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Abstract

This thesis proposes heuristics motivated by solvable cases for the travelling sales-
man problem (TSP) and the cumulative travelling salesman path problem (CT-
SPP). The solvable cases are investigated in three aspects: specially structured ma-
trices, special neighbourhoods and small-size problems. This thesis demonstrates
how to use solvable cases in heuristics for the TSP and the CTSPP and presents
their promising performance in theoretical research and empirical research.

Firstly, we prove that the three classical heuristics, nearest neighbour,
double-ended nearest neighbour and GREEDY, have the theoretical property of
obtaining the permutation for permuted strong anti-Robinson matrices for the TSP
such that the renumbered matrices satisfy the anti-Robinson conditions. Inspired
by specially structured matrices, we propose Kalmanson heuristics, which not only
have the theoretical property of solving permuted strong Kalmanson matrices to
optimality for the TSP, but also outperform their classical counterparts for general
cases.

Secondly, we propose three heuristics for the CTSPP. The pyramidal heuris-
tic is motivated by the special pyramidal neighbourhood. The chains heuristic and
the sliding window heuristic are motivated by solvable small-size problems. The
experiments suggest the proposed heuristics outperform the classical GRASP-2-opt
on general cases for the CTSPP.

Thirdly, we conduct both theoretical and empirical research on specially
structured cases for the CTSPP. Theoretically, we prove the solvability of Line-
CTSPP on more general cases and the time complexity of the CTSPP on SUM
matrices. We also conjecture that the CTSPP on two rays is NP-hard. Empirically,
we propose three heuristics, which perform well on specially structured cases. The
Line heuristic, based on Line-CTSPP, performs better than GRASP-2-opt when
nodes are distributed on two close parallel lines. The Up-Down heuristic is inspired
by the Up-Down structure in solvable Path TSP and outperforms GRASP-2-opt in
convex-hull cases and close-to-convex-hull cases. The Two-Ray heuristic combines
the path structures in the first two heuristics and obtains high-quality solutions
when nodes are along two rays.

xi



Chapter 1

Introduction and Related

Works

1.1 Review of Problems and Background

Transportation plays a central role in modern society. Economically speaking,

transportation accounts for between 6% and 12% of the GDP in many developed

economies [132]. Transportation is also responsible for a large proportion of green-

house gas emissions. Rodrigue [132] reported that transportation accounts for

between 20% and 25% of energy consumption among developed economies, approx-

imately 29% of world energy demand and about 61.5% of global oil consumption

each year. The direct costs of transportation have increased dramatically since

2000 because of the significant increases in oil prices and the number of vehicles.

This industry also imposes indirect costs on society including traffic congestion,

death and injury, pollution and delay time costs [28].

Transportation is an important component of scientific research in the area

of logistics. The Council of Supply Chain Management Professionals defines logis-

tics as the process of planning, implementing and controlling the transportation

and storage of goods and services from the depot to the point of consumption [146].

Routing problems in logistics define a series of combinatorial optimisation problems

that optimise routes for a fleet of vehicles. Coelho et al. [42] conducted a survey on

the applications of routing problems in logistics including oil transportation, retail,

waste collection management, mail and package delivery and food distribution, and

they demonstrated that optimisation techniques can result in significant economic

savings of more than 10%. Research by Hasle and Kloster [84] also suggests that
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the optimisation of routing can bring savings of 5–30%. There are two classical

routing problems in logistics optimisation: the vehicle routing problem (VRP) and

the travelling salesman problem (TSP), which are also central to combinatorial

optimisation. The application of routing problems can help logistics provide better

services while reducing costs and energy consumption.

The VRP is to optimise the routing design for a fleet of vehicles to serve

a set of customers. Dantzig and Ramser [46] formulated a mathematical model

for the VRP. The VRP is a generalisation of the multiple TSP. Hundreds of stud-

ies have analysed the VRP over the past 50 years. Exact methods aim to obtain

optimal solutions. The classical exact algorithms include branch and X (X =cut,

bound, price, etc.), which solve the VRP via integer linear programming (ILP) or

mixed ILP (MILP) [13], dynamic programming, which recursively divides the origi-

nal problem into smaller sub-problems [39], constraint programming, which interre-

lates different variables using constraints [145], and the column generation method,

which breaks the problem into the master problem and the sub-problem [57].

The VRP is an NP-hard problem. This implies that the performance of

exact algorithms on larger-size problems can be non-ideal. Therefore, a variety

of heuristics have been developed. The well-known heuristics include the saving

algorithm proposed by Clarke and Wright [41], the sweep algorithm developed

by Gillett and Miller [71], the route-first-cluster-second algorithm [115] and the

cluster-first-route-second algorithm [64]. In recent years, metaheuristics for the

VRP have been investigated. Glover [74] coined the term ‘metaheuristic’, which

refers to as ‘heuristic guiding other heuristics’. Metaheuristics can also be explained

as a strategy that combines subordinate heuristics to systematically explore dif-

ferent neighbourhood structures. Classical metaheuristics include nature-inspired

metaheuristics such as the genetic algorithms (GA), ant colony system (ACS) and

particle swarm optimisation (PSO), as well as memory-based metaheuristics such

as the tabu search (TS). More heuristics and metaheuristics can be seen in the

survey by Laporte et al. [100].

In addition to the classical VRP, some variants have been studied that in-

corporate more parameters and constraints such as a capacity constraint, a length

limit of the route, an arrival/departure time limit, the collection or delivery of

goods and service time requirements. The well-known variants include capacitated

VRP (CVRP, [41]), VRP with split delivery (VRPSD, [56]), VRP with back-haul

(VRPB, [76]), multi-depot VRP (MDVRP, [101]), dynamic VRP [70] and stochas-

tic VRP [69]. The latest advances and new challenges in the VRP have been
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extensively discussed by Toth and Vigo [141] and Golden et al. [78].

The TSP is another intensively studied problem in logistic optimisation.

The TSP is to find the optimal tour to minimise the total travelling distance for

one vehicle that visits given customers exactly once and then returns to the starting

point. The TSP was first put forward by a travelling salesman in a German book in

1832, and a mathematical model was first formulated by Flood (1956) [65]. Since

then, the problem has aroused great interest in academia because it is a theoreti-

cally challenging problem with important practical applications in many areas such

as transportation, telecommunications, logistics, manufacturing and neuroscience.

Details of applications of the TSP have been given by Davendra [47].

The TSP is also an NP-hard problem. During the past few decades, numer-

ous exact algorithms, approximation algorithms, heuristics and metaheuristics have

been explored for the TSP. Lawler [104] provided an insightful and comprehensive

survey of algorithms for this problem. We summarise the major exact algorithms

in this thesis. The well-known exact algorithms include ILP [45, 109, 99], the

branch and bound algorithm [31, 11, 110] and the minimum spanning tree bound

algorithm [38, 85].

A large-size TSP is computationally intractable. Therefore, a more prac-

tical approach is to develop heuristics to find nearly optimal solutions within a

reasonable computation time. Heuristics include those with guaranteed worst-case

performance and those with good empirical performance. Examples of the former

heuristics can be seen in [4, 121], but the majority of researchers have focused on

the use of the latter heuristics to improve the performance. TSP heuristics can

also be grouped into tour construction heuristics, tour improvement heuristics and

composite heuristics. Tour construction heuristics construct the tour incremen-

tally until a valid tour is completed. The well-known tour construction heuristics

include the nearest neighbour algorithm [133], double-ended nearest neighbour al-

gorithm [17], insertion algorithm [133, 139, 116] and patching algorithm [93]. Tour

improvement heuristics improve the current tour repeatedly by performing various

operations. The r-opt algorithm (Lin-Kernighan heuristic [105, 106]), simulated an-

nealing [94] and the TS [73] are well-researched tour improvement heuristics. There

are also two effective composite algorithms: the CCAO heuristic [77] and GENIUS

algorithm [68]. Heuristics have been compared by Bentley [17], Reinelt [128, 129]

and Johnson and McGeoch [89]. We refer readers to Applegate et al. [6] and Gutin

and Punnen [81] for more information on the TSP.

In the literature, different variants of the TSP have been investigated: profit-

3



based TSP [61], time-window-based TSP [136], maximum TSP [15] and kinetic-

based TSP [36].

There is a special version of the TSP, the Path TSP, the objective function

of which is the same as the TSP, but the vehicle does not return to the start point,

which means that the tour is a path instead of a cycle as in the classical TSP.

The field of research into the Path TSP is less rich than that for the classical TSP.

The Path TSP is also an NP-hard problem. Recently, Zenklusen [149] explored a

1.5-approximation algorithm for the Metric Path TSP.

The cumulative travelling salesman path problem (CTSPP [18]) is another

variant of the classical TSP. In the literature, the CTSPP is also known as the min-

imum latency problem (MLP [20]), the travelling repairman problem (TRP [142]),

the delivery man problem [63] and the school bus driver problem [37].

The CTSPP is similar to the TSP in that it involves visiting each cus-

tomer exactly once, but the objective is to minimise the sum of arrival times at

all customers instead of the total travelling time in the classical TSP. Note that

for the CTSPP, the tour is a path as in the Path TSP. The cumulative objective

function has arisen from the increasing incidence of natural disasters worldwide, in

which the transportation cost can be negligible compared with the value of people’s

lives. After a disaster, emergency relief should be delivered to each affected area

as soon as possible; thus, the objective is to minimise the sum of waiting times

for all areas [16]. Considering the current COVID-19 pandemic, the application

of the CTSPP to the delivery of medical supplies has raised concerns. Given that

medical supplies are delivered to cities with different numbers of people, we as-

sume that there is a weight associated with each city. In this case, the objective is

changed to minimising the sum of arrival times at all cities with weights. We call

the new problem the CTSPP with weights (CTSPPW). The CTSPP is a subset of

the CTSPPW in which the weights for all cities are 1.

The CTSPP considers the satisfaction of each customer, and thus has many

important practical applications in customer-centric service systems such as in lo-

gistics for humanitarian relief supply [29], school bus routing [24] and home delivery

services [108]. In contrast, in the classical TSP, minimising the total travelling time

may result in some customers experiencing a severe delay, leading to very long to-

tal waiting times. On account of this, Archer and Williamson [8] stated that the

objective of the CTSPP is customer oriented instead of server oriented, as in the

TSP. Wu et al. [148] stated that the CTSPP considers the service quality, while the

TSP considers the service cost. The CTSPP can also be applied to other practical
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models such as disk-head scheduling [20], data retrieval [59], job scheduling and

different-location machine repair [114].

The CTSPP is an NP-hard problem similarly to the TSP but, surprisingly,

the former is a more difficult problem than the latter [20, 108]. The CTSPP has

special properties that do not exist in the TSP. One property is that very small local

changes can produce highly non-local changes in the optimal tour [20]. Another

property is that an additional edge inserted at the start of the route will have a

huge effect on the waiting time of all remaining customers [10]. The literature

suggests that the CTSPP is computationally much harder to solve to optimality or

even approximately than the TSP [108].

Although the TSP has been intensively studied in the area of combina-

tional problems, the CTSPP has received insufficient attention. Some exact algo-

rithms have been proposed for the CTSPP such as enumerative algorithms based

on non-linear integer programming [18, 107], enumerative algorithms that incor-

porate lower bounds from linear integer programming [63], dynamic programming

algorithms [147], branch and bound algorithms [148, 19] and branch-cut-and-price

formulations [2]. However, these exact algorithms can only be applied to small-size

problems. For example, Wu et al. [148] solved a small-size problem of 25 within 100

seconds despite using a more efficient algorithm than the standard formulation of

CPLEX. Approximation algorithms for the CTSPP are given in [20, 37, 10, 60, 7].

The best-known approximation factors are 3.59 for general cases [37] and 3.03 for

the edge-weighted trees [7], which are greater than the current best approximation

factor of 1.5 for the TSP. Metaheuristics that adopt the greedy randomised adap-

tive search procedure (GRASP [62]) for tour construction and adopt the variable

neighbourhood descent (VND) or variable neighbourhood search (VNS) for tour

improvement have also been explored [134, 137].

1.2 Solvability of TSP-Related Problems

Although the TSP and the CTSPP are NP-hard problems, special solvable cases

exist. In the literature, the solvability of the TSP and the CTSPP has been studied

in three aspects: specially structured matrices that can be solved in polynomial

time, exponential neighbourhoods that can be searched in polynomial time and

mathematical programming models for small-size problems. Solvable cases are

not only useful in their own right, but also useful in heuristics for more general

cases [40]. This motivates our research on the heuristics inspired by solvability in
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this thesis.

Our emphasis will be on how solvability can be applied to heuristics for

the TSP and the CTSPP. We propose heuristics inspired by the solvable cases and

demonstrate their promising performance. We outline each type of solvability as

follows.

Solvable Specially Structured Matrices

This type of solvable special case has underlying distance matrices with

special combinatorial properties that are formulated in terms of specific inequalities.

Given such a specifically structured matrix, the basic idea is to first investigate the

combinatorial structure of an optimal solution and show that there is always an

optimal solution having certain properties or a special structure. Thus, the original

problem can be simplified to an easier problem of finding the optimal tour among

those tours with certain properties or special structures. Next, we show that we

can solve to optimality over the tours with the specific structure in polynomial

time, and we can say that the problem on such a special matrix is polynomially

solvable.

Typically, TSP problems with distance matrices such as the Supnick ma-

trix [140], Kalmanson matrix [92], Monge matrix [48], Demidenko matrix [54] and

Van der Veen matrix [144] can be solved using polynomial algorithms. Deineko et

al. (2014) classified the specially structured cases for the TSP under four-point con-

ditions. Çela et al. [33] explored the x-and-y-axes TSP where all cities are located

on the x-axis and the y-axis of an orthogonal coordinate system of the Euclidean

plane, and solved the problem in quadratic time. Burkard et al. [27] also described

several specially solvable classes of Euclidean instances of the TSP with special

geometric properties such as the TSP on convex sets, the TSP on line segments

and the necklace TSP. We refer readers to the well-known surveys by Lawler [104]

and Burkard et al. [27] for solvable cases with specially structured matrices for the

TSP.

The specially structured matrices mentioned above depend on the number-

ing of cities, and the specially structured conditions can be checked in polynomial

time. The problem becomes non-trivial if a given distance matrix does not satisfy

the specially structured conditions but can be permuted into a matrix that satisfies

certain conditions by renumbering rows and columns in the initial matrix. In this

case, the initial matrix is called a permuted matrix. A recognition algorithm is to

determine whether there exists a renumbering, i.e., a permutation of the rows and

columns of the original matrix such that the renumbered matrix satisfies the spe-
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cific conditions, and to obtain the permutation in the case that it exists. Permuted

Monge matrices, permuted Supnick matrices and permuted Kalmanson matrices

can be recognised in polynomial time [48, 50, 55]. However, the recognition al-

gorithms for permuted Demidenko matrices and permuted Van der Veen matrices

have not been resolved.

For the Path TSP, Garcia and Tejel [67] proposed a polynomial-time algo-

rithm for a specially structured case where all nodes on the Euclidean plane are

along the border of their convex hull. Çela et al. [35] solved the Path TSP with

a Demidenko matrix in polynomial time. For the CTSPP, algorithms also exist

for specially structured cases such as paths where nodes are on a straight line [3],

edge-unweighted trees [111], three-diameter trees [20] and trees with a constant

number of leaves [98], which can all be solved in polynomial time.

Although some of the solvable cases mentioned above do not have a spe-

cific matrix name, they are a subclass of some specially structured matrices. When

nodes are on a straight line, the underlying matrix is an anti-Robinson matrix [131].

Çela et al. [35] suggested that given an edge-weighted tree, if the nodes are num-

bered with the depth-first route, then the shortest path distances determine a

Kalmanson matrix. In addition, any convex-hull case satisfies Kalmanson condi-

tions.

We have found that in current research on specially structured cases for

both the TSP and the CTSPP, most of the effort has been devoted to theoretical

studies. Relevant heuristics that utilise this type of solvable cases are scarce in

the literature. In this thesis, we will propose heuristics motivated by the specially

structured matrices for both the TSP and the CTSPP. We will also investigate new

specially structured cases to contribute to the theory and explore more heuristics

for special cases and more general cases.

Solvable Neighbourhoods

Neighbourhood search algorithms are a broad class of improvement heuris-

tics where an improved solution is found at each iteration by searching the neigh-

bourhood of the current solution. To be more specific, a neighbourhood search

algorithm is an iterative procedure that starts with an initial solution and searches

its neighbourhood to find the best neighbour, i.e., the one with the best objective

value. If the best neighbour improves the solution, then the current solution is

replaced by the best neighbour, and the neighbourhood search is performed again.

The process is repeated until there is no further improvement [51]. The returned

solution is a locally optimal solution. The neighbourhood search is widely used for
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the TSP and other combinatorial optimisation problems [1].

If the size of the neighbourhood is polynomial in the input size, we can

search the whole neighbourhood by enumerating all neighbours in polynomial time.

However, when the neighbourhood size is small, only a small number of candidates

can be searched for each iteration, which may lead to a very large number of

iterations. Therefore, it is necessary to explore exponential neighbourhoods that

can be searched in polynomial time [51].

Exponential neighbourhoods have been extensively studied [12, 82, 120].

We summarise the well-known neighbourhoods here. The ASSIGN neighbour-

hood [135] contains (n/2)! neighbours and can be searched in O(n3) time. Based on

assignments, Gutin [80] generalised this neighbourhood, which can also be searched

in O(n3) time. Punnen [127] extended the neighbourhood further by removing

and reinserting paths instead of nodes. Deineko and Woeginger [51] also explored

neighbourhoods based on matches in bipartite graphs and neighbourhoods based

on partial orders.

Permutation trees are another group of exponential neighbourhoods that

can be searched in polynomial time [51]. A permutation tree is a rooted ordered

tree with pairwise distinct leaves. The PQ-tree is a classical permutation tree [22].

In addition, the well-known pyramidal neighbourhood [54] is also represented by a

permutation tree. A permutation is called a pyramidal permutation when some of

the nodes are placed in increasing order to n and the remaining nodes are placed

in decreasing order. Although the pyramidal neighbourhood contains an exponen-

tial number (2n−1) of pyramidal permutations, an optimal pyramidal permutation

can be obtained within O(n2) time using dynamic programming [54] for the TSP.

The pyramidal neighbourhood is also related to some well-known specially struc-

tured distance matrices for the TSP. Demidenko [54] proved that the TSP with a

Demidenko matrix is pyramidally solvable, which means that an optimal tour for

the TSP can be found among tours with pyramidal structures. In the survey [27],

Burkard et al. summarised the pyramidally solvable TSPs. A moderate number

of matrices such as Supnick matrices, Kalmanson matrices, Demidenko matrices

and Van der Veen matrices have a combinatorial structure that guarantees that the

optimal solution can be obtained in the pyramidal neighbourhood. The solvability

can be proved by a tour improvement technique [27].

Sarvanov and Doroshko [135] first applied the pyramidal neighbourhood to a

local search algorithm for the TSP. Carlier and Villon [30] combined the pyramidal

neighbourhood with a cyclic shift, and the resulting local search heuristic had much
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better performance than 2-opt and was even competitive with k-opt [30]. We also

refer readers to surveys by Deineko and Woeginger [51] and Ahuja et al. [5] for

a wealth of information on exponential neighbourhoods that can be searched in

polynomial time.

We have found that although the TSP on solvable neighbourhoods has been

intensively studied, the CTSPP has received insufficient attention. In our thesis,

we will explore heuristics based on solvable neighbourhoods for the CTSPP.

Solvable Size

Due to the NP-hardness, the exact algorithms can only be applied to small-

size problems. However, there is also a decomposition approach [14], which can

divide a large problem into a sequence of sub-problems such that each sub-problem

can be solved to optimality by mathematical programming. This type of heuristic is

a class of matheuristics [23], which combine heuristics with mathematical program-

ming models to obtain high-quality solutions for large-size problems. Matheuristics

can be applied to different routing problems and are classified into three types: de-

composition approaches, improvement heuristics using mathematical programming

and branch-and-price (or column-generation-based) approaches. More information

concerning decomposition heuristics for the TSP can be found in publications by

Ball [14] and Archetti and Speranza [9]. However, in the literature, related research

on the CTSPP is scarce. In this thesis, we will explore efficient heuristics that use

strategies to reduce the problem size and apply dynamic programming algorithms

to the solvable-size problems for the CTSPP.

1.3 Structure of Thesis and Contributions

The next chapters of this thesis propose heuristics motivated by solvable cases for

the TSP and the CTSPP. The brief summary of each chapter and its contributions

are given below.

Chapter 2: Kalmanson Heuristics for the TSP. In this chapter, we amend

three classical heuristics motivated by specially structured matrices for the TSP. We

consider three classical heuristics, nearest neighbour (NN), double-ended nearest

neighbour (DENN) and GREEDY, for which we prove their theoretical property of

obtaining the permutation for a permuted strong anti-Robinson matrix such that

the renumbered matrix satisfies the anti-Robinson conditions. The anti-Robinson

matrix is closely related to and can be obtained after a simple transformation of

the Kalmanson matrix. Inspired by the knowledge of the Kalmanson matrix and
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the anti-Robinson matrix, we suggest minor amendments to the three classical

heuristics. The amended versions, called Kalmanson heuristics, exhibit surprising

results, including not only the additional theoretical property of obtaining the

permutation for a permuted strong Kalmanson matrix, and thus finding an optimal

solution for the TSP with a permuted strong Kalmanson matrix, but also superior

empirical performance to their classical counterparts for general cases based on

extensive computational experiments. The incorporation of additional features

from solvable cases into the classical heuristics enriches the nature of the heuristics.

Chapter 3: Simple Heuristics for the CTSPP. In this chapter, we propose

three heuristics based on dynamic programming techniques for tour improvement.

The first heuristic, the pyramidal heuristic (PH), is motivated by the well-known

solvable pyramidal neighbourhood. We develop dynamic programming recursions

to find the best permutation in the pyramidal neighbourhood for the CTSPP. The

second heuristic, chains heuristic (CH), and the third heuristic, the sliding window

heuristic (SWH), are motivated by solvable small-size problems. We use different

strategies to reduce the problem size in the CH and SWH. The CH partitions the

tour into a set of small-size chains and organises a chains neighbourhood, while

the SWH adopts a sliding window aggregation strategy with intervals to represent

a new customer. We also propose two tour construction heuristics: IGRASP and

RIH. We provide detailed analyses and compare the effectiveness of various sim-

ple heuristics by conducting extensive computational experiments. The proposed

algorithms outperform the classical GRASP-2-opt, especially when they are ap-

plied to specially structured case, weighted trees. The experiments suggest that

the dynamic-programming-based heuristics motivated by solvable cases can obtain

promising results for the CTSPP. In addition, the experiments can give general

insights into the better selection and combination of simple heuristics in the future

study of metaheuristics.

Chapter 4: Heuristics for the Special CTSPP. This chapter describes both

theoretical and empirical research on specially structured cases for the CTSPP.

Theoretically, we extend the solvability of Line-CTSPP by fixing the exit node

and considering the straight line as part of the total path. We show that the

extended cases can be solved with a dynamic programming algorithm in polynomial

time. Also, we prove the solvability of the CTSPPW with all nodes on a straight

line. In addition, we prove that the time complexity of the CTSPP on the SUM

matrix is O(nlogn), and we conjecture that the CTSPP on two rays (a special

subclass of the convex hull) is NP-hard. Empirically, inspired by the solvable cases,
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we propose dynamic-programming-based heuristics for the CTSPP. We conduct

computational experiments to show that the proposed heuristics perform well on

specially distributed cases. The Line heuristic is based on the path structure in the

solvable Line-CTSPP and displays superior performance to the classical GRASP-2-

opt in both running time and solution quality when the nodes are distributed on two

close parallel lines. The Up-Down heuristic is inspired by the Up-Down structure

in the solvable Path TSP. This heuristic outperforms the classical GRASP-2-opt in

convex-hull cases and close-to-convex-hull cases. The Two-Ray heuristic combines

the path structures in the Line heuristic and the Up-Down heuristic and obtains

high-quality solutions when nodes are specially distributed along two rays.

Chapter 5: Conclusion and Future Work. This chapter provides concluding

remarks and discusses potential future research areas.

1.4 Notation

This section gives the notation used in this thesis.

Given a weighted graph G = (V,E,C), V = {v1, . . . , vn} is a vertex set,

in which each vertex represents the location of one customer, and v1 represents

the depot. We define an n × n distance matrix C = (cij), where cvivj denotes the

travelling cost between vi and vj for each edge (vi, vj) ∈ E. We also define a tour

τ = ⟨τ1, τ2, . . . , τn, τn+1 = τ1⟩ for the TSP and a tour τ = ⟨τ1, τ2, . . . , τn⟩ for the

Path TSP, CTSPP and CTSPPW, where τi is the ith vertex in the tour.

In a neighbourhood search, a permutation is denoted as π =

⟨π1, . . . , πi, . . . , πn⟩, where πi is the ith index in this permutation. Here, for a

tour τ , τ(π) is its neighbour and N(τ) = {τ(π) : π ∈ N} is a specific neighbour-

hood of τ , assuming that N is the set of all permutations that satisfy a specific

condition.

11



Chapter 2

Kalmanson Heuristics for the

TSP

2.1 Introduction and Related Works

The TSP can be defined mathematically as follows. Given an n × n distance

matrix C = (cij), where cij denotes the travelling distance between customer i and

customer j, the objective is to find a tour τ = ⟨τ1, τ2, . . . , τn, τn+1 = τ1⟩ with the

minimum travelling distance, where the set {τ1, τ2, . . . , τn} is the set of locations

{1, 2, . . . , n}. We assume that all distance matrices considered in this chapter are

symmetric. Since the tour is uniquely defined by a permutation of nodes, in what

follows, the terms permutation and tour will both be used interchangeably if the

meaning is clear from the context. The length of the tour τ is denoted as c(τ),

which can be calculated using the following function.

c(τ) =
i=n∑
i=1

cτiτi+1 (2.1)

In this chapter, three well-known classical construction heuristics for the

TSP are considered: Nearest Neighbour (NN), Double-ended Nearest Neighbour

(DENN) and GREEDY. They are all pure augmentation heuristics which are used

to construct tours by adding one edge at a time based on the length of the edges.

We refer readers to Section 3.2 of Johnson and McGeoch [90] for a detailed descrip-

tion of the above algorithms and the results of an empirical investigation. These

heuristics are also analysed in [133, 66, 118, 88, 87].
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Our objective is to combine the simplicity of the NN, DENN and GREEDY

heuristics with the knowledge of specially structured matrices to enrich the nature

of heuristics so that they can not only solve to optimality the TSP in some special

cases, but also improve the performance of the heuristics for general cases.

The proposed heuristics are inspired by the Kalmanson matrix [92]. A

symmetric n × n matrix C = (cij) is called a Kalmanson matrix if it fulfils the

Kalmanson conditions

cij + clm ≤ cil + cjm, cim + cjl ≤ cil + cjm, for all 1 ≤ i < j < l < m ≤ n. (2.2)

These conditions are called quadrangle inequalities [92]. These inequalities

capture the property of convex quadrangles that the sum of the lengths of the

two diagonals is always greater than or equal to the sum of the lengths of the

two opposite sides. Kalmanson [92] proved that the TSP with a distance matrix

satisfying the conditions 2.2 is solved to optimality by the tour τ defined by the

identity permutation τ = ⟨1, 2, 3, . . . , n − 2, n − 1, n, 1⟩. He also suggested that if

n points are located on the boundary of the convex hull and numbered along the

convex hull, the corresponding matrix fulfils the Kalmanson conditions.

In combinatorial optimisation, a cyclic shift is an operation that rearranges

the entries in a permutation by either moving the last element to the first position

and moving the other elements to the following positions or by executing the inverse

operation. Given a permutation containing n elements, the cyclic shift can be re-

peatedly executed to produce n−1 permutations. When the points are renumbered

after a cyclic shift, the Kalmanson conditions still hold; thus, the tours obtained

from a cyclic shift of the tour τ are also optimal solutions. Moreover, conditions

2.2 still hold when positive or negative constants are added to rows and columns

in the distance matrix.

The Kalmanson matrix is closely related to the master tour problem [55].

For the TSP, the master tour has a special property that the sub-tour obtained

from the master tour retains its optimality for the remaining nodes when any

subset of nodes is removed from the master tour. The master tour problem is to

determine whether there exists a master tour given a distance matrix. Deineko

et al. [55] proved that a distance matrix has a master tour if and only if it is a

Kalmanson matrix. The special structure of the Kalmanson matrix can also be

applied to other combinatorial optimisation problems. The relevant research can

be seen in [52, 95, 43, 34, 122].
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Clearly, conditions 2.2 can be checked in O(n2) time. If the matrix is indeed

a Kalmanson matrix, then the optimal TSP solution is already known. The problem

becomes non-trivial if a given distance matrix does not satisfy conditions 2.2 but

can be permuted into a Kalmanson matrix by renumbering rows and columns in

the initial matrix. In this case, we need a recognition algorithm to find the correct

permutation of rows (and columns). The recognition algorithm is to determine

whether there exists a renumbering, i.e., a permutation π of the rows and columns

of the original matrix C = (cij) such that the renumbered matrix Cπ = (cπij) =

(cπ(i)π(j)) satisfies the specific conditions and, if it exists, to obtain the permutation

π. Note that for the permuted Kalmanson matrix, π is also an optimal solution for

the TSP.

The classical NN, DENN and GREEDY heuristics cannot solve the TSP

with permuted Kalmanson matrices to optimality. It is easy to construct an in-

stance where nodes are along the boundary of their convex hull, i.e., the underlying

matrix is a permuted Kalmanson matrix, but none of the three classical heuristics

can find an optimal solution. A diamond instance is used to illustrate this fact in

Figure 2.1. If NN, DENN or GREEDY is applied to the instance, edge (2, 4) will

always be included in the TSP tour, which is not optimal. The objective of this

chapter is to modify these classical heuristics, thus enabling them to solve the TSP

to optimality in some special cases.

Figure 2.1: Diamond instance

A Kalmanson matrix can be transformed into an anti-Robinson matrix [131].

A symmetric n×n matrix A = (aij) is called an anti-Robinson matrix if it satisfies

the anti-Robinson conditions

aik ≥ max{aij , ajk}, for all 1 ≤ i < j < k ≤ n. (2.3)

These conditions mean that the entries in each row and column of an anti-

Robinson matrix are non-decreasing when moving away from the main diagonal

in any direction. Clearly, the maximal item of the matrix is in row 1 and col-

umn n. If points are sorted in an order such that the underlying matrix satisfies
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Conditions 2.3, then the order is called a compatible order [123]. The Robinson

matrix [131] was first used as a tool to solve the problem of chronologically order-

ing archaeological deposits, where the chronological order is one of the compatible

orders. Other applications of (anti-) Robinson matrices can be seen in [123].

The anti-Robinson matrix and Kalmanson matrix are both subclasses of the

so-called Demidenko matrix [54]. A symmetric n × n matrix C = (cij) is called a

Demidenko matrix if it fulfils the conditions

cij + clm ≤ cil + cjm, for all 1 ≤ i < j < l < m ≤ n. (2.4)

We now show the relationship between Kalmanson matrices and anti-

Robinson matrices.

Lemma 2.1.1 If a Kalmanson matrix C is transformed into the matrix C ′ = (c′ij)

with c′ij := cij − ci1− c1j, then the (n− 1)× (n− 1) matrix obtained by deleting the

first row and first column in C ′ is an anti-Robinson matrix.

Proof. Given a Kalmanson matrix C = (cij), the matrix C ′ obtained by

transforming C into a matrix with zeros in the first row and the first column by

using c′ij = cij − ci1 − c1j is also a Kalmanson matrix satisfying

(cij − ci1 − c1j) + (clm − cl1 − c1m) ≤ (cil − ci1 − c1l) + (cjm − cj1 − c1m),

(cim − ci1 − c1m) + (cjl − cj1 − c1l) ≤ (cil − ci1 − c1l) + (cjm − cj1 − c1m),

thus, c′ij + c′lm ≤ c′il + c′jm, c′im + c′jl ≤ c′il + c′jm, for all 1 ≤ i < j < l < m ≤ n.

(2.5)

In the matrix C ′, c′ik = 0 for all i = 1, 1 ≤ k ≤ n; thus, c′lm ≤ c′jm, c′jl ≤ c′jm,

for all 1 < j < l < m ≤ n. Then the first row and the first column of C ′ are deleted

to generate an (n− 1)× (n− 1) matrix, which satisfies c′lm ≤ c′jm, c′jl ≤ c′jm for all

1 ≤ j < l < m ≤ n; thus, the (n− 1)× (n− 1) matrix is an anti-Robinson matrix.

This completes the proof of the lemma. □

Assume we are given a permuted Kalmanson matrix C for which we aim

to find a permutation such that the renumbered matrix satisfies the Kalmanson

conditions, i.e., to find the optimal TSP solution. Since after a cyclic shift of rows

and columns in a Kalmanson matrix, the resulting matrix is still a Kalmanson

matrix, the cyclic shift of a permutation will not change its property. Therefore,

any index can be chosen to be the index first in the permutation. Given the fixed
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index first, the matrix is first transformed using c′ij = cij−ci,first−cfirst,j and the

row first and column first are deleted, then the obtained (n−1)× (n−1) matrix

C ′ is a permuted anti-Robinson matrix. In this case, the problem of obtaining the

permutation (i.e., the optimal TSP solution) for a permuted Kalmanson matrix is

now simplified to obtaining the permutation for a permuted anti-Robinson matrix.

This suggests that if we can first find a permutation τ ′ for the transformed matrix

C ′, then the optimal TSP solution to the initial matrix C will be the tour τ which

starts with first followed by the permutation τ ′.

An intuitive idea for amending heuristics in the hope that they can solve a

special case to optimality is to incorporate a recognition algorithm for this special

case into the heuristics. However, all the recognition algorithms for Kalmanson

matrices or anti-Robinson matrices in the literature are elaborate and difficult to

incorporate into the existing heuristics [40, 55, 123]. The main difficulties arise in

cases when many inequalities in conditions 2.2 and 2.3 are not strict. To obtain

simple algorithms, we consider special subclasses of the matrices. A matrix is

called a strong Kalmanson (anti-Robinson) matrix if it satisfies all inequalities in

conditions 2.2 (2.3) with strict inequalities. Two examples are given to readers to

give them an intuitive understanding of the structure of such matrices: one example

is that if n points in the Euclidean plane are the corner points of their convex hull,

then the corresponding distance matrix is a permuted strong Kalmanson matrix;

the other example is that if n points are on a straight line, then the matrix is a

permuted strong anti-Robinson matrix. In particular, in a strong anti-Robinson

matrix, none of the rows (columns) contains more than two items with the same

value.

The remainder of this chapter is structured as follows.

In Section 2.2, we prove that the three classical construction heuristics,

NN, DENN and GREEDY, can be used to obtain the permutation for permuted

strong anti-Robinson matrices such that the renumbered matrices satisfy the anti-

Robinson conditions, which is a new theoretical property. We then amend the

three heuristics motivated by the relationship between the Kalmanson matrix and

anti-Robinson matrix in Lemma 2.1.1. These amended versions have the additional

theoretical property of obtaining the permutation for a permuted strong Kalmanson

matrix, which means that when the amended heuristics are applied to an instance

with a permuted strong Kalmanson matrix, an optimal solution for the TSP can

be found.

In Section 2.3, empirical investigations are conducted and the performance
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of the proposed heuristics is demonstrated. The results of computational experi-

ments on the benchmark instances from the TSP DIMACS Challenge [90] clearly

indicate the superiority of the amended heuristics compared with the original coun-

terparts for general cases.

Section 2.4 concludes this chapter.

2.2 Heuristics Motivated by Kalmanson Matrix

We first prove the theoretical property of the three classical construction heuristics,

NN, DENN and GREEDY, of obtaining the permutation for permuted strong anti-

Robinson matrices such that the renumbered matrices satisfy the anti-Robinson

conditions. Motivated by the Kalmanson matrix, we then propose minor amend-

ments to the three heuristics to give them an additional theoretical property.

2.2.1 Classical Heuristics and Theoretical Properties for the TSP

In the NN heuristic, the nearest customer is repeatedly visited until all customers

are visited. In NN, the tour starts at a start node τ1. At each step, a new node, the

node closest to the most recently added node, is added to the permutation. The

algorithm ends when all nodes are included in the permutation. Mathematically,

for the partial tour ⟨τ1, τ2, . . . , τi⟩, we choose the node that is nearest to τi as the

next node τi+1 from the nodes not yet chosen until all nodes are included. Given

an n× n matrix C, the tour can be completed within O(n2) time.

The DENN heuristic also uses the nearest neighbour rule to construct the

tour. The difference between NN and DENN is that for NN, the nodes can only be

added on one side to complete the tour, while for DENN, the nodes can be added on

either side (left or right) to update the two endpoints of the partial tour. In DENN,

an initial tour ⟨τ1, τ2⟩ is constructed as in the first step of NN. Node τ1 is referred

to as the left node and τ2 is referred to as the right node. The tour is extended

by adding the nearest node (which is nearest to either the left or right node). The

reference to the left/right is updated, and the process continues until the complete

tour is constructed. Recursively, given the partial tour ⟨τi, . . . , τ1, τ2, . . . , τj⟩, from
the nodes not yet chosen, we assume that τi+1 and τj+1 are the nearest neighbours

to τi and τj respectively. We then compare the two lengths cτiτi+1 and cτjτj+1 and

add the edge with the shorter length on the corresponding side and update the

corresponding endpoint. The complexity of this heuristic is also O(n2).
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The GREEDY heuristic starts with sorting all edges from the shortest to the

longest. The tour is then constructed by sequentially adding the first eligible edge

from the sorted list. An edge is eligible if its inclusion into a partially constructed

tour neither yields a cycle nor results in a node having a degree greater than 2. In

the end, when only two nodes with a degree of 1 remain in the partial tour (which

is a path at this stage), the two nodes are linked together to form a tour (cycle).

The complete tour can be constructed within O(n2logn) time.

Next, the theoretical properties of the three classical heuristics are provided,

which are not covered in the literature. We begin with DENN and its relevance to

obtaining the permutation for permuted strong anti-Robinson matrices.

Lemma 2.2.1 Given a permuted strong anti-Robinson matrix A = (apq), permu-

tation τ constructed in DENN permutes the matrix into the strong anti-Robinson

matrix.

Proof. In the proof we will show that DENN places indices in a tour at

positions that correspond to the unique positions of the indices in a permutation.

In accordance with the DENN rule, we place nodes on the basis of inequalities.

Also, from the structure of anti-Robinson matrices, the relative positions of nodes

also indicate inequalities. These inequalities should not be violated.

Considering the TSP with a permuted strong anti-Robinson matrix A =

(apq), we here reformulate the first step in DENN: we start with a start node s,

find the node j nearest to s and define the initial tour as τ = ⟨. . . , s, j, . . .⟩. In row

s, asj is the smallest item.

From the anti-Robinson conditions, we know that for an anti-Robinson ma-

trix, the entries in each row and column are non-decreasing when moving away

from the main diagonal in any direction. Because asj is the smallest item in row s,

if we want to permute rows and columns in the distance matrix to ensure that the

items are non-decreasing away from the diagonal, then item j must be placed next

to item s in the permutation, similar to the construction in DENN. If s must be the

first item or the last item in the permutation, then index j is unique. Otherwise,

two candidates, j1 and j2, may be placed next to s. According to the structure

in the strong anti-Robinson matrices, possible orderings are ⟨. . . , j1, s, j2, . . .⟩ and
⟨. . . , j2, s, j1, . . .⟩.

The conditions of anti-Robinson matrices indicate that if A is an n×n strong

anti-Robinson matrix, then Aσ = (aσ(i)σ(j)) is also a strong anti-Robinson matrix

with the permutation σ =< n, n−1, n−2, . . . , 2, 1 >. Therefore, if the permutation
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that corresponds to tour τ permutes a matrix into an anti-Robinson matrix, then

its inverse, i.e., the permutation that corresponds to the inverse tour τ−, can also

be used as a permutation. As discussed above, item j must be placed next to item

s in the permutation; therefore w.l.o.g. we can start with a permutation where s

precedes j: τ = ⟨. . . , s, j, . . .⟩.
In DENN, node s is set as the current left node, L = s, and node j is

set as the current right node, R = j. In the next steps DENN finds index k:

akL = minq ̸=L,RaqL and index m : aRm = minq ̸=L,RaRq. The node corresponding

to the smallest distance is added to the permutation (tour) at the corresponding,

left or right end.

Note that the case of k = m, akL = aRm is not possible if A is a strong anti-

Robinson matrix. Indeed, if k is placed before L, then in the row corresponding

to k in the permuted matrix there are two items, akL and akR, on one side of the

diagonal with equal values because akR = aRk = aRm = akL, which is not allowed

in the strong matrix. This means that if k = m, then akL ̸= aRm, and hence DENN

finds a unique position, left or right, for k.

We first consider the cases when the operation of finding a minimum returns

a unique index, i.e., akL ̸= aqL for all q ̸= k and aRm ̸= aRq for all q ̸= m. According

to the structure of a strong anti-Robinson matrix, index k can be added to the

permutation either immediately before L or immediately after R. The same two

options are possible when placing m. Thus, we consider four cases below.

Case (a). There exists a permutation where index k is before L, and indexm

is after R; thus, k ̸= m. The decision rule in DENN will not violate this structure:

if akL < aRm, then k is placed before L and defined as the current left node,

otherwise m is placed after R and defined as the current right node.

Case (b). There exists a permutation with indices k and m placed before

L. This is possible only if k = m. Indeed, if k ̸= m, then from the definition of k

we have amL > akL, and hence m must be placed before k owing to the structure

of the anti-Robinson matrix. On the other hand, from the definition of m, we have

aRm < aRk, which contradicts the definition of the strong anti-Robinson matrix. If

k = m, then according to the structure of a strong anti-Robinson matrix, we have

aLk < aRk. The decision rule in DENN places k before L as aLk < aRm, which is

precisely its location in the permutation.

Case (c). Indices k and m are after R in a permutation. This is possible

only if k = m. The proof here is similar to that of Case(b). According to the

structure of a strong anti-Robinson matrix, we have aLk > aRk. The decision rule

19



in DENN places k after R.

Case (d). Index m is before L and index k is after R in a permutation.

We claim that this contradicts the assumption that A is a strong permuted anti-

Robinson matrix. Indeed, if m precedes k, then according to the structure of a

strong anti-Robinson matrix, we have aLm < aRm and aRk < aLk. From the

definition of k, aLk ≤ aLm. By combining these inequalities, we obtain aRk < aLk,

aLk ≤ aLm, aLm < aRm, and hence aRk < aRm, which contradicts the definition of

m. This proves the claim.

Now consider the case that in a step of DENN two items in a row of the

distance matrix correspond to the found minimum. W.l.o.g. we assume that it

is the left node L for which two indices k1 and k2 have been found such that

aLk1 = aLk2 = minq{aLq}. If these indices are to be added to the permutation

at this step, then one index should be added before L and the other index should

be added after R. According to the structure of the anti-Robinson matrix, the

minimum for row R at this step also has to be in column k1 or k2. Since A is

a strong anti-Robinson matrix, we have aLk1 < aRk1 and aRk2 < aLk2 . Since

aLk1 = aLk2 , this yields aRk2 < aLk1 , and the unique index k2 is determined in

this step of DENN and placed next to R. This means that we can ignore multiple

returns in the steps of finding minima.

Note that removing rows and columns from A does not destroy the special

structure of the matrix. Thus, in our proof it was enough to consider only the case

with two items in a partially constructed permutation. This completes the proof

of the lemma. □

As shown above, DENN can start with any start node s. For NN to obtain

the permutation for a permuted strong anti-Robinson matrix, it must start with a

specific node, as shown in the lemma below.

Lemma 2.2.2 Given a permuted strong anti-Robinson matrix A = (apq), per-

mutation τ constructed in NN permutes the matrix into the strong anti-Robinson

matrix if NN starts with node s1 or node s2 with as1s2 = max{apq}.

Proof. According to the structures of anti-Robinson matrices, we know that in a

strong anti-Robinson matrix, the maximal items are in row 1, column n and row

n, column 1 because all items in each row and column are non-decreasing when

moving away from the main diagonal in any direction. Considering that the NN

heuristic can only add nodes on one side, the first or last item in the permutation

should be the index of the row or the column where the maximal item is placed
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in the permuted strong anti-Robinson matrix. Therefore, the construction of the

permutation can start with node s1 defined as mentioned in the lemma. In the

general case, for the Euclidean matrix this node can be found in O(nlogn) time.

For a permuted strong anti-Robinson matrix, a simplified linear time algorithm

can be used: start with an arbitrary node p and find s2: aps2 = maxq{apq}, then
find s1 such that as1s2 = maxq{aqs2}. Given that s1 is found correctly, NN finds

the permutation by finding the unique available minimum on each step. □

Lemma 2.2.3 Given a permuted strong anti-Robinson matrix A = (apq), permu-

tation τ constructed in GREEDY permutes the matrix into the strong anti-Robinson

matrix.

Proof. The proof of this lemma is similar to that of the previous lemmas. The only

new point to consider is how to deal with two sub-paths (chains of nodes) when they

are to be connected by a newly found edge. There are four possible ways to combine

the two chains in a permutation, one for each possible connecting edge. It is easy to

check that, according to the conditions of the strong anti-Robinson matrix, among

the four edges that can connect two chains, the unique smallest edge is correctly

found in GREEDY. To be more specific, assume that two sub-paths ⟨a, . . . , b⟩ and
⟨c, . . . , d⟩ have already been constructed. There are four ways to connect the two

chains: ⟨b, . . . , a, c, . . . , d⟩, ⟨b, . . . , a, d, . . . , c⟩, ⟨a, . . . , b, d, . . . , c⟩, ⟨a, . . . , b, c, . . . , d⟩.
Using the rules in GREEDY, the shortest edge among edges (a, c), (a, d), (b, d),

(b, c) is selected to connect the chains. For the permuted strong anti-Robinson

matrix, the four edge lengths are unique; therefore, w.l.o.g. we assume that edge

(b, d) is the shortest, hence the partial permutation is ⟨a, . . . , b, d, . . . , c⟩. According
to the structures of strong anti-Robinson matrices, cbd < cbc, cbd < cad, cbd < cac,

which is consistent with the GREEDY rule. □

Obviously, not every anti-Robinson matrix is a Kalmanson matrix. Tours

that correspond to permutations found in NN, DENN and GREEDY are optimal

for the TSP if the underlying distance matrix is both a strong Kalmanson and

strong anti-Robinson matrix.

The aim is to slightly modify the above well-known heuristics to obtain

an additional theoretical property. Motivated by the Kalmanson matrix, we are

now ready to describe the modifications of the heuristics in the next section. Note

that the modifications do not change the greedy logic of the heuristics. Moreover,

because we will show that the modified heuristics can solve to optimality the TSP
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with permuted strong Kalmanson matrices, we call the modified heuristics the

Kalmanson heuristics and use the notations K-NN, K-DENN and K-GREEDY.

2.2.2 Kalmanson Heuristics and Theoretical Properties for the

TSP

The basic idea of Kalmanson heuristics is simple. Consider the TSP with an n×n

matrix C. We select an arbitrary node, which we refer to as first in the tour to be

constructed. Then we amend this matrix by subtracting the first-related constants

from the rows and columns to obtain a distance matrix. Next, the (n−1)× (n−1)

submatrix on the set of indices {1, 2, . . . , n}\{first} is considered as the matrix C ′,

and the NN, DENN or GREEDY heuristic is applied to C ′ to obtain a permutation

for the TSP. The solution to the initial TSP is the tour that starts with first followed

by the permutation.

We start with the K-DENN heuristic. It takes as an input an n×n distance

matrix C and three parameters: first, which defines the row and column of the

matrix for the transformations, start, which defines the node where the search be-

gins, and α ∈ [0, 1], a real parameter, which will be discussed later. The procedure

returns a TSP tour τ . The specific algorithm is given in Algorithm 2.2.4. After the

matrix transformation, the tour from start is constructed and the nearest node (to

the left or right) is added to the partial tour, as in the classical DENN. Note that in

the tour construction process, we compare the distances based on the transformed

matrix C
′
instead of the original matrix C.
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Algorithm 2.2.4

Algorithm of K-DENN (n,C, first, start, α)

S ← {1, 2, 3, . . . , n} \ {first, start};H ← ⟨start⟩; left← start; right← start;

Transform C into C
′
with c

′
ij = cij − α(ci,first + cfirst,j), and focus on

(n− 1)× (n− 1) submatrix on set of indices {1, . . . , n} \ {first};
while S ̸= ∅ do

x1 ← argmin(c
′
x1,left

), x2 ← argmin(c
′
right,x2

), where x1, x2 ∈ S;

if c
′
x1,left

< c
′
right,x2

then

H ← ⟨x1, H⟩, left← x1, S ← S \ {x1};
else

H ← ⟨H,x2⟩, right← x2, S ← S \ {x2};
τ ← ⟨H⟩; Insert first into τ with the minimal increment as a cycle based on C;

return τ .

The algorithm starts with obtaining the (n − 1) × (n − 1) matrix C ′. If

C is a permuted strong Kalmanson matrix, then C ′ (obtained with α = 1) is a

permuted strong anti-Robinson matrix. In this case, DENN as a part of K-DENN

can yield a permutation H for C ′ such that the renumbered matrix satisfies the

anti-Robinson conditions. Therefore, the output tour τ is an optimal TSP solution

for the permuted strong Kalmanson matrix C.

It can be proved that if the matrix C is a permuted strong Kalmanson

matrix, then there exists only one shortest TSP tour, and hence τ is the unique

permutation that permutes C into the strong Kalmanson matrix Cτ . In other

words, an insertion of first into the optimal position would not destroy the prop-

erty of the permutation because the optimal position is unique. If we aim only at

obtaining the permutation for a permuted strong Kalmanson matrix, the last step

of the optimal insertion of first into H can be replaced by placing first directly

in front of H, so that the outcome is τ = ⟨first,H⟩. However, if the initial matrix

is an arbitrary distance matrix, the solution obtained is only a heuristic solution

for the TSP. In this case, the optimal insertion in the last step seems to be a better

operation in the algorithm.

The K-NN heuristic has a similar procedure. It takes the same inputs and

returns a TSP tour τ . The specific algorithm is given in Algorithm 2.2.5. In this

algorithm, when we apply NN to the transformed matrix C ′, we choose the left

side to extend the tour, although the right side can also be chosen. Note that the
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parameter start here must be chosen carefully, as shown in Lemma 2.2.2, which

will be discussed later. Also, this modified heuristic can obtain the optimal TSP

solution for the permuted strong Kalmanson matrix.

Algorithm 2.2.5

Algorithm of K-NN (n,C, first, start, α)

S ← {1, 2, 3, . . . , n} \ {first, start};
H ← ⟨start⟩; left← start;

Transform C into C
′
with c

′
ij = cij − α(ci,first + cfirst,j), and focus on

(n− 1)× (n− 1) submatrix on set of indices {1, . . . , n} \ {first};
while S ̸= ∅ do

x← argmin (c
′
x,left), where x ∈ S;

H ← ⟨x,H⟩, left← x;

S ← S \ {x};
τ ← ⟨H⟩; Insert first into τ with the minimal increment as a cycle based on C;

return τ .

The other heuristic motivated by the Kalmanson matrix is K-GREEDY. Its

difference from K-DENN and K-NN is that it only has two parameters: first and

α ∈ [0, 1]. Similar to K-DENN and K-NN, the initial matrix C is first transformed

into the (n − 1) × (n − 1) matrix C
′
= (c

′
ij). All edges (except the first-linked

edges) are sorted from the smallest to the largest based on the transformed values

c
′
ij and added to form a temporary cycle using the same rules as in GREEDY. The

size of the temporary cycle is n− 1. Finally, we insert first into the cycle with the

minimal increment. The specific algorithm is given in Algorithm 2.2.6.
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Algorithm 2.2.6

Algorithm of K-GREEDY (n,C, first, α)

Transform C into C
′
with c

′
ij = cij − α(ci,first + cfirst,j), and focus on

(n− 1)× (n− 1) submatrix on set of indices {1, . . . , n} \ {first};
Sort all c

′
ij from the smallest to largest to form a whole edge list WE ;

k ← 0; degreei ← 0 for i = {1, 2, . . . , n};
while k < n− 2 do

Select the shortest edge (i, j) ∈WE;

if degreei < 2 and degreej < 2 and a cycle will not be formed with (i, j) then

Add (i, j) to τ ;

degreei ← degreei + 1; degreej ← degreej + 1; k ← k + 1;

WE ←WE \ {(i, j)};
Add (i, j) to τ , where degreei = degreej = 1;

Insert first into τ with the minimal increment as a cycle based on C;

return τ .

As described, the Kalmanson heuristics: K-NN, K-DENN and K-GREEDY

can obtain the optimal TSP tour for permuted strong Kalmanson matrices. The

theorem is given below.

Theorem 2.2.7 K-NN, K-DENN and K-GREEDY (obtained with α = 1) solve

the TSP with a permuted strong Kalmanson matrix to optimality.

Note that when Kalmanson heuristics are used for a permuted strong

Kalmanson matrix, any node can be chosen as the parameters start and first for

K-DENN; for K-NN, start should be chosen carefully as the node on the longest

edge of the transformed matrix C ′ (see Lemma 2.2.2), but first can be randomly

chosen; for K-GREEDY, start is not required, and any node can be chosen as

first.

Now, we discuss the reasons for introducing parameter α. As discussed,

a Kalmanson matrix can be transformed into an anti-Robinson matrix using

c
′
ij = cij − (ci,first + cfirst,j). Therefore, if α = 1, then the TSP with a permuted

strong Kalmanson matrix can be solved to optimality by Kalmanson heuristics. If

α = 0, the Kalmanson heuristics can still obtain the permutation for a permuted

strong anti-Robinson matrix, as the original matrix will not be changed after the
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transformation and the classical heuristics (NN, DENN and GREEDY) as a part

of the Kalmanson heuristics can yield a permutation.

We use a case where all nodes are located on a straight line to demonstrate

the application of α < 1. In this case, the corresponding distance matrix C is not

a permuted strong Kalmanson matrix; thus, transforming C into C ′ with α = 1

does not help in obtaining the correct sequence of the nodes. However, C itself

is a permuted strong anti-Robinson matrix. Therefore, setting parameter α to

0 will permute C into a strong anti-Robinson matrix, thus obtaining the correct

sequence of the nodes in this case. Actually, any α < 1 (not necessarily α = 0)

will be sufficient to solve the case to optimality when first and start are carefully

chosen. We take K-DENN as an example.

Proposition 2.2.8 If first and start are the two endpoints on a straight line,

then K-DENN with coefficient 0 < α < 1 will obtain the correct sequence of nodes

on the line for the TSP.

Proof. W.l.o.g. define first(f) and start(s) as the rightmost and leftmost nodes

on the line respectively. Construct the tour from s. k is chosen from the remaining

nodes to minimise c′sk = csk − α(csf + cfk) = (1 + α)csk − 2αcsf . Because csf

is constant, k should be the node closest to s, i.e., the leftmost node from the

remaining nodes. Then place k on the left or right side of s; here we assume the right

side. Now, the partial tour is ⟨L,R⟩, where L = s, R = k. Next, choose nodes a and

b to minimise c′La and c′Rb, where c
′
La = (1+α)cLa−2αcLf , c′Rb = (1+α)cRb−2αcRf .

Therefore, a and b are both the leftmost nodes from the remaining nodes, and we

assume a = b = m. Then c′Lm and c′Rm are compared to decide which side to add,

where c′Lm = (1+α)cLm−2α(cLm+cmf ) = (1−α)cLm−2αcfm, c′Rm = (1−α)cRm−
2αcfm. When α = 1, c′Lm = c′Rm; thus, m can be added to either side. Ifm is added

to the left side of the partial tour, then the constructed permutation is not optimal.

This demonstrates why K-DENN with coefficient α = 1 is invalid. However, when

0 < α < 1, m can only be added to the right side because c′Rm < c′Lm. By parity of

reasoning, R is always updated with the leftmost node from the remaining nodes

until only first is left. Then we insert first at the position with the minimum

increment in length as a cycle. If first is placed at the front or the back of the

partial tour, then the increment is ∆1 = cRf + cfL − cRL = 2cRf . If it is inserted

in the middle (we assume between i and j), then ∆2 = cif + cfj − cij = 2cfj .

Therefore, first should be placed at the front or the back because ∆1 ≤ ∆2. Now

the tour ⟨L, f⟩ is constructed from the nodes numbered along the line, which is the
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correct permutation for the permuted strong anti-Robinson matrix and also the

optimal tour. □

Having derived some theoretical results for the Kalmanson heuristics, we

next discuss their empirical investigation. When the Kalmanson heuristics are

applied to arbitrary distance matrices to obtain heuristic solutions, one can try α

from the range [0, 1]. Preliminary experiments suggest that each of the Kalmanson

heuristics has its best α on the set of instances tested. This will be illustrated in

the next section.

The Kalmanson heuristics have another important feature for the TSP:

the number of crossings is smaller than that for NN, DENN and GREEDY. The

previous diamond instance shown in Figure 2.1 also illustrates the crossing feature

of the Kalmanson heuristics. The classical heuristics will always include edge (2, 4)

in the TSP tour, independently of start. This means that the tour will always have

one crossing. In contrast, the Kalmanson heuristics will always find the optimal

tour, which is ⟨1, 2, 3, 4, 1⟩ (or its inverse and/or cyclic shift equivalents) and has

no crossings. We take K-DENN as an example, with node 1 as first. After

transforming matrix D into matrix D′ = (d′ij) with zeros in the first row and

column, we have d′23 = d′32 = d′34 = d′43 = −24, d′24 = d′42 = −16. If we choose,

for instance, 3 as the start, then the tour will grow as H = ⟨3⟩, H = ⟨3, 2⟩, and
H = ⟨4, 3, 2⟩. To insert 1 into the best position, we compare d21 + d14 − d24 =

13 + 13 − 10 = 16, d41 + d13 − d43 = 24 and d31 + d12 − d32 = 24. The best

insertion will lead to the tour ⟨1, 4, 3, 2, 1⟩, which also defines the sequence of the

points on their convex hull. More comparisons are illustrated in the experiments

in Section 2.3.

2.3 Empirical Investigation of Kalmanson Heuristics

To demonstrate the superiority of our Kalmanson heuristics to the classical coun-

terparts, we conducted experiments on the TSP DIMACS Challenge test suite

which has known optimal solutions [90]. The test suite contains six benchmark

instance sets: two random uniform Euclidean instance sets E1K and E3K, two

random clustered Euclidean instance sets C1K and C3K, and two TSPLIB in-

stance sets TSPLIB1 and TSPLIB2. E1K, C1K, E3K and C3K contain 10, 10, 5

and 5 instances respectively. Here, 1K and 3K represent the sizes 1000 and 3162

respectively. TSPLIB1 contains 22 single instances, which have sizes between 1000

and 3795; TSPLIB2 contains 43 instances with sizes between 100 and 783. The size
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of TSPLIB instances is determined by the numerical postfix. Detailed information

of the test instances is given in Appendix A. The algorithms are coded in C++

and executed on an Intel Core i5-7500 3.40 GHz processor with 8.0 GB RAM.

Because we retain the simplicity of the classical heuristics, the difference

in computational time between the K-versions and the original versions is negli-

gible. (Note that the time for the instances with 1000 points is only a fraction

of a second.) Therefore, we only compare the tour quality when comparing the

Kalmanson heuristics with the original counterparts. For each instance, the tour

length is recorded as v, the optimal objective value is recorded as vopt and the Held-

Karp (HK) lower bound is denoted as vhk. Note that the HK lower bound vhk is a

linear programming relaxation of the standard integer programming for the TSP,

which is a good surrogate for the optimal solution value [91]. Two measures are

used to calculate the gap for each instance, which we use as an indicator of the tour

quality: the percentage excess over the optimal solution, opt% =
v−vopt
vopt

× 100%,

and the percentage excess over the HK lower bound: hk% = v−vhk
vhk

× 100%. For

each instance set, the average values of opt% and hk%, respectively denoted as

OPT% and HK%, are calculated.

Before we compare different algorithms, we perform the preliminary exper-

iments outlined below.

First, the parameters first and start need to be determined for Kalmanson

heuristics. Actually, one can use an O(n4) version to explore all possible pairs

of first and start and find the best tour constructed. However, to increase the

efficiency, we need to find a better way to generate start and first.

The theoretical results suggest a suitable approach to finding first and

start. As discussed, for K-NN to be able to solve a permuted strong Kalmanson

matrix to optimality, start must be a node on the longest edge of the transformed

matrix C ′ = (c′ij). Therefore, using the endpoints of long edges as start and first

is expected to produce good parameters. In what follows, two different procedures

are used to find P long edges and thus produce P pairs of the two parameters first

and start.

We begin with K-DENN. The First Procedure is to find the P longest edges

among all edges based on the original matrix C, and sort the P edges in a list E

from the longest to the shortest. Each edge corresponds to each pair of parameters

(first, start): the two endpoints of the edge are used as first and start. In the

Second Procedure, the farthest node from first is always selected as start on the

basis of C, and P pairs are generated as follows: the depot (node 1) is chosen as
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first of the first pair, and the corresponding start is determined; then the current

start is used as the next first until P pairs are obtained. The P pairs are also

stored in a list E. The First Procedure and the Second Procedure have complex-

ity of O(n2P ) and O(nP ) and are given in Procedure 2.3.1 and Procedure 2.3.2

respectively.

Procedure 2.3.1

First Procedure (n,C, P )

Size of edge list p← 0; E ← ∅;
A whole edge list WE ← {(i, j)} for i = 1, 2, . . . , n− 1, j = i+ 1, . . . , n;

while WE ̸= ∅ do
Keep the pairs (i, j) in E sorted from the largest to smallest based on cij;

if p < P then

Add the pair (i, j) to the sorted position of E;

p← p+ 1;

else

Insert the pair (i, j) to the sorted position of E;

Remove the last pair in E;

WE ←WE \ {(i, j)};
return E.

Procedure 2.3.2

Second Procedure (n,C, P )

S ← {1, 2, 3, . . . , n}; E ← ∅;
p← 0; first← 1;

while p ≤ P − 1 do

start← argmax(cfirst,start), where start ∈ S; add (first,start) to E;

first← start;

S ← S \ {start};
return E.

For K-NN, we use similar ideas to those in the two procedures for K-DENN

to generate first based on C, but we generate start from the transformed matrix

C ′. Specifically, in the First Procedure, the P longest edges (i, j) are found and i
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is used as first. Then one focuses on the (n− 1)× (n− 1) transformed matrix C ′,

finds the P longest edges (i′, j′) and uses j′ as start. A similar method is applied to

the Second Procedure. The time complexity of the First Procedure and the Second

Procedure is still O(n2P ) and O(nP ) respectively.

For K-GREEDY, start is not needed, but similar procedures to above are

used to generate P pairs, where only first is recorded. The two procedures are

investigated below to find the best parameter pair for Kalmanson heuristics.

First, the effects of the P value on the performance of a multi-start are

tested for Kalmanson heuristics. A multi-start here means that for each instance,

P parameter pairs are used to obtain P solutions, and the best solution is recorded

as the multi-start solution τ with objective value v. We perform tests on benchmark

instances using two procedures with different P values and calculate the average

gap OPT% for each instance set. The results in Figures 2.2 and 2.3 are for instance

sets C1K and E1K, respectively, using K-DENN as an example.

Figure 2.2: Comparison of two procedures on K-DENN: average gap OPT% with
changing P for C1K

These figures suggest two findings. The first one is that the Second Proce-

dure performs better than the First Procedure in terms of average gap. Considering

that the Second Procedure uses less time than the First Procedure, we hereafter

use the Second Procedure to generate parameter pairs. The other finding is that

as P increases, the improvement of solutions when P > 2 is less than that when

P ≤ 2. Therefore, we only focus on the first two pairs produced by the Second

Procedure in the further experiments.

In the next step, we explore whether the first pair or the second pair from

the Second Procedure is better. Before discussing the experiments, we consider
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Figure 2.3: Comparison of two procedures on K-DENN: average gap OPT% with
changing P for E1K

the theoretical implications. As shown in Lemma 2.2.2, for K-NN to be able to

solve a permuted strong Kalmanson matrix to optimality, start must be a node on

the longest edge of the transformed matrix C ′ = (c′ij). Considering the property

of the anti-Robinson matrix, start can be found using a linear time algorithm by

starting with an arbitrary node k and finding s1 such that c′ks1 = maxq{c′kq}, then
finding s2 such that c′s1s2 = maxq{c′s1q}. Using the linear algorithm is equivalent

to obtaining the second pair from the Second Procedure. This suggests that if

we use the second pair from the Second Procedure, K-NN can solve the permuted

strong Kalmanson matrices to optimality. The theoretical result indicates that the

second pair from the Second Procedure may be the better option for Kalmanson

heuristics.

We run the experiments with a single start (single pair) and record the

results OPT% of the first and second pairs separately in Table 2.1. The results

show that although there is not a large difference between the two pairs, the second

pair performs better (except on TSPLIB2). This computational result is consistent

with the above theoretical discussion; thus, we choose the second pair from the

Second Procedure for the Kalmanson heuristics in the later experiments.

Then the effects of the parameter α on the solution quality are investigated

for the three Kalmanson heuristics. To select the best α, we first observe the

performances on self-generated instances with different values of α before applying

them to the benchmark instances.

We generate 200 instances including 50 random uniform Euclidean instances

and 50 random clustered Euclidean instances for problem sizes of 1000 and 3162,
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Table 2.1: Comparison of average gap OPT% between two pairs from the Second
Procedure using K-DENN

first pair second pair

C1K 22.16% 20.98%
E1K 22.94% 22.47%
C3K 27.24% 27.19%
E3K 25.35% 25.28%

TSPLIB1 24.49% 24.34%
TSPLIB2 15.95% 16.01%

which are consistent with the benchmark instances. Thus, there are four instance

sets in total: R-C1K, R-E1K, R-C3K and R-E3K. The generation process is that

used to generate the Challenge test suite in [90] and is described below.

Random uniform Euclidean instances The city points have two integer co-

ordinates chosen randomly from the uniform distribution (0, 1000000]. Distances

are Euclidean distances and are rounded to the nearest integer.

Random clustered Euclidean instances We choose 10 and 30 cluster cen-

tres whose coordinates are generated randomly from the uniform distribution:

(0, 1000000] for the problems of size n = 1000 and 3162 respectively. We first

assign a random cluster centre to each city node. Then for each city node, two

coordinates are generated from the standard normal distribution, multiplied by
1000000√

N
, rounded, and added to the corresponding coordinate of its centre. Dis-

tances are also Euclidean distances rounded to the nearest integer.

For each of the three Kalmanson heuristics, we change α from 1 to 0, i.e.,

1, 0.9, 0.8, . . . , 0.1, 0, and use the second pair (first, start) from the Second Proce-

dure to obtain solutions. For each instance, solutions with different α are compared

and the best solution is used as the comparison base, from which we calculate the

percentages. For each α, the average percentage is calculated within each instance

set. Figures 2.4 - 2.6 show the average gap for each group with changing α using

K-DENN, K-NN and K-GREEDY respectively.

These figures show that for each instance set, whichever Kalmanson heuris-

tic is used (except R-C1K using K-GREEDY), there are similar tendencies as α

changes, with each curve having a V shape. Although the valley values and the

sinuosity vary among the Kalmanson heuristics, the tendencies are similar when

using the same Kalmanson heuristic among different instance groups. Therefore,

for each Kalmanson heuristic, we can find the ‘best’ α that can be applied to dif-
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Figure 2.4: Effects of α on average gap for K-DENN on self-generated instances

Figure 2.5: Effects of α on average gap for K-NN on self-generated instances

Figure 2.6: Effects of α on average gap for K-GREEDY on self-generated instances
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ferent instance sets ideally. Taking K-DENN as an example, when α = 0.6, the

average gap is lowest for groups R-E1K, R-C3K and R-E3K and relatively low for

group R-C1K; thus, generally 0.6 is the best option. The best α value is found to

be α = 0.6, 0.5 and 0.7 for K-DENN, K-NN and K-GREEDY respectively.

It is worth mentioning that the ‘best’ α chosen above is only at a general

level. If a new instance has a clustered node distribution with a size of 1000,

which is similar to the attribute in R-C1K, a better option for α will be 0.7, 0.5

and 1.0 when using K-DENN, K-NN and K-GREEDY respectively. One can also

investigate the effects of α on a single instance and choose the ‘best’ α to obtain a

better solution. In this process, finer intervals, e.g., α = 0.01, 0.02, . . . , 0.99, 1, can

also be explored, but we need to consider the trade-off between computational time

and solution quality, which is the most common issue in TSP related problems.

Note that there are two different operations in the last step in Kalmanson

heuristics: optimal insertion of first into the partial tour or placing first directly

in front of the partial tour. So far, we have always used the optimal insertion of

first, whose importance can be demonstrated by comparison with directly placing

first. Taking K-NN with its best value of α = 0.5 as an example, Figure 2.7

suggests a marked improvement with optimal insertion. Considering the minor

difference in computational time, the optimal insertion is used in the following

experiments.

Figure 2.7: Comparison of results of optimal insertion of first and placing first
in front for K-NN with α = 0.5

Based on the preliminary experiments, we can now demonstrate the perfor-

mance of the Kalmanson heuristics and compare them with their classical counter-

34



parts using benchmark instances. We use the second pair of (first, start) from the

Second Procedure, apply the best α values and execute the optimal insertion for

each Kalmanson heuristic. To ensure a reasonable and fair comparison, the Second

Procedure is also used to generate start for the classical heuristics. The results

of the comparison are summarised in Figures 2.8 - 2.10. To describe the variation

within each instance set, we use box plots, which graphically depict groups of nu-

merical data through their quartiles. The minimum and maximum values represent

the best and worst performance respectively. The mean values are marked as ‘x’

to reflect the average performance.

Figure 2.8: Comparison of DENN and K-DENN(α = 0.6) on benchmark instances

Figure 2.9: Comparison of NN and K-NN(α = 0.5) on benchmark instances

These figures indicate that the average performances of the three Kalmanson
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Figure 2.10: Comparison of GREEDY and K-GREEDY(α = 0.7) on benchmark
instances

heuristics with the best α are all superior to the classical counterparts, especially

for K-DENN and K-GREEDY. Table 2.2 also displays the same results. When we

focus on the best and worst performance, the Kalmanson versions are also superior

to the classical versions (except TSPLIB instances using NN). In addition, the

ranges of boxes for the Kalmanson heuristics are narrower, which suggests that the

performance of the Kalmanson heuristics is more robust.

Table 2.2: Comparison of results of average excess over optimal solutions: OPT%
using Kalmanson heuristics (with best α) and classical versions

NN K-NN DENN K-DENN GREEDY K-GREEDY

C1K 30.69 25.51 29.36 18.33 18.90 14.15
E1K 26.25 20.94 23.13 14.25 17.16 8.50
C3K 32.34 27.65 30.48 22.82 21.24 15.49
E3K 25.71 19.53 24.26 15.78 16.47 8.76

TSPLIB1 24.40 22.43 23.70 16.97 17.24 10.65
TSPLIB2 25.83 23.95 23.91 11.55 16.83 8.74

To ensure consistency with the results in [90], the average excess over the

HK lower bounds HK% is also calculated. The results are given in Table 2.3.

Table 2.4 provides the number of instances improved using the Kalmanson

heuristics (with best α) compared with the classical counterparts. We found that

the Kalmanson heuristics can improve the performance for most instances, espe-

cially for the first four instance sets. K-DENN and K-GREEDY perform much
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Table 2.3: Comparison of results of average excess over HK lower bound: HK%
using Kalmanson heuristics (with best α) and classical versions

NN K-NN DENN K-DENN GREEDY K-GREEDY

C1K 31.40 26.18 30.06 18.96 19.54 14.76
E1K 27.18 21.83 24.04 15.09 18.02 9.30
C3K 33.15 28.43 31.28 23.57 21.99 16.20
E3K 26.59 20.37 25.14 16.60 17.29 9.53

TSPLIB1 25.69 23.72 24.98 18.16 18.46 11.81

better than the counterparts.

Table 2.4: Number of instances improved by Kalmanson heuristics (with best α)
compared with classical counterparts

Number of instances K-DENN VS DENN K-NN VS NN K-GREEDY VS GREEDY

C1K 10 10 9 10
E1K 10 10 10 10
C3K 5 5 5 5
E3K 5 5 5 5

TSPLIB1 22 19 12 22
TSPLIB2 43 39 25 38
Total 95 88 66 90

As discussed in Section 2.2.2, the Kalmanson heuristics have an important

feature for the TSP of having fewer crossings than the classical heuristics. The

TSPLIB instance kroB100 of size 100 in [90] is used to illustrate this feature. It

is found that the tour using DENN in Figure 2.11 has many intersections, while

the tour using K-DENN in Figure 2.12 has no intersections. Table 2.5 presents

the average number of intersections for each instance set using different heuristics.

Among all 95 benchmark instances, compared with the classical heuristics, the

Kalmanson versions decrease the number of crossings for 81, 92 and 94 instances

with K-NN, K-DENN and K-GREEDY respectively.

2.4 Conclusions

We have considered three classical heuristics for the TSP: NN, DENN and

GREEDY, and have proved that they have the theoretical property of obtain-

ing the permutation for the permuted strong anti-Robinson matrices such that the

renumbered matrices satisfy the anti-Robinson conditions.
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Figure 2.11: Demonstration of crossing feature: the tour of instance kroB100 using
DENN

Figure 2.12: Demonstration of crossing feature: the tour of instance kroB100 using
K-DENN

Table 2.5: Comparison of average number of crossings on benchmark instances
using Kalmanson heuristics and classical counterparts

DENN K-DENN NN K-NN GREEDY K-GREEDY

C1K 102 33 112 61 62 21
E1K 92 18 104 53 67 9
C3K 321 122 333 198 185 58
E3K 283 58 302 142 203 21

TSPLIB1 178 49 183 90 109 25
TSPLIB2 30 6 30 19 20 5
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Inspired by the knowledge that the Kalmanson matrix can be transformed

into the anti-Robinson matrix, we have proposed minor amendments to the three

classical heuristics. The amended versions have the additional theoretical property

of obtaining an optimal TSP solution for a permuted strong Kalmanson matrix.

The incorporation of additional features from the Kalmanson matrix into the clas-

sical heuristics has enriched the nature of the heuristics.

Given an arbitrary distance matrix, Kalmanson algorithms can be used

to generate heuristic solutions. The empirical investigation on the benchmark

instances indicates that the Kalmanson heuristics, especially K-DENN and K-

GREEDY, perform better than the original counterparts.

As future research, we will carry out further theoretical work to deter-

mine how far a given distance matrix is from a Kalmanson matrix and/or an

anti-Robinson matrix. If we can quantify this distance, we can further quantify the

approximation ratio of the Kalmanson heuristics. We will also investigate other

heuristics using the knowledge of solvable cases for the TSP.
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Chapter 3

Simple Heuristics for the

CTSPP

3.1 Introduction and Related Works

The literature suggests that the CTSPP is computationally harder to solve to

optimality or even approximately than the TSP [108]. However, the research

on heuristics [18] for the CTSPP is deficient when compared with that for the

TSP [133, 139, 105, 25, 117]. For the CTSPP, the GRASP heuristic [62] is com-

monly used to construct an initial solution. Regarding tour improvement heuristics,

the classical simple heuristics for the TSP such as 2-opt and 3-opt can be applied

to the CTSPP with a cumulative objective function.

One contribution of this chapter is that it enriches the research on heuristics

for the CTSPP by proposing three tour improvement heuristics based on dynamic

programming, the pyramidal heuristic, chains heuristic and sliding window heuris-

tic, and two tour construction heuristics, an improved version of GRASP (IGRASP)

and random insertion heuristic (RIH).

To demonstrate the potential of the proposed heuristics, they will be com-

pared with classical simple algorithms. The proposed algorithms use IGRASP or

RIH to construct the tour and the pyramidal heuristic, chains heuristic, or slid-

ing window heuristic to improve the tour. The classical simple algorithms adopt

GRASP to generate the initial solutions and classical simple heuristics to improve

the solutions. The proposed heuristics are compared with simple heuristics because

the proposed heuristics also have simple procedures. To determine the best classi-

cal simple heuristic to use for comparison in the tour improvement phase, it is first
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necessary to understand the power of different simple heuristics.

In the literature, the analyses and comparisons of classical simple heuristics

have been neglected for the CTSPP, especially compared with the extensive anal-

ysis of the heuristics for the TSP. Johnson and McGeoch [90] provided detailed

analyses and comparisons among various groups of heuristics with regard to scala-

bility, robustness and the trade-off between the running time and solution quality

for the symmetric and asymmetric TSP, and they established a mechanism for fur-

ther comparability. A DIMACS Implementation Challenge has been organized to

update the state of the art for the TSP by reporting the solutions on test suites

for different algorithms [90]. Other analyses and comparisons of heuristics for the

TSP have been reported by Bentley [17], Reinelt [129], Punnen and Kabadi [125]

and Punnen et al. [126].

However, for the CTSPP, only one relevant study has been reported, in

which 20 instances of the same size were tested [113]. To address this lack of testing,

we therefore first analyse and compare the classical simple heuristics for the CTSPP

by performing extensive computational experiments. This extensive comparison

is another contribution that this chapter makes to the empirical research on the

CTSPP.

Metaheuristics for the CTSPP have also been explored. Salehipour et

al. [134], Silva et al. [137] and Mladenović et al. [113] developed metaheuristics

that use GRASP for tour construction and the VND or VNS for tour improvement.

The VND and VNS [112] are advanced local search procedures that combine several

simple heuristics to systematically explore different neighbourhood structures (usu-

ally five or six). The subordinate heuristics contain the well-known 2-opt, 3-opt,

1-insertion, 2-insertion and 3-insertion heuristics, and each heuristic corresponds

to one neighbourhood structure. Essentially, when one local optimum relative to a

certain neighbourhood is found, the metaheuristic switches to another neighbour-

hood. In this process, the order of neighbourhoods may be important. Salehipour

et al. [134] adopted a deterministic order in which neighbourhoods are sorted in

order of increasing size, i.e., a large neighbourhood can only be searched when the

current solution is a local optimum for all smaller neighbourhoods. Silva et al. [137]

adopted a random order of neighbourhoods in the VND. There may still be scope

to improve the metaheuristics if neighbourhoods are searched in a more efficient

order.

Comparing the classical simple heuristics can not only help determine the

best heuristic to adopt for comparison with the proposed heuristics, but also in-
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crease understanding of the effectiveness of each simple neighbourhood search, thus

providing guidance on improving the selection and combination of simple heuristics

in the future study of metaheuristics for the CTSPP.

This chapter is structured as follows.

Section 3.2 formulates the problem and analyses the differences between the

CTSPP and the Path TSP. Then two heuristics for tour construction are proposed:

IGRASP and RIH. Furthermore, seven classical tour improvement heuristics for the

CTSPP are demonstrated and analysed in terms of their complexity.

In Section 3.3, we propose three heuristics based on dynamic programming

for tour improvement: the pyramidal heuristic, chains heuristic and sliding window

heuristic. These heuristics have simple procedures and are motivated by solvable

cases. The pyramidal heuristic is motivated by the solvable pyramidal neighbour-

hood. The chains heuristic and sliding window heuristic are motivated by solvable

small-size problems.

In Section 3.4, extensive computational experiments are reported. Firstly,

we compare the effectiveness of the seven classical tour improvement heuristics

when they are combined with three tour construction heuristics, GRASP, IGRASP

and RIH, on self-generated general instances of the CTSPP. On the basis of the

experimental results, we select GRASP-2-opt as the comparison base because 2-opt

obtains the best solutions among the classical simple tour improvement heuristics.

The results also suggest that IGRASP and RIH perform better than the commonly

used GRASP when they are combined with classical simple heuristics.

Secondly, we compare the proposed algorithms with GRASP-2-opt on

benchmark instances. When using a single start, the proposed algorithms obtain

solutions of higher quality but require a longer running time. When the experi-

mental time is controlled, all the proposed algorithms outperform GRASP-2-opt

for size n ≥ 200. Moreover, RIH with one setting of the sliding window heuristic

outperforms GRASP-2-opt for all experimental problem sizes. This suggests that

the proposed algorithms are promising for the CTSPP. A further experiment is

performed on the sliding window heuristic to investigate its performance as the

number of starts increases.

Thirdly, experiments are conducted on the solvable specially structured

cases of edge-unweighted trees. Minieka [111] stated that the depth-first route

is optimal for the CTSPP on unweighted trees. We conduct experiments on this

special instance set to demonstrate the high quality of the proposed algorithms.

Although the proposed algorithms cannot solve the special cases to optimality,
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high-quality solutions are obtained.

Fourthly, we compare the proposed algorithms with GRASP-2-opt on the

specially structured cases of edge-weighted trees. It is known that the CTSPP

on edge-weighted trees is NP-hard [138]. Considering that the proposed dynamic

programming heuristics are based on solvability and that weighted trees are related

to solvable unweighted trees, the proposed algorithms are expected to deliver a

good performance on the special case-weighted trees. The results reveal that the

performance of the proposed algorithms is better than that of GRASP-2-opt across

all experimental sizes and suggest that the larger the instance size, the greater the

superiority of the algorithms compared with GRASP-2-opt.

Section 3.5 concludes this chapter by summarising the findings.

3.2 Problem Formulation and Simple Heuristics

In this section, we introduce the relevant mathematical definitions and notations for

the CTSPP. We also propose tour construction heuristics and analyse the classical

simple tour improvement heuristics.

3.2.1 Problem Formulation

The objective of the CTSPP is to find a Hamiltonian path starting from the depot

that minimises the sum of arrival times at all customers. Given an n× n distance

matrix C = (cij), where cij denotes the travelling time between customers i and

j, a tour is defined as τ = ⟨τ1, τ2, τ3, . . . , τn−1, τn⟩, where τi is the ith node in the

solution. Note that τ1 is the depot. l(τi) is defined as the arrival time (latency) of

the ith vertex, which can be written as:

l(τi) =

j=i−1∑
j=1

cτjτj+1 (3.1)

Note that for the CTSPP, the time travelling between the last customer and

the depot τ1 is not included in the total cost, as the vehicle has no time pressure

after serving the last customer in a customer-centric service system. Thus, the

objective value, the sum of arrival times at all vertices (except the depot), can be

written as:
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c(τ) =
i=n∑
i=2

l(τi) =
i=n∑
i=2

j=i−1∑
j=1

cτjτj+1 (3.2)

This is equivalent to the following more computationally efficient equation:

c(τ) =
i=n−1∑
i=1

(n− i)× cτiτi+1 (3.3)

We compare the CTSPP with the Path TSP, which is a special version of

the TSP. For the Path TSP, the objective is the same as that of the TSP, which

is to find an optimal tour to minimise the total travelling time for one vehicle to

visit all given customers exactly once, but the vehicle does not need to return to

the start point. The different objectives for the Path TSP and the CTSPP result

in different optimal solutions given the same following matrix A.

A =


0 8 2 11

8 0 5 15

2 5 0 1

11 15 1 0

 (3.4)

For the Path TSP, the optimal solution is ⟨1, 2, 3, 4⟩ with a value of 14, while

the value of this tour for the CTSPP is 35. For the CTSPP, the optimal solution

is ⟨1, 3, 4, 2⟩ with a value of 23, while the value of this tour for the Path TSP is

18. The cumulative characteristic of the CTSPP means that edge values are added

different numbers of times depending on the positions of the edges, while for the

Path TSP, all edge values are only added once. Equation (3.3) also indicates the

cumulative characteristic of the CTSPP: the coefficients of the edge values differ

for the CTSPP, while they are always 1 for the Path TSP.

3.2.2 Simple Tour Construction Heuristics

Tour construction heuristics construct a tour incrementally and end when a com-

plete tour is created. NN, DENN and GREEDY are all classical construction

heuristics for the TSP. We refer readers to Section 3.2 in [90] for a detailed descrip-

tion of the three purely greedy algorithms and the results of empirical investigation

of the TSP. For the CTSPP, GRASP is an algorithm that combines greediness and

randomness. The motivation of using a greedy algorithm is that, for a cumula-
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tive problem, edges visited earlier are given higher weights when calculating the

objective value; thus, the shorter edges should be visited before the longer edges.

However, a purely greedy algorithm may lead to myopic behaviour. Therefore,

GRASP incorporates a controlled amount of randomness in the greedy algorithm

to decrease the probability of local optimality. We also propose IGRASP, which

reduces the memory space of GRASP, and our later computational experiments

suggest its superiority to GRASP. IGRASP can be seen as a generalised version of

the classical NN heuristic, as it incorporates randomness into NN. RIH has been

extensively used for the TSP [89, 75], but here it is first applied to the CTSPP to

the best of our knowledge. The three tour construction heuristics are demonstrated

below and are used to generate initial solutions for the later experiments.

GRASP

In the conventional sense, GRASP consists of a constructive phase to con-

struct an initial solution and an improvement phase to search the neighbour-

hood [62]. This method has applications in combinational optimisation problems

such as the vehicle routing problem (VRP) with time windows [96]. However, in the

research on the CTSPP, the term GRASP has only been used in the constructive

phase [134, 137, 113]. For consistency, in this chapter, GRASP here only refers to

the tour construction heuristic.

For GRASP, we have a parameter α. Before starting the procedure, we build

an n× (n− 1) neighbour matrix D which contains the closest, second-closest, . . . ,

(n − 1)th closest vertices to each vertex, as determined using the distance data.

Starting from the depot, the search procedure chooses a random vertex from a

restricted candidate list (RCL) containing the α closest vertices to the depot. The

chosen vertex is added to the tour and is unavailable for selection afterwards. Then

the RCL is updated with the α closest vertices to the last added vertex, excluding

the vertices that have already been chosen. The size of the RCL γ is constant

until the number of remaining vertices is smaller than α, then γ is reduced. The

update of the RCL and the random selection are repeated until all vertices have

been chosen. Note that γ is always greater than 0 in the process. The parameter

α reflects the balance between randomness and greediness; the greater the value

of α, the more random the solution. When α = 1, GRASP is a completely greedy

search, whereas when α = n− 1, GRASP is a completely random search. GRASP

has been applied to the CTSPP by several scholars such as Salehipour et al. [134]

and Silva et al. [137]. The algorithm is given in Algorithm 3.2.1. The tour τ is

regarded as an initial solution.
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Algorithm 3.2.1

Algorithm: GRASP(α) with a preprocessed n× (n− 1) neighbour matrix

S ← {2, 3, . . . , n};
τ1 ← 1; k ← 1; τ ← ⟨τ1⟩;
while S ̸= ∅ do

RCL← S ∩ {min (α, n− k) vertices closest to τk};
τk+1 ←a random vertex selected from the RCL; τ ← ⟨τ, τk+1⟩;
S ← S \ {τk+1};
k ← k + 1;

return τ .

IGRASP

Next, IGRASP is proposed, in which another parameter β(β < n−1) is used.
For GRASP, each row of the neighbour matrix contains the n− 1 closest vertices,

while for IGRASP, only the β closest vertices to each vertex are listed, which means

that each row of the neighbour matrix D′ only contains β vertices. This reduces

the memory space. Similarly to in GRASP, a random vertex is chosen from the

RCL, but for IGRASP, the construction of the RCL is slightly different. For the

last-added vertex, we find β vertices in the corresponding row in the neighbour

matrix and delete the elements that have already been chosen. The RCL consists

of the remaining vertices. This means that the RCL can be empty if all β vertices

have been chosen. In this case, the first available nearest vertex is chosen. For

IGRASP, γ is still defined as the size of the RCL, but γ is dynamic and can be

0. The process is repeated until a complete initial solution τ is generated. When

β = 1, IGRASP is the NN heuristic. The introduction of randomness can remedy

the problems of pure greediness to some degree. The algorithm of IGRASP, which

is applied to the CTSPP for the first time, is given in Algorithm 3.2.2.
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Algorithm 3.2.2

Algorithm: IGRASP(β) with a preprocessed n× β neighbour matrix

S ← {2, 3, . . . , n};
τ1 ← 1; k ← 1; τ ← ⟨τ1⟩;
while S ̸= ∅ do

RCL← S ∩ {β vertices in the τkth row in D′};
if RCL ̸= ∅ then

τk+1 ← a random vertex selected from the RCL;

else

τk+1 ← the first available nearest vertex to τk;

τ ← ⟨τ, τk+1⟩; S ← S \ {τk+1};
k ← k + 1;

return τ .

We use the distance matrix C as an instance to illustrate the difference

between GRASP and IGRASP. The neighbour matrices for GRASP and IGRASP

are given as D and D′ respectively as follows.

C =



0 4 2 7 1 3

4 0 3 2 6 5

2 3 0 5 8 1

7 2 5 0 4 3

1 6 8 4 0 7

3 5 1 3 7 0


D =



v1 v5 v3 v6 v2 v4

v2 v4 v3 v1 v6 v5

v3 v6 v1 v2 v4 v5

v4 v2 v6 v5 v3 v1

v5 v1 v4 v2 v6 v3

v6 v3 v1 v4 v2 v5


D′ =



v1 v5 v3

v2 v4 v3

v3 v6 v1

v4 v2 v6

v5 v1 v4

v6 v3 v1


(3.5)

Assume α = 2 for GRASP and β = 2 for IGRASP. The tour construction

including the added vertex and updated RCL in each step is presented in Table. 3.1.

The tours constructed are (v1, v3, v2, v6, v5, v4) and (v1, v3, v6, v4, v2, v5) for GRASP

and IGRASP respectively.

RIH

The procedure of this heuristic is straightforward: starting from the depot,
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Table 3.1: Comparison of tour construction for GRASP (α = 2) and IGRASP
(β = 2)

GRASP IGRASP
Added vertex Updated RCL γ Added vertex Updated RCL γ

τ1 = v1 {v5, v3} 2 τ1 = v1 {v5, v3} 2
τ2 = v3 {v6, v2} 2 τ2 = v3 {v6} 1
τ3 = v2 {v4, v6} 2 τ3 = v6 ∅ 0
τ4 = v6 {v4, v5} 2 τ4 = v4 {v2} 1
τ5 = v5 {v4} 1 τ5 = v2 ∅ 0
τ6 = v4 τ6 = v5

it first randomly chooses a vertex as the second node. Then, in each iteration, it

randomly selects a vertex that has not been in the partially built solution, and

inserts the vertex into the route so that the increment in the cumulative objective

value is minimised. The process is repeated until a complete route is constructed.

3.2.3 Classical Simple Tour Improvement Heuristics

Tour improvement heuristics start from an initial tour and modify the current tour

repeatedly to find a better solution. A well-known tour improvement heuristic is

k-opt [106], where k non-adjacent edges are removed and another k edges are recon-

nected. The main k-opt heuristics used in combinatorial optimisation are 2-opt [44]

and 3-opt [21]. Lin [105] suggested that 4-opt was not an ideal option when con-

sidering the trade-off between the tour quality and computational time. To obtain

a better trade-off, Bentley [17] designed 2.5-opt heuristic, and Or [119] proposed

a restricted version of 3-opt (also called Or-opt). In this chapter, the term 3-opt

refers to Or-opt. The swap heuristic is a straightforward tour improvement heuris-

tic that exchanges the positions of each pair of vertices in the tour [79]. Further,

we consider another three heuristics, 1-insertion, 2-insertion and 3-insertion, which

simply reinsert one, two and three consecutive vertices respectively into the tour.

Here we analyse seven classical simple tour improvement heuristics: 2-opt, 3-

opt, swap, swap-adjacent, 1-insertion, 2-insertion and 3-insertion. When updating

the objective value using simple heuristics such as 2-opt and 3-opt for the TSP, the

calculation can be obtained within a constant time. In contrast, for the CTSPP, the

calculation is more complicated because the coefficients of the reconnected edges

are changed. In the worst case, the update requires O(n) time for one change.

However, when we use the self-generated data memory to calculate the change in
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the value of the objective function, ∆f , for all simple heuristics, we can obtain

∆f in constant time. Hereafter, this method is called the change value method. If

∆f < 0, we conclude that a better solution has been found.

Swap

The swap heuristic exchanges the positions of each pair of vertices in the

initial tour. Denote τ = ⟨τ1, τ2, . . . , τi−1, τi, τi+1, . . . , τj−1, τj , τj+1, . . . , τn⟩ as the

initial solution, then τ ′ = ⟨τ1, τ2, . . . , τi−1, τj , τi+1, . . . , τj−1, τi, τj+1, . . . , τn⟩ is the

new solution after swapping the positions of τi and τj . Then the change in the

value of the objective function is ∆f = (cτi−1τj − cτi−1τi)× (n− i+ 1) + (cτjτi+1 −
cτiτi+1) × (n − i) + (cτj−1τi − cτj−1τj ) × (n − j + 1) + (cτiτj+1 − cτjτj+1) × (n − j),

where ∆f can be obtained in O(1). Thus, exploring the entire swap neighbourhood

requires O(n2) time.

Swap-adjacent (Swap-ad)

The swap-adjacent heuristic exchanges the positions of each pair of adjacent

vertices in the initial tour. This heuristic is a subset of the swap heuristic. After

one swapping operation, the change in the value of the objective function is ∆f =

(cτi−1τi+1 − cτi−1τi)× (n− i+1)+ (cτi+1τi − cτiτi+1)× (n− i) + (cτiτi+2 − cτi+1τi+2)×
(n− i−1). Similarly, ∆f can be obtained in O(1). Thus, the entire neighbourhood

is explored in O(n) time.

2-opt

The 2-opt heuristic removes each pair of non-adjacent edges and reconnects

the vertices. Denote τ = ⟨τ1, . . . , τi−1, τi, τi+1, τi+2, . . . , τj−1, τj , τj+1, . . . , τn⟩ as the
initial solution, then τ ′ = ⟨τ1, . . . , τi−1, τi, τj , τj−1, . . . , τi+2, τi+1, τj+1, . . . , τn⟩ is the
new solution after completing one operation in Figure 3.1, which is taken from the

research of Salehipour et al. [134].

Figure 3.1: Demonstration of 2-opt

Because part of the solution is reversed, the calculation of 2-opt is more

complicated than that of the swap and swap-adjacent heuristics. Mladenović et

al. [113] explored the complete 2-opt neighbourhood in O(n2) time by building data
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structures and preprocessing. In this chapter, the calculation is simplified using

the change value method, thus saving preprocessing time. After one operation, the

change in the value of the objective function is ∆f , which is calculated as follows.

∆f =(cτiτj − cτiτi+1)× (n− i) + (cτi+1τj+1 − cτjτj+1)× (n− j)

+

t=j−1∑
t=i+1

cτt+1τt × (n+ t− i− j)−
t=j−1∑
t=i+1

cτtτt+1 × (n− t)
(3.6)

Given a fixed i and j, calculating the new ∆f with j increased by 1 only

requires O(1) time. Thus, for a fixed i, the calculation of ∆f for all j requires O(n)

time, and the complexity of exploring the entire 2-opt neighbourhood is O(n2).

3-opt

The 3-opt heuristic removes each triplet of non-adjacent edges and recon-

nects the vertices with another three edges. There are several different types

of connection. In this chapter, only one type of connection is considered to

retain the orientation of the initial solution. The operation is shown in Fig-

ure 3.2, which is also illustrated in the research of Salehipour et al. [134]. De-

note τ = ⟨τ1, τ2, . . . , τi, τi+1, . . . , τj , τj+1, . . . , τk, τk+1, . . . , τn⟩ as the initial solution,
then τ ′ = ⟨τ1, τ2, . . . , τi, τj+1, . . . , τk, τi+1, . . . , τj , τk+1, . . . , τn⟩ is the new solution

after one operation. Essentially, this operation moves (j − i) consecutive vertices

τi+1, . . . , τj to the right of τk. The change in the value of the objective function is

similar to that of 2-opt. Given a fixed i,j and k, calculating the new ∆f with k

increased by 1 requires a constant time. Thus, for a fixed i and j, the calculation

of ∆f for all k requires O(n) time, and the complexity of exploring the entire 3-opt

neighbourhood is O(n3).

Figure 3.2: Demonstration of 3-opt
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1-insertion, 2-insertion, and 3-insertion (1-in, 2-in, and 3-in)

These three heuristics respectively reinsert one, two and three consecutive

vertices into another position in the tour, which can be seen as special cases of

3-opt. For example, 3-insertion can be viewed as the case of 3-opt with the index

j set to i + 3. The complexity of exploring the entire insertion neighbourhood is

O(n2).

3.3 Heuristics Based on Dynamic Programming

We propose three simple heuristics for tour improvement: the pyramidal heuristic,

chains heuristic, and sliding window heuristic. These three heuristics are all based

on dynamic programming and have simple procedures.

3.3.1 Pyramidal Heuristic

As discussed in Chapter 2, pyramidal tours have important properties in the TSP.

The TSP with a Demidenko matrix is pyramidally solvable, which means that an

optimal tour for the Demidenko TSP can be found in the set of pyramidal tours [54].

The dynamic programming heuristic in this sub-section is based on the pyramidal

neighbourhood search.

The neighbourhood search starts from a candidate solution and then iter-

atively moves to a neighbour in the neighbourhood. A neighbourhood is the set

of all potential solutions based on the neighbourhood relation. The pyramidal

neighbourhood contains all neighbours that have pyramidal permutations.

The permutation π = ⟨1, π2, . . . , πa, . . . , n, . . . , πb, . . . , πn⟩ is called a pyra-

midal permutation if 1 < π2 < · · · < πa < n and n > πb > · · · > πn. In other

words, in a pyramidal permutation, part of the indices are placed in increasing or-

der up to n, then the remaining indices are placed in decreasing order. For example,

π = ⟨1, 3, 5, 4, 2⟩ is a pyramidal permutation, but π = ⟨1, 3, 5, 2, 4⟩ is not a pyrami-

dal permutation. A pyramidal neighbourhood contains 2n−1 neighbours following

the pyramidal permutations. Given a tour τ , let us denote τ(π) as its pyramidal

neighbour. For example, assume a tour is τ = ⟨1, 2, 5, 4, 3⟩ and the pyramidal per-

mutation is π = ⟨1, 3, 5, 4, 2⟩, then the pyramidal neighbour is τ(π) = ⟨1, 5, 3, 4, 2⟩.
Let us denote NP (τ) = {τ(π) : π ∈ N} as the pyramidal neighbourhood of τ ,

assuming that N is the set of all pyramidal permutations.

For the TSP, an O(n2) algorithm based on dynamic programming can be
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used to find the optimal pyramidal neighbour. Gilmore et al. [72] applied pyramidal

tours to a large neighbourhood search for the TSP. In this chapter, the dynamic-

programming-based pyramidal neighbourhood search is applied to the CTSPP for

the first time, and the optimal pyramidal neighbour can be found within polynomial

time O(n3) using the dynamic programming recursions.

Lemma 3.3.1 For the CTSPP, the optimal pyramidal tour can be found within

polynomial time O(n3) using the dynamic programming algorithm.

Proof. Construct pyramidal permutations that satisfy the following con-

ditions: the sub-permutation starts from index i and ends with index j(i < j)

through the set of indices {j + 1, j + 2, . . . , n}. Note that in the constructed com-

plete pyramidal permutation, the position of index i is p, while the position of

index j is n − j + p + 1. Denote V (i, j, p) as the smallest cumulative value of

the sub-tour following the partially constructed pyramidal permutation described

above. Given an initial tour τ , the sub-tour goes from τi to τj through the set

of vertices {τj+1, τj+2, . . . , τn}. Additionally, ci,j is denoted as the travelling time

between τi and τj . V (j, i, p) has a similar definition. Since the pyramidal sub-tour

is considered, the index j + 1 can only be placed next to i or next to j. The range

of values of p is determined according to the pyramidal property.

For generality, we here consider the case with an asymmetric matrix. As the

time spent between the last customer and the depot is not included in the objective

value, we can assume that the travelling time from any vertex to the depot is 0.

Then the value V (1, 1, 1) is the optimal objective value, which can be found using:

V (1, 1, 1) = min ((n− 1)× c1,2 + V (2, 1, 2), c2,1 + V (1, 2, 1)), (3.7)

where values V (2, 1, 2) and V (1, 2, 1) are calculated using the following dynamic

programming recursions:

V (i, j, p) = min ((n− p)× ci,j+1 + V (j + 1, j, p+ 1), (j − p)× cj+1,j + V (i, j + 1, p)),

∀j = 2, . . . , n− 1, i = 1, 2, . . . , j − 1, p =

 1, if i = 1;

2 ≤ p ≤ i, if i = 2, . . . , j − 1.

(3.8)
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V (j, i, p) = min ((n− p)× cj,j+1 + V (j + 1, i, p+ 1), (j − p)× cj+1,i + V (j, j + 1, p)),

∀j = 2, . . . , n− 1, i = 1, 2, . . . , j − 1, p =

 j, if i = 1;

j − i+ 1 ≤ p ≤ j − 1, if i = 2, . . . , j − 1.

(3.9)

The Boundary conditions (i.e., j = n) are given as follows:

V (i, n, p) = (n−p)× ci,n,∀i = 1, 2, . . . , n−1, p =

 1, if i = 1;

2 ≤ p ≤ i, if i = 2, . . . , n− 1.

(3.10)

V (n, i, p) = (n−p)×cn,i,∀i = 1, 2, . . . , n−1, p =

 n, if i = 1;

n− i+ 1 ≤ p ≤ n− 1, if i = 2, . . . , n− 1.

(3.11)

This completes the proof. □

Based on the above recursions, a local search heuristic with the best im-

provement strategy is adopted. The algorithm is given in Algorithm 3.3.2 and is

called the pure pyramidal heuristic.

Algorithm 3.3.2

Algorithm: Pure pyramidal heuristic with initial solution τ

τ ′ ← τ ;

improve← true;

while improve do

improve← false;

τ ′′ ← argminNP (τ
′) using the dynamic programming recursions;

if τ ′′ is better than τ ′ then

τ ′ ← τ ′′;

improve← true;

return τ ′.

Carlier and Villon [30] developed a heuristic based on the pyramidal neigh-

bourhood combined with cyclic shifts for the TSP, which outperformed the well-
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known 2-opt in computational experiments. Deineko andWoeginger [53] also stated

that this heuristic was competitive with k-opt for the TSP. We also propose an al-

gorithm combining the pyramidal heuristic with the cyclic shifts for the CTSPP.

This is the first time that this type of neighbourhood search has been applied to

the CTSPP. As in Section 2.1, a cyclic shift is the operation of rearranging the

entries in a permutation, either by moving the last element to the first position

and moving all other elements to the next positions, or by performing the inverse

operation. Given a permutation containing n elements, a cyclic shift can be repeat-

edly performed to generate n−1 permutations. More specifically, given an identity

tour τ0 = ⟨τ01 , τ02 , τ03 , . . . , τ0n⟩, the first cyclic shift is τ1 = ⟨τ01 , τ03 , τ0n, . . . , τ02 ⟩, the
second cyclic shift is τ2 = ⟨τ01 , τ04 , . . . , τ0n, τ02 , τ03 ⟩, and so forth. There are n − 2

cyclic shifts in total for an n-size tour as the depot can only be placed in the first

position. For the identity tour τ0 and each of its cyclic shifts τ1, τ2, . . . , τn−2, de-

note σi(i = 0, 1, . . . , n − 2) as the corresponding optimal pyramidal tour, which

can be obtained using the Algorithm in Table 3.3.2. σi with the smallest objec-

tive value is then chosen as the new identity tour for renumbering nodes. This

search is repeated until no better solutions can be found. The algorithm is given

in Algorithm 3.3.3. In Section 3.4, two versions of the pyramidal heuristic are

experimentally investigated.

Algorithm 3.3.3

Algorithm: Pyramidal heuristic with cyclic shifts with initial solution τ

τ ′ ← τ ;

improve← true;

while improve do

improve← false;

k ← 0; τ0 ← τ ′; find cyclic shifts τ1, τ2, . . . , τn−2;

while k ≤ n− 2 do

σk ← Use pure pyramidal heuristic with initial solution τk;

if σk is better than τ ′ then

τ ′ ← σk;

improve← true;

k ← k + 1;

return τ ′.
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3.3.2 Chains Heuristic

The total number of possible permutations covering n nodes is (n − 1)! assuming

that the first node (depot) is always node 1, which makes enumeration computa-

tionally intractable for large-size problems. However, if a tour is partitioned into a

set of chains whose length is a small value k and all chains must be visited in order,

then the best tour with this structure can be obtained with much less computation.

Here, the length refers to the number of nodes in the chain.

In our algorithm, if n is a multiple of k, then the lengths of all chains are

set as k. Otherwise, the tour is partitioned into chains according to the following

rules: the length of the first chain and the last chain can be 3, 4, . . . , k− 1, k, while

the length of the middle chains can only be k. The parameter k is set as 6 because

this value gave the best performance in preliminary experiments.

We partition the identity permutation π = ⟨1, 2, . . . , n⟩ into m chains as

π = ⟨CN1, CN2, . . . , CN i, . . . , CNm⟩. For chain CN i let us denote li as its length

and ai and bi as the first index and last index in the chain respectively. Note that

li = bi − ai + 1.

The procedure starts from the last chain CNm. There are (lm)! permuta-

tions of the chain in total. We calculate the cumulative cost for each permutation

of the chain and record the best permutation (with the smallest cost) starting from

each index t as Pm
t (am ≤ t ≤ bm). We take the backtrace and consider the penul-

timate chain CNm−1. There are (lm−1)! permutations for this chain, and each

permutation can be linked to Pm
t ; thus, there are (lm−1)! × lm combinations in

total. Then the cumulative cost is calculated for all these combinations, and the

best permutation Pm−1
t (am−1 ≤ t ≤ bm−1) is recorded. We repeat the process

until we reach the first chain CN1. Note that when we calculate the costs for the

first chain, the cost linked from the depot to the first chain should be included.

Using this procedure, we can find the best neighbour in the chains neighbourhood

whose size is (l1)!× (l2)!× (li)!× (lm)!, and the computational complexity of this

subroutine is O(nk!).

An example is used to demonstrate the procedure as shown in Figure 3.3.

Assume n = 20, k = 6, then the chain lengths are 3, 6, 6 and 4 in order, and

this neighbourhood contains (3!) × (6!) × (6!) × (4!) neighbours. The procedure

starts from the last chain CN4. There are 4! permutations of the chain in total.

We calculate the cumulative cost for each permutation of the chain, and record

the best permutation starting from each index t as P 4
t (17 ≤ t ≤ 20). For ex-

55



ample, P 4
18 = ⟨18, 19, 17, 20⟩ and P 4

20 = ⟨20, 19, 17, 18⟩. We take the backtrace

and consider the penultimate chain CN3. There are 6! permutations for this

chain, and each permutation can be linked to P 4
t (17 ≤ t ≤ 20); thus, there are

(6!× 4) combinations in total. We then calculate the cumulative cost for all these

combinations, and record the best permutation P 3
t (11 ≤ t ≤ 16). For exam-

ple, to calculate P 3
11, we need to calculate the cost of all permutations starting

from index 11 linked to the optimal ‘tail’ recorded, i.e., the costs of permuta-

tions ⟨11, 12, 13, 14, 15, 16⟩, . . . ⟨11, 16, 15, 14, 13, 12⟩ linked to P 4
17, P

4
18, P

4
19, P

4
20, and

choose the one with the smallest cost as P 3
11. The process is repeated until the first

chain CN1 is explored.

Figure 3.3: Demonstration of chains neighbourhood

We use the subroutine in Algorithm 3.3.4 to obtain an optimal neighbour in

the chains neighbourhood. Then we apply the subroutine to a local search heuristic,

where the optimal solution of the subroutine is used as a new initial solution and

the search is repeated until no better solution is found.

Algorithm 3.3.4

Algorithm: Subroutine of chains neighbourhood search with initial solution τ

Construct list of chains: CN1, CN2, . . . , CNm; k ← m− 1;

Calculate cumulative cost of CNm with all permutations and record Pm
t (am ≤ t ≤ bm);

while k ≥ 2 do

for (ak ≤ t ≤ bk)

Calculate cost of all permutations of CNk starting from t, linked to

P k+1
t′ (ak+1 ≤ t′ ≤ bk+1) and record P k

t with the smallest cost;

k ← k − 1;

for (all permutations of CN1)

Update cost of CN1 linked to the depot and the optimal ‘tail’ recorded above;

Determine the minimum cost as the optimal value;

Reconstruct the optimal tour τ ′ with the recorded link;

return τ ′.

56



3.3.3 Sliding Window Heuristic

The pure dynamic programming approach has an exponential time complexity of

O(2nn2) and therefore cannot be applied to large-size problems. An aggregation

strategy with intervals is adopted to reduce the problem size. First, the initial

solution is disassembled into a sequence of intervals, each of which is represented

as a new customer. Second, we adopt the dynamic programming recursions in Wu’s

research [147] to find an exact optimal solution for the small-size CTSPP with new

sets of customers. The solution obtained can be transformed into a solution for the

initial problem by replacing the aggregated customers with the original sub-paths.

The solution obtained will not be optimal; instead, it can only be viewed as a

heuristic solution for the initial problem. The solution can then be disassembled

again to obtain a new small-size problem, and the process is repeated until a certain

stopping criterion is satisfied.

To disassemble the tours, a straightforward approach called sliding window

aggregation is used. This method was applied to 2-VRP in the research of Deineko

et al. [49]. We incorporate the cumulative objective into sliding window aggregation

and propose the sliding window heuristic for the CTSPP. We first demonstrate the

method of disassembling a tour into intervals. Secondly, we calculate the cumulative

value for the connected intervals.

Assume that the initial tour is x = ⟨x1, x2, . . . , xn⟩ with x1 as the depot.

Choose two subsets of vertices S1 and S2, each of which contains s consecutive

vertices in x. S1 and S2 are called the first and second sliding windows in the

algorithm respectively. In the first phase, we set S1 = {x2, x3, . . . , xs+1} and S2 =

{xs+3, xs+4, . . . , x2s+2}. We delete S1 and S2 from the initial tour and add them

to the set of vertices in the new CTSPP. The remaining sub-paths in x are viewed

as intervals of customers and added to the new CTSPP. In this stage, two intervals

are ⟨xs+2⟩ and ⟨x2s+3, x2s+4, . . . , xn⟩. Each interval is considered as an aggregated

customer. The new small-size problem includes one depot x1, 2s single customers

from S1 and S2 and two intervals/aggregated customers. Therefore, the size of the

new small problem is 2s+ 3.

Figure 3.4, taken from the work of Deineko et al. [49], demonstrates the

first phase of the sliding window aggregation method. To simplify the drawing,

we set s = 3 and n = 12; thus, S1 = {x2, x3, x4} and S2 = {x6, x7, x8}. The

new small problem has a size of 9 and includes one depot x1, six single customers:

x2, x3, x4, x6, x7, x8 and two intervals ⟨x5⟩, ⟨x9, x10, x11, x12⟩.
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Then the dynamic programming method is applied to solve the small-size

problem to optimality. Note that the order of vertices within the intervals cannot

be changed. However, to cover more neighbours in the search, we consider two

directions of each interval. In the example in Figure 3.4, the sub-path in the

solutions for the initial problem can be ⟨x9, x10, x11, x12⟩ or ⟨x12, x11, x10, x9⟩, but
it cannot be ⟨x9, x11, x10, x12⟩. If the solution to the initial problem is improved,

the process of disassembling is restarted from the new solution.

If there is no improvement in the solution, we enter the second phase: re-

defining the subsets. In this stage, S2 is redefined by deleting the m first elements

(m is a parameter called step) and adding m new consecutive elements. Figure 3.5,

which is also from the research of Deineko et al. [49], illustrates the outcome of

sliding S2 with m = 1 during the second phase with subsets S1 = {x2, x3, x4} and
S2 = {x7, x8, x9}.

The sliding process is repeated until the end of the tour is reached. When

all S2 are enumerated, we redefine S1 by moving m steps and redefine S2 to follow

S1 similarly to the process described above. In the process, if a better solution

is found, the disassembling process is restarted from the improved solution. After

enumerating all possible S1 and S2, if no improved solution can be found, the

procedure is stopped. The main sliding subroutine is denoted as S(s,m) with two

parameters s and m.

Figure 3.4: Demonstration of the first phase of the sliding window aggregation with
S1 = {x2, x3, x4}, and S2 = {x6, x7, x8}

Figure 3.5: Outcome of redefining S2 with m = 1 in the second phase
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In this process, we need to calculate the cumulative value if two intervals are

connected. Denote I = ⟨I1, I2, . . . , Ik⟩ and I ′ = ⟨I ′1, I ′2, . . . , I ′m⟩ as the two intervals

and I+I ′ = ⟨I1, I2, . . . , Ik, I ′1, I ′2, . . . , I ′m⟩ as the connected interval. We define three

attributes for one interval: T (I), C(I) and N(I). Let T (I) be the travelling time

of the interval, C(I) be the cumulative cost of the interval and N(I) be the number

of customers of the interval. Again, cij denotes the travelling time between vertex

i and vertex j. Then for the connected intervals, the following three attributes are

calculated.

T (I + I ′) = T (I) + T (I ′) + cIkI′1

N(I + I ′) = N(I) +N(I ′)

C(I + I ′) = C(I) + C(I ′) + (T (I) + cIkI′1)×N(I ′)

(3.12)

These formulas can be applied to both intervals with a single customer and

intervals with multiple customers. Silva et al. [137] also adopted similar formulas

to evaluate simple moves.

Note that there are two differences between the chains heuristic and the

sliding window heuristic: the strategy of reducing the problem size and way of

searching. First, for the chains heuristic, each chain is regarded as a small solvable

problem, while for the sliding window heuristic, the whole problem is simplified to

a small solvable problem. Second, the neighbourhood search is ‘internal’ for the

chains heuristic. The search is conducted within each chain, and the positions of the

chains are fixed. In contrast, the sliding window heuristic has an ‘external’ search,

where the positions of the intervals can be changed, but the relative positions of

the nodes within each interval are fixed.

3.4 Computational experiments

To test the power of the classical simple heuristics and the proposed heuristics, they

are coded in C++ and executed on the Intel Core i5-10600 3.30 GHz processor with

32.0 GB RAM.

3.4.1 Experiment design

The algorithms are tested on both self-generated instances and benchmark in-

stances. As the self-generated instances, we generated 100 geometric instances,

i.e., 50 random uniform Euclidean instances and 50 random clustered Euclidean
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instances, for each of the problem sizes n = 50, 100 and 200. Thus, we generated

six instance sets in total. These instances are used in the first experiment. The

generation process is as follows.

Random uniform Euclidean instances The city points have two integer co-

ordinates chosen randomly from the uniform distribution (0, 100]. Distances are

Euclidean distances rounded to the nearest integer.

Random clustered Euclidean instances We set 3, 5 and 10 cluster centres for

the problem sizes n = 50, 100 and 200 respectively. The coordinates of the cluster

centres are chosen randomly from the uniform distribution (0, 100]. We first assign

a random cluster centre to each city node. Then for each city node, two coordinates

are generated from the standard normal distribution and are multiplied by 0.5×100√
n

,

and then added to the coordinates of its centre. Distances are also Euclidean

distances rounded to the nearest integer. Johnson and McGeoch [90] used this

generation method to compare heuristics for symmetric and asymmetric cases of

the TSP.

The benchmark instances we used in the experiments include four sets of

databases, each containing 20 symmetric instances, and were generated by Sale-

hipour et al. [134]. The sizes of the four sets are 50, 100, 200 and 500. The

benchmark instances are uniform Euclidean instances whose coordinates are cho-

sen randomly from the uniform distribution (0, 100]. Distances are also Euclidean

distances rounded to the nearest integer. Detailed information of the test instances

is given in Appendix B. Silva et al. [137] also completed computational experiments

on these benchmark instances. These instances are used in the second experiment.

Edge-unweighted trees and edge-weighted trees are generated and are tested

in the third and fourth experiments respectively. We first use the Prufer code [124]

to generate unweighted trees with sizes n = 50, 100, 200 and 500. Each instance

set has 50 instances. The Prufer code is a unique sequence associated with a tree

and can be generated by a simple iterative algorithm. In the generation process,

the Prufer code is first initialised as empty. Start with a leaf with the lowest label

x, and find the vertex connecting it to the rest of the tree y. Remove x from the

tree and add y to the Prufer code. Repeat the process until two nodes are left. An

(n − 1) × (n − 1) adjacent matrix is then obtained that indicates whether a pair

of nodes i and j are connected by an edge. For each unweighted-tree instance, if

i and j are connected by an edge, the weight of the edge is 1, otherwise it is 0.

Starting from the unweighted-tree instances, we generate weighted-tree instances

by assigning a random weight from the range [1, 20] to the non-zero edges. Then
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we calculate the distance between any two nodes.

First Experiment

The first experiment is conducted on self-generated general instances. The

aim is to test the power of the classical simple tour improvement heuristics and

determine the best one to use for comparison with the proposed heuristics in the

subsequent experiments. We combine each of the seven simple tour improvement

heuristics (swap, swap-ad, 2-opt, 3-opt, 1-in, 2-in and 3-in) with each of the three

tour construction heuristics (GRASP, IGRASP and RIH), giving 21 combinations

in total. We run the 21 algorithms for each individual instance and adopt the multi-

start, i.e., each algorithm is run multiple times and the best result is recorded as

the objective value v for each instance. The number of starts is set as the size of

the instances.

The objective value v and the running time t measured in seconds are

recorded for each instance using each algorithm. Then the best solution among

all algorithms is chosen as the comparison base vbest for each instance, and the

percentage gap g% = v−vbest
vbest

× 100% is calculated as the solution quality. We com-

pare both the solution quality and the running time and investigate whether one

algorithm is dominated by another. For each instance set, the average values of

g% and t, respectively denoted as G% and T , are calculated.

Second Experiment

The second experiment is conducted on benchmark instances. The proposed

algorithms are compared with the classical algorithm GRASP-2-opt. Comparing

IGRASP and RIH, the findings in the first experiment in Section 3.4.2 suggest that

RIH is more efficient when combined with the proposed tour improvement heuris-

tics. Therefore, we conduct experiments on six algorithms: RIH+pure pyrami-

dal heuristic (RIH-PyramidalP), RIH+pyramidal heuristic with cyclic shifts (RIH-

PyramidalCS), RIH+chains heuristic (RIH-Chains), RIH+sliding window heuristic

with two sets of parameters, S(2, 1) and S(3, 1), and GRASP-2-opt.

Firstly, we perform tests on the single-start and conduct the domination

analysis. Because of the long running time, RIH-PyramidalCS, RIH-S(2, 1) and

RIH-S(3, 1) are not tested on size-500 instances. Secondly, we adopt the multi-

start for GRASP-2-opt to ensure the same running time as for the proposed al-

gorithms with the single-start. More specifically, for each instance, GRASP-2-opt

runs multiple times and stops when the running time reaches the time used by the

single-start proposed algorithms, then the best solution obtained is recorded as v.

Silva et al. [137] obtained the best known solution bk for benchmark in-
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stances. We thus calculate the percentage excess over the best known solution,

bk% = v−bk
bk × 100%, as the measurement of solution quality for each instance.

Similarly, the average values of bk% for each instance set, denoted as BK%, is

calculated. The best known solutions are shown in Appendix B. Note that the

best known solutions for the 50-city instances are the optimal solutions.

In addition, we conduct further analysis on the RIH+sliding window heuris-

tic. More specifically, we investigate the performance with increasing number of

starts. We also investigate the solution quality and running time for RIH+sliding

window heuristic for the settings S(2, 1) and S(3, 1).

Third Experiment

The third experiment is conducted on self-generated edge-unweighted trees.

As is known, the CTSPP on edge-unweighted trees is solvable. We conduct the

experiments on this special instance set to demonstrate the high quality of the

proposed algorithms, which are again compared with GRASP-2-opt. Firstly, we

perform tests on the single-start. Then we adopt the multi-start for GRASP-2-

opt to ensure the same running time as for the single-start proposed algorithms.

In both cases, we calculate the percentage gap over the optimal solution, g% =
v−vopt
vopt

× 100%, for each single instance, and then calculate G%, the average values

of g% for each instance set.

Fourth Experiment

The fourth experiment is conducted on edge-weighted trees. The opera-

tions are similar to those in the second experiment. Experiments are conducted

on five algorithms: RIH-PyramidalP, RIH-Chains, RIH-S(2, 1), RIH-S(3, 1) and

GRASP-2-opt. Firstly, we perform tests on the single-start and choose the best

solution among all algorithms as the comparison base vbest for each instance, and

we calculate the percentage gap, g% = v−vbest
vbest

× 100%, as the solution quality. We

compare both solution quality and running time and test whether one algorithm is

dominated by another. Then the multi-start is adopted for GRASP-2-opt to ensure

the same running time as for the proposed algorithms, and vbest is again used as

the comparison base to calculate the percentage gap g%. Similarly, the average

values of g% for each instance set, denoted as G%, is calculated.

3.4.2 Experiment Results

First Experiment

We present the experimental results of the classical simple heuristics on
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self-generated uniform instances and clustered instances in Tables 3.2 and 3.3 re-

spectively, which show the average solution quality G% and running time T for

each instance set.

One heuristic is said to be dominated by another if the other heuristic

generates the same solutions with less time, or generates better solutions with the

same time, or is superior in both solution quality and running time. Taking as

an example the heuristics combined with IGRASP on 200-city instances, the 1-in,

2-in, 3-in and swap heuristics are all dominated by the swap-ad heuristic. For each

instance set, the algorithms that cannot be dominated are underlined. Figure 3.6

shows the trade-off between the average solution quality and running time for

the 21 algorithms on 50-city random uniform instances as well as the domination

relationships. The figure illustrates that four algorithms (IGRASP-swap-ad, RIH-

swap-ad, RIH-1-in, RIH-2-opt) cannot be dominated for this instance set.

The experimental results suggest that the simple heuristics have different

powers. First, we focus on the tour construction heuristics. When combined with

GRASP, nearly all algorithms (except GRASP-swap-ad) are dominated by other

algorithms. This suggests that IGRASP and RIH are superior to the widely used

GRASP for the CTSPP. Comparing IGRAS and RIH, we find that for IGRASP

only swap-ad and 2-opt are ideal options, while when using RIH for tour construc-

tion, fewer tour improvement heuristics will be dominated than for IGRASP. This

indicates that RIH is a better heuristic than IGRASP for generating initial solu-

tions. We next focus on the effectiveness of the tour improvement heuristics. The

results suggest that 3-opt is dominated by the other tour improvement heuristics

regardless of the tour construction heuristic it is combined with. Among the re-

maining classical simple tour improvement heuristics, although there is no evident

domination relationship, 2-opt obtains much better solutions for each instance set

with slightly increased running time. Therefore, 2-opt can be seen as the ‘best’

heuristic among the classical simple heuristics, and the proposed algorithms are

thus compared with GRASP-2-opt in the second experiment.

The findings also give guidance for the better selection and combination

of simple heuristics for the future study of metaheuristics for the CTSPP. For

example, removing 3-opt from the list of neighbourhood structures and replacing

GRASP with IGRASP or RIH may improve the efficiency of metaheuristics. In

addition, the experimental results can help identify which algorithm works best

for problems with different instance characteristics. For example, for a 100-size
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Table 3.2: Experimental results of seven classical simple heuristics combined with
three tour construction heuristics on self-generated random uniform instances: av-
erage solution quality and running time for each instance set

n = 50 n = 100 n = 200
T G% T G% T G%

GRASP 2-opt 0.0058 3.48 0.081 3.82 1.16 5.04
3-opt 0.0525 12.73 11.73 11.04 58.51 11.47

swap-ad 0.0005 12.10 0.002 14.07 0.01 17.01
swap 0.0045 12.24 0.062 13.95 0.91 16.02
1-in 0.0023 16.21 0.036 16.81 0.59 18.08
2-in 0.0023 18.09 0.028 19.15 0.46 20.65
3-in 0.0015 20.61 0.020 21.36 0.31 23.24

IGRASP 2-opt 0.0035 1.39 0.049 0.51 0.67 0.15
3-opt 0.0271 4.91 0.811 3.71 26.12 3.45

swap-ad 0.0005 4.33 0.002 4.94 0.01 5.77
swap 0.0020 5.63 0.022 6.10 0.29 7.01
1-in 0.0016 5.77 0.020 6.02 0.28 6.80
2-in 0.0014 6.29 0.015 6.42 0.24 7.20
3-in 0.0013 6.58 0.012 6.82 0.16 7.79

RIH 2-opt 0.0029 0.43 0.032 1.02 0.38 2.32
3-opt 0.0282 1.80 0.763 1.40 25.44 1.77

swap-ad 0.0006 2.56 0.003 3.86 0.02 5.03
swap 0.0013 2.77 0.013 3.91 0.15 4.82
1-in 0.0012 2.31 0.012 3.79 0.13 4.70
2-in 0.0018 2.58 0.016 3.15 0.19 3.90
3-in 0.0013 2.81 0.013 3.78 0.13 4.43
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Table 3.3: Experimental results of seven classical simple heuristics combined with
three tour construction heuristics on self-generated random clustered instances:
average solution quality and running time for each instance set

n = 50 n = 100 n = 200
T G% T G% T G%

GRASP 2-opt 0.0092 3.33 0.1201 3.16 1.83 3.73
3-opt 0.0936 9.64 2.9993 8.77 105.31 7.97

swap-ad 0.0005 24.35 0.0024 30.39 0.01 36.19
swap 0.0078 12.20 0.1145 13.68 1.79 15.33
1-in 0.0046 17.31 0.0743 19.37 1.14 22.80
2-in 0.0045 19.04 0.0626 20.58 1.03 22.07
3-in 0.0037 22.68 0.0522 24.36 0.87 25.13

IGRASP 2-opt 0.0059 2.31 0.0739 1.82 1.15 2.08
3-opt 0.0471 7.06 1.4977 6.32 57.71 5.56

swap-ad 0.0005 10.16 0.0022 13.22 0.01 17.17
swap 0.0039 9.24 0.0517 10.43 0.81 12.81
1-in 0.0030 9.25 0.0397 9.92 0.59 11.94
2-in 0.0025 9.85 0.0343 10.70 0.54 11.71
3-in 0.0020 11.74 0.0245 12.27 0.42 13.43

RIH 2-opt 0.0024 0.06 0.0319 0.05 0.47 0.06
3-opt 0.0229 0.99 0.6360 0.97 23.25 0.96

swap-ad 0.0007 1.14 0.0037 1.63 0.02 2.16
swap 0.0014 1.11 0.0155 1.58 0.20 1.76
1-in 0.0011 1.15 0.0097 1.48 0.09 2.01
2-in 0.0014 1.29 0.0124 1.54 0.15 1.83
3-in 0.0011 1.43 0.0104 1.72 0.11 2.07
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Figure 3.6: Experimental results on 50-size self-generated uniform instances: trade-
off between solution quality and running time for 21 algorithms

clustered instance, the best option will be to use RIH for tour construction and

2-opt, swap-ad and 1-in for tour improvement. However, for a 200-size uniform

instance, the best option will be to use RIH for tour construction and 2-opt, swap-

ad, 1-in, 2-in and 3-in for tour improvement.

Second Experiment

We present the experimental results with the single-start on benchmark

instances in Table 3.4 and Figure 3.7. The results suggest that RIH-PyramidalCS

is dominated by the other proposed algorithms for instances of all sizes. This result

indicates that the pyramidal neighbourhood combined with cyclic shifts does not

perform as well for the CTSPP as it does for the TSP, but the pure pyramidal

heuristic is promising for the CTSPP. The remaining proposed algorithms obtain

better solutions than GRASP-2-opt but with a longer running time.
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To remove the trade-off effect and make further comparisons, the multi-start

is adopted for GRASP-2-opt to ensure the same running time as for the proposed

algorithms with the single-start. For instance, when the size is 50, the average

running time of RIH-Pyramidal is 0.0006 s; thus, GRASP-2-opt runs multiple times

until the total time used is 0.0006 s, and the best solution obtained is recorded.

Because RIH-PyramidalCS has already been shown to be dominated, it is removed

from the subsequent experiments.

The results with controlled running time are given in Table 3.5. This table

shows the gap above the best known solutions when using the proposed algorithms

and GRASP-2-opt and records the number of instances (out of 20) for which the

proposed algorithms obtain better solutions than GRASP-2-opt. It is shown that

the proposed algorithms perform better as the instance size increases. RIH-S(2, 1)

outperforms GRASP-2-opt for all experiment sizes. RIH-Chains starts to outper-

form GRASP-2-opt from size n = 200 and its performance continues to improve as

the size increases. When the size is greater than 50, RIH-PyramidalP outperforms

GRASP-2opt, which is similar to the performance of RIH-S(3, 1). The results sug-

gest that the greater the instance size, the better the performance of the proposed

algorithms over GRASP-2-opt.

Table 3.4: Experimental results of proposed algorithms and GRASP-2-opt with
single-start on benchmark instances: average solution quality and running time for
each instance set

n = 50 n = 100 n = 200 n = 500
T BK% T BK% T BK% T BK%

RIH-PyramidalCS 0.0951 4.74 2.615 7.15 75.055 10.83
RIH-PyramidalP 0.0006 11.98 0.005 14.44 0.046 16.19 0.77 16.86

RIH-Chains 0.0543 8.98 0.126 12.95 0.373 13.82 1.84 14.76
RIH-S(3, 1) 0.3253 2.70 3.256 3.38 36.109 5.41
RIH-S(2, 1) 0.0624 3.09 0.649 4.61 6.437 6.47

GRASP-2-opt 0.0002 22.64 0.001 23.40 0.008 24.06 0.12 28.27

Additionally, we analyse how the sliding window heuristic performs as the

number of starts increases. The chosen numbers of starts are 1, 5, 10, 15, 20, 25, and

30. Figure 3.8 presents the results of RIH-S(2, 1) on 50-city benchmark instances.

We record the percentage excess over the optimum for each instance and calculate

the average excess. The figure shows that the average excess is higher than 3% with
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Figure 3.7: Comparison of results of proposed algorithms and GRASP-2-opt on
benchmark instances with single-start: (a) 50-size instances; (b) 100-size instances;
(c) 200-size instances; (d) 500-size instances
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Table 3.5: Comparison of results of proposed algorithms and GRASP-2-opt on
benchmark instances with controlled running time

BK% of proposed BK% of GRASP-2-opt #better

n = 50 RIH-PyramidalP 11.98 11.28 9
RIH-Chains 8.98 3.46 3
RIH-S(3, 1) 2.70 1.91 9
RIH-S(2, 1) 3.09 3.35 13

n = 100 RIH-PyramidalP 14.44 15.74 12
RIH-Chains 12.95 9.33 4
RIH-S(3, 1) 3.38 6.17 17
RIH-S(2, 1) 4.61 8.11 18

n = 200 RIH-PyramidalP 16.19 19.20 14
RIH-Chains 13.82 15.78 16
RIH-S(3, 1) 5.41 11.50 20
RIH-S(2, 1) 6.47 12.82 20

n = 500 RIH-PyramidalP 16.86 23.09 18
RIH-Chains 14.76 21.47 18

only one start but is almost 0 with 20 starts. The numbers of instances solved to

optimality are found to be 3, 10, 11, 15, 16, 18 and 18 for 1, 5, 10, 15, 20, 25 and 30

starts, respectively, as also shown in the figure. This suggests that the multi-start

method is very important for generating good solutions. Figure 3.9 compares the

gap and the running time for the different settings. As expected, the improvement

in the gap obtained by RIH-S(3, 1) is at the cost of increased computational time.

Figure 3.10 shows the average excess over the optimum plotted against the average

running time and demonstrates that there is no domination relationship between

different settings.

Third Experiment

The experimental results with the single-start on unweighted trees are pre-

sented in Table 3.6. As G% here is the gap over the optimum, the low values of

G% suggest that the proposed algorithms, especially RIH-S(2, 1) and RIH-S(3, 1),

produce high-quality solutions on this special solvable case. Similar to in the sec-

ond experiment, there is no domination relationship among the algorithms. The

proposed algorithms obtain better solutions but with a longer running time. We

also adopt the multi-start for GRASP-2-opt to control the running time. The re-
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Figure 3.8: Performance of RIH-S(2, 1) with increasing number of starts on 50-size
benchmark instances

Figure 3.9: Comparison of performance of RIH-S(2, 1) and RIH-S(3, 1) with in-
creasing number of starts on 50-size benchmark instances
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Figure 3.10: Comparison of solution gap plotted against running time for RIH-
S(2, 1) and RIH-S(3, 1) on 50-size benchmark instances

sults on unweighted trees are given in Table 3.7. This table demonstrates that

all the proposed algorithms perform better than GRASP-2-opt when the time is

controlled, except for RIH-Chains for n = 50. The number of instances (out of 50)

in which the proposed algorithms obtain better solutions than GRASP-2-opt also

suggests that the proposed algorithms have better performance than the classical

GRASP-2-opt on the special case of unweighted trees.

Table 3.6: Experimental results of the proposed algorithms and GRASP-2-opt with
single-start on unweighted-tree instances: average solution quality and running
time for each instance set

n = 50 n = 100 n = 200 n = 500
T (s) G% T (s) G% T (s) G% T (s) G%

RIH-PyramidalP 0.0005 2.30 0.003 2.56 0.030 3.13 0.517 3.18
RIH-Chains 0.0347 2.24 0.088 2.54 0.211 3.09 0.999 3.17
RIH-S(3, 1) 0.1429 0 1.345 0 13.671 0.02
RIH-S(2, 1) 0.0253 0 0.230 0.03 2.446 0.03

GRASP-2-opt 0.0002 13.66 0.001 11.41 0.007 9.95 0.129 8.50

Fourth Experiment

The experimental results on weighted-trees instances with the single-start

and multi-start are presented in Tables 3.8 and 3.9 respectively. The findings
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Table 3.7: Comparison of results of proposed algorithms and GRASP-2-opt on
unweighted-tree instances with controlled running time

G% of proposed G% of GRASP-2-opt #better

n = 50 RIH-PyramidalP 2.30 6.82 42
RIH-Chains 2.24 0.89 11
RIH-S(3, 1) 0 0.43 50
RIH-S(2, 1) 0 1.01 50

n = 100 RIH-PyramidalP 2.56 6.04 46
RIH-Chains 2.54 2.90 32
RIH-S(3, 1) 0 1.52 50
RIH-S(2, 1) 0.03 2.31 50

n = 200 RIH-PyramidalP 3.13 6.37 46
RIH-Chains 3.09 4.76 40
RIH-S(3, 1) 0.02 2.29 50
RIH-S(2, 1) 0.03 2.92 50

n = 500 RIH-PyramidalP 3.18 5.94 49
RIH-Chains 3.17 5.60 47

are similar to those of the third experiment. With the single-start, there is no

domination relationship among the algorithms. When the experimental time is

controlled, all the proposed algorithms (except RIH-Chains for n = 50) perform

better than GRASP-2-opt. In addition, the results suggest that the larger the

instance size, the greater the superiority of the proposed algorithms to GRASP-2-

opt.

Table 3.8: Experimental results of the proposed algorithms and GRASP-2-opt with
single-start on weighted-tree instances: average solution quality and running time
for each instance set

n = 50 n = 100 n = 200 n = 500
T G% T G% T G% T G%

RIH-PyramidalP 0.0005 4.21 0.005 5.15 0.046 4.92 0.739 0.09
RIH-Chains 0.0479 3.54 0.135 4.84 0.360 4.66 1.684 0.01
RIH-S(3, 1) 0.3023 0.62 3.175 0.47 34.141 0.38
RIH-S(2, 1) 0.0567 1.17 0.582 1.24 6.668 0.94

GRASP-2-opt 0.0002 21.72 0.001 19.15 0.008 17.53 0.151 10.375
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Table 3.9: Comparison of results of proposed algorithms and GRASP-2-opt on
weighted-tree instances with controlled running time

G% of proposed G% of GRASP-2-opt #better

n = 50 RIH-PyramidalP 4.21 11.16 46
RIH-Chains 3.54 2.95 25
RIH-S(3, 1) 0.62 1.40 35
RIH-S(2, 1) 1.17 2.93 37

n = 100 RIH-PyramidalP 5.15 11.98 46
RIH-Chains 4.84 7.03 37
RIH-S(3, 1) 0.47 4.31 46
RIH-S(2, 1) 1.24 5.50 46

n = 200 RIH-PyramidalP 4.92 12.27 50
RIH-Chains 4.66 9.36 47
RIH-S(3, 1) 0.38 6.01 50
RIH-S(2, 1) 0.94 7.12 50

n = 500 RIH-PyramidalP 0.09 6.38 50
RIH-Chains 0.01 5.64 50

3.5 Conclusions and Future Research

In this chapter, we provided the first ever detailed analyses and comparison of the

effectiveness of various simple heuristics for the CTSPP by conducting extensive

computational experiments. The results suggest that the proposed tour construc-

tion heuristics, IGRASP and RIH, perform better than the widely used GRASP,

and 2-opt is the ‘best‘ classical simple tour improvement heuristic for comparison

with the proposed heuristics.

The proposed tour improvement heuristics, i.e., the pyramidal heuristic,

chains heuristic and sliding window heuristic, are motivated by solvable cases for the

CTSPP. These proposed heuristics have simple procedures and showed promising

performance in the experiments. The proposed algorithms perform better than the

classical GRASP-2-opt on general cases and weighted tress.

These analyses also give insight into the better selection and combination of

simple heuristics in the future study of metaheuristics for the CTSPP. The outper-

formance of the proposed heuristics compared with the classical simple heuristics
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indicates their potential for incorporation into future metaheuristics.

In the future, we aim to propose better metaheuristics based on the findings

in this chapter. The proposed heuristics may also be applied to more general

problems such as the load-dependent TSP and the cumulative VRP. Increasing

the efficiency of the proposed algorithms for larger-size CTSPP is another future

research topic.
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Chapter 4

Heuristics for the Special

CTSPP

4.1 Introduction and Related Works

In this chapter, the emphasis will be on the special cases and how solvable cases

can be applied to heuristics for the CTSPP.

In the literature, polynomially solvable cases of the TSP have been inten-

sively studied. We refer the readers to the well-known surveys of Lawler [104] and

Burkard et al [27] for the solvable cases of the TSP. However, the research on solv-

ability for the CTSPP has received insufficient attention. For the CTSPP, there

exist algorithms for the specially structured cases including Line-CTSPP [3], edge-

unweighted trees [111], three-diameter trees [20] and trees with a constant number

of leaves [98], which can be solved in polynomial time.

One of our contributions is to enrich theoretical research on the CTSPP.

First, we extend one solvable case, Line-CTSPP, to more general cases. Second, we

find the relationship between the CTSPP and the quadratic assignment problem

(QAP, [97]) and prove that the CTSPP on the SUM matrix can be solved within

O(nlogn) time. Third, we formulate the conjecture that the CTSPP on a subclass

of convex-hull cases along two rays is NP-hard.

Firstly, Afrati et al. [3] solved Line-CTSPP, where all points are on a straight

line, within O(n2) time using a dynamic programming algorithm. In classical

theory, all nodes in the complete path are along a straight line, where the depot
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is the first node and the exit node is not fixed. The theories of Line-CTSPP are

extended by fixing the exit node and considering the straight line as part of the

total path, where the depot on the line is no longer the first point in the complete

path. We show that the extended cases can be solved with a dynamic programming

algorithm in polynomial time. We also prove that the more general problem of

Line-CTSPPW can be solved in polynomial time.

Secondly, the CTSPP can be transformed from the QAP, which was intro-

duced by Koopmans and Beckmann [97], to model a plant location problem. The

QAP is widely considered as a classical combinatorial optimisation problem and has

been explored by mathematicians, computer scientists and operational researchers.

More information on the QAP can be seen in the papers by Lawler [103, 102],

Burkard [26], Rendl et al. [130] and Deineko and Woeginger [51]. The SUM ma-

trix is a polynomially solvable case of the QAP and can be solved within O(n3)

time [32]. In our research, the relationship between the QAP and the CTSPP is

found, and the time complexity of the CTSPP on the SUM matrix is proven to be

O(nlogn).

Thirdly, Erickson [58] used a reduction argument to prove that a problem

is NP-hard: to prove that problem B is NP-hard, a known NP-hard problem A

is reduced to problem B. Reducing problem A to problem B involves finding an

algorithm to solve problem A under the assumption that an algorithm for problem

B already exists. The logic is essentially proof by contradiction. The reduction

implies that if problem B was not hard, then there would exist an efficient algorithm

to solve problem A, which is not the case. This indicates that if a special case A is a

subclass of special case B and the CTSPP on A is NP-hard, then the CTSPP on B

is also NP-hard. Çela et al. [35] suggested that given an edge-weighted tree, if the

nodes are numbered a depth-first route, then the shortest path distance cij between

nodes i and j determines a Kalmanson matrix. This means that the CTSPP on

weighted trees can be reduced to the CTSPP on a Kalmanson matrix. Sitters [138]

stated that the CTSPP is strongly NP-hard for weighted trees. Therefore, the

CTSPP on a Kalmanson matrix is also NP-hard. However, it is not known whether

the CTSPP on a convex hull is NP-hard. As reported in this chapter, we conduct

extensive computational experiments on the convex-hull case and its subclass the

two-ray case. The ‘difficult’ cases where the optimal solution cannot be obtained

using the proposed heuristics allow us to formulate the conjecture that the CTSPP

on two rays is NP-hard. This may provide the research community with an idea of

proving NP-hardness in the future. Because we can reduce two-ray cases to convex-
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hull cases, if the CTSPP could be proved to be NP-hard on two-ray cases, then

the CTSPP on the convex hull would be NP-hard, which would be a significant

theoretical contribution.

In the current research on specially structured cases for the CTSPP, most

effort has been devoted to theoretical studies. Relevant heuristics based on solvable

cases are scarce in the literature. This scarcity motivated the empirical research

on the heuristics inspired by solvability in this chapter. In Chapter 3 we proposed

heuristics motivated by solvable neighbourhoods and the solvable size, which per-

form well on general cases, while in this chapter we propose three dynamic pro-

gramming heuristics motivated by the solvable specially structured matrices. These

heuristics deliver a good performance for specially structured cases.

The first heuristic, the Line heuristic, is based on the solvable case of Line-

CTSPP. The underlying matrix of a line distribution is an anti-Robinson matrix, as

discussed in Chapter 2. This proposed heuristic outperforms the classical GRASP-

2-opt in both running time and solution quality when the nodes are distributed

close to a line following two parallel lines.

The second heuristic, the Up-Down heuristic, is inspired from one solvable

case: the Path TSP on the convex hull. From Chapter 2, it is known that any

convex-hull case satisfies the Kalmanson conditions. Garcia and Tejel [67] showed

that the optimal Path TSP tour on the convex hull has a so-called Up-Down struc-

ture and can be found in polynomial time. In this chapter, we explain the special

structure in more detail and propose a dynamic programming algorithm to find the

optimal tour among the tours with this structure for the Path TSP. This special

structure inspires the Up-Down heuristic, which can explore the best tour with this

Up-Down structure for the CTSPP. We compare the Up-Down heuristic with the

classical GRASP-2-opt on both convex-hull cases and close-to-convex-hull cases.

When using the single-start, the proposed algorithm can obtain solutions of higher

quality but with a longer running time. When the running time is controlled to be

the same for both algorithms, the proposed heuristic outperforms GRASP-2-opt

for all experimental sizes.

The third heuristic, the Two-Ray heuristic, combines the Up-Down struc-

ture discussed above with the Line structure on Line-CTSPP. The performance of

this heuristic will be shown on a special case, where nodes are distributed along

two rays.

The remainder of this chapter is structured as follows. In Section 4.2, we

extend the theories of Line-CTSPP and propose the Line heuristic. In Section 4.3,
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we prove the time complexity of the CTSPP on the SUM matrix. We consider two

cases: a path with a fixed depot d and a path without a fixed depot. Section 4.4

demonstrates the UP-Down structure for the Path TSP on the convex hull and

proposes the Up-Down heuristic and the Two-Ray heuristic for the CTSPP. In

Section 4.5, we report computational experiments conducted to show the potential

of the proposed heuristics on specially constructed cases. Section 4.6 concludes this

chapter.

4.2 Extended Theory of Line-CTSPP

4.2.1 Line-CTSPP: Classical Simple Case

Line-CTSPP illustrated in Figure 4.1 is from the research of Afrati et al. [3]. In

this figure, d = x0 = y0 is the depot, x1, . . . , xk are the nodes on the right of the

depot, and y1, . . . , ym are the nodes on the left of the depot. There are n nodes in

total with m + k + 1 = n. In the classical case, the depot is the entry point and

the exit point is not fixed.

Figure 4.1: Illustration of the classical Line-CTSPP: node distribution and path
structure

Lemma 4.2.1 For Line-CTSPP, xi(yi) should be visited earlier than xj(yj) for all

1 ≤ i < j ≤ k(m) in the optimal tour.

This lemma, proposed by Afrati et al. [3], suggests that when a node is

passed by, it must be visited in the optimal tour. The proof of this lemma could

not be found in the literature, so it is proven as follows:

Proof. W.l.o.g. we focus on the right side of the line. First, (xj , xi) is

defined as a violated pair in the tour if xj is visited earlier than xi. P denotes the

set of violated pairs in a tour τ . (sj , si) ∈ P is denoted as the first violated pair,
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where sj is the leftmost among all violated xj , and si is the leftmost among xi for

all (sj , xi) ∈ P . A so-called tour improvement technique (TI-technique) is used

to prove this lemma. The TI-technique is summarised in Algorithm 4.2.2 and was

used by Burkard et al. [27] on solvable cases of the TSP. Assume that we start from

an arbitrary tour τ with p violated pairs in total. A sequence of tours constructed

is denoted as τ1, τ2, . . . , τT , with τ1 = τ , such that c(τ1) ≥ c(τ2) ≥ · · · ≥ c(τT ),

where c(τ t) denotes the length of tour τ t(t = 1, . . . , T ) and T = T (τ) is the

smallest integer such that τT is a tour satisfying the conditions described in this

lemma. Tour τ t+1 is obtained from τ t by removing one node xi and inserting

it in the previous position of xj . Here, (xj , xi) ∈ P . This operation is called

the Transformation. The Transformation is feasible if c(τ t+1) ≤ c(τ t) after the

operation for all t = 1, . . . , T − 1. The feasibility of the Transformation follows

from the illustration below.

Algorithm 4.2.2

TI-technique for Line-CTSPP with an unfixed exit

Input: a tour τ ;

Output: a tour with xi visited before xj for all 1 ≤ i < j ≤ k;

τ1 ← τ ; t← 1; p← number of violated pairs in τ ;

while p ̸= 0 do

Find the first violated pair (sj , si) in τ t;

Transformation: obtain τ t+1 from τ t by removing si and inserting it before sj;

t← t+ 1;

p← number of violated pairs in τ t;

return τ t.

Illustration: W.l.o.g. assume τ t = ⟨depot, . . . , x, sj , . . . , y, si, z . . . ⟩, where
x is on the ath position and y is the bth node in the tour. Figure 4.2 shows the

positions of the first violated pair (sj , si) in τ t. Since (sj , si) is the first violated pair,

x should be on the left side of si on the line. Note that x in the figure is on the right

of the depot, but x can also be the depot (i.e., a = 1), or a node on the left of the

depot. After the Transformation, we have τ t+1 = ⟨depot, . . . , x, si, sj , . . . , y, z . . . ⟩.
The cumulative costs of the two tours are given below:

c(τ t) = ct + (n− a)× cx,sj + (n− b)× cy,si + (n− b− 1)× csi,z;

c(τ t+1) = ct+1 + (n− a)× cx,si + (n− a− 1)× csi,sj + (n− b− 1)× cy,z.
(4.1)
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ct includes the cost of partial tours ⟨depot, . . . , x⟩, ⟨sj , . . . , y⟩ and ⟨z, . . . ⟩ in τ t;

ct+1 includes the cost of partial tours ⟨depot, . . . , x⟩, ⟨sj , . . . , y⟩ and ⟨z, . . . ⟩ in

τ t+1. It can be seen that ct+1 < ct because the partial tour ⟨sj , . . . , y⟩ is moved

backward in the new tour. Also, (n − a) × cx,si + (n − a − 1) × csi,sj = (n −
a − 1) × cx,sj + cx,si < (n − a) × cx,sj ; (n − b) × cy,si + (n − b − 1) × csi,z >

(n − b − 1) × cy,z + cy,si > (n − b − 1) × cy,z. Therefore, c(τ t+1) < c(τ t), hence

the Transformation is feasible. This illustration can also be applied to the cases

⟨depot, . . . , x, sj , . . . , y, si⟩, ⟨depot, . . . , x, sj , si, z . . . ⟩ and ⟨depot, . . . , x, sj , si⟩. It is
easy to see that after each Transformation, the value of p is reduced by at least 1,

so the TI-technique ends after at most p iterations. Thus the lemma is proved. □

Figure 4.2: Illustration of positions of the first violated pair (sj , si) in τ t, which is
used in the TI-technique on Line-CTSPP

Based on Lemma 4.2.1, the optimal objective value can be calculated with

the dynamic programming recursions. Denote R(yj , xi) as the minimal cost of the

uncompleted path that has visited nodes d, x1, x2, . . . , xi, y1, y2, . . . , yj , and ends

on node xi. L(yj , xi) has a similar definition, but the path of visited nodes ends

on the left side on node yj . Then the value R(y0, x0) or L(y0, x0) is the optimal

objective value. The dynamic programming recursions are given below.

R(ym, xk) = 0;

L(ym, xk) = 0.
(4.2)

When j = m and i = k − 1, k − 2, . . . , 0 :

R(ym, xi) = R(ym, xi+1) + c(xi, xi+1)× (n− i−m− 1);

L(ym, xi) = R(ym, xi+1) + c(ym, xi+1)× (n− i−m− 1).

(4.3)

When i = k and j = m− 1,m− 2, . . . , 0 :

R(yj , xk) = L(yj+1, xk) + c(xk, yj+1)× (n− k − j − 1);

L(yj , xk) = L(yj+1, xk) + c(yj , yj+1)× (n− k − j − 1).

(4.4)
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When j = m− 1,m− 2, . . . , 0 and i = k − 1, k − 2, . . . , 0 :

R(yj , xi) = min

R(yj , xi+1) + c(xi, xi+1)× (n− i− j − 1);

L(yj+1, xi) + c(xi, yj+1)× (n− i− j − 1).

L(yj , xi) = min

R(yj , xi+1) + c(yj , xi+1)× (n− i− j − 1);

L(yj+1, xi) + c(yj , yj+1)× (n− i− j − 1).

(4.5)

Opt = L(y0, x0) = R(y0, x0) = min

R(d, x1) + c(d, x1)× (n− 1);

L(y1, d) + c(d, y1)× (n− 1).
(4.6)

In the recursions, we demonstrate how to calculate R(yj , xi), in which the

sub-path has visited nodes d, x1, x2, . . . , xi, y1, y2, . . . , yj and ended on xi. When

there are nodes remaining on both sides, i.e., when j < m and i < k, based on

Lemma 4.2.1, the next point visited can only be xi+1 or yj+1. If the next node is

xi+1, R(yj , xi) can be calculated from R(yj , xi+1); if the next node is yj+1, R(yj , xi)

can be calculated from L(yj+1, xi). In the recursions, R(yj , xi+1) and L(yj+1, xi)

have been calculated in the previous steps. The difference between R(yj , xi) and

R(yj , xi+1) is the cost of edge (xi, xi+1), while the difference between R(yj , xi) and

L(yj+1, xi) is the cost of edge (xi, yj+1). Because xi is the (1+ i+ j)th node in the

path, the coefficient of edges (xi, xi+1) and (xi, yj+1) should be n−1− i− j. Using

the minimisation criterion, we can determine the value of R(yj , xi) and which node

(xi+1 or yj+1) is the next node. Similar calculations are applied to L(yj , xi).

When all the nodes on one side have been visited, all the remaining nodes

on the other side should be visited in order. This is shown in the recursions when

j = m or i = k. For example, R(ym, xi) can be calculated when all nodes on

the left side have been visited, ending on xi. Because the next node can only be

xi+1, we can calculate R(ym, xi) from R(ym, xi+1), which has been calculated in

the previous steps. The difference between R(ym, xi) and R(ym, xi+1) is the cost of

edge (xi, xi+1). Because xi is the (1+i+m)th node, the coefficient of edge (xi, xi+1)

should be n− 1− i−m, which is equal to k− i. The boundary conditions suggest

that the minimal cost of the uncompleted path is 0 when all nodes are visited. The

time complexity is O(n2).
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4.2.2 Line-CTSPP: Fixed Exit Point

The previous section considered the Line-CTSPP with an unfixed exit node. Next,

the Line-CTSPP with a fixed exit is considered. In other words, the last point

visited on the line is now fixed. The objective is still to find the optimal tour on

the line. This can be regarded as an (s, t) path problem.

The (s, t) path problem has been studied for the Path TSP, where the origin

node s and destination node t are fixed [86]. The objective of the (s, t) Path TSP is

the same as that of the classical Path TSP. The only difference is that the vehicle

must return to a fixed point t. In the literature, Çela et al. [35] showed that the

(s, t) Path TSP on Demidenko matrices can be solved in polynomial time.

In this section, we aim to extend the classical Line-CTSPP to the (s, t) Line-

CTSPP, thus making a theoretical contribution. Assume that in Line-CTSPP, the

vehicle departs from depot d and ends at the exit point e, i.e., the (d, e) path for

Line-CTSPP. W.l.o.g. e is assumed to be on the right side of d, as illustrated in

Figure 4.3. On this line, there are n = m+ k + 2 nodes in total.

Figure 4.3: Illustration of Line-CTSPP with a fixed exit: distribution of nodes
along a line

Lemma 4.2.3 For Line-CTSPP with a fixed exit point e, xi(yi) should be visited

earlier than xj(yj) for all 1 ≤ i < j ≤ k(m) in the optimal tour, and the last edge

is (ym, e) or (xk, e) .

Lemma 4.2.3 is similar to Lemma 4.2.1, in which there is no fixed exit.

The TI-technique is also used to prove this lemma. W.l.o.g. we assume that τ t =

⟨depot, . . . , x, sj , . . . , y, si, z . . . , e⟩, where the positions of x and y are still a and b re-

spectively in the tour, and e is the last node in the path. We still assume that (sj , si)

is the first violated pair, so that x is on the left side of si on the line. Here we con-

sider four possible relative positions of the exit point e on the line as in Figure 4.4.

After the Transformation, we have τ t+1 = ⟨depot, . . . , x, si, sj , . . . , y, z . . . , e⟩. The

cumulative costs of the two partial tours are calculated as follows:

c(τ t) = ct + (n− a)× cx,sj + (n− b)× cy,si + (n− b− 1)× csi,z;

c(τ t+1) = ct+1 + (n− a)× cx,si + (n− a− 1)× csi,sj + (n− b− 1)× cy,z.
(4.7)
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ct includes the cost of partial tours ⟨depot, . . . , x⟩, ⟨sj , . . . , y⟩ and ⟨z, . . . , e⟩ in τ t;

ct+1 includes the cost of partial tours ⟨depot, . . . , x⟩, ⟨sj , . . . , y⟩ and ⟨z, . . . , e⟩ in
τ t+1. For all four cases in Figure 4.4, the proof is similar to that in Lemma 4.2.1:

ct+1 < ct because the partial tour ⟨sj , . . . , y⟩ is moved backward in the new tour;

(n − a) × cx,si + (n − a − 1) × csi,sj = (n − a − 1) × cx,sj + cx,si < (n − a) × cx,sj
and (n − b) × cy,si + (n − b − 1) × csi,z > (n − b − 1) × cy,z + cy,si > (n − b −
1)× cy,z. Therefore, c(τ

t+1) < c(τ t) is proved. This argument can also be applied

to the other cases of τ t: ⟨depot, . . . , x, sj , . . . , y, si, e⟩, ⟨depot, . . . , x, sj , si, z, . . . , e⟩
and ⟨depot, . . . , x, sj , si, e⟩. The lemma is proved.

Figure 4.4: Illustration of four possible relative positions of the first violated pair
(sj , si) and exit point e in τ t in the TI-technique on Line-CTSPP with a fixed exit

The same notations as in the previous section are used, and the dynamic

programming recursions are as follows.

L(ym, xk) = c(ym, e);

R(ym, xk) = c(xk, e).
(4.8)

When j = m and i = k − 1, k − 2, . . . , 0 :

R(ym, xi) = R(ym, xi+1) + c(xi, xi+1)× (n− i−m− 1);

L(ym, xi) = R(ym, xi+1) + c(ym, xi+1)× (n− i−m− 1).

(4.9)
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When i = k and j = m− 1,m− 2, . . . , 0 :

R(yj , xk) = L(yj+1, xk) + c(xk, yj+1)× (n− k − j − 1);

L(yj , xk) = L(yj+1, xk) + c(yj , yj+1)× (n− k − j − 1).

(4.10)

When j = m− 1,m− 2, . . . , 0 and i = k − 1, k − 2, . . . , 0 :

R(yj , xi) = min

R(yj , xi+1) + c(xi, xi+1)× (n− i− j − 1);

L(yj+1, xi) + c(xi, yj+1)× (n− i− j − 1).

L(yj , xi) = min

R(yj , xi+1) + c(yj , xi+1)× (n− i− j − 1);

L(yj+1, xi) + c(yj , yj+1)× (n− i− j − 1).

(4.11)

Opt = L(y0, x0) = R(y0, x0) = min

R(d, x1) + c(d, x1)× (n− 1);

L(y1, d) + c(d, y1)× (n− 1).
(4.12)

The recursions are the same as in the previous section, except that the

boundary conditions of L(ym, xk) and R(ym, xk) change their values to the cost of

the last edge (ym, e) and (xk, e) respectively.

4.2.3 Line-CTSPP: Part CTSPP Line with a Fixed Exit

In Section 4.2.1 and 4.2.2, all the nodes in the complete path were along a straight

line and the depot was always the first node. This problem can be seen as the ‘Pure

CTSPP Line’. We now consider the Part CTSPP Line, in which the straight line is

only a part of the total path. In general, only some of the nodes are located along

the straight line. The depot d is the first node visited in the line part, instead of

the first node visited in the complete path. We consider this problem as this case

will be applied to the Two-Ray heuristic later. An instance of this extended case

is illustrated in Figure 4.5. There are n nodes in the complete path and m+ k+ 2

nodes on the straight line. Here n ≥ m+k+2. When n = m+k+2, the complete

path consists of all the nodes on the line, which is the case in Section 4.2.2.

For the Part CTSPP Line, it is assumed that some of the nodes that are
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not on the line are visited first, followed by depot d, and then all nodes on the line.

The last visited node on the line is still the exit node e as in Section 4.2.2, and

finally the remaining nodes are visited. In this case, we still focus on the line part

and aim to find the optimal sub-tour that minimises the sum of waiting times for

all nodes on the line. Assume that depot d is the pth node in the complete path.

In the Pure CTSPP Line, p = 1, and the coefficients of the costs of edges visited

on the line are n − 1, n − 2, . . . , 1 in consecutive order, while in the Part CTSPP

Line, the coefficients are changed to n− p, n− (p+ 1), . . . , n− (p+m+ k). It can

be proved that Lemma 4.2.3 remains valid for the partial path with nodes on the

line.

Figure 4.5: Illustration of the Part CTSPP Line with a fixed exit: distribution of
nodes along a line

The proof is similar to that in Section 4.2.2. The TI-technique is again

used to illustrate the proof, and we only focus on the line part. We still assume

that the partial path on the line is τ t = ⟨depot, . . . , x, sj , . . . , y, si, z . . . ⟩. From

Section 4.2.2, it is known that x and y are the ath and bth nodes in the complete

path respectively. However, for the Part CTSPP Line, the position of x in the

complete path (including the line part and non-line part) is a∗ instead of a, where

a∗ = p + a − 1. Similarly, y is the (b∗)th node in the complete path, where b∗ =

p+ b− 1. Therefore, we only need to replace a and b in the proof in Section 4.2.2

with a∗ and b∗ respectively.

We can now use the following dynamic programming recursions to find the

optimal sub-tour that can minimise the sum of waiting times for all nodes on the

line. The notations are the same as before.

L(ym, xk) = c(ym, e)× (n− k −m− p);

R(ym, xk) = c(xk, e)× (n− k −m− p).
(4.13)
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When j = m and i = k − 1, k − 2, . . . , 0 :

R(ym, xi) = R(ym, xi+1) + c(xi, xi+1)× (n− i−m− p);

L(ym, xi) = R(ym, xi+1) + c(ym, xi+1)× (n− i−m− p).

(4.14)

When i = k and j = m− 1,m− 2, . . . , 0 :

R(yj , xk) = L(yj+1, xk) + c(xk, yj+1)× (n− k − j − p);

L(yj , xk) = L(yj+1, xk) + c(yj , yj+1)× (n− k − j − p).

(4.15)

When j = m− 1,m− 2, . . . , 0 and i = k − 1, k − 2, . . . , 0 :

R(yj , xi) = min

R(yj , xi+1) + c(xi, xi+1)× (n− i− j − p);

L(yj+1, xi) + c(xi, yj+1)× (n− i− j − p).

L(yj , xi) = min

R(yj , xi+1) + c(yj , xi+1)× (n− i− j − p);

L(yj+1, xi) + c(yj , yj+1)× (n− i− j − p).

(4.16)

Opt = L(y0, x0) = R(y0, x0) = min

R(d, x1) + c(d, x1)× (n− p);

L(y1, d) + c(d, y1)× (n− p).
(4.17)

The recursions are similar to those in Section 4.2.2. The only difference

is the coefficients. Because the depot is the pth point in the complete path, the

positions of all nodes on the line should start from p. For example, when calculating

R(yj , xi), the sub-path on the line part has visited d, x1, x2, . . . , xi, y1, y2, . . . , yj and

ended on xi. Based on Lemma 4.2.3, the next point visited can only be xi+1 or

yj+1. Therefore, the position of xi in the complete path is i + j + p; thus, the

coefficient of edge (xi, xi+1) and edge (xi, yj+1) should be n− i− j − p. Note that

when p = 1 and n = m+ k + 2, the recursions here are exactly the same as those

in Section 4.2.2.
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4.2.4 Line-CTSPPW

In this section, we prove that a more general problem, CTSPP with weights (CT-

SPPW) on a line, can be solved in polynomial time.

The definition of the CTSPPW is similar to that of the CTSPP in Chapter 3.

V = {v1, . . . , vn} is a vertex set, in which each vertex represents the location of

one customer, and v1 represents the depot. For each edge (vi, vj) ∈ E, cvivj is the

travelling time between vi and vj . For the CTSPPW, wvi is defined as the weight

of node vi. The objective of the CTSPPW is to find a Hamiltonian path starting

from v1 that minimises the sum of arrival times at all nodes with weights. We

define a tour as τ = ⟨τ1, τ2, τ3, . . . , τn−1, τn⟩, where τi is the ith vertex in a solution.

Thus, the objective value can be written as:

c(τ) =
i=n−1∑
i=1

(cτiτi+1 ×
j=n∑

j=i+1

wτj ) (4.18)

The node distribution for Line-CTSPPW is the same as for Line-CTSPP,

which is illustrated in Figure 4.1.

Lemma 4.2.4 For the CTSPPW on a line, xi(yi) should be visited earlier than

xj(yj) for all 1 ≤ i < j ≤ k(m) in the optimal tour.

The proof is similar to that in Section 4.2.1. We again use the TI-

technique for the partial paths τ t = ⟨depot, . . . , x, sj , . . . , y, si, z . . . ⟩ and τ t+1 =

⟨depot, . . . , x, si, sj , . . . , y, z . . . ⟩ to illustrate the proof. The positions of x and y

are a and b respectively. The difference here is that the weights are added when

the objective values are calculated. The cumulative costs of the two tours are given

below.

c(τ t) = ct + (cx,sj ×
q=n∑

q=a+1

wτ tq
) + (cy,si ×

q=n∑
q=b+1

wτ tq
) + (csi,z ×

q=n∑
q=b+2

wτ tq
);

c(τ t+1) = ct+1 + (cx,si ×
q=n∑

q=a+1

w
τ
(t+1)
q

) + (csi,sj ×
q=n∑

q=a+2

w
τ
(t+1)
q

) + (cy,z ×
q=n∑

q=b+2

w
τ
(t+1)
q

).

(4.19)

Similarly, ct includes the cost of partial tours ⟨depot, . . . , x⟩, ⟨sj , . . . , y⟩ and ⟨z, . . . ⟩
in τ t; ct+1 includes the cost of partial tours ⟨depot, . . . , x⟩, ⟨sj , . . . , y⟩ and ⟨z, . . . ⟩ in
τ t+1. ct+1 < ct because the partial tour ⟨sj , . . . , y⟩ is moved backward in the new
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tour. (cx,si ×
∑q=n

q=a+1wτ
(t+1)
q

) + (csi,sj ×
∑q=n

q=a+2wτ
(t+1)
q

) = (cx,sj ×
∑q=n

q=a+2wτ tq
) +

cx,si × wsj < (cx,sj ×
∑q=n

q=a+1wτ tq
); (cy,si ×

∑q=n
q=b+1wτ tq

) + (csi,z ×
∑q=n

q=b+2wτ tq
) =

((cy,si + csi,z)×
∑q=n

q=b+2wτ tq
) + cy,si ×wsi > (cy,z ×

∑q=n
q=b+2wτ

(t+1)
q

) + cy,si ×wsi >

(cy,z ×
∑q=n

q=b+2wτ
(t+1)
q

). Therefore, c(τ t+1) < c(τ t). This argument can also be

applied to other cases: ⟨depot, . . . , x, sj , . . . , y, si⟩, ⟨depot, . . . , x, sj , si, z . . . ⟩ and
⟨depot, . . . , x, sj , si⟩. The lemma is thus proved.

It has been proved that the added weights have no effect on the validity of

Lemma 4.2.1. Therefore, we use the same notations as in previous sections and

also define WT , WTX and WTY as the total weight of all nodes, the total weight of

nodes on the right side and the total weight of nodes on the left side respectively.

The dynamic programming recursions are as follows, where the time complexity is

O(n3).

R(ym, xk) = 0;

L(ym, xk) = 0.
(4.20)

When j = m and i = k − 1, k − 2, . . . , 0 :

R(ym, xi) = R(ym, xi+1) + c(xi, xi+1)× (WTX −
q=i∑
q=1

wxq);

L(ym, xi) = R(ym, xi+1) + c(ym, xi+1)× (WTX −
q=i∑
q=1

wxq).

(4.21)

When i = k and j = m− 1,m− 2, . . . , 0 :

R(yj , xk) = L(yj+1, xk) + c(xk, yj+1)× (WTY −
q=j∑
q=1

wyq);

L(yj , xk) = L(yj+1, xk) + c(yj , yj+1)× (WTY −
q=j∑
q=1

wyq).

(4.22)
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When j = m− 1,m− 2, . . . , 0 and i = k − 1, k − 2, . . . , 0 :

R(yj , xi) = min

R(yj , xi+1) + c(xi, xi+1)× (WT −
∑q=i

q=1wxq −
∑q=j

q=1wyq);

L(yj+1, xi) + c(xi, yj+1)× (WT −
∑q=i

q=1wxq −
∑q=j

q=1wyq).

L(yj , xi) = min

R(yj , xi+1) + c(yj , xi+1)× (WT −
∑q=i

q=1wxq −
∑q=j

q=1wyq);

L(yj+1, xi) + c(yj , yj+1)× (WT −
∑q=i

q=1wxq −
∑q=j

q=1wyq).

(4.23)

Opt = L(y0, x0) = R(y0, x0) = min

R(d, x1) + c(d, x1)×WT ;

L(y1, d) + c(d, y1)×WT .
(4.24)

4.2.5 Line Heuristic

Inspired by the solvable Line-CTSPP, the so-called Line heuristic is proposed. This

heuristic is expected to deliver a good performance on cases where the distribution

of nodes follows the close-to-line structure, a special structure illustrated in the

experiments in Section 4.5.

Given a distance matrix C and a depot d, where the nodes are not

distributed along a line, the first step is to number the nodes as τ =

⟨ym, . . . , yj , y2, y1, d, x1, x2, . . . , xi, xk⟩ as in Line-CTSPP. We can see that such

numbering describes a similar tour to that obtained from the DENN algorithm,

which adds nodes on two sides (left or right) to update the two endpoints of the

partial tour. Therefore, a tour with this numbering can be achieved with DENN.

Then we apply the dynamic programming recursions in Section 4.2.1 to obtain a

heuristic solution.

As discussed in Chapter 2, DENN uses the nearest neighbour rule to con-

struct the tour. In DENN, a permutation starts from ⟨y1, d⟩, where d is the de-

pot, and y1 is the nearest node to the depot. y1 is referred to as the left node

and d is referred to as the right node. The tour is then extended by adding

the nearest node (which is the nearest node to the left or to the right) and up-

dating the reference to the left and right. Recursively, given the partial tour

⟨yj , . . . , y2, y1, d, x1, x2, . . . , xi⟩, from the nodes not yet chosen, we assume that
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a and b are the nearest neighbours to xi and yj respectively. We then compare

the two lengths ca,xi and cb,yj , add the shorter edge to the corresponding side and

update the corresponding endpoint. For example, if ca,xi < cb,yj , then a is added

on the right side to obtain the partial tour ⟨yj , . . . , y2, y1, d, x1, x2, . . . , xi, a⟩. The

process continues until all nodes are included in the permutation.

After the process of DENN, the path can be recorded as τ =

⟨ym, . . . , yj , y2, y1, d, x1, x2, . . . , xi, xk⟩. Then, the dynamic programming recursions

in Section 4.2.1 are used to find the heuristic solution.

4.3 CTSPP on SUM Matrix

4.3.1 Theoretical Result of CTSPP on SUM Matrix

The CTSPP can be transformed from the QAP, which can be demonstrated math-

ematically using the Koopmans-Beckmann form in [97]. Given the set {1, 2, . . . , n}
and two n×n matrices C = (cij) and B = (bij), the QAP is denoted as QAP(C,B)

with the following objective, where Sn is the set of permutations of {1, 2, . . . , n}:

minτ∈Sn

n∑
i=1

n∑
j=1

cτi,τj × bij (4.25)

The value of this objective depends on the matrices C and B and the per-

mutation τ . Now, we consider a polynomially solvable case of the QAP. A matrix

C is called a SUM matrix [32] if there are two vectors u = (u1, u2, . . . , un) and

v = (v1, v2, . . . , vn) such that cij = ui + vj . In the literature, QAP(C,B) with an

n× n SUM matrix C can be simplified to a linear assignment problem that can be

solved in O(n3) time [32].

We find that there is a close relationship between CTSPP(C) and

QAP(C,B). When matrix B has the special structure, in which b12 = n − 1, b23 =

n− 2, . . . , bn−1,n = 1 and all other elements are 0, then QAP(C,B) is transformed

into CTSPP(C). Here, matrix B can be considered as the coefficient matrix for the

CTSPP.

Theorem 4.3.1 For CTSPP(C), if the distance matrix C is the SUM matrix with

cij = ui + vj, then the problem can be solved within O(nlogn) time.

Proof. Define a tour as τ = ⟨τ1, τ2, τ3, . . . , τn−1, τn⟩. Then, the objective

value can be written as:
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c(τ) =
n−1∑
i=1

cτiτi+1 × (n− i)

=

n−1∑
i=1

(uτi + vτi+1)× (n− i)

= n

n∑
i=1

uτi + (n+ 1)

n∑
i=1

vτi − (

n∑
i=2

(uτi + vτi)× i+ uτ1 + (n+ 1)vτ1)

(4.26)

Let
∑n

i=1 ui,
∑n

i=1 vi be sumu and sumv respectively. Then the first two

items in formula 4.26 are constant values. To minimise the objective value c(τ),

we should maximise the value of
∑n

i=2(uτi + vτi) × i + uτ1 + (n + 1)vτ1 . From

the inequalities theorem [83], we know that to maximise the scalar product of two

vectors, the components of the two vectors should be sorted in the same direc-

tion. Mathematically, given two vectors x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn),∑n
i=1(xπi × yτi) for all τ, π ∈ Sn is maximised when xπ1 ≤ xπ2 ≤ · · · ≤ xπnand

yτ1 ≤ yτ2 ≤ · · · ≤ yτn , where Sn is the set of permutations of {1, 2, . . . , n}. Based

on the inequalities theorem, one can view u+ v as the vector x and (1, 2, 3 . . . , n)

as the vector y. Therefore, we first calculate the value ui + vi for all i and

sort the summed values from the smallest to the largest to obtain the sorted

list sum = ⟨us1 + vs1 , us2 + vs2 , . . . , usn + vsn⟩, which requires O(nlogn) time.

In this sorting process, the original index (position) si for all i can also be de-

termined, which will be used in the tour construction process. Then, we set

τ1 = sk(k = 1, 2, 3, . . . , n), and calculate the maximum value of
∑n

i=2(uτi + vτi)× i

as maxvk for each k using the following recursions:

τ1 = s1,maxv1 = (us2 + vs2)× 2 + (us3 + vs3)× 3 + · · ·+ (usn + vsn)× n;

τ1 = sk,maxvk = maxvk−1 − (usk + vsk)× k + (usk−1
+ vsk−1

)× k for all k = 2, . . . , n.

(4.27)

We then calculate and compare n values, valuek = maxvk+usk +(n+1)vsk
for k = 1, 2, . . . , n, and choose the largest value as value∗. In this way, the optimal

value can be found, which is nsumu + (n+1)sumv − value∗. In the process, when

k is increased by 1, the calculation of maxvk+1 is based on maxvk, which only

requires linear time O(1). Thus, calculating n values valuek requires O(n) time.
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Therefore, the time complexity of finding the optimal value is O(nlogn).

Then the optimal tour can be constructed. When τ1 = s1, the cor-

responding tour is ⟨s1, s2, . . . , sn⟩; when τ1 = sk, the corresponding tour is

constructed by removing sk and placing it at the beginning of the tour, i.e.,

⟨sk, s1, s2, . . . , sk−1, sk+1, . . . , sn⟩. The operation requires linear time O(1). The

largest valuek is recorded as value∗, and the corresponding index k is recorded

as k∗; thus, the optimal tour can be found as ⟨sk∗ , s1, s2, . . . , sk∗−1, sk∗+1, . . . , sn⟩.
Therefore, the time complexity of finding the optimal solution is still O(nlogn).

This completes the proof. □

A simple example is used to illustrate the procedure. Assume that u =

(3, 5, 1, 4, 4), v = (1, 4, 2, 2, 3), then u + v = (4, 9, 3, 6, 7), sumu = 17, sumv = 12.

We sort the elements in u+v and obtain the sorted list sum = ⟨u3+v3, v1+v1, u4+

v4, u5 + v5, u2 + v2⟩ = ⟨3, 4, 6, 7, 9⟩. Therefore, s1 = 3, s2 = 1, s3 = 4, s4 = 5, and

s5 = 2. maxvk for each k is calculated as follows.

τ1 = s1 = 3,maxv1 = 4× 2 + · · ·+ 9× 5 = 99, value1 = 112, τ = ⟨3, 1, 4, 5, 2⟩,

τ1 = s2 = 1,maxv2 = 99− 4× 2 + 3× 2 = 97, value2 = 106, τ = ⟨1, 3, 4, 5, 2⟩,

τ1 = s3 = 4,maxv3 = 97− 6× 3 + 4× 3 = 91, value3 = 107, τ = ⟨4, 3, 1, 5, 2⟩,

τ1 = s4 = 5,maxv4 = 91− 7× 4 + 6× 4 = 87, value4 = 109, τ = ⟨5, 3, 1, 4, 2⟩,

τ1 = s5 = 2,maxv5 = 87− 9× 5 + 7× 5 = 77, value5 = 106, τ = ⟨2, 3, 1, 4, 5⟩.

We find that value1 is the largest among the five values; thus, k∗ = 1,

value∗ = 112. Therefore, the optimal value is 5× 17 + 6× 12− 112 = 45 with the

optimal tour τ = ⟨3, 1, 4, 5, 2⟩.
In this section, it is found that CTSPP(C) is a special case of QAP(C,B)

with a special matrix B. In the literature, QAP(C,B) on the SUM matrix C can be

solved within O(n3) time. This research enriches the theory on solvable cases by

proving that the CTSPP on the SUM matrix can be solved within O(nlogn) time.

4.3.2 Two Cases of CTSPP on SUM Matrix

We consider the symmetric distance matrix C with cij = ui + uj in this section. A

tour is still defined as τ = ⟨τ1, τ2, τ3, . . . , τn−1, τn⟩, then the objective value is given

below.
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c(τ) = (2n+ 1)sumu − (2
n∑

i=2

uτi × i+ (n+ 2)uτ1) (4.28)

Two cases are considered. In the first case, a path with a fixed depot d, i.e.,

τ1 = d is constructed. In the second case, a path without a fixed depot, i.e., τ1 can

be any node, is constructed. The time complexity will be shown to be O(nlogn)

for both cases.

First case with fixed depot

W.l.o.g. we assume that τ1 = d = 1. One can maximise
∑n

i=2 uτi × i to

obtain the optimal solution.

Based on the inequalities theorem, u2, u3, . . . , un is sorted from the smallest

to the largest to obtain the sorted list u′ = ⟨u′1, u′2, . . . , u′n−1⟩ = ⟨us1 , us2 , . . . , usn−1⟩,
which requires O(nlogn) time. Through this sorting process, we can also determine

the original index (position) si ̸= d, which will be used in the tour construction

process. Then, formula 4.29 is used to obtain the optimal value. The optimal tour

is ⟨d, s1, s2, . . . , sn−1⟩ and the time complexity is O(nlogn).

sumu =
n∑

i=1

ui;

maxv∗ =
n∑

i=2

u′i−1 × i;

opt = (2n+ 1)sumu − 2maxv∗ − (n+ 2)ud.

(4.29)

A simple example is used to illustrate the procedure. Assume that u =

(3, 5, 1, 4, 4), then sumu = 17. We sort u2, u3, . . . , u5 and obtain the sorted list

u′ = ⟨u′1, u′2, u′3, u′4⟩ = ⟨u3, u5, u4, u2⟩ = ⟨1, 4, 4, 5⟩. Then maxv∗ =
∑n

i=2 u
′
i−1 × i =

55, the optimal value is (2× 5+ 1)× 17− 2× 55− 7× 3 = 56 and the optimal tour

is ⟨1, 3, 5, 4, 2⟩.
Second case without fixed depot

We now consider the problem of the path without a fixed depot. From

formula 4.28, it can be seen that the optimal solution is obtained by maximising

2
∑n

i=2 uτi × i+ (n+ 2)uτ1 .

Similarly, we sort all ui, i = 1, 2, . . . , n from the smallest to the largest

and obtain the sorted list u′ = ⟨u′1, u′2, . . . , u′n⟩ = ⟨us1 , us2 , . . . , usn⟩, which requires

O(nlogn) time. In this sorting process, the index (position) si in the original vector
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u is also recorded, which will be used in the tour construction process.

Then, τ1 = sk(k = 1, 2, 3, . . . , n) is set, and maxvk, which is the maximum

value of 2
∑n

i=2 uτi × i, and valuek for each k are calculated using the following

recursions.

τ1 = s1,maxv1 = 2× (u′2 × 2 + u′3 × 3 + · · ·+ u′n × n);

τ1 = sk,maxvk = maxvk−1 + 2× (u′k−1 − u′k)× k for all k = 2, . . . , n;

valuek = maxvk + (n+ 2)usk for all k = 1, 2, . . . , n.

(4.30)

The largest valuek is recorded as value∗, then the optimal value is opt =

(2n+ 1)sumu − value∗.

In the process, when k is increased by 1, the calculation of maxvk+1 is

based on maxvk, which only requires linear time O(1); thus, calculating n values

valuek requires O(n) time. Therefore, the time complexity of finding the opti-

mal value is O(nlogn). Then we construct the optimal tour. When τ1 = s1,

the corresponding tour is ⟨s1, s2, . . . , sn⟩; when τ1 = sk, the corresponding tour

is constructed by removing sk and placing it at the beginning of the tour, i.e.,

⟨sk, s1, s2, . . . , sk−1, sk+1, . . . , sn⟩. The operation requires linear time O(1). The

largest valuek is recorded as value∗, and the corresponding index k is recorded as

k∗; thus, the optimal tour is ⟨sk∗ , s1, s2, . . . , sk∗−1, sk∗+1, . . . , sn⟩. Therefore, the

time complexity of finding the optimal solution is still O(nlogn).

4.4 CTSPP Heuristics Based on the Convex Hull

In this section, the Up-Down heuristic is proposed for the CTSPP, which can be

applied to the convex-hull cases and close-to-convex-hull cases. Further, the Two-

Ray heuristic is proposed for a special case of convex hull, where all nodes are along

two rays.

First we demonstrate a solvable case: Path TSP on the convex hull, where

the optimal solution has a special Up-Down structure [67]. This structure will be

further used in the Up-Down heuristic and Two-Ray heuristic for the CTSPP.

4.4.1 Path TSP on Convex Hull

The node distribution along the boundary of a convex hull is demonstrated in

Figure 4.6. Denote the set of nodes U i = {2, 3, . . . , i− 2, i− 1} as the upper set of
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node i, numbered clockwise; denote the set of nodes Li = {n, n−1, . . . , i+2, i+1}
as the lower set of i, numbered anticlockwise. Node 1 is the depot.

Figure 4.6: Illustration of the node distribution along a convex hull

Lemma 4.4.1 For the Path TSP, the shortest path that visits nodes 1, 2, . . . , i is

path ⟨1, 2, 3, . . . , i− 2, i− 1, i⟩.

Lemma 4.4.2 In the optimal path of the Path TSP, the nodes in the sub-path from

the depot to node i are visited in the same order as in U i and Li.

The two lemmas are extracted from Garcia and Tejel’s research [67] and

were proved by the quadrangle inequality: the sum of the lengths of the diagonals

is greater than the sum of the lengths of the two opposite sides. The quadrangle

inequality suggests that the optimal path cannot intersect itself and follows the

Up-Down structure. A detailed proof can be seen in [67].

We illustrate the Up-Down structure here. In the optimal path, assume that

the last node visited is i, then all nodes in U i = {2, 3, . . . , a, . . . , b, . . . , i− 2, i− 1}
and Li = {n, n− 1, . . . , c, . . . , d, . . . , i+ 2, i+ 1} are visited in this order. In other

words, b cannot be visited earlier than a, and d cannot be visited earlier than c.

In addition, not all the nodes in U i and Li have to be visited at a single time.

After departing from the depot, the nodes visited can be in U i, Li, U i, Li, . . . or

Li, U i, Li, U i, . . . until node i is visited. In summary, in the optimal path, upper

sets alternate with lower sets, and all nodes in the sets are visited in order.

Note that if the last node is i = 2, then the path following the Up-Down

structure can only be ⟨1, n, n− 1, . . . , 3, 2⟩, in which case only the nodes in Li are

visited. Similarly, if the last node is i = n, then the path following the Up-Down

structure can only be ⟨1, 2, 3, . . . , n− 1, n⟩, in which case only the nodes in U i are

visited.
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We use a simple example to explain this structure. Assume that n = 10

and that i = 6 is the last node in the optimal path. Then U6 = {2, 3, 4, 5}
and L6 = {10, 9, 8, 7}. The path ⟨1, 2, 3, 10, 9, 8, 4, 5, 7, 6⟩ follows the Up-Down

structure, while the path ⟨1, 2, 4, 10, 9, 5, 8, 3, 7, 6⟩ violates the Up-Down structure

as the nodes in U6 are visited in the order ⟨2, 4, 5, 3⟩ rather than ⟨2, 3, 4, 5⟩.
Since the optimal path has the Up-Down structure, the problem can be

simplified to finding the best path with this structure. This can be solved with a

dynamic programming algorithm.

In the first step, two special paths are considered: a clockwise-numbered

path and an anticlockwise-numbered path. Firstly, we consider the path that visits

the nodes clockwise along the convex hull, namely the path ⟨1, 2, 3, . . . , n − 1, n⟩.
It can be seen that the path also follows the Up-Down structure, as all nodes

visited from the depot to node i are in the upper set U i, where i = n and Un =

{2, 3, . . . , n−2, n−1}. Secondly, we consider the path that visits nodes anticlockwise

along the convex hull, namely the path ⟨1, n, n−1, . . . , 3, 2⟩. This path also follows

the Up-Down structure, as all nodes visited from the depot to node i are in the

lower set Li, where i = 2 and L2 = {n, n− 1, . . . , 4, 3}.
To calculate the cost of the two paths, denote V 1

i as the length of the

shortest sub-path from the depot to node i through 2, 3, . . . , i− 1 (see Figure 4.7),

where i = 3, 4, . . . , n. When i = n, V 1
n is the length of the clockwise-numbered

path. Further, denote V j
2 as the length of the shortest sub-path from the depot to

node 2 through n, n − 1, . . . , j (see Figure 4.8), where j = n, n − 1, . . . , 3. When

j = 3, V 3
2 is the length of the anticlockwise-numbered path. V 1

n and V 3
2 can be

calculated with the following recursions:

Figure 4.7: Demonstration of V 1
i , where V

1
n is the length of the clockwise-numbered

path
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Figure 4.8: Demonstration of V j
2 , where V 3

2 is the length of the anticlockwise-
numbered path

V 1
2 = c1,2,

V 1
i = V 1

i−1 + ci−1,i, when i = 3, 4, . . . , n.
(4.31)

V n
2 = c1,n + cn,2,

V j
2 = V j+1

2 − cj+1,2 + cj+1,j + cj,2, when j = n− 1, n− 2, . . . , 3.
(4.32)

In the next step, we consider other paths with the special Up-Down struc-

ture, with part of the nodes in the upper set U i and the remaining nodes in the

lower set Li, where i ̸= 2 and i ̸= n. Define V j
i as the length of the shortest

sub-path from the depot to node i through 2, 3, . . . , i − 1, n, n − 1, . . . , j, where

i = 3, 4, . . . , n− 1; j = n, n− 1, . . . , i+ 1.

In this case, there are two possible cases for the path from the depot to

node i: the node preceding node i can be in U i or Li. The two cases are separately

discussed below.

First case

If node i is reached directly from Li, then the last edge in the shortest path

is edge (j, i). This is demonstrated in Figure 4.9. Define la,b as the length of the

interval from a to b, where a, b ∈ Li. In this case, V j
i can be calculated with the

following recursion:
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Figure 4.9: Demonstration of the first case of V j
i : Visit i directly from Li

V n
i = V 1

i−1 + ci−1,n + cn,i, when i = 3, 4, . . . , n− 1.

V j
i = min

min(V m+1
i−1 + ci−1,m + lm,j + cj,i), ∀ m = j, j + 1, . . . , n− 1;

V 1
i−1 + ci−1,n + ln,j + cj,i,

when i = 3, 4, . . . , n− 1; j = n− 1, n− 2, . . . , i+ 1.

(4.33)

The value of la,b can be calculated with the following recursions:

lj,j = 0,

lm,j = cm,m−1 + lm−1,j , when j = 4, 5, . . . , n− 1;m = j + 1, j + 2, . . . , n.
(4.34)

Second case

If node i is reached directly from U i (see Figure 4.10), then the last edge in

the shortest path is edge (i−1, i). Define uc,d as the length of the interval from c to

d, where c, d ∈ U i. In this case, V j
i can be calculated with the following recursion:

Figure 4.10: Demonstration of the second case of V j
i : Visit i directly from U i
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V j
i = mink=2,3,...,i−1(V

j
k +uk,i) = V j

i−1+ci−1,i when i = 3, . . . , n−1; j = n, . . . , i+1.

(4.35)

All possibilities of the paths with the Up-Down structure have now been

considered. The optimal path should be the shortest path from the depot to node i

through 2, 3, . . . , i−1, n, n−1, . . . , i+1, where i = 3, 4, . . . , n−1, or the clockwise-

numbered path ⟨1, 2, 3, . . . , n− 1, n⟩, or the anticlockwise-numbered path ⟨1, n, n−
1, . . . , 2⟩. All dynamic programming recursions are summarised below:

V 1
2 = c1,2, V

n
2 = c1,n + cn,2,

V 1
i = V 1

i−1 + ci−1,i, when i = 3, 4, . . . , n.

V j
2 = V j+1

2 − cj+1,2 + cj+1,j + cj,2, when j = n− 1, n− 2, . . . , 3.

V j
i = min

 V 1
i−1 + ci−1,n + cn,i;

V j
i−1 + ci−1,i.

when i = 3, 4, . . . , n− 1 and j = n.

V j
i = min


min(V m+1

i−1 + ci−1,m + lm,j + cj,i), ∀ m = j, j + 1, . . . , n− 1;

V 1
i−1 + ci−1,n + ln,j + cj,i;

V j
i−1 + ci−1,i

when i = 3, 4, . . . , n− 1 and j = n− 1, n− 2, . . . , i+ 1.

Opt = min{(mini=3,4,...,n−1(V
i+1
i )), V 1

n , V
3
2 }.

(4.36)

The time complexity of calculating the length of the path ⟨1, 2, . . . , n −
1, n⟩ and the path ⟨1, n, n − 1, . . . , 2⟩ is O(n), that of computing the values of

la,b is O(n2), and that of calculating V i+1
i is O(n3). Therefore, the total time

complexity is O(n3). We demonstrate the above recursions with a simple example.

The coordinates of the nodes are provided in Table 4.1.

The length of the clockwise-numbered path ⟨1, 2, 3, 4, 5, 6⟩ and the length of

the anticlockwise-numbered path ⟨1, 6, 5, 4, 3, 2⟩ are respectively calculated as V 1
6

and V 3
2 as follows:

99



Table 4.1: Simple example of the Path TSP on the convex hull: coordinates of
nodes

point 1 2 3 4 5 6

x 0 0 4 7 6 4
y 1 3 6 4 1 0

V 1
2 = 2, V 1

3 = 7, V 1
4 = 10.61, V 1

5 = 13.77, V 1
6 = 16.01,

V 6
2 = 9.16, V 5

2 = 12.72, V 4
2 = 16.63, V 3

2 = 18.17.

Next, we calculate the lengths of the paths from the depot to node i through

2, 3, . . . , i− 1, n, n− 1, . . . , i+1, where i = 3, 4, . . . , n− 1, and find the shortest one

as follows. As described above, one first computes the value of la,b and then the

V j
i values.
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L4,4 = L5,5 = 0, L5,4 = 3.16, L6,4 = 5.4, L6,5 = 2.24.

V 6
3 = min

 V 1
2 + c2,6 + c6,3 = 13

V 6
2 + c2,3 = 14.16

= 13.

V 5
3 = min


V 6
2 + c2,5 + l5,5 + c5,3 = 20.87

V 1
2 + c2,6 + l6,5 + c5,3 = 14.63

V 5
2 + c2,3 = 17.72

= 14.63.

V 4
3 = min


min(V 5

2 + c2,4 + l4,4 + c4,3, V
6
2 + c2,5 + l5,4 + c4,3) = 22.25

V 1
2 + c2,6 + l6,4 + c4,3 = 16.01

V 4
2 + c2,3 = 21.63

= 16.01.

V 6
4 = min

 V 1
3 + c3,6 + c6,4 = 18

V 6
3 + c3,4 = 16.61

= 16.61.

V 5
4 = min


V 6
3 + c3,5 + l5,5 + c5,4 = 21.55

V 1
3 + c3,6 + l6,5 + c5,4 = 18.4

V 5
3 + c3,4 = 18.24

= 18.24.

V 6
5 = min

 V 1
4 + c4,6 + c6,5 = 17.85

V 6
4 + c4,5 = 19.77

= 17.85.

Therefore, the optimal value is 16.01, as shown below. The optimal TSP

paths are ⟨1, 2, 3, 4, 5, 6⟩ and ⟨1, 2, 6, 5, 4, 3⟩, which are shown in Figure 4.11.

Opt = min(V 1
6 , V

3
2 , V

4
3 , V

5
4 , V

6
5 ) = min(16.01, 18.17, 16.01, 18.24, 17.85) = 16.01.

4.4.2 Up-Down Heuristic for CTSPP

We have found that the Path TSP on the convex hull is solvable with the Up-Down

structure. This provides inspiration for the CTSPP. In the CTSPP, if the nodes are

distributed along the convex hull or close to the convex hull, the best path among
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Figure 4.11: Numerical example of Path TSP on a convex hull: (a) optimal path
1; (b) optimal path 2

all paths with the Up-Down structure is expected to be a good solution. Therefore,

we propose a heuristic called the Up-Down heuristic to find the best path with this

special structure for the CTSPP.

The notations are similar to those in Section 4.4.1. The difference is that

the term of ‘length of a sub-path’ in the Path TSP changes to ‘cumulative cost of a

sub-path’ for the CTSPP. Specifically, denote V 1
i as the smallest cumulative cost of

the sub-path from the depot to node i through 2, 3, . . . , i− 1, where i = 3, 4, . . . , n.

When i = n, V 1
n is the cost of the clockwise-numbered path. Further, denote V j

2

as the smallest cumulative cost of the sub-path from the depot to node 2 through

n, n − 1, . . . , j, where j = n, n − 1, . . . , 3. When j = 3, V 3
2 is the cost of the

anticlockwise-numbered path. V 1
n and V 3

2 can be calculated with the following

recursions:

V 1
2 = c1,2 × (n− 1), V n

2 = c1,n × (n− 1) + cn,2 × (n− 2),

V 1
i = V 1

i−1 + ci−1,i × (n− i+ 1), when i = 3, 4, . . . , n.

V j
2 = V j+1

2 + (cj+1,j − cj+1,2)× (j − 1) + cj,2 × (j − 2), when j = n− 1, n− 2, . . . , 3.

(4.37)

Note that the recursions are similar to those in Section 4.4.1. The difference

is that we incorporate the coefficients of edges in the calculation of the cumulative

costs. For example, V 1
i is obtained from V 1

i−1 and the edge (i− 1, i). Because i− 1

is the (i − 1)th node, the coefficient should be n − (i − 1). However, for the Path

TSP, all the coefficients are 1 in the recursions.
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For other paths with the Up-Down structure, denote V j
i as the smallest

cumulative cost of the sub-path from the depot to node i through 2, 3, . . . , i −
1, n, n − 1, . . . , j, where all nodes are visited in the same order as in U i and Li,

and i = 3, 4, . . . , n− 1; j = n, n− 1, . . . , i+ 1. Figure 4.9 shows one case: node i is

reached directly from Li. In this case, lm,j,i is defined as the cumulative cost of the

interval from m to j, where node j is linked to node i, and m, j ∈ Li. Figure 4.10

demonstrates the other case: node i is reached directly from U i. In this case, define

uk,i,j as the cumulative cost of the interval from k to i, where node k is linked to

node j, and k ∈ U i. The recursions for calculating V j
i are given below:

V n
i = min

 V 1
i−1 + ci−1,n × (n− i+ 1) + cn,i × (n− i);

min(V n
k + uk,i,n), ∀ k = i− 1, i− 2, . . . , 2;

when i = 3, 4, . . . , n− 1.

V j
i = min


min(V m+1

i−1 + ci−1,m × (m− i+ 1) + lm,j,i + cj,i × (j − i)), ∀ m = j, . . . , n− 1;

V 1
i−1 + ci−1,n × (n− i+ 1) + ln,j,i + cj,i × (j − i);

min(V j
k + uk,i,j), ∀ k = i− 1, i− 2, . . . , 2;

when i = 3, 4, . . . , n− 1 and j = n− 1, n− 2, . . . , i+ 1.

(4.38)

Again, the values of lm,j,i and uk,i,j need to be calculated to determine the

costs of the intervals. The difference from the Path TSP is that the cost here is

the cumulative value. The following recursions can be used to obtain the required

values:

lj,j,i = 0,

lm,j,i = cm,m−1 × (m− i) + lm−1,j,i,

when i = 3, 4, . . . , n− 1, j = n− 1, n− 2 . . . , i+ 1,m = j + 1, j + 2, . . . , n.

ui,i,j = 0,

uk,i,j = ci−1,i × (j − i) + uk,i−1,j ,

when i = 3, 4, . . . , n− 1, j = n, n− 1 . . . , i+ 1, k = i− 1, i− 2, . . . , 2.

(4.39)

We have now considered all possibilities of the paths with the Up-Down

structure for the CTSPP: paths from the depot to node i through 2, 3, . . . , i −
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1, n, n − 1, . . . , i + 1, where i = 3, 4, . . . , n − 1, the clockwise-numbered path

⟨1, 2, 3, . . . , n−1, n⟩ and the anticlockwise-numbered path ⟨1, n, n−1, . . . , 2⟩. There-
fore, the cost of the best path with the Up-Down structure is as follows, where the

time complexity is also O(n3).

Opt = min{(mini=3,4,...,n−1(V
i+1
i )), V 1

n , V
3
2 } (4.40)

4.4.3 Two-Ray Heuristic for CTSPP

Next, we consider a more special case, a two-ray case. In this special case, the n

nodes are distributed along two rays: the upper ray ⟨2, 3, . . . , UE⟩ and the lower

ray ⟨n, n− 1, . . . , LE⟩, with the depot, node 1, as the intersection. This structure

is demonstrated in Figure 4.12. We denote UE and LE as the right-end point in

the upper ray and lower ray respectively.

Figure 4.12: Illustration of the node distribution along two rays

In this section, the Two-Ray heuristic is proposed for the CTSPP. This

heuristic combines the Up-Down structure and the Line structure in the solvable

Line-CTSPP. We propose the Two-Ray heuristic for two reasons. Firstly, the two-

ray case can be seen as a special case of the convex hull when LE = UE + 1.

Considering that the Up-Down heuristic performs well on the convex-hull cases (as

shown in the experiment in Section 4.5), the path with the Up-Down structure is

expected to deliver a good performance on the two-ray case. Secondly, when the

nodes on the upper ray and lower ray are partitioned into intervals, all the intervals
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are straight lines. Each interval can be regarded as a Part CTSPP Line problem,

which was solved in Section 4.2.3.

We first explain the Up-Down structure in this heuristic. Consecutive nodes

on the upper ray can be used to construct upper intervals and, similarly, lower

intervals are composed of consecutive nodes on the lower ray. Assume that all

nodes are partitioned into intervals in order and that there is no overlap of nodes.

Denote the lists of upper and lower intervals as follows. For example, assuming

UE = 6, n = 10, then one set of reasonable intervals can be UI1 = ⟨2, 3⟩, UI2 =

⟨4, 5, 6⟩, LI1 = ⟨10⟩, LI2 = ⟨9, 8, 7⟩.

UI1 = ⟨k1, k1 + 1, . . . , i1⟩,

UI2 = ⟨k2, k2 + 1, . . . , i2⟩,

. . . ,

UIt = ⟨kt, kt + 1, . . . , it⟩,

where k1 = 2, k2 = i1 + 1, . . . , it = UE;

LI1 = ⟨m1,m1 − 1, . . . , j1⟩,

LI2 = ⟨m2,m2 − 1, . . . , j2⟩,

. . . ,

LIr = ⟨mr,mr − 1, . . . , jr⟩,

where m1 = n,m2 = j1 − 1, . . . , jr = LE.

The Up-Down structure in this heuristic means that when visiting nodes,

upper intervals alternate with lower intervals, and all intervals are visited in order,

i.e., nodes in UIa+1 cannot be visited earlier than nodes in UIa, and nodes in

LIb+1 cannot be visited earlier than nodes in LIb. As demonstrated in the example

above, the path ⟨1, UI1, LI1, UI2, LI2⟩ satisfies the Up-Down structure, while the

path ⟨1, UI1, LI2, UI2, LI1⟩ violates the Up-Down structure.

We then demonstrate the Line structure in the Two-Ray heuristic. The

basic idea is that each interval is processed similarly to in the Part CTSPP Line

in Section 4.2.3. When an interval is visited, assume that the first visited node

(called the depot of an interval) is d, the exit node is e, and d is the pth node in

the complete path. Then we can find the optimal sub-path that can minimise the

cost of all nodes on this interval.

Having explained the Up-Down structure and the Line structure, the Two-
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Ray heuristic can be summarised as follows: consider all paths where the lower and

upper intervals are visited in order and all intervals are processed similarly to in

Line-CTSPP, then choose the best path with the minimum cost.

To construct dynamic programming recursions, we make the following defi-

nitions. The upper interval is denoted as UI(k, i, d, e, p). There are five parameters:

left-end point k, right-end point i, depot d, exit point e and depot position p. In

other words, any path through this upper interval starts from depot d, visits the

set of nodes k, k+1, . . . , i− 1, i and ends at the exit point e, and d is the pth node

in the complete path. One upper interval can be seen in Figure 4.13. The optimal

path through this upper interval is denoted as UP (k, i, d, e, p) and the optimal cost

(i.e., the total contribution to the complete path) is denoted as CU(k, i, d, e, p).

Similarly, the lower interval is denoted as LI(m, j, d′, e′, p′) with left-end

point m, right-end point j, depot d′, exit point e′ and depot position p′. The paths

through this lower interval start from d′, visit the set of nodes m,m−1, . . . , j+1, j

and end at e′. One lower interval can be seen in Figure 4.14. The optimal path

through this lower interval and the optimal cost are denoted as LP (m, j, d′, e′, p′)

and CL(m, j, d′, e′, p′) respectively.

Figure 4.13: Illustration of U(i, j, e), the cost of the lowest-cost sub-path through
1, 2, . . . , i− 1, i, j, j + 1, . . . , n, ending at e in an upper interval

In addition, define U(i, j, e) as the cost of the lowest-cost sub-path through

1, 2, . . . , i − 1, i, j, j + 1, . . . , n, ending at the exit point e in the upper ray. This

sub-path is illustrated in Figure 4.13. Similarly, L(i, j, e′) is defined as the cost of

the lowest-cost sub-path through 1, 2, . . . , i− 1, i, j, j +1, . . . , n with the exit point
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Figure 4.14: Illustration of L(i, j, e′), the cost of the lowest-cost sub-path through
1, 2, . . . , i− 1, i, j, j + 1, . . . , n, ending at e′ in a lower interval

e′ in the lower ray. This sub-path can be seen in Figure 4.14. Then one can write

the following dynamic programming recursions:

When i = 2, 3, . . . , UE, j = n, n− 1, . . . , LE, e = 2, 3, . . . , i :

U(i, j, e) = min(L(k − 1, j, e′) + c(e′, d)× (j − k) + CU(k, i, d, e, p))

for all 2 ≤ k ≤ e, k ≤ d ≤ i, j ≤ e′ ≤ n;

When i = 2, 3, . . . , UE, j = n, n− 1, . . . , LE, e′ = n, n− 1, . . . , j :

L(i, j, e′) =



min(U(i,m+ 1, e) + c(e, d′)× (m− i) + CL(m, j, d′, e′, p′))

for all e′ ≤ m ≤ n− 1, j ≤ d′ ≤ m, 2 ≤ e ≤ i

min(U(i, 1, e) + c(e, d′)× (n− i) + CL(n, j, d′, e′, p′))

for all j ≤ d′ ≤ n, 2 ≤ e ≤ i

(4.41)

In the first recursion, the optimal path ending on the upper interval first

visits the optimal path ending on the last lower interval, with the exit point e′

on the last lower interval linked to depot d on the upper interval, and then visits
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the upper interval with the optimal path UP (k, i, d, e, p). Here, L(k − 1, j, e′) is

the cost of the lowest-cost path through 1, 2, . . . , k− 1, j, j + 1, . . . , n with the exit

point e′. Therefore, e′ is the (n+ k− j)th point; thus, the coefficient of edge (e′, d)

is n − (n + k − j) = j − k. Also, depot d is the (n + k − j + 1)th point; thus,

p = n+ k − j + 1.

Similarly, L(i, j, e′) can be written as the sum of U(i,m+1, e) (or U(i, 1, e)

when m = n), the cost of the edge (e, d′) and the cost of the lower path

LP (m, j, d′, e′, p′). Here, U(i,m+ 1, e) is the cost of the lowest-cost path through

1, 2, . . . , i,m + 1,m + 2, . . . , n with the exit point e. Therefore, the positions of e

and d′ are n + i −m and n + i −m + 1 respectively; thus, the coefficient of edge

(e, d′) is m− i and p′ = n+ i−m+ 1.

Then we consider initial conditions where the sub-path visits nodes only on

the upper ray or only on the lower ray. Note that node 1 is on both the upper ray

and the lower ray. The following recursions describe the initial conditions:

U(i, 1, e) = CU(1, i, 1, e, 1) for all 1 ≤ i ≤ UE, 1 ≤ e ≤ i;

L(1, n, n) = c(1, n)× (n− 1);

L(1, j, e′) = c(1, n)× (n− 1) + CL(n, j, n, e′, 2) for all LE ≤ j ≤ n− 1, j ≤ e′ ≤ n− 1;

L(1, j, n) = c(1, n− 1)× (n− 1) + CL(n, j, n− 1, n, 2) for all LE ≤ j ≤ n− 1.

(4.42)

Then the optimal value can be written as follows:

Opt = min(U(UE,LE, e), L(UE,LE, e′))

for all 2 ≤ e ≤ UE,LE ≤ e′ ≤ n
(4.43)

Now, we demonstrate the recursions using a simple example with n =

5, UE = 3. The coordinates of the nodes are provided in Table 4.2, and the

calculations are given below.
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Table 4.2: Simple example of the CTSPP on a two-ray case: coordinates of nodes

point 1 2 3 4 5

x 0 2 6 4 2
y 0 1 3 0 0

U(1, 1, 1) = 0, U(2, 1, 1) =∞, U(2, 1, 2) = c(1, 2)× 4 = 8.94, U(3, 1, 1) =∞,

U(3, 1, 2) = c(1, 3)× 4 + c(3, 2)× 3 = 40.25, U(3, 1, 3) = c(1, 2)× 4 + c(2, 3)× 3 = 22.36.

L(1, 5, 5) = c(1, 5)× 4 = 8,

L(1, 4, 5) = c(1, 4)× 4 + c(4, 5)× 3 = 22,

L(1, 4, 4) = c(1, 5)× 4 + c(5, 4)× 3 = 14.

U(2, 5, 2) = L(1, 5, 5) + c(5, 2)× 3 + CU(2, 2, 2, 2, 3) = 11.

L(2, 5, 5) = U(2, 1, 1) + c(2, 5)× 3 + CL(5, 5, 5, 5, 3) = 11.94.

U(2, 4, 2) = min

L(1, 4, 4) + c(4, 2)× 2 + CU(2, 2, 2, 2, 4) = 18.47

L(1, 4, 5) + c(5, 2)× 2 + CU(2, 2, 2, 2, 4) = 24
= 18.47.

L(2, 4, 5) = min

U(2, 1, 2) + c(2, 5)× 3 + CL(5, 4, 5, 5, 3) =∞

U(2, 1, 2) + c(2, 4)× 3 + CL(5, 4, 4, 5, 3) = 19.66
= 19.66.

L(2, 4, 4) = min


U(2, 5, 2) + c(2, 4)× 2 + CL(4, 4, 4, 4, 4) = 15.47

U(2, 1, 2) + c(2, 5)× 3 + CL(5, 4, 5, 4, 3) = 15.94

U(2, 1, 2) + c(2, 4)× 3 + CL(5, 4, 4, 4, 3) =∞

= 15.47.

U(3, 5, 2) = min

L(1, 5, 5) + c(5, 2)× 3 + CU(2, 3, 2, 2, 3) =∞

L(1, 5, 5) + c(5, 3)× 3 + CU(2, 3, 3, 2, 3) = 31.94
= 31.94.

U(3, 5, 3) = min


L(2, 5, 5) + c(5, 3)× 2 + CU(3, 3, 3, 3, 4) = 21.94

L(1, 5, 5) + c(5, 2)× 3 + CU(2, 3, 2, 3, 3) = 19.94

L(1, 5, 5) + c(5, 3)× 3 + CU(2, 3, 3, 3, 3) =∞

= 19.94.

L(3, 5, 5) = min

U(3, 1, 3) + c(3, 5)× 2 + CL(5, 5, 5, 5, 4) = 32.36

U(3, 1, 2) + c(2, 5)× 2 + CL(5, 5, 5, 5, 4) = 42.25
= 32.36.

U(3, 4, 2) = min



L(1, 4, 4) + c(4, 2)× 2 + CU(2, 3, 2, 2, 4) =∞

L(1, 4, 5) + c(5, 2)× 2 + CU(2, 3, 2, 2, 4) =∞

L(1, 4, 4) + c(4, 3)× 2 + CU(2, 3, 3, 2, 4) = 25.68

L(1, 4, 5) + c(5, 3)× 2 + CU(2, 3, 3, 2, 4) = 36.47

= 25.68.109



U(3, 4, 3) = min



L(2, 4, 4) + c(4, 3)× 1 + CU(3, 3, 3, 3, 5) = 19.08

L(2, 4, 5) + c(5, 3)× 1 + CU(3, 3, 3, 3, 5) = 24.65

L(1, 4, 4) + c(4, 2)× 2 + CU(2, 3, 2, 3, 4) = 22.94

L(1, 4, 5) + c(5, 2)× 2 + CU(2, 3, 2, 3, 4) = 28.47

L(1, 4, 4) + c(4, 3)× 2 + CU(2, 3, 3, 3, 4) =∞

L(1, 4, 5) + c(5, 3)× 2 + CU(2, 3, 3, 3, 4) =∞

= 19.08.

L(3, 4, 5) = min



U(3, 1, 3) + c(3, 5)× 2 + CL(5, 4, 5, 5, 4) =∞

U(3, 1, 2) + c(2, 5)× 2 + CL(5, 4, 5, 5, 4) =∞

U(3, 1, 3) + c(3, 4)× 2 + CL(5, 4, 4, 5, 4) = 31.57

U(3, 1, 2) + c(2, 4)× 2 + CL(5, 4, 4, 5, 4) = 46.72

= 31.57.

L(3, 4, 4) = min



U(3, 5, 3) + c(3, 4)× 1 + CL(4, 4, 4, 4, 5) = 23.55

U(3, 5, 2) + c(2, 4)× 1 + CL(4, 4, 4, 4, 5) = 34.18

U(3, 1, 3) + c(3, 5)× 2 + CL(5, 4, 5, 4, 4) = 34.36

U(3, 1, 2) + c(2, 5)× 2 + CL(5, 4, 5, 4, 4) = 44.24

U(3, 1, 3) + c(3, 4)× 2 + CL(5, 4, 4, 4, 4) =∞

U(3, 1, 2) + c(2, 4)× 2 + CL(5, 4, 4, 4, 4) =∞

= 23.55.

Therefore, the optimal value is 19.08, as shown below.

Opt = min(U(3, 4, 2), U(3, 4, 3), L(3, 4, 5), L(3, 4, 4)) = 19.08.

Assuming that the optimal cumulative costs of all intervals are already

known, then the time complexity is O(n6), because O(n3) values need to be cal-

culated and calculating each value requires O(n3) time. O(n2) time is required to

calculate the optimal costs for the upper and lower intervals. Therefore, the total

time complexity is O(n6). We next show how to calculate the optimal costs for the

intervals.

Given an upper interval UI(a, b, d, e, p) with left-end point a, right-end point

b, depot d, exit point e and depot position p, the nodes are first split into two parts:

left-side nodes and right-side nodes, as shown in Figure 4.15. We number the nodes
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as in Figure 4.5 for Part CTSPP Line with a fixed exit point in Section 4.2.3, where

a is ym and b is xk. Then the optimal costs for this interval can be calculated with

the recursions as in Section 4.2.3.

Figure 4.15: Illustration of node distribution of the upper interval UI(a, b, d, e, p)

We then apply the parameters of CU(k, i, d, e, p) to the recursions in Sec-

tion 4.2.3 to obtain the optimal costs for all upper intervals. The calculations

for the lower intervals are similar. We have now discussed all recursions in the

Two-Ray heuristic.

4.5 Computational Experiments

To test the performance of proposed heuristics, they are coded in C++ and exe-

cuted on Intel Core i5-10600 3.30 GHz processor with 32.0 GB RAM.

4.5.1 Experiment Design

We aim to show the power of the proposed heuristics on specially structured cases

and on cases with structures in a sense ‘close’ to these structures. Here, ‘close’

means although the nodes do not follow the special structures exactly, the nodes

are scattered closely around the special distributions or only a small proportion of

nodes violate the special distributions. This will be illustrated in the two-line cases

and the close-to-convex-hull cases respectively.

The experiments all involve self-generated instances comprising two-line in-

stances, convex-hull instances, close-to-convex-hull cases and two-ray instances.

The generation process for each instance set is described below.

Two-line instances As the Line heuristic is based on the solvable line case,

it can be expected that the proposed heuristic will perform well on close-to-line

cases. Here, ‘close’ means that the nodes are scattered closely around the special

distribution: the straight line. We consider a case where the nodes are distributed

along two parallel lines with a small distance between the lines. This makes the

node area a narrow strip, and thus close to a line. This type of case has practical

applications, such as delivery to customers located along two sides of one street. We
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generate 30 two-line instances for five instance sets with sizes 20, 50, 100, 200 and

500, which are used in the first experiment. The generation is performed as follows:

The X-coordinate is randomly chosen from the range [0, x] based on the size: x is

set as 100, 200, 500, 1000 and 2000 for sizes 20, 50, 100, 200 and 500 respectively.

To ensure that all nodes are distributed along two lines, the Y-coordinate is chosen

randomly from only two values: 0 and y. In the experiment, y is set as 3 to make

the node area a narrow strip. Distances are Euclidean distances rounded to the

nearest integer.

Convex-hull instances Twenty random convex-hull instances are generated

for each of the problem sizes of 20, 50, 100, 200 and 500 for use in the second

experiment. The generation is based on Valtr’s proof in [143] to produce convex

polygons as follows. First, two lists of random X and Y coordinates are generated,

then the coordinates are sorted. After isolating the extreme points, the interior

points are divided into two chains randomly. Then the vector components are ex-

tracted, the X and Y components are paired randomly and the paired components

are combined into vectors. The vectors are sorted by angle and linked end-to-end

to form a polygon. Finally, the polygon is moved so that one vertex lies on the

origin. Note that the ranges of the coordinates vary with the size and are 100, 500,

500, 1000 and 5000 for sizes 20, 50, 100, 200 and 500 respectively. Distances are

also Euclidean distances rounded to the nearest integer.

Close-to-convex-hull instances For each of the problem sizes 20, 50, 100, 200

and 500, we generate 20 random close-to-convex-hull instances, which are based on

the convex-hull instances above. Here, ‘close’ means that only a small proportion

of nodes violate the original special distribution. Given a convex-hull instance, the

idea is to select a small number of nodes randomly and modify the coordinates based

on their original positions. To better illustrate the meaning of ‘close’, a comparison

of one convex-hull instance with n=20 and its corresponding close-to-convex-hull

instance is given in Figure 4.16.

Specifically, we first determine the turning points where the increasing or

decreasing trend of coordinates changes in the convex hull. There are usually four

turning points; thus, we can partition the nodes into four parts. At the turning

points, the trend of the X- or Y-coordinate changes. If we choose nodes from

the previous turning point to a turning point where the trend of the X-coordinate

changes, then the Y-coordinate of the chosen nodes remains unchanged, whereas the

X-coordinate increases by a; if we choose nodes from the previous turning point to a

turning point where the trend of the Y-coordinate changes, then the X-coordinate of
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the chosen nodes remains unchanged, whereas the Y-coordinate increases by a. For

example, in the instance in Figure 4.16, from the depot (0, 0), the X-coordinate first

increases and the Y-coordinate increases (or remains constant), and the first turning

point is found where the Y-coordinate starts to decrease. If nodes in the first part

are chosen, then the X-coordinate remains unchanged, whereas the Y-coordinate

increases by a. The verification of the other turning points and the modification

of the coordinates are based on the same rules. To ensure that the instances are

close-to-convex-hull instances, we only modify a small proportion of nodes: 3, 5,

5, 10 and 10 nodes for size-20, -50, -100, -200 and -500 instances respectively. The

value of a is a random number in the range [−b, b], where b is 10, 20, 20, 40 and

100 for size-20, -50, -100, -200 and -500 instances respectively. Distances are also

Euclidean distances rounded to the nearest integer. These instances are used in

the second experiment.

Figure 4.16: Comparison of one convex-hull instance and the corresponding close-
to-convex-hull instance with n=20: (a) convex-hull instance; (b) close-to-convex-
hull instance

Two-ray instances We generate size-24, -30 and -50 instances. Each size

has 60 instances. For each size, three different slopes s (i.e., the ratio of the Y-

coordinate to the X-coordinate) are used, 0.5, 1 and 2, where each slope contains

20 instances. Given a size n and a slope s, we first determine the number of nodes u

on the upper ray. Two groups are generated. In the first group, called the Random

group, u is randomly chosen from the range [1, n]; in the second group, called the

Even group, u = n/2, that is, the number of nodes is the same on the upper and

lower rays. We denote (n, s,Random) and (n, s, Even) as a Random instance set
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and an Even instance set with size n, slope s and nodes from the Random group

and Even group respectively. Each instance set contains 10 instances. Then the

coordinates of each node are determined in the following way. The X-coordinate is

randomly chosen from the range [0, x], where x is set as 100, 100 and 500 for sizes

24, 30 and 50 respectively, and the Y-coordinate is determined on the basis of the

slope. Then the nodes are numbered along the two rays as shown in Figure 4.12.

The instances are used in the third experiment.

First Experiment

The purpose of the first experiment is to test the Line heuristic on two-line

instances. As discussed in Chapter 3, the classical 2-opt obtains the solutions with

the highest quality, and GRASP is commonly used for tour construction; thus the

Line heuristic is compared with GRASP-2-opt.

For each instance using each algorithm, the objective value v and the run-

ning time t are recorded. For size-50, -100, -200 and -500 instances, the best

solution obtained from the Line heuristic and GRASP-2-opt is chosen as the com-

parison base vbest for each instance, and the percentage gap g% = v−vbest
vbest

×100% is

calculated as the solution quality, where clearly the smaller the percentage gap,

the better the solution quality. Note that for instances of size 20, the exact

optimal solution vopt can be obtained; thus, the percentage gap is calculated as

g∗% =
v−vopt
vopt

× 100%. For each instance set, the average values of t, g% and g∗%,

respectively denoted as T , G% and G∗%, are calculated.

We compare both the solution quality and the running time and test whether

one algorithm is dominated by another. In this experiment, the single-start is

adopted for GRASP-2-opt.

Second Experiment

This experiment is conducted to present the performance of the Up-Down

heuristic on specially structured cases. Again, we compare the proposed heuristic

with GRASP-2-opt.

Firstly, the Up-Down heuristic is compared with the classical GRASP-2-opt

on convex-hull cases. Both single-start and multi-start are adopted for GRASP-

2-opt, which are recorded as GRASP-2-opt(S) and GRASP-2-opt(M) respectively

in the experimental results. We compare the Up-Down heuristic with GRASP-2-

opt(S) and conduct the domination analysis. Then, the multi-start is adopted for

GRASP-2-opt to ensure the same running time as that for the Up-Down heuristic.

By controlling the running time, the solution quality becomes the key to evaluating

the performance of algorithms. The measurement of the solution quality is similar
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to that in the first experiment: the comparison base for size-50, -100, -200 and -500

instances is the best solution obtained from the two heuristics, while for instances of

size 20, the optimal solution is used as the comparison base. Secondly, we perform

experiments on close-to-convex-hull cases, where the experimental process is the

same as that for convex-hull cases.

Third Experiment

The third experiment is conducted on two-ray instances to demonstrate the

potential of the Two-Ray heuristic. Different from the other proposed heuristics

in this chapter, our objective is not to outperform the classical heuristics in both

solution quality and running time. Instead, the aim is to show that the Two-

Ray heuristic can obtain high-quality solutions when the nodes have a special

distribution along two rays. As discussed in Chapter 3, RIH-S(3, 1) has the highest

performance in terms of solution quality on general cases. As shown in this section,

the Two-Ray heuristic obtains a better solution quality than RIH-S(3, 1) on this

specially structured case. We investigate how many instances can be solved to

optimality with the Two-Ray heuristic for a size of 24. We also reveal the number

of instances improved by the Two-Ray heuristic compared with RIH-S(3, 1) when

the size is 30 and 50.

4.5.2 Experimental Results and Implications

First Experiment

The experimental results on two-line cases are presented in Table 4.3. The

results show the average running time T and solution quality G% (or G∗%) for each

instance group. As discussed in Chapter 3, one heuristic is dominated by another if

the other heuristic generates the same solutions with less time, or generates better

solutions with the same time, or is superior in both solution quality and running

time. From Table 4.3, the running time of the Line heuristic is less than that of

GRASP-2-opt, and the percentage gap of the Line heuristic is smaller than that of

GRASP-2-opt for all five instance groups, which suggests that the Line heuristic

can obtain better solutions than GRASP-2-opt in less time for all the experimental

instance sets. The large difference in the percentage gap (20 − 35%) between the

two heuristics suggests that the Line heuristic is promising in special cases where

the node distribution resembles a line.

Second Experiment

The experimental results on convex-hull cases and close-to-convex-hull cases
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Table 4.3: Comparison of results of Line heuristic and GRASP-2-opt with single-
start on two-line instances

Line heuristic GRASP-2-opt

n = 20
T (s) 8.30× 10−6 2.26× 10−5

G∗% 0.49 36.83

n = 50
T (s) 2.65× 10−5 1.72× 10−4

G% 0 29.28

n = 100
T (s) 6.26× 10−5 1.12× 10−3

G% 0 24.61

n = 200
T (s) 1.61× 10−4 8.03× 10−3

G% 0 23.31

n = 500
T (s) 1.31× 10−3 1.37× 10−1

G% 0 20.10

are presented in Tables 4.4 and 4.5 respectively.

In general, the results found in the two tables are similar. There is no evident

domination relationship between the Up-Down heuristic and GRASP-2-opt(S): the

proposed heuristic obtains better solutions but with a longer running time. Nev-

ertheless, the Up-Down heuristic still demonstrates its potential on the specially

structured cases as the solution quality is much better than that of GRASP-2-

opt(S) with a slightly longer running time. To remove the effects of the running

time, the multi-start is next adopted for GRASP-2-opt to control the time. The

results in the third column and the last column in the two tables suggest that, with

the running time controlled, the average percentage gap of the Up-Down heuristic

is smaller than that of GRASP-2-opt(M) for all five instance groups. The third col-

umn, with G% = 0 throughout, also indicates that the Up-Down heuristic obtains

better results for all single instances when the size is 50, 100, 200 and 500. These

results all demonstrate the superiority of the Up-Down heuristic to GRASP-2-opt

on the special cases.

In addition, when testing on convex-hull cases, the percentage gap G∗% = 0

shows that the Up-Down heuristic can solve the CTSPP to optimality when the

size is 20. For the close-to-convex-hull cases, although not all solutions are optimal

when the size is 20, the small G∗% still indicates the good performance of the

Up-Down heuristic. This suggests that the Up-Down heuristic performs similarly
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in convex-hull cases and close-to-convex-hull cases.

Table 4.4: Comparison of results of Up-Down heuristic and GRASP-2-opt
(with/without controlling running time) on convex-hull instances

Up-Down GRASP-2-opt(S) GRASP-2opt(M)

n = 20
T (×10−5s) 2.33 2.30 3.11

G∗% 0 38.88 28.45

n = 50
T (×10−4s) 2.79 1.60 3.49

G% 0 35.82 19.77

n = 100
T (×10−3s) 2.59 1.05 3.02

G% 0 28.32 17.28

n = 200
T (×10−3s) 24.18 7.78 27.47

G% 0 27.92 17.56

n = 500
T (×10−1s) 6.62 1.31 7.18

G% 0 30.72 18.58

Table 4.5: Comparison of results of Up-Down heuristic and GRASP-2-opt
(with/without controlling running time) on close-to-convex-hull instances

Up-Down GRASP-2-opt(S) GRASP-2opt(M)

n = 20
T (×10−5s) 2.52 2.35 3.20

G∗% 0.04 36.94 26.14

n = 50
T (×10−4s) 3.45 1.87 3.90

G% 0 28.95 17.45

n = 100
T (×10−3s) 3.05 1.16 3.44

G% 0 23.67 15.29

n = 200
T (×10−3s) 24.41 8.14 28.27

G% 0 23.41 15.59

n = 500
T (×10−1s) 6.82 1.34 7.30

G% 0 25.12 17.44

Third Experiment

The experimental results on two-ray cases are presented in Tables 4.6

and 4.7. When testing on n = 24 instances, the Two-Ray heuristic is expected
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to solve the CTSPP on two-ray cases to optimality as the proposed heuristic con-

siders the structural properties of the cases. Table 4.6 provides the number of

instances solved to optimality for each group, which suggests that although the

heuristic performs well in many cases, there are still ‘difficult’ cases where the op-

timal solution is not found. Figure 4.17 and 4.18 compare the exact optimal route

with the Two-Ray heuristic route on two ‘difficult’ two-ray cases. For these ‘dif-

ficult’ cases, the upper and lower intervals are not visited in order in the optimal

routes, which violates the Up-Down property in the Two-Ray heuristic. They in-

dicate that it is possible for a more sophisticated heuristic to solve the ‘difficult’

cases if it considers paths that go one way from the depot, the intersection of two

rays, with the Up-Down structure and then change direction and return to the in-

tersection with the Up-Down structure. However, we found another more ‘difficult‘

instance shown in Figure 4.19. This instance indicates that the path structure in

the more sophisticated heuristic is also violated in the optimal path: the path goes

one way from the depot with the Up-Down structure, then changes direction and

returns to the depot with the Up-Down structure, and then changes direction for

a third time. The coordinates of these ‘difficult‘ cases can be seen in Appendix C.

The Two-Ray heuristic and the potential sophisticated heuristic consider

the important structural properties of the cases; thus, the ‘difficult’ cases we found

now allow us to formulate the conjecture that the CTSPP is NP-hard for two-ray

cases. Although this conjecture remains unresolved, it may inspire the research

community to prove the NP-hardness theoretically. As discussed before, two-ray

cases are a subclass of convex-hull cases. If the CTSPP could be proved to be

NP-hard on two-ray cases in the future, then it would also prove that the CTSPP

on the convex hull is NP-hard.

Table 4.7 provides the number of instances in which the Two-Ray heuristic

can obtain equal or better solutions than RIH-S(3, 1) for size-30 and -50 two-ray

instances. The last two columns show that for all single instances, the solutions

generated from the Two-Ray heuristic are equal to or better than those generated

from RIH-S(3, 1). This shows the ability of the Two-Ray heuristic in obtaining

high-quality solutions when all nodes are distributed along two rays.
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Table 4.6: Experimental results of Two-Ray heuristic on size-24 two-ray instances:
number of instances solved to optimality

Size Slope Random or Even group Solved to optimality

n = 24

s = 1 Random 10
s = 1 Even 9
s = 2 Random 10
s = 2 Even 10
s = 0.5 Random 9
s = 0.5 Even 10

Figure 4.17: Comparison of exact optimal route with Two-Ray heuristic route on
‘Difficult-1’ case that can be solved by a more sophisticated heuristic: (a) exact
optimal route; (b) Two-Ray heuristic route.
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Figure 4.18: Comparison of exact optimal route with Two-Ray heuristic route on
‘Difficult-2’ case that can be solved by a more sophisticated heuristic: (a) exact
optimal route; (b) Two-Ray heuristic route

Table 4.7: Experimental results of Two-Ray heuristic on size-30 and -50 two-ray
instances: number of instances improved by Two-Ray heuristic compared with
RIH-S(3, 1)

Size Slope Random or Even group Equal or improved Improved

n = 30

s = 1 Random 10 3
s = 1 Even 10 2
s = 2 Random 10 1
s = 2 Even 10 0
s = 0.5 Random 10 1
s = 0.5 Even 10 0

n = 50

s = 1 Random 10 1
s = 1 Even 10 6
s = 2 Random 10 1
s = 2 Even 10 5
s = 0.5 Random 10 1
s = 0.5 Even 10 2
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Figure 4.19: Comparison of exact optimal route with Two-Ray heuristic route on
a ‘More difficult’ case that cannot be solved by a more sophisticated heuristic: (a)
exact optimal route; (b) Two-Ray heuristic route
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4.6 Conclusions and Future Research

In this chapter, we make both theoretical and empirical contributions to the CTSPP

on specially structured cases.

In the theory, we extend the theories of Line-CTSPP by fixing the exit

node and considering the straight line as part of the total path, where the depot

on the line is no longer the first point in the complete path. It is shown that the

extended cases can be solved with a dynamic programming algorithm in polynomial

time. It is also proved that the more general problem CTSPPW can be solved in

polynomial time. In addition, a relationship between the QAP and the CTSPP is

discovered, and the time complexity of the CTSPP on the SUM matrix is proved

to be O(nlogn). Also, the CTSPP on two rays (a special subclass of the convex

hull) is conjectured to be NP-hard.

In the empirical research, we propose dynamic programming heuristics for

the CTSPP based on special structures. We conduct computational experiments

to show that the proposed heuristics perform well on specially structured cases.

The Line heuristic is based on the path structure in the solvable Line-CTSPP and

displays superior performance to the classical GRASP-2-opt in both running time

and solution quality when the nodes are distributed on two close parallel lines. The

Up-Down heuristic is inspired by the Up-Down structure in the solvable Path TSP.

This heuristic outperforms the classical GRASP-2-opt in convex-hull cases and

close-to-convex-hull cases. Further, the Two-Ray heuristic is proposed for two-ray

cases, where all nodes are along two rays. The Two-Ray heuristic combines the Up-

Down structure with the Line structure of Line-CTSPP. The experiments suggest

that the Two-Ray heuristic can obtain high-quality solutions in the special case

that nodes are distributed along two rays.

In the future, we aim to conduct further theoretical research on solvable

cases for the CTSPP. The potential cases are those with two rays, two parallel

lines and a convex hull. The conjecture encourages us to theoretically prove the

NP-hardness of the CTSPP on two rays. In empirical research, heuristics for more

general problems can be proposed. Increasing the efficiency of the proposed heuris-

tics discussed in this chapter for a larger-size CTSPP is a further research topic.
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Chapter 5

Conclusion and Future Work

5.1 Summary

In this thesis, we have demonstrated how to use solvable cases in heuristics for the

TSP and the CTSPP. Solvable cases are not only useful in their own right, but

can also improve the performance of heuristics for general cases. This motivated

our research on the heuristics inspired by solvability in this thesis. We have pro-

posed heuristics inspired by the solvable cases and demonstrated their promising

performance in both theoretical and empirical research. The solvable cases were

investigated in three aspects: specially structured matrices that can be solved in

polynomial time, exponential neighbourhoods that can be searched in polynomial

time and mathematical programming models for small-size problems.

Solvable Specially Structured Matrices

We have made both theoretical and empirical contributions based on

the solvable cases, focusing on specially structured matrices. Theoretically, we

have found the theoretical property of three classical heuristics, NN, DENN and

GREEDY, of obtaining the permutation for permuted strong anti-Robinson ma-

trices for the TSP such as the renumbered matrices satisfy the anti-Robinson con-

ditions . Inspired by the transformation relationship between Kalmanson matrices

and anti-Robinson matrices, we have proposed Kalmanson heuristics by making

minor amendments to the three classical heuristics. The amended versions have

the additional theoretical property of finding the optimal solution for a permuted

strong Kalmanson matrix for the TSP. For the CTSPP, we have extended the theo-

ries of Line-CTSPP, whose underlying matrix is an anti-Robinson matrix, by fixing

the exit node and considering the straight line as part of the total path, and shown
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that the extended cases can be solved with a dynamic programming algorithm in

polynomial time. We have also proved that the more general problem of CTSPPW

can be solved in polynomial time when the nodes are on a line. In addition, we have

proved that the time complexity of the CTSPP on the SUM matrix is O(nlogn).

Also, we conjecture that the CTSPP on two rays (a special subclass of the convex

hull) is NP-hard.

Empirically, the experimental results suggest that our proposed heuristics

motivated by specially structured matrices perform well. For the TSP, the empiri-

cal investigation on the benchmark instances clearly indicates the superiority of the

Kalmanson heuristics to the original counterparts for general cases. The incorpora-

tion of additional features from the Kalmanson matrix into the classical heuristics

has enriched the nature of the heuristics. For the CTSPP, we have proposed three

dynamic programming heuristics based on special structures. The computational

experiments have shown that the proposed heuristics have good performance on

specially distributed cases. The Line heuristic is based on the path structure in the

solvable Line-CTSPP and displays superior performance to the classical GRASP-

2-opt in both running time and solution quality when the nodes are distributed

on two close parallel lines. The Up-Down heuristic is inspired by the Up-Down

structure in the solvable Path TSP and outperforms the classical GRASP-2-opt in

convex-hull cases and close-to-convex-hull cases. The Two-Ray heuristic combines

the Up-Down structure with the path structure of Line-CTSPP. The experiments

suggest that the Two-Ray heuristic can obtain high-quality solutions when nodes

are specially distributed along two rays.

Solvable Neighbourhoods

We have developed two tour improvement heuristics for the CTSPP, the

pyramidal heuristic and chains heuristic, which can search the pyramidal neigh-

bourhood and chains neighbourhood respectively in polynomial time. The pro-

posed heuristics have simple procedures and better performance than the classical

GRASP-2-opt in computationally expensive experiments, especially on specially

structured cases of weighted trees.

Solvable Size

The chains heuristic is also motivated by solvable small-size problems. It

partitions the tour into a set of chains with small sizes and visits the chains in

order. With this heuristic, each chain can be regarded as a small solvable problem.

We have proposed another heuristic, the sliding window heuristic, which uses a

different strategy to simplify the whole problem to a small solvable problem. This
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heuristic arranges intervals to represent new consumers by using a sliding window

aggregation strategy. The two heuristics are both based on dynamic programming

and outperform the classical GRASP-2-opt for the CTSPP.

In addition to proposing heuristics motivated by solvable cases, we have

made an empirical contribution for the CTSPP by comparing the effectiveness of

various simple heuristics through extensive computational experiments. The pro-

posed tour construction heuristics IGRASP and RIH have better performance than

the widely used GRASP. In addition, the experiments also give general insights into

better selecting and combining simple heuristics in the future study of metaheuris-

tics for the CTSPP. The outperformance of the proposed heuristics illustrates their

potential of being incorporated into future metaheuristics.

5.2 Future Work

In this section we present directions for future research and extensions of the thesis.

Based on the research in Chapter 2, we can conduct further theoretical

research on quantifying how far a given distance matrix is from a Kalmanson matrix

and/or anti-Robinson matrix. If we can quantify this, we can further quantify the

approximation ratio of the Kalmanson heuristics (with α = 1) or we can determine

the best value of α to be used.

Chapter 3 gives guidance on the better selection and combination of simple

heuristics in the future study of metaheuristics for the CTSPP. In the future,

we aim to propose better metaheuristics based on the findings in this chapter.

Moreover, the proposed dynamic programming heuristics can be incorporated into

future metaheuristics.

In Chapter 4, we conjectured that the CTSPP on two rays is NP-hard. The

conjecture motivates us to theoretically prove the NP-hardness in further research.

We also aim to conduct theoretical research on other solvable cases for the CTSPP.

The potential cases include two parallel lines and convex-hull cases.

Most of the heuristics motivated by the specially structured matrices in this

thesis are related to the Kalmanson matrix, which is a subclass of the Demidenko

matrix. In future research, we will explore other heuristics using the knowledge of

Demidenko matrices for the TSP and the CTSPP. We will also investigate other

solvable neighbourhoods and propose heuristics based on them. Increasing the

efficiency of our proposed heuristics for the larger-size TSP and CTSPP is another

potential research topic. We will also apply our proposed heuristics to more general
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problems such as the load-dependent TSP and the cumulative VRP.
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Appendix A

Benchmark Instances for TSP

Test instances in the Challenge test suite: Random instances

Random Clustered Euclidean Random Uniform Euclidean

Name HK bound Optimal Name HK bound Optimal

C1k-0 11325840 11387430 E1k-0 23183212 23360648

C1k-1 11330836 11376735 E1k-1 22839568 22985695

C1k-2 10809149 10855033 E1k-2 22858726 23023351

C1k-3 11823906 11886457 E1k-3 23002034 23143748

C1k-4 11433764 11499958 E1k-4 22542849 22698717

C1k-5 11328719 11394911 E1k-5 23057465 23192391

C1k-6 10092637 10166701 E1k-6 23166620 23349803

C1k-7 10602996 10664660 E1k-7 22666814 22879091

C1k-8 11566102 11605723 E1k-8 22795477 23025754

C1k-9 10835951 10906997 E1k-9 23215285 23356256

C3k-0 19080351 19198258 E3k-0 40348236 40634081

C3k-1 18901572 19017805 E3k-1 40046054 40315287

C3k-2 19410947 19547551 E3k-2 40006528 40303394

C3k-3 19001116 19108508 E3k-3 40318841 40589659

C3k-4 18757585 18864046 E3k-4 40462881 40757209
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Test instances in the Challenge test suite: TSPLIB instances

TSPLIB1 TSPLIB2

Name HK bound Optimal Name Optimal Name Optimal

d1291 50209 50801 a280 2579 p654 34643

d1655 61549 62128 bier127 118282 pcb442 50778

d2103 79307 80450 ch130 6110 pr107 44303

dsj1000 18546977 18660188 ch150 6528 pr124 59030

fl1400 19783 20127 d198 15780 pr136 96772

fl1577 21886 22249 d493 35002 pr144 58537

fl3795 28477 28772 d657 48912 pr152 73682

nrw1379 56396 56638 eil101 629 pr226 80369

pcb1173 56351 56892 fl417 11861 pr264 49135

pcb3038 136588 137694 gil262 2378 pr299 48191

pr1002 256766 259045 kroA100 21282 pr439 107217

pr2392 373490 378032 kroA150 26524 rat195 2323

rl1304 249094 252948 kroA200 29368 rat575 6773

rl1323 265814 270199 kroB100 22141 rat783 8806

rl1889 311704 316536 kroB150 26130 rd100 7910

u1060 222651 224094 kroB200 29437 rd400 15281

u1432 152535 152970 kroC100 20749 ts225 126643

u1817 56688 57201 kroD100 21294 tsp225 3919

u2152 63858 64253 kroE100 22068 u159 42080

u2319 234215 234256 lin105 14379 u574 36905

vm1084 236162 239297 lin318 42029 u724 41910

vm1748 332061 336556 linhp318 41345
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Appendix B

Benchmark Instances for

CTSPP

Best known solutions on benchmark instances for CTSPP

Name n=50 n=100 n=200 n=500

R1 12198 32779 88787 1841386

R2 11621 33435 91977 1816568

R3 12139 32390 92568 1833044

R4 13071 34733 93174 1809266

R5 12126 32598 88737 1823975

R6 12684 34159 91589 1786620

R7 11176 33375 92754 1847999

R8 12910 31780 89048 1820846

R9 13149 34167 86326 1733819

R10 12892 31605 91552 1762741

R11 12103 34188 92655 1797881

R12 10633 32146 91457 1774452

R13 12115 32604 86155 1873699

R14 13117 32433 91882 1799171

R15 11986 32574 88912 1791145

R16 12138 33566 89311 1810188

R17 12176 34198 89089 1825748

R18 13357 31929 93619 1826263

R19 11430 33463 93369 1779248

R20 11935 33632 86292 1820813
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Appendix C

‘Difficult’ Cases on Two Rays

for CTSPP

‘Difficult-1’ case on two rays for CTSPP

Index X-Coordinate Y-Coordinate

1 0 0

2 6 3

3 22 11

4 26 13

5 64 32

6 66 33

7 68 34

8 70 35

9 80 40

10 82 41

11 88 44

12 98 49

13 100 50

14 96 0

15 83 0

16 73 0

17 64 0

18 47 0

19 39 0

20 37 0

21 14 0

22 6 0

23 5 0

24 3 0
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‘Difficult-2’ case on two rays for CTSPP

Index X-Coordinate Y-Coordinate

1 0 0

2 2 2

3 13 13

4 30 30

5 32 32

6 44 44

7 45 45

8 50 50

9 52 52

10 55 55

11 67 67

12 73 73

13 88 88

14 88 0

15 72 0

16 68 0

17 51 0

18 46 0

19 45 0

20 40 0

21 38 0

22 20 0

23 15 0

24 8 0
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‘More Difficult’ case on two rays for CTSPP

Index X-Coordinate Y-Coordinate

1 0.00 0.00

2 31.06 13.83

3 177.23 78.91

4 265.84 118.36

5 314.26 139.92

6 337.10 150.09

7 496.06 220.86

8 664.15 295.70

9 689.73 307.09

10 792.04 352.64

11 793.87 353.45

12 1044.18 464.90

13 1098.00 0.00

14 1024.00 0.00

15 845.00 0.00

16 812.00 0.00

17 758.00 0.00

18 752.00 0.00

19 543.00 0.00

20 516.00 0.00

21 514.00 0.00

22 448.00 0.00

23 267.00 0.00

24 34.00 0.00
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