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For Yang-Mills theories in four dimensions, we propose to rescale the ratio between topological
susceptibility and string tension squared in a universal way, dependent only on group factors. We
apply this suggestion to SU(Nc) and Sp(Nc) groups, and compare lattice measurements performed
by several independent collaborations. We show that the two sequences of (rescaled) numerical
results in these two families of groups are compatible with each other. We hence perform a combined
fit, and extrapolate to the common large-Nc limit.

I. INTRODUCTION

Lattice studies provide numerical evidence that, at
zero temperature, four-dimensional Yang-Mills theories
with compact non-Abelian gauge group G confine. This
statement can be made precise, for instance by formu-
lating it in terms of the expectation values of either the
Polyakov loop or the Wilson loop, and then extracting
the string tension σ from suitable correlation functions.
It is of general interest to identify other observables that
characterise the long-distance behaviour of Yang-Mills
theories, for all choices of group G. By doing so, one
can relate lattice results to alternative approaches based
on the large-Nc expansion. A resurgence of interest in the
latter, motivated by gauge-gravity dualities [1–4], led to
much effort being focused on the glueballs, as the results
of lattice calculations of their spectra [5–17] can be com-
pared to those of gravity calculations [18–27]—or other
semi-analytical calculations [28–30].

The topological susceptibility, χ, is a non-perturbative
quantity that plays a central role in our understanding
of strong nuclear forces—see for instance the review in
Ref. [31]. It enters the Witten-Veneziano formula [32, 33]
for the mass of the η′ particle, and the solution of the
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U(1)A problem. Being related to the θ-dependence of
the free energy, χ also enters the electric dipole moment
of hadrons, the strong-CP problem, and its putative so-
lutions (the axion). Being topological in nature, χ is in-
trinsically difficult to compute on the lattice; yet, mod-
ern lattice techniques are mature enough that increas-
ingly precise and reliable measurements have been pub-
lished in the past two decades for SU(Nc) Yang-Mills
theories [5, 15, 34–36]—see also Refs. [37–49]. Our col-
laboration has just completed the calculation of χ in the
Sp(Nc) Yang-Mills theories [50]. In this paper we pro-
pose a way to compare χ in different sequences of gauge
groups, and perform a combined large-Nc extrapolation.

II. YANG-MILLS THEORIES

The Yang-Mills theory with gauge group G, in four-
dimensional Minkowski space, has the classical action:

SYM = − 1

2g2

∫
d4xTrFµνFµν , (1)

with g the coupling, Fµν ≡ ∂µAν − ∂νAµ + i[Aµ , Aν ]
the field-strength tensor, and Aµ ≡

∑
AA

A
µT

A the gauge
field. The matrices TA, with A = 1, · · · , dG, are the
generators in the fundamental representation, normalised
by the relation TrTATB = 1

2δ
AB .

Yang-Mills theories are asymptotically free at short
distance, hence can be interpreted as conformal theo-
ries admitting a marginally relevant deformation: the
gauge coupling. Long distance physics is not accessible
to perturbative calculations; its numerical treatment is
implemented by discretising the Euclidean spacetime on
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a lattice. The discretised action and range of its param-
eters are chosen so that Monte Carlo numerical studies
are performed within the basin of attraction of a fixed
point belonging to the universality class of the aforemen-
tioned conformal theory. By doing so, it is possible to
suppress non-universal features of the lattice formulation
and study the universal properties of the gauge dynamics
characterising the continuum, four-dimensional physical
system of interest. Observable quantities are measured
as ensemble averages of appropriately chosen operators,
and extrapolated towards the continuum limit, where the
lattice spacing a vanishes, by changing the lattice param-
eters so as to approach the fixed point in a controlled way.

We do not report the details of the lattice theories
of interest here, except for highlighting the fact that in
comparing measurements with different ensembles, and
extrapolating towards the continuum limit, one measures
the dimensional observables of interest in units of a physi-
cal scale, hence introducing a scale setting procedure. We
compare measurements in different theories, performed
by different collaborations, with different lattice algo-
rithms, but all of them adopting the same scale-setting
procedure, based upon the string tension σ.

A. String Tension

On the lattice, to extract the string tension σ one mea-
sures the correlation functions between non-contractible
path-ordered loops, separated by Euclidean distance L.
The resulting fluxtubes are described by effective string
theory when L/a � 1, and the mass am(L) (in lattice
units) of the lightest (torelon) state is

am(L) = (σa2)
L

a

(
1 +

+∞∑
k=1

dk
(σL2)k

)
. (2)

The effective string theory [51] is characterised by the
values of dk, dimensionless coefficients that capture the
dynamics at large distances; d1 = −π/3 is the univer-

sal Lüscher term [52]. One estimates σa2 by repeating
lattice measurements for different L/a, and curve-fitting
the results. For further details on the measurements of
σa2, we refer the reader to Ref. [12], for example.

Lattice measurements are affected by both statistical
and systematic uncertainties that are difficult to reduce
below the few percent level. Furthermore, one intrinsic
limiting factor in the adoption of σ as a universal scale
setting procedure in non-Abelian gauge theories is that
σ is not well defined for asymptotically large L, if
string-breaking effects are present, as is the case with
dynamical matter fields. Yet many lattice collaborations
report their results in terms of σ, because of the simplic-
ity of its extraction and its intuitive meaning. We adopt
this strategy for the purposes of this paper, and in this
work we do not attempt to compare with results that
use a different scale setting method, such as the gradient
flow, as done, e.g., in Ref. [45].

B. Topological Susceptibility

The topological charge Q of a gauge configuration is

Q ≡
∫

d4x q(x) , (3)

where

q(x) ≡ 1

32π2
εµνρσ Tr Fµν(x)Fρσ(x) , (4)

with εµνρσ is the Levi-Civita symbol. The topological
susceptibility is defined as

χ ≡
∫

d4x 〈q(x)q(0)〉. (5)

The inclusion of a θ term yields the action S̃, which ex-
tends Eq. (1):

S̃ = − 1

2g2

∫
d4xTrFµνFµν −

θ

32π2

∫
d4x εµνρσTrFµνFρσ . (6)

The vacuum (free) energy (density) F (θ) is defined by
the path integral

e−V4F (θ) ≡
∫
DAµe−S̃E , (7)

where V4 is the four-dimensional volume, and S̃E the Eu-
clidean version of Eq. (6). The topological susceptibility

is then computed as

χ =
∂2F (θ)

∂θ2

∣∣∣∣
θ=0

. (8)

In the continuum theory, the charge Q ∈ Z is quan-
tised. Lattice artefacts spoil the discreteness of the topo-
logical charge and prevent Q from taking integer val-
ues on configurations generated in numerical simulations.
The assignment of integer topological charge on the lat-
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tice is affected by an ambiguity, though this is expected
to be irrelevant in the continuum limit.

Other factors that affect the accuracy of the results
stem from the practical limitations of Monte Carlo up-
dating algorithms and of the finite range of lattice spac-
ings that can be simulated. Among them, we mention
the existence of (auto)correlation between configurations,
(partial) topological freezing, and numerical noise due to
short-distance fluctuations, as well as the appearance of
other uncertainties in the continuum limit extrapolation.
We refer to the original literature for details [5, 15, 34–
36, 43, 44, 50], and for a survey of the advanced strategies
that the lattice collaborations implement in order to min-
imise the statistical error and the systematic effects in
the measurement of χ. Under the reasonable assumption
that the identified errors have been evaluated correctly, a
direct comparison of the results from the measurements
of the different groups is a way to assess the size of any
potentially remaining systematic effects.

III. TOWARDS LARGE Nc

Since the θ term is topological, it does not affect the
local dynamics of the gauge fields, such as the running
coupling. It is therefore widely believed that at low en-
ergy Yang-Mills theories confine even in the presence of
a non-vanishing θ, at least as long as θ is small. The
θ-dependent vacuum is gapped, and all the excitations
(glueballs) are color-singlets. In order for CP to be a
well defined symmetry, we also expect the vacuum en-
ergy to be an even function of θ, minimised at θ = 0,
by consequence of the Schwarz inequality applied to the
Euclidean partition function [53, 54]:

F (0) ≤ F (θ) = F (−θ) . (9)

By defining the ’t Hooft coupling λ ≡ g2Nc, because
the trace of any Nc × Nc matrix is proportional to Nc,
while the couplings are proportional to λ/Nc, Yang-Mills
theories can be analysed in a 1/Nc expansion in which
one holds λ fixed. For consistency at the quantum level,
the θ term must be scaled holding θ/Nc fixed as well, and
physical observables are multi-valued functions of θ with
periodicity 2π [55]. For example, the vacuum energy is
expected to take the form

F (θ) = fGmin
k
h

(
θ + 2πk

Nc

)
, (10)

with k = 0, · · · , Nc − 1, and the pre-factor fG = O
(
N2
c

)
for large Nc. h is smoothly dependent on θ/Nc for small
θ, and is determined by G in a way that admits a finite
limit as Nc → ∞. For θ = 0, the minimum is expected
for k = 0 [55], and the large-Nc limit of the topological
susceptibility is finite:

lim
Nc→∞

χ = χ∞ , (11)

with χ∞ = h′′(0). As each gauge field contributes
equally, one expects that

fG ∝ dG , (12)

where dG is the dimension of the group; dG = N2
c − 1

for SU(Nc) and dG = (Nc + 1)Nc/2 for Sp(Nc). The
proportionality factor must be finite in the large-Nc limit.

The string tension is the energy density per unit length
of a fluxtube, the limiting case of a fermion-antifermion
pair in the fundamental representation, separated by an
asymptotically large distance. We hence expect σ to
be proportional to the strength of the coupling between
the fermions, which can be measured by the quadratic
Casimir of the fundamental representation [28]:

σ ∝ C2(F ) =

{
N2

c−1
2Nc

for SU(Nc)
Nc+1

4 for Sp(Nc)
. (13)

The proportionality factor is itself a function of Nc, and
encodes non-perturbative dynamics in such a way that
the string tension has a finite large-Nc limit, σ∞, as
expected because the coupling of fundamental fermions
scales as 1/

√
Nc, while there are Nc components to them.

The topological susceptibility inherits its group-
dependence from the vacuum energy. Hence, we expect
the following ratio to capture universal features:

ηχ ≡
χC2(F )

2

σ2dG
=

χ

σ2
·

{
N2

c−1
4N2

c
for SU(Nc)

Nc+1
8Nc

for Sp(Nc)
. (14)

Furthermore, we expect the ratio ηχ to be finite and uni-
versal in the limit Nc →∞:

lim
Nc→∞

χC2(F )
2

σ2dG
= b

χ∞
σ2
∞

= ηχ(∞) <∞ , (15)

where b = 1/4 for SU(Nc), while b = 1/8 for Sp(Nc).

IV. NUMERICAL RESULTS

We summarise in Table I lattice measurements for the
quantity χ/σ2 taken from Refs. [5, 15, 34–36, 43, 44, 50],
extrapolated to the continuum limit. The same results
are graphically displayed in Fig. 1, where we organise the
measurements in terms of (the inverse of) the number of
colors Nc in the gauge groups SU(Nc) and Sp(Nc), re-
spectively. In the table, we show also the group factor
C2
F /dG, which we use in Fig. 2 to rescale the measure-

ments of χ/σ2, as described in Section III. In this sec-
ond plot we also change the abscissa to display 1/dG; for
large Nc, dG ∝ N2

c , and this more physical choice re-
moves conventional ambiguities in comparing across dif-
ferent sequences of groups within Cartan’s classification.
The data of Tab. I and the analysis code used to prepare
Figs. 1 and 2, as well as the numbers quoted later in this
Section, are available at Ref. [56, 57].
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TABLE I: Summary table of measurements used in this study.

Group Reference χ/σ2 C2(F )2/dG
Sp(2) Bennett et al. [50] 0.0519(27) 0.1875
Sp(4) Bennett et al. [50] 0.0424(27) 0.1562
Sp(6) Bennett et al. [50] 0.0396(49) 0.1458
Sp(8) Bennett et al. [50] 0.0424(40) 0.1406
SU(2) Lucini et al. [5] 0.0507(24) 0.1875
SU(3) Lucini et al. [5] 0.0355(32) 0.2222
SU(4) Lucini et al. [5] 0.0224(39) 0.2344
SU(5) Lucini et al. [5] 0.0224(49) 0.2400
SU(3) Del Debbio et al. [34] 0.0282(12) 0.2222
SU(4) Del Debbio et al. [34] 0.0257(10) 0.2344
SU(6) Del Debbio et al. [34] 0.0236(10) 0.2431
SU(4) Bonati et al. [35] 0.02480(80) 0.2344
SU(6) Bonati et al. [35] 0.02300(80) 0.2431
SU(3) Bonanno et al. [36, 43, 44] 0.0289(13) 0.2222
SU(4) Bonanno et al. [36] 0.02499(54) 0.2344
SU(6) Bonanno et al. [36] 0.02214(69) 0.2431
SU(2) Athenodorou et al. [15] 0.05565(64) 0.1875
SU(3) Athenodorou et al. [15] 0.0325(11) 0.2222
SU(4) Athenodorou et al. [15] 0.02469(67) 0.2344
SU(5) Athenodorou et al. [15] 0.0213(13) 0.2400

0.0 0.1 0.2 0.3 0.4 0.5 0.6

1/Nc

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

χ σ
2

Athenodorou et al.

Del Debbio et al.

Bonati et al.

Bonanno et al.

Lucini et al.

Bennett et al.

FIG. 1: Topological susceptibility χ, in units of the string
tension σ, in the continuum limit, for various groups SU(Nc)
and Sp(Nc), and as a function of the parameter 1/Nc. The
measurements reported here are labelled by the collaboration
that published them, and are also summarised in Table I.

Before proceeding, we comment on some subtleties
about the numerical results we quote, which have been
obtained with heterogeneous treatments of systematic ef-
fects. The topological charge in pure gauge theories can
be computed in different ways [46], from ensembles of
gauge configurations generated with Monte Carlo algo-
rithms, all converging towards the same continuum limit.

0.0 0.1 0.2 0.3 0.4

1/dG

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

χ σ
2

C
2
(F

)2

d
G

Athenodorou et al.

Del Debbio et al.

Bonati et al.

Bonanno et al.

Lucini et al.

Bennett et al.

FIG. 2: Ratio of topological susceptibility and string ten-
sion squared, rescaled by the group factor C2(F )2/dG, as a
function of 1/dG. We also show the best-fit results of a 2-
parameter fit (dotted line) and of a 3-parameter fit including
O(1/d2G) corrections (dashed line), as explained in the main
text. The horizontal dashed line is the NDA estimate 1/(4π)2.

Two technical aspects deserve special attention. Firstly,
the continuum χ is related to the lattice χL by both addi-
tive and multiplicative renormalisation. Second, the lat-
tice discretisation renders the lattice topological charge,
QL, non-integer.

All quoted calculations of χ make use of the definition
of QL that employs the clover-leaf plaquette [58, 59] on
ensembles of configurations generated with the Cabibbo-
Marinari implementation of the heat bath algorithm [60].
In order to circumvent the noisy signal resulting from
ultraviolet fluctuations of QL, one exploits the stability
of the topological charge under smooth deformations of
the fields, and computes it after a smoothing process such
as cooling or Wilson flow. An integer value of QL on the
lattice can then be assigned either by small-instanton-
correction [5], or by correction-and-rounding [34]. The
former consists of rounding the lattice topological charge
to one of its neighbouring integer values, chosen with
the sign of the net contribution of small instantons. The
latter comprises rescaling QL by minimising the average
deviation of the lattice topological charge from integer
multiples.

For SU(Nc) gauge theories, Ref. [34] assigns integer
values to QL by correction-and-rounding on cooled con-
figurations and computes the continuum limit of χ for
Nc = 3, 4, 6. The same strategy is used in Ref. [35],
which reports the continuum limits for Nc = 4, 6. With
respect to these two works, Ref. [36] differs because the
configurations are obtained by an algorithm that con-
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siders a larger ensemble of systems with boundary con-
ditions interpolating from periodic to open to soften
the effects of topological freezing (see the quoted work
for details); the continuum limits are then obtained for
Nc = 3, 4, 6 although for SU(3) the numerical results are
taken from Refs. [43, 44]. By contrast, in Refs. [5, 15]
small-instanton-correction is applied to QL, obtained
from cooled configurations, and the continuum χ is then
extrapolated for Nc = 2, 3, 4, 5.

In the case of Sp(Nc) gauge theories, we borrow the
results from a companion publication, Ref. [50], which is
part of the ongoing programme of study of Sp(Nc) lat-
tice gauge theories [11, 13, 61–63], and uses the HiRep
code [64], adapted to Sp(Nc) groups [11]. The lattice
topological charge is obtained from Wilson-flowed con-
figurations [65, 66], and correction-and-rounding is used
to assign integer topological charge. The topological
susceptibility χ is obtained in the continuum limit for
Nc = 2, 4, 6, 8.

By comparing Figs. 1 and 2, we observe two interest-
ing facts. Firstly, the two sequences of measurements
of χ/σ2 are clearly dissimilar, yet they share interest-
ing properties at the extrema: measurements by differ-
ent collaborations for Sp(2) ∼ SU(2) are in broad agree-
ment, and going to large Nc the two sequences show a
tendency to converge towards two different constants for
Nc >∼ 4. Second, once we apply the rescaling by the
group factor, C2

F /dG, the two sequences can no longer be
distinguished, the measurements for Sp(Nc) and SU(Nc)
theories agreeing with one another, given current uncer-
tainties. A rough estimate, based upon naive dimensional
analysis (NDA) [67], yields:

ηχ =
χC2(F )

2

σ2dG
= O

(
1

(4π)2

)
. (16)

This estimate falls straight in the middle of the range of
measurements, possibly by mere numerical coincidence.
Yet, it is remarkable that no more than a factor of 2
separates existing measurements, for all groups G, and
that this estimate yields the correct order of magnitude.

The scaling procedure allows us to perform a simple
global fit of the whole set of measurement, in the form

ηχ =
χC2(F )

2

σ2dG
= a+

c

dG
. (17)

The result of the fit, which has reduced X̃ 2 ≡
X 2/Nd.o.f. = 1.58, is a = 0.004842(77) and c =
0.01635(46). Visual inspection of Fig. 2 and Table I
highlights some modest tension between measurements
performed by different collaborations for SU(2), as well
as for SU(3), suggesting that for these two groups the
systematic uncertainty is not negligible, compared to the
statistical uncertainty. To quantify this effect, we repeat
the same fitting procedure, but by omitting the Sp(Nc)
measurements, and obtain as a result that X̃ 2 = 1.83,
hence demonstrating that the combination of measure-
ments taken in theories with the two families of groups
does not affect the goodness of the fit.

We also performed alternative fits, by including cor-
rections O(1/

√
dG) or O(1/d2G), to test the scaling hy-

pothesis we made; these additional terms do not change
appreciably the results of the maximum likelihood anal-
ysis. Our final result is

lim
Nc→∞

ηχ = (48.42± 0.77± 3.31)× 10−4 , (18)

where the first error is the statistical one from the 2-
parameter fit in the form Eq. (17), while the second is
the systematic error of the fitting procedure. The latter is
conservatively estimated as the difference between using
in the extrapolation either the 2-parameter fit or a 3-
parameter fit including an additional term proportional
to 1/d2G—we show the result of both fits in Fig. 2.

For SU(Nc), C2(F )
2 → dG/4 in the large-Nc limit,

hence our combined result in Eq. (18) can be recast as
χ/σ2 → 0.01937 ± 0.00136. This is ' 1.4 standard de-
viations lower than the result χ/σ2 → 0.0221(14) from
Ref. [34], but in excellent agreement with Ref. [36], which
quotes χ/σ2 → 0.0199(10), and with Ref. [15], from
which one deduces that χ/σ2 → 0.01836(56).

V. OUTLOOK

We proposed a rescaling by group-theoretical factors
of the dimensionless quantity χ/σ2, the ratio of topo-
logical susceptibility and square of the string tension, to
yield ηχ, a quantity that can be meaningfully compared
across different (four-dimensional) Yang-Mills theories.
We collected from the literature the results of the con-
tinuum limit extrapolation of several independent lattice
measurements of ηχ in theories with groups SU(Nc) and
Sp(Nc). All measurements of ηχ are of the order of mag-
nitude indicated by a rough NDA estimate. The two
sequences of groups display the same functional depen-
dence of ηχ on the dimension dG of the group, in support
of the proposed rescaling. We assessed this statement by
performing a combined fit of all the measurements, and
by extrapolating towards the large-Nc limit.

We conclude by highlighting a number of open ques-
tions, deserving of further future investigation. The nu-
merical evidence we collected suggests that the group-
theoretical scaling we proposed allows to combine mea-
surements of χ within the sequences of SU(Nc) and
Sp(Nc) Yang-Mills theories. It would be fascinating to
extend this analysis to other choices of gauge group. Af-
ter rescaling, there remains clearly visible a non-trivial
(though mild) dependence on the group dimension; the
precise functional form of the quantity χC2(F )

2/σ2dG
remains a subject for non-perturbative studies. It would
be interesting to reassess these statements with future
higher precision measurements.
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