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The elastic Leidenfrost effect occurs when a vaporizable soft solid is lowered onto a hot sur-
face. Evaporative flow couples to elastic deformation, giving spontaneous bouncing or steady-state
floating. The effect embodies an unexplored interplay between thermodynamics, elasticity, and lu-
brication: despite being observed, its basic theoretical description remains a challenge. Here, we
provide a theory of elastic Leidenfrost floating. As weight increases, a rigid solid sits closer to the
hot surface. By contrast, we discover an elasticity-dominated regime where the heavier the solid,
the higher it floats. We show that this elastic regime is characterized by Hertzian behavior of the
solid’s underbelly and derive how the float height scales with materials parameters. Introducing
a dimensionless elastic Leidenfrost number, we capture the crossover between rigid and Hertzian
behavior. Our results provide theoretical underpinning for recent experiments, and point to the
design of novel soft machines.

The elastic Leidenfrost effect is a largely unexplored
class of Leidenfrost physics, involving the vaporization of
soft solids [1–5]. In the typical case of the liquid Leiden-
frost effect, a fluid droplet hovers above a heated surface,
cushioned by a gap layer of its own vapor. The basic
physics of this scenario is extensively explored [6–12]:
capillarity and gravity determine the droplet’s geome-
try and how high it floats above the hot surface [6–10].
These advances have enabled the discovery of new ef-
fects, such as self-propelled droplets [11] and controlled
wetting [13], as well as the design of new applications,
for example heat exchangers [14, 15]. The typical de-
scription of Leidenfrost physics combines fluid flow and
phase change, but neglects elastic deformation entirely.
In one extreme, liquid Leidenfrost drops have no elastic
response at all. In the other extreme, rigid sublimable
solids (such as dry ice [16–18]) do not change shape when
levitating above a hot surface.

When the levitated object is soft and elastic, strik-
ing phenomena result. For example, a water-saturated
hydrogel lowered onto a hot surface either bounces spon-
taneously [1, 2] or floats on its own vapor layer [3]. Fig-
ure 1(a) shows an example of floating behavior for a
sphere of radius 7mm. These effects may appear super-
ficially similar to the phenomenology of liquids [9, 12],
but their physical origin is fundamentally different. The
characteristic feature of both bouncing and floating is
that the excess pressure in the vapor layer (of order kPa)
is sufficiently large to elastically deform the solid [1].

The phase change occurring under the soft solid pro-
vides an intrinsic source of thermodynamic lubrication.
This is in contrast to the soft lubrication problem [19–
27], in which lift forces are generated when two lubricated
elastic objects (for example, mammalian joints [24]) move
over one another. Understanding the interplay between
elasticity and flow is crucial to the design of a vari-

ety of soft devices [28–33]. If no relative motion is
present, lift forces are only possible due to vaporization.
However, phenomena that combine thermodynamics and
large solid-body deformations, exemplified by elastic Lei-
denfrost physics, remain unexplored.

To fully realize the scope of elastic Leidenfrost physics,
both at a fundamental level and for the potential de-
sign of soft devices, a theoretical description of the basic
mechanism is required. Despite experimental observa-
tion, this description remains a challenge. In particular,
there is currently no theory which explains how three-
dimensional elasticity determines either the gap height
of the soft solid or its shape in the floating regime.

In this Letter, we overcome this challenge by marry-
ing soft lubrication theory with thermodynamic phase
change, to formulate the first description of elastic Lei-
denfrost floating. By varying a single dimensionless pa-
rameter, we discover a transition from rigid behavior
to an elasticity-dominated regime described by Hertzian
contact mechanics. Using asymptotic analysis and finite
element simulations, we quantify this Hertzian limit via
scaling laws for the gap height with sphere radius and
elastic modulus. Our asymptotic theory reveals the ex-
istence of two distinct scalings of the height: the first in
a contact region well underneath the solid, and the sec-
ond in an ever-narrowing neck region [see Fig. 1(b)]. Our
results demonstrate how to tailor float height via mate-
rials properties, and offer a solid theoretical basis for ex-
ploring more complex elastic Leidenfrost phenomena [1].
This theory lays the groundwork for combining elasticity,
phase change, and flow to design novel soft machines.

For a vaporizable elastic sphere of radius R, with
Young’s modulus E and Poisson ratio ν (Fig. 1), we
show that the gap height depends on materials param-
eters solely through a dimensionless elastic Leidenfrost
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FIG. 1: Thermodynamic lubrication in the elastic Lei-
denfrost effect. (a) A soft elastic hydrogel sphere of radius
R = 7mm hovers above a hot surface (∆T = 115 °C). Due to
evaporative phase change, the weight of the solid is balanced
by vapor flux from its underbelly, which establishes a steady
gap height. Inset shows the hydrogel in daylight, squeezed
by tweezers. (b) Elastic deformation from an initially spheri-
cal shape sets up a stress distribution in the soft solid. This
elastic stress competes with vapor pressure to determine the
shape of the solid’s underbelly and the gap height. Inset:
Our theory predicts distinct scaling laws in three regions: a
contact region well under the soft solid, an outer region, and
a narrow neck region of width δ.

number,

λ =
2π

3

[
4E

3(1− ν2)

]4/3
Π0 F

−7/3R8/3. (1)

Equation (1) encapsulates geometry, elasticity, and fluid
flow. Here, F = (4π/3)ρsgR

3 is the solid’s weight, with
ρs its density and g the gravitational acceleration. The
typical force scale in the vapor layer, Π0, is where tem-
perature and vapor properties enter λ, and is described
further below. As λ → ∞, we recover the height scaling
law of a rigid solid (or small liquid drop [7]). As λ → 0,
however, we discover scaling laws distinct from both the
rigid and the liquid Leidenfrost cases, corresponding to
an asymptotically Hertzian behavior of the solid’s un-
derbelly. In this Hertzian regime, the gap height h scales
as

h ∼ Π
1/4
0 E−1/3R1/3F 1/12. (2)

Taking the load to be proportional to the volume in
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FIG. 2: Gap height scaling laws. (a) As the soft solid
approaches the Hertzian limit λ → 0, its underbelly devel-
ops a neck region (orange triangle), with a height scaling law
distinct from that of the contact region (purple circle). Sur-
faces shown correspond to successive underbelly profiles as
λ decreases, with the vertical axis rescaled for clarity. (b–c)
Finite element simulations (markers) verify our analytically
predicted gap height scaling laws (lines) for the contact and

neck regions: h ∼ E−1/3R7/12 in the contact region, and
h ∼ E−7/24R43/96 in the neck. Black lines show analytic
predictions for a geometrically rigid sphere. Panel (b) shows
scaling with Young’s modulus E, panel (c) with sphere radius
R. We find three regimes of behavior: Rigid (λ→ ∞), Transi-
tion (λ ∼ 1), and Hertzian (λ→ 0). In panel (b), R = 40mm.
In panel (c), E = 50 kPa. All other materials parameters are
as in Ref. [3], reproduced in the SM [34].

Eq. (2), F ∼ R3, we find the height scaling h ∼ R7/12.
Counter-intuitively, the heavier the soft solid, the higher
it floats. A crossover between the rigid and Hertzian
scaling laws occurs at the value λ ∼ 1. A natural set of
experimentally accessible parameters is provided by re-
cent work on hydrogel spheres [3] [see also Fig. 1(a)], in
which the radius R is on the order of mm–cm and the
modulus E ∼ kPa. Taking parameters from Ref. [3] (re-
produced in the Supplementary Material (SM) [34]) gives
λ ∼ 10−5, well into the regime of Hertzian scaling.

To derive Eqs. (1–2), we now formulate a theory of
thermodynamic lubrication coupled to elastic deforma-
tion of the solid. Figure 1(b) shows a schematic of the soft
solid floating above a hot surface. The heated surface is
held at a temperature difference ∆T above the vaporiza-
tion threshold of the solid, causing the solid’s underbelly
to evaporate and open a thin vapor gap. To describe
vapor flow, we note that the gap height is significantly
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smaller than the lateral scale of the underbelly. We use
the lubrication approximation of the Navier-Stokes equa-
tions [10, 23], which neglects the vertical component of
flow. In this approximation, the (axisymmetric) height
profile h(r) in Fig. 1(b) and the pressure in the vapor
layer P (r) are related through

1

r

d

dr

(
r
ρh(r)3

12η

dP (r)

dr

)
= − κ∆T

Lh(r)
. (3)

Equation (3) expresses continuity: the pressure gradient
under the solid establishes a Poiseuille flow with mass
flux ∼ (ρ/η)h3∇P (r), where η and ρ are the viscosity and
density of the vapor. This flux is balanced by a Leiden-
frost source term −κ∆T/Lh(r), describing conduction-
dominated evaporation from the solid’s underbelly [10].
Here, κ is the vapor thermal conductivity and L is the la-
tent heat of vaporization. This source term is where ther-
modynamic phase change enters the problem. It stands
in contrast to soft lubrication theory [23–26] where no
mass source is allowed, and flow can only be driven by
externally imposed conditions.

For a steady gap height, integrated vapor pressure
must balance the total weight F of the solid. If the pres-
sure P acts over a lateral length scale l characteristic of
the solid’s underbelly, we have the scaling F ∼ Pl2. A
scaling analysis of the lubrication equation (3) relates P ,
l, and gap height h as P ∼ Π0l

2/h4, where we define the
vapor force scale Π0 ≡ κ∆Tη/Lρ. Using this pressure
relation in the total force balance gives

F ∼ Π0

(
l

h

)4

. (4)

For a given load F , Eq. (4) specifies h in terms of an
unknown lateral scale l. The crucial question is then:
what is the correct choice of l?
We postulate that there are two choices of l, giv-

ing two possible gap height scaling laws. The ratio of
these two length scales will define λ. The first choice
is for a completely rigid sphere, neglecting elasticity:
lS =

√
hR [24]. Using this choice in Eq. (4) yields a

gap height h ∼
√

Π0/FR. Taking the load to scale with
the volume, F ∼ R3, we re-derive the height scaling law
for rigid spheres, h ∼ R−1/2. This scaling applies when-
ever geometric deformation can be neglected [7]. Intu-
itively, balancing an increasing radius R (i.e., an increas-
ing weight) requires more vapor flux, and so the solid
must sit closer to the heated surface.

Scaling laws unique to elastic Leidenfrost floating re-
sult from a different choice of lateral length scale l, aris-
ing from linear elasticity theory and Hertzian contact
mechanics [35–37]. When an elastic sphere of Young’s
modulus E is placed in direct contact with a hard sur-
face, a circular indentation results, with radius lH ∼
(FR/E)

1/3 ∼ R4/3. In the SM [34], we show that this
lateral scale also applies to our lubrication problem. The

total vapor thrust then scales as the ratio (lH/h)
4, but

the total load scales as the volume R3, resulting in a
float height given by the balance h ∼ lH/R

3/4 ∼ R7/12.
The full scaling law given by Eq. (2), including all ma-
terials parameters, is derived in the SM [34] directly
from the integro-differential system describing the cou-
pling between elasticity and lubrication flow. Intuitively,
as radius increases, elastic deformation of the solid’s
underbelly gives a rapidly increasing contact area over
which evaporative thrust is generated. This increasing
thrust outcompetes the increasing weight, leading to the
counter-intuitive increase of gap height with radius R.

If length scales lS and lH characterize two distinct scal-
ing regimes for the gap height, crossover between regimes
is quantified by the ratio lS/lH . This motivates the ex-
pression for the elastic Leidenfrost number λ as

λ =
2π

3

(
lS
lH

)4

, (5)

which is equivalent to Eq. (1) when written in terms of
materials parameters. In the SM [34], we show that non-
dimensionalizing the combined equations of linear elas-
ticity and the lubrication equation (3) yields λ as the sin-
gle dimensionless number governing the floating regime.
Intuitively, λ compares the length scales over which the
vapor pressure causes elastic deformation. When λ→ ∞,
lS ≫ lH and vapor pressure is too small to cause appre-
ciable elastic deformation. By contrast, when λ → 0,
lS ≪ lH and Hertzian elasticity dominates.

We have predicted that the dimensionless parameter
λ mediates the crossover between rigid behavior and our
scaling law, Eq. (2). We now test these predictions. To
do so, we numerically solve for a series of profiles for
the gap height h(r) and for the pressure P (r), across a
range of sphere radii and Young’s moduli. A finite ele-
ment method [38, 39] is used to obtain elastic deforma-
tions by solving the primitive equations of linear elastic-
ity throughout the 3D solid. This elastic solver is coupled
to a numerical solution of the axisymmetric lubrication
equation (3) to give a closed system in height h(r) and
pressure P (r). Our finite element approach, described
further in the SM [34], bypasses the assumptions made
in Hertzian contact theory, i.e., the use of a half-space
elastic solution for a curved boundary and a parabolic
approximation to the solid’s underbelly. These numerics
allow us to probe the limits of validity for our theory and
to test the universality of our scaling predictions in terms
of λ.

In Fig. 2, we show the gap height in the contact region,
h(r = 0), against radius R and modulus E. Parameters
not varied are fixed to natural experimental values for
the hydrogel spheres used in, for example, Ref. [3]. We
find a clear crossover between two distinct regimes of
behavior occurring at λ ∼ 1, with agreement between
our predicted scaling laws, Eq. (2), and those found in



4

0.2 0.4 0.6 0.8 1. 1.2 1.4

0.2

0.4

0.6

0.8

1.

0. 0.2 0.4 0.6 0.8 1. 1.2 1.4

0.2

0.4

0.6

0.8

1.

1.2

-8

-8

(a)

(b)

- 3 - 2 - 1 1 2 3

1

2

Hertzian

Hertzian

0.5 1.

1.

1.5

2.

- 3 - 2 - 1 1

2

3

FIG. 3: Collapsing to the Hertzian Limit. Nondimen-
sionalized (a) height h̃ and (b) pressure P̃ profiles, obtained
from finite element simulations. Both height and pressure ap-
proach the Hertzian dry contact solutions (black dashed lines)
as λ → 0. Deviations are confined to a λ-dependent neck re-
gion, of width δ(λ). Insets: Our scaling law for the height

profile in the contact region, ϕc(λ) = λ1/4, breaks down in the
neck (a, left). Instead, our asymptotic theory predicts the col-
lapse of profiles in the neck region when the radius ∆r̃ ≡ r̃−1
is rescaled by δ(λ) = λ3/16, the height by ϕn(λ) = λ9/32 (a,

right) and the pressure by ψn(λ) = λ3/32 (b, right).

simulation. However, our numerical results also reveal
a neck region at the edge of contact [Fig. 2(a)], which
develops as the solid transitions into the Hertzian regime.
The height of this neck follows a distinct scaling law, not
captured by the analysis above.

To investigate this neck region further, in Fig. 3 we plot
the full height [Fig. 3(a)] and pressure [Fig. 3(b)] profiles
under the soft solid, non-dimensionalized by the Hertzian
scales: r̃ = r/lH , h̃ = hR/l2H , P̃ = (2πl2H/3F )P . As
λ→ 0, we note that both height and pressure profiles ap-
proach their Hertzian limits, h̃(r̃) = (r̃ − 1)3/2 for r̃ ≳ 1,

and P̃ (r̃) =
√
1− r̃2 for r̃ < 1 [36], except in a boundary

layer of width δ(λ) located at r̃ = 1. The discrepancy
in the height data becomes clearer when we rescale h̃ by
the contact scaling law Eq. (2). We show in the SM [34]
that Eq. (2) corresponds to the dimensionless scaling law
h̃(r̃ = 0) ∼ ϕc(λ), where ϕc(λ) = λ1/4. As shown in
the left inset of Fig. 3(a), this law collapses data in the
contact region, but fails in the neck δ(λ). The reason
for this discrepancy is that the Hertzian dry contact so-
lutions are singular at r̃ = 1. This singularity implies a
breakdown of the Hertzian theory over the width δ(λ),
because the height and pressure profiles in our lubrica-
tion problem must remain smooth everywhere. In this
region, the height scaling from Eq. (2) does not apply
because the relevant lateral length scale is no longer lH .
To capture the anomalous scaling of the height in the

neck region and the width δ(λ), we take inspiration from
the numerical collapse of Fig. 3. The key observation
is that in the contact region under the solid (r̃ ≪ 1),
the pressure is given by the Hertzian solution at lead-
ing order in the parameter λ [Fig. 3(b)]. By the same
logic, when r̃ ≫ 1, the height is asymptotically Hertzian
[Fig. 3(a)]. Using the lubrication equation (3), we con-
struct the corresponding height and pressure solutions in
each region. These solutions patch together over the neck
region, shown schematically in the inset of Fig. 1(b). In
the neck, both pressure and height vanish as some un-
known power of λ; we denote the height scaling as ϕn(λ)
and the pressure scaling as ψn(λ). The patching condi-
tions, derived in the SM [34], simultaneously determine
δ(λ), ϕn(λ), and ψn(λ), to give a complete set of scaling
laws:

δ(λ) = λ3/16, ϕc(λ) = λ1/4,

ψn(λ) = λ3/32, ϕn(λ) = λ9/32.
(6)

In the insets of Fig. 3, we show that the scalings Eq. (6)
now collapse our simulation data in the neck region as
well as the contact region. Our asymptotic theory gives
a new prediction: once re-dimensionalized, the relation
ϕn(λ) = λ9/32 yields the anomalous neck height scaling

h ∼ Π
9/32
0 E−7/24F 1/96R5/12. (7)

Again taking the load to go as the volume, F ∼ R3,
we find the neck height scaling h ∼ R43/96. In Fig. 2,
we show that these revised scalings with radius R and
modulus E agree well with simulations. Taken together,
the scalings Eqs. (2) and (7) provide a complete picture
of elastic Leidenfrost floating.

We now ask about the limits of validity of our the-
ory: when does the universality of the elastic Leiden-
frost number λ break down? We first consider the vapor.
The lubrication approximation made in Eq. (3) requires
h/l ≪ 1. As R → ∞, using the contact height scal-
ing h ∼ R7/12 gives h/lH ∼ R−3/4, and so the lubrica-
tion approximation improves as we go further into the
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Hertzian limit, even as the gap height increases. In this
same limit, we expect deviations due to the breakdown
of Hertz theory, which assumes that the Hertzian length
scale lH is much smaller than the sphere radius R, i.e.,
lH/R ≪ 1. Such deviations are visible in Fig. 3(b): the
pressure profile does not asymptote to the exact Hertzian
solution, there is a small systematic offset near r̃ = 0. In
the SM [34], we show that such deviations vanish when
λ is fixed, while lH/R → 0. For λ = 10−8 in Fig. 3(b),
we have lH/R ≈ 1/4. Nevertheless, our Hertzian theory
continues to provide quantitatively accurate predictions,
even up to these relatively large values of the ratio lH/R.

We have provided a fundamental description of elastic
Leidenfrost floating, unraveling how the gap height in-
terpolates between rigid and Hertzian regimes. To quan-
tify this crossover, we have defined a dimensionless elas-
tic Leidenfrost number λ. Our results provide the the-
oretical groundwork for interpreting recent experimental
studies [1, 3], as well as several implications for future
directions.

Using hydrogel spheres of radius R = 7mm and mod-
ulus E = 50 kPa, Ref. [3] measures average gap height
against time in the floating regime. These experiments [3]
place an upper bound on the early-time gap height as h <
(25± 10)µm. Over longer times, inhomogeneous evapo-
ration is observed to alter the solid’s reference geometry.
Our theory predicts a contact height of h = 15 µm and
a neck height of h = 12 µm. Our estimate of λ ∼ 10−5

places these experiments in the regime of Hertzian scal-
ing. Taken together, we expect our results to provide a
valuable counterpart to future experimental studies on
floating behavior. Although our results are focused on
the floating regime, they have implications for the ob-
served spontaneous bouncing [1, 2]. Floating provides
a reference stationary state against which bouncing dy-
namics can be compared.

Broadly, our work points towards combining
Leidenfrost-type physics and soft elasticity beyond
the experimental setup shown in Fig. 1(a). In soft
lubrication theory, lift forces are generated by an
imposed lateral motion of the solid [24, 26]. Motion
could be induced either by global rotation of the soft
solid [40, 41], or by placing it on an inclined plane [42].
For a Leidenfrost solid, these motion-induced forces will
compete with those arising from phase change, and their
interplay may allow for the tuning of gap height, or
controllably inducing a float-to-bounce transition. An-
other broad consequence of our work is the importance
of soft-solid geometry. As we show in the SM [34], an
elastic cylinder has a distinct gap height scaling to the
spherical case: for a cylinder in the Hertzian regime,
we find a contact height scaling h ∼ R5/8. We envision
tailoring the precise float height and configuration of
an object by tuning its initial geometry—shape control
which would not be possible for liquid droplets.
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