1′, . . . , k′}, N(l) = N(N − 1) . . . (N − l+ 1) is the
falling factorial, |π| is the number of blocks in π, and |Gπ| is the order of the subgroup of
Sk that leaves xπ invariant. As was the case in the diagram basis, we note that

|[xπ′ ]〉 = |xπ′〉 (C.8)

and use the RHS ket labels for the sake of notational efficiency.

First consider the simpler proposition

TrV ⊗kN
(xπx

T
π′) = N(|π|)δππ′ . (C.9)
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The proof of this follows from the definition (see section 5.2 in [27]) of xπ acting on V ⊗kN

(xπ)
i1′ ...ik′
i1...ik

=

1 if ia = ib if and only if a and b are in the same block of π ,

0 otherwise .
(C.10)

The trace is equal to

TrV ⊗kN
(xπx

T
π′) =

∑
i1...ik
i1′ ...ik′

(xπ)
i1′ ...ik′
i1...ik

(xπ′)
i1′ ...ik′
i1...ik

. (C.11)

Equation (C.10) implies

(xπ)
i1′ ...ik′
i1...ik

(xπ′)
i1′ ...ik′
i1...ik

=


1 if ia = ib if and only if a and b are in the same

block of π and the same block of π′ ,
0 otherwise .

(C.12)

If π 6= π′ two situations exist. Consider the set of all pairs (a, b) for a, b = 1, . . . , k, 1′, . . . , k′

such that a and b are in the same block of π. Since π 6= π′ at least one of these pairs are
such that a and b are in different blocks of π′. The second case is the reverse. Consider
the set of all (a, b) such that a and b are in the same block of π′. Then π′ 6= π implies that
there exists at least one pair such that a and b are not in the same block of π. In that case,
there are no choices of ia, ib which satisfy the first criteria in (C.12). For example, take
a, b to be in the same block of π but different blocks of π′. The matrix elements (xπ)

i1′ ...ik′
i1...ik

vanish if ia 6= ib while the matrix elements (xπ′)
i1′ ...ik′
i1...ik

vanish unless ia 6= ib. Therefore,
the product identically vanishes,

(xπ)
i1′ ...ik′
i1...ik

(xπ′)
i1′ ...ik′
i1...ik

= δππ′(xπ)
i1′ ...ik′
i1...ik

(C.13)

and

TrV ⊗kN
(xπx

T
π′) =

∑
i1...ik
i1′ ...ik′

(xπ)
i1′ ...ik′
i1...ik

δππ′ = δππ′N(N − 1) . . . (N − |π|+ 1) . (C.14)

The last equality is a consequence of (C.10). For example, consider the set partition 12|1′2′.
The trace of x12|1′2′ is

TrV ⊗2
N

(x12|1′2′) =
∑

i1=i2 6=i3,i3=i4

= N(N − 1) , (C.15)

since we have N choices of indices for i1 and (N − 1) choices for i3 (for every choice of i1).
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The general case is analogous,

TrV ⊗kN
(xπ) = N(|π|) . (C.16)

We have N choices for the indices of the first block of π, N − 1 choices for the indices of
the second block and so on.

The inner product of two orbit basis elements of SPk(N) is given by (5.54)

〈xπ|xπ′〉 =
∑
γ∈Sk

TrV ⊗kN
(γxπγ

−1xTπ′) . (C.17)

We re-write ∑
γ∈Sk

γxπγ
−1 = |Gπ|

∑
λ∈[π]

xλ , (C.18)

where the sum on the RHS is over the distinct elements in the Sk orbit of xπ. Substituting
this into the trace gives

〈xπ|xπ′〉 = |Gπ|
∑
λ∈[π]

TrV ⊗kN
(xλxπ′) = |Gπ|

∑
λ∈[π]

N(|π|)δλπ′ =

|Gπ|N(|π|) if [xπ′ ] = [xπ] ,

0 otherwise ,
(C.19)

where [xπ] denotes Sk symmetrisation as in equation (5.47).

For the majority of this chapter 5 we assume N ≥ 2k in order to take advantage of the
many simplifications that occur in this limit. However, utilising results from the partition
algebra literature we are able to say something about what happens below this limit, in
which we expect to encounter finite N effects.

In the limit N ≥ 2k the map from the partition algebra to EndSN (V ⊗kN ) is bijective. When
N < 2k this map acquires a non-trivial kernel (but remains surjective). Accordingly,
we expect a reduction in the size of the state space Hinv. This reduction is most easily
expressed in the orbit basis of Pk(N). Theorem 5.17 (a) in [27] states that if N ∈ Z≥1

and {xπ|π ∈ Π2k} is the orbit basis for Pk(N) then for k ∈ Z≥1, the representation
Φk,N : Pk(N)→ End(V ⊗kN ) has the following image and kernel

im(Φk,N ) = EndSN (V ⊗kN ) = spanC{Φk,N (xπ)|π ∈ Π2k has ≤ N blocks} ,

ker(Φk,N ) = spanC{xπ|π ∈ Π2k has > N blocks} . (C.20)

Due to the bosonic symmetry of our theory we are actually interested in the map from
the symmetrised partition algebra SPk(N), defined in (5.47), to End(V ⊗kN ). To this end
we note that the definition of the kernel of Φk,N given in (C.20) is Sk invariant. If one
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element of an Sk orbit is in the kernel then (C.20) tells us that the entire orbit belongs to
the kernel - the action of Sk does not change the number of blocks in a partition π. The
image and kernel of this map are the following

im(Φk,N ) = spanC
{

[b] =
1

k!

∑
γ∈Sk

γbγ−1 | b = Φk,N (xπ), ∀π ∈ Π2k with ≤ N blocks
}
,

ker(Φk,N ) = spanC
{

[xπ]|π ∈ Π2k, π has > N blocks
}
. (C.21)

Therefore a state basis is given by |[xπ]〉 for π having N or fewer blocks, this basis is
orthogonal for all N , including for N < 2k.

The original statement (C.20) applies to multi-matrix theories in which observables are
constructed from distinct matrices - in this case there is no bosonic Sk symmetry to account
for. If a state in this theory is null then all states generated by the action of Sk on this
state will also be null. The equivalent of (5.48) for the multi-matrix case is

|d〉 =
∑
i1,...,ik
i1′ ,...,ik′

(d)
i1′ ...ik′
i1...ik

(a†1)i1i1′
. . . (a†k)

ik
ik′
|0〉 = TrV ⊗kN

[d(a†1 ⊗ · · · ⊗ a
†
k)] |0〉 (C.22)

in which we have k distinct oscillators and each element d in the full partition algebra
Pk(N) corresponds to a unique state, instead of Sk equivalence classes [d] ∈ SPk(N). We
illustrate with the following examples that under the map (C.22) elements d ∈ Pk(N) that
are in the kernel of Φk,N label zero vectors in the Hilbert space H. For k = 2 and N = 1

we see ∣∣∣ 〉
=
∣∣∣ 〉

−
∣∣∣ 〉

=

[∑
i,j

(a†1)ii(a
†
2)jj −

∑
i

(a†1)ii(a
†
2)ii

]
|0〉

=

[
(a†1)1

1(a†2)1
1 − (a†1)1

1(a†2)1
1

]
|0〉

= 0 (C.23)

in the first line we have used (C.4) to express the orbit basis element in terms of the
diagram basis. Similarly, taking k = 2 and N = 2 we have∣∣∣ 〉

=
∣∣∣ 〉

−
∣∣∣ 〉

−
∣∣∣ 〉

−
∣∣∣ 〉

+ 2
∣∣∣ 〉

=

[∑
i,j,k

(a†1)ij(a
†
2)kk −

∑
i,j

(a†1)ii(a
†
2)jj −

∑
i,j

(a†1)ij(a
†
2)jj −

∑
i,j

(a†1)ij(a
†
2)ii + 2

∑
i

(a†1)ii(a
†
2)ii

]
|0〉

= 0 . (C.24)
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We can split the first term by imposing different restrictions on the ranges of the sum∑
i,j,k

=
∑
i=j=k

+
∑
i=j
j 6=k

+
∑
i=k
k 6=j

+
∑
j=k
k 6=i

+
∑
i 6=j 6=k

(C.25)

Similarly, we can split the second, third and fourth terms∑
i,j

=
∑
i=j

+
∑
i 6=j

. (C.26)

The terms in (C.24) cancel due to the equivalence of coarsening diagrams and restricting
summation ranges - adding edges to a diagram d ∈ Pk(N) is equivalent to evaluating the
original diagram d over a restricted summation range. Another way of saying this is that
(C.2) and (C.25) encode identical expansions, in fact the five terms in each expansion give
equivalent contributions. Orbit basis elements label states in which the oscillator indices
are summed over the restricted range i1 6= i2 6= · · · 6= im where m is the number of
blocks in the orbit basis element. From this perspective it is easy to see that these states
must be zero when N < m as there are not enough distinct values in [1, N ] to satisfy the
inequality defining the summation range. Contrastingly, the diagram basis produces states
corresponding to sums with unrestricted indices. Although at finite N there is a stark
difference between states in the orbit and diagram bases, at large N the two descriptions
are equivalent.

Elements of SPk(N) are Sk orbits on Pk(N) and so states in H(k)
inv are linear combinations

of states in H. If a state in H is labelled by a partition algebra element in the kernel of
Φk,N , the state in H(k)

inv generated by the action of Sk on this zero H state will also be
zero. It is clear that if an element d ∈ Pk(N) produces a zero vector under (C.22) then the
equivalence class [d] ∈ SPk(N) containing that element d ∈ Pk(N) also produces a zero
vector under the map to H(k)

inv

|d〉 =
∑
i1,...,ik
i1′ ,...,ik′

([d])
i1′ ...ik′
i1...ik

(a†)i1i1′
. . . (a†)ikik′

|0〉 = TrV ⊗kN
([d](a†)⊗k) |0〉 . (C.27)

We can also check that for suitably low values of N the norm of the orbit basis states
vanishes. For xπ1 = we expect

〈xπ1 |xπ1〉
∣∣
N<4

= gxπ1xπ1

∣∣
N<4

= 0 . (C.28)
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Indeed, substituting (C.6) into this expression gives

〈xπ1 |xπ1〉 = 〈dπ1 |dπ1〉 − 〈dπ1 |dπ2〉 − 〈dπ2 |dπ1〉+ 〈dπ2 |dπ2〉+ · · · − 12 〈dπ14 |dπ15〉+ 36 〈dπ15 |dπ15〉

= N(N − 1)(N − 2)(N − 3) ,

which is zero for N < 4.

Similarly, we consider xπ2 = , which we expect to vanish for N < 3. This has a
diagram basis expansion

= − − − + 2 . (C.29)

The norm of this state is

〈xπ2 |xπ2〉 =
〈 ∣∣∣ 〉

−
〈 ∣∣∣ 〉

− · · ·+ 4
〈 ∣∣∣ 〉

= N(N − 1)(N − 2) , (C.30)

which does vanish for N < 3. For a general orbit basis state xπ we expect the norm to be
some polynomial in N which vanishes for any N < |π|.



Appendix D

Computing low degree matrix units

In this appendix we find the full set of matrix units for k = 2. As discussed in 5.3.3, we
use the following elements of SP2(N) to distinguish the full set of labels on matrix units
QΛ1

Λ2,µν
. The irreducible representation Λ1 ` N is distinguished by

T̄2
(2)

=

(N − 2)(N − 3)− 4

2
+ + + + +N

− − − − ,
(D.1)

while Λ2 ` k is distinguished by
t
(2)
2 = , (D.2)

and multiplicity labels µ, ν are distinguished by acting with

T̄
(2)
2,1 = + , (D.3)

on the left and right. It will be useful to know that T̄ (2)
2,1 is related to

T̄
(1)
2 =

N(N − 3)

2
+ , (D.4)

since
T̄

(1)
2 ⊗ 1 + 1⊗ T̄ (1)

2 = + +N(N − 3) . (D.5)

As we will now explain, the eigenvalues of T̄ (2)
2,1 uniquely determine the labels µ, ν by left

and right action respectively. For fixed Λ1,Λ2 the multiplicity labels correspond to basis
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elements for V P2(N)→C[S2]
Λ1,Λ2

, appearing in the decomposition

VN ⊗ VN ∼=
(
V SN

[N ] ⊗ V
S2

[2] ⊗ V
P2(N)→C[S2]

[N ],[2]

)
⊕
(
V SN

[N−1,1] ⊗ V
S2

[2] ⊗ V
P2(N)→C[S2]

[N−1,1],[2]

)
⊕(

V SN
[N−1,1] ⊗ V

S2

[1,1] ⊗ V
P2(N)→C[S2]

[N−1,1],[1,1]

)
⊕
(
V SN

[N−2,2] ⊗ V
S2

[2] ⊗ V
P2(N)→C[S2]

[N−2,2],[2]

)
⊕(

V SN
[N−2,1,1] ⊗ V

S2

[1,1] ⊗ V
P2(N)→C[S2]

[N−2,1,1],[1,1]

)
.

(D.6)
On the right hand side, T̄ (2)

2,1 acts on the vector spaces V P2(N)→C[S2]
Λ1Λ2

with dimensions

DimV
P2(N)→C[S2]

[N ],[2] = 2, DimV
P2(N)→C[S2]

[N−1,1],[2] = 2, DimV
P2(N)→C[S2]

[N−1,1],[1,1] = 1

DimV
P2(N)→C[S2]

[N−2,2],[2] = 1, DimV
P2(N)→C[S2]

[N−2,1,1],[1,1] = 1 . (D.7)

We will find that T̄ (2)
2,1 has precisely as many distinct eigenvalues (in each subspace) as the

corresponding dimension.

To confirm that this is the case, note that T̄ (2)
2,1 acts on V ⊗2

N as

T̄
(2)
2,1 (ei1 ⊗ ei2) = T̄

(1)
2 ei1 ⊗ ei2 + ei1 ⊗ T̄

(1)
2 ei2 −N(N − 3)ei1 ⊗ ei2 . (D.8)

It follows that the eigenvalues are directly related to the eigenvalues of T̄ (1)
2 defined in

(5.118). These are known by the decompsition

VN ∼= V SN
[N ] ⊕ V

SN
[N−1,1] , (D.9)

where T̄ (1)
2 acts on each summand by a normalised character. Using this on the left hand

side of (D.6) gives

VN⊗VN ∼=
(
V SN

[N ] ⊗ V
SN

[N ]

)
⊕
(
V SN

[N ] ⊗ V
SN

[N−1,1]

)
⊕
(
V SN

[N−1,1] ⊗ V
SN

[N ]

)
⊕
(
V SN

[N−1,1] ⊗ V
SN

[N−1,1]

)
.

(D.10)
Consequently, the three distinct eigenvalues of T̄ (2)

2,1 are (one for each summand, but the
vectors in the second and third space have the same eigenvalue)

2
χ[N ](T2)

DimV SN
[N ]

−N(N − 3) = N(N − 1)−N(N − 3) = 2N, (D.11)

2
χ[N−1,1](T2)

DimV SN
[N−1,1]

−−N(N − 3) = N(N − 3)−N(N − 3) = 0, (D.12)

χ[N ](T2)

DimV SN
[N ]

+
χ[N−1,1](T2)

DimV SN
[N−1,1]

−N(N − 3) =
1

2
N(N − 1) +

1

2
N(N − 3)−N(N − 3) = N .

(D.13)
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By decomposing (D.10) into SN × Sk representations we will see that the multiplicities in
(D.6) are uniquely associated with one of the above eigenvalues. We start by considering
the multiplicities of V SN

[N ] ⊗ V S2

[2] . The representation V SN
[N ] occurs in the decomposition

(D.10) as subspaces

V SN
[N ]
∼= V SN

[N ] ⊗ V
SN

[N ] and V SN
[N ] ⊂ V

SN
[N−1,1] ⊗ V

SN
[N−1,1] . (D.14)

The first subspace has eigenvalue 2N , while the second subspace has eigenvalue 0 with
respect to T̄

(2)
2,1 . Therefore, the two multiplicities are distinguished. Next we consider

multiple occurances of V SN
[N−1,1]. The two spaces

(
V SN

[N ] ⊗ V
SN

[N−1,1]

)
⊕
(
V SN

[N−1,1] ⊗ V
SN

[N ]

)
(D.15)

combine into representations of SN × S2 as(
V SN

[N−1,1] ⊗ V
S2

[2]

)
⊕
(
V SN

[N−1,1] ⊗ V
S2

[1,1]

)
. (D.16)

Both of these spaces have eigenvalue N with respect to T̄ (2)
2,1 , but they are distinguished

by their S2 representation (or equivalently eigenvalue of t(2)
2 ). The symmetric part of

V SN
[N−1,1] ⊗ V

SN
[N−1,1] has a subspace

V SN
[N−1,1] ⊗ S

S2

[2] ⊂ V
SN

[N−1,1] ⊗ V
SN

[N−1,1] , (D.17)

with eigenvalue 0. We have found that the two subspaces V SN
[N−1,1]⊗ V

S2

[2] are distinguished

by the eigenvaluesN and 0 with respect to T̄ (2)
2,1 . The last two terms in (D.6) are multiplicity

free and uniquely determined by their eigenvalue with respect to T (2)
2 ,

In the Sage code, we simultaneously diagonalised all the operators by considering a linear
combination

T = aT̄2
(2)

+ bt
(2)
2 + cT̄

(2),L
2,1 + fT̄

(2),R
2,1 , (D.18)

with a, b, c, f ∈ R such that there is no eigenvalue degeneracy in T . The superscript L
means left action and R means right action. An eigenbasis for T will be a simultaneous
eigenbasis for {T̄2

(2)
, t

(2)
2 , T̄

(2),L
2,1 , T̄

(2),R
2,1 }, which corresponds to a basis of matrix units. In

the implementation, these operators act on P2(N), as opposed to SP2(N). The projection
to SP2(N) was implemented by adding a fifth operator PSP2(N) to T . The action of
PSP2(N) on d ∈ P2(N) is d 7→ [d]. It commutes with all of the previous operators. This
was useful in practice, since elements in SP2(N) will have eigenvalue 1 with respect to
PSP2(N) (the orthogonal complement has eigenvalue 0).

The matrix units for k = 2 are given below. The multiplicity labels have been chosen to
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correspond to eigenvalues of T̄ (2),L
2,1 and T̄ (2),R

2,1 as follows

1↔ 2N ,

2↔ 0 ,

3↔ N .

(D.19)

The elements below have not gone through the final step of being normalised.

(Q
[N ]
[2] )11 = , (D.20)

(Q
[N ]
[2] )21 = − 1

N
+ , (D.21)

(Q
[N−1,1]
[2] )33 = − 4

N
+ + + + , (D.22)

(Q
[N−1,1]
[1,1] )33 = − + + − , (D.23)

(Q
[N−1,1]
[2] )23 =

4

N2
− 2

N
− 1

N
+ − 1

N
− 1

N
+ − 1

N
,

(D.24)

(Q
[N ]
[2] )12 = − 1

N
+ , (D.25)

(Q
[N−1,1]
[2] )32 =

4

N2
− 2

N
− 1

N
+ − 1

N
− 1

N
+ − 1

N
,

(D.26)

(Q
[N ]
[2] )22 =

1

N2
− 1

N
− 1

N
+ , (D.27)

(Q
[N−1,1]
[2] )22 = − 4

N3
+

2

N2
+

1

N2
− 1

N
+

1

N2
+

2

N2

− 1

N
− 1

N
+ − 1

N
+

1

N2
− 1

N
+

1

N2
,

(D.28)

(Q
[N−2,2]
[2] )22 = −

(
1

N2 −N

)
+

(
1

N2 −N

)
+

1

2N
− 1

N

+
1

2N
+

(
1

N2 −N

)
−
(

1

N2 −N

)
− 1

N

+ − 1

N
+

1

2N
+

(
−1

2N + 1

N

)

− 1

N
+

1

2N
+

(
−1

2N + 1

N

)
,

(D.29)

(Q
[N−2,1,1]
[1,1] )22 =

1

N
− 1

N
− 1

N
+ +

1

N
− . (D.30)

For example,
(Q

[N ]
[2] )11(Q

[N ]
[2] )11 = N2(Q

[N ]
[2] )11 , (D.31)



179

and the properly normalised matrix unit is given by

(Q
[N ]
[2] )11

N2
. (D.32)
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