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A Novel Deep Neural Network for Trajectory Prediction in Automated
Vehicles Using Velocity Vector Field

MReza Alipour Sormoli, Amir Samadi, Sajjad Mozaffari, Konstantinos Koufos,
Mehrdad Dianati, and Roger Woodman

Abstract— Anticipating the motion of other road users is
crucial for automated driving systems (ADS), as it enables safe
and informed downstream decision-making and motion plan-
ning. Unfortunately, contemporary learning-based approaches
for motion prediction exhibit significant performance degra-
dation as the prediction horizon increases or the observation
window decreases. This paper proposes a novel technique for
trajectory prediction that combines a data-driven learning-
based method with a velocity vector field (VVF) generated
from a nature-inspired concept, i.e., fluid flow dynamics. In
this work, the vector field is incorporated as an additional
input to a convolutional-recurrent deep neural network to help
predict the most likely future trajectories given a sequence
of bird’s eye view scene representations. The performance of
the proposed model is compared with state-of-the-art methods
on the highD dataset demonstrating that the VVF inclusion
improves the prediction accuracy for both short and long-
term (5 sec) time horizons. It is also shown that the accuracy
remains consistent with decreasing observation windows which
alleviates the requirement of a long history of past observations
for accurate trajectory prediction.1.

I. INTRODUCTION

Safe and efficient automated driving in dense road traffic
environments, where several vehicles dynamically interact
with each other, requires predicting their intended manoeu-
vres and/or future trajectories as a function of time [1]. The
prediction accuracy becomes essential in this case and di-
rectly impacts the downstream motion planning performance
of automated driving systems (ADS). On the one hand, a long
time prediction horizon (five seconds) allows for a proactive
response to the dynamic changes in the driving scene, while,
on the other hand, small observation windows (less than one
second) are desirable to be able to predict the future states for
most of the perceived surrounding vehicles (SVs). To meet
both targets, a comprehensive understanding of the spatio-
temporal interactions among nearby road users, including
semantic environmental information, such as the location
of lane markings, road layout, speed limits and nominal
velocities is needed [2], [3]. Formulating such a complicated
trajectory prediction problem for all vehicles in the scene is
not viable through human-crafted heuristic algorithms, which
explains why data-driven techniques consist the state-of-the-
art (SOTA) methods in predicting the motion of other road
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Fig. 1. General framework of the proposed method operating on BEV
maps and incorporating VVF into learning-based methods for trajectory
prediction. The trajectory of the TV is predicted while taking into account
the interactions among all vehicles including the TV and SVs within an
observation window of length h.

users for ADS.
Contemporary learning-based motion prediction methods

have widely leveraged convolutional and recurrent techniques
to capture the influence of spatial and temporal interactions
among road users on their future trajectories [4]. Despite
their promising performance in some driving scenarios, these
approaches unfortunately face several challenges. Firstly,
their prediction accuracy severely degrades as the prediction
horizon increases. Secondly, they rely on past state observa-
tions within a specific and usually long period of time, which
limits their ability to appropriately react to actors that have
been only recently detected [5].

In order to address the above shortcomings, this paper pro-
poses a novel hybrid logical-learning method for trajectory
prediction, see Fig. 1 for its block diagram representation.
Similar to the study in [6], a baseline deep neural network
(DNN) is designed to predict future trajectories using a bird’s
eye view (BEV) map of the driving scene. To better capture
the spatio-temporal inter-dependencies among nearby road
users, as well as the semantic information of the drivable
area, the BEV data is further processed to generate an
equivalent velocity vector field (VVF) based on fluid dy-
namics principles. Specifically, each BEV map is associated
with a two-dimensional (2d) VVF that provides the most
likely speed and orientation of a particle for each pixel of
the map. Therefore, the generated vector field helps distil
additional meaningful information from the driving scene
and use that to augment the input to the DNN, so that the
training quality is enhanced and the prediction accuracy is



Fig. 2. An example illustration of a vector field representation for a driving context including a double-lane road and two moving vehicles. In the right
and left columns the vehicle in front (yellow) moves at the same speed and at a lower speed than the vehicle behind (green), respectively. (a) Example
illustration of the driving scenario. (b) The associated generated vector fields (blue arrows) and three sampled streamlines (an example illustration of
predicted trajectories) for the target vehicle (green). (c) and (d) The magnitude of the vector field components in the longitudinal and lateral directions,
respectively.

increased. For instance, Fig. 2 intuitively illustrates how the
VVF information helps distinguish between two different
cases in a double-lane driving scenario. The left-hand side
scenario includes a low-speed moving vehicle in front of the
target vehicle (TV), whereas, both vehicles travel with the
same speed in the right-hand side scenario. The streamlines
starting from cells occupied by the TV are derived from the
equivalent VVF (Fig. 2b), and suggest that the TV is going
to carry out a lane change at the left-hand side scenario and
lane-keeping at the right-hand side situation. This could not
be inferred from traditional BEV inputs in which only the
instantaneous locations and velocities of the two vehicles
would be available to the DNN. The VVF is essentially a
model-based enhancement to the BEV map that allows the
DNN to better understand the current and future interactions
of vehicles in the scene. In summary, the contributions of
this paper are:

• Introducing a novel approach to represent the spatio-
temporal interactions between road users inspired by the
fluid dynamics concept. This is achieved by encoding
the semantic information of the driving context as a fluid
flow simulation and generating a VVF accordingly.

• Developing a novel trajectory prediction method that
combines a convolutional-recurrent DNN with a contin-
uous VVF. This technique results in a notable improve-
ment in trajectory prediction accuracy ranging from
18% to 72% compared to SOTA methods.

• A VVF dataset associated with the publicly available
highD dataset, which can be leveraged by the wider
research community for designing sophisticated data-
driven learning-based methods for trajectory prediction,
decision-making, motion planning and control for ADS.

The rest of this paper is organised as follows: After

reviewing related studies in Section II, the problem, system
model assumptions and proposed method are explained in
Section III. The performance evaluation of the proposed
method is compared with SOTA results in Section IV.
Finally, the key takeaways of this study and highlights for
future work are presented in Section V.

II. RELATED WORK

A review of recent learning-based vehicle trajectory pre-
diction methods has been provided in [7]. This section
reviews existing studies on vehicle trajectory prediction,
focusing on two main aspects: (1) The input representation
used in learning-based prediction, and (2) the type of deep
learning techniques used for vehicle trajectory prediction.

A. Input Representations for Trajectory Prediction

The future trajectory of a target vehicle (TV) depends
on several factors such as its current and previous states,
the interaction with surrounding vehicles (SVs) and the
scene context. Early studies only encoded the TV’s motion
states into the prediction model’s input [8], [9] yielding
accurate short-term predictions, but failing to predict the
TV’s trajectory for longer time horizons. To overcome this
issue, recent studies also encoded the interaction with SVs
as a list of features, such as the relative distance/velocity
between the TV and every SV in the scene [10], [11], [12].
It is also possible to augment the feature list with some
scene context features such as the existence of adjacent
lanes or the lane width [5]. As expected, the main drawback
of these methods lies in the implementation complexity of
the learning model. Similarly, end-to-end approaches that
automatically extract features from raw-sensor data [13],
[14], also suffer from high computational complexity. Kim



et al. [15] addressed this issue by introducing trajectory-
lane features, where the scene context and vehicle features
are jointly learnt per driving lane. Another group of studies
utilised a simplified BEV representation of the environment,
including the scene context and the dynamic agents within
the environment [4], [16], [17]. Deo et al. in [4] utilised a
social grid map where each occupied cell by a vehicle is filled
with the encoded vehicle dynamics using a long short-term
memory (LSTM) network. In [16], a dynamic occupancy grid
is generated from ego-centric point cloud data. Mozaffari et
al. in [7] utilised a stack of BEV images, each representing
the dynamic and static context of the scene at a specific time
step. Similarly, this paper adopts a BEV representation for
the input data, however, we enrich the BEV images with the
generated VVF of the driving environment. While traditional
BEV input representations are usually sparse, unless the road
traffic density is extremely high, the proposed VVF augments
the BEV input with extra information that helps deduce the
TV’s future speed at future locations.

B. Deep Learning Techniques for Trajectory Prediction

Recurrent neural networks, more specifically LSTMs, have
been used in several studies for vehicle trajectory predic-
tion [10], [8], [9]. LSTMs take advantage of feedback loops
for extracting temporal features from sequential input data.
Despite their power in learning the features of sequential
data, they lack a mechanism for spatial features extraction,
which is also required for understanding the spatial interac-
tions for vehicle trajectory prediction problems. Therefore,
several studies utilised deep learning techniques, such as at-
tention mechanisms [18], and convolutional neural networks
(CNNs) [4], [19], often as an addition to LSTMs, to fill
this gap. Messaoud et al. in [18] proposed a multi-head
attention pooling mechanism to extract spatial information
from encoded dynamics of vehicles, while in [4], CNNs
are used to serve the same task. Mukherjee et al. in [19]
utilised convLSTM to extract spatio-temporal features from a
sequence of occupancy grid maps of the driving environment.
Similarly, in this paper, we first use a CNN to extract spatial
features from a sequence of VVF-augmented BEV input
representation. The results are then processed by an LSTM to
extract temporal dependencies. The comparative study shows
that the proposed method can outperform existing SOTA
approaches.

III. PROPOSED FRAMEWORK

This section describes the VVF-based Trajectory Predic-
tion (VVF-TP) framework. It is first discussed how the BEV
input data is processed to generate the associated VVF and
how the latter is fed into the input of the DNN. Afterwards,
the DNN pipeline including a joint convolutional-recurrent
neural network is presented and the learning procedure is
subsequently described.

A. VVF Generation

A boundary-value fluid flow dynamic problem is employed
for encoding the semantic information of the driving context

as a continuous vector field over a 2d drivable area. First,
we explain how this problem is derived, and next, how it is
solved using a numerical method.

1) Formulating fluid flow problem from driving context:
The boundary-value problem is defined using fluid flow
simulation in a structured channel that has the same geometry
with the equivalent drivable area. In our case, four types of
semantic information of the driving context are interpreted
into boundary conditions (BCs) of the fluid flow simulation,
namely the moving vehicles’ velocities, road boundaries,
lane markings, and nominal lane speeds. To consider the
moving vehicles’ velocities, the fluid particle’s velocity at the
cells occupied by vehicles is set equal to the current vehicle
speeds. Since the road boundary, similar to static obstacles,
should be avoided, a no-slip condition is associated with it,
whereas the lane markings should be passable to allow for
lane-change manoeuvres. Accordingly, the porous condition
is applied to the cells corresponding to lane markings so
that the fluid particles could pass the porous barrier in spite
of its resistance. Finally, the input/output velocity at the
fluid channel cross sections is set equal to the nominal
speed (longitudinal) per lane, e.g., 30 m/sec for highways.
After the values of the vector field at the boundaries are
set, the remaining values are determined by solving the
underlying Partial Differential Equations (PDE) that are
known as Navier-Stokes equations [20].

2) Solving the fluid flow problem: While there is no
analytical solution for the boundary-value problem, numeri-
cal methods, proposed in the computational fluid dynamics
literature, can be used to solve for the VVF of the BEV
map. Among all available solutions, the lattice Boltzmann
method (LBM) [21] is adopted, as it can handle BCs with
sophisticated geometries, and it is also easily parallelizable.
Both features make this method suitable for motion predic-
tion applications in ADS, where computational efficiency and
digesting complex driving contexts are key requirements.

In LBM the simulated fluid domain is discretised into
uniformly spaced grids on a lattice (grid cells for the 2d
domain in our case study). After assigning the BCs to the
corresponding grids, the LBM solves the fluid dynamics dif-
ferential equation indirectly and calculates the motion vectors
via two main steps, i.e., propagation (streaming) and collision
(relaxation) of fluid density in the lattice. There are different
ways of connecting adjacent nodes in a lattice which are
called lattice vectors. For instance, the D2Q9 lattice vector
means that the lattice is a 2d grid and each node is connected
to nine surrounding nodes. At each lattice update, the micro-
scopic density is propagated along the lattice vector and the
node densities are updated through the collision process (see
the Appendix for more details). Fig. 2b illustrates the VVF
calculated for the different scenarios depicted in Fig. 2a.
The corresponding longitudinal, Fig. 2c, and lateral, Fig. 2d,
velocities that satisfy the BCs are also depicted. The lattice-
based propagation and collision processes make it possible
to run the LBM on parallel architectures such as graphics
processing units (GPUs) that enable real-time performance.
Sailfish [22] is a well-developed open-source toolbox that



Fig. 3. Structure of the proposed DNN for trajectory prediction. The input comprises the occupancy grid, the longitudinal, Vx, and lateral, Vy , components
(their magnitude) of the generated VVF over the observation length h. The length and width of the BEV images are l and w, respectively.

TABLE I
NETWORK PARAMETERS FOR DIFFERENT LAYERS, INPUT, AND OUTPUT.
THE OBSERVATION LENGTH AND THE PREDICTED TRAJECTORY LENGTH

ARE h AND p, RESPECTIVELY.

Layer Type Output Shape

Input
Initial (h, 3× 32, 256)

Reconstructed (3, h× 32, 256)

GRU
Flatten (h,CNNfeature size)

Recurrent (h, 64)

FC

Flatten (h× 64)

Fx (p)

Fy (p)

Layer Type Configuration
(Filter, Kernel, Stride)

CNN

ReLu(Conv2D) (32, 3, 1)

MaxPool2D (−, 2, 2)

ReLu(Conv2D) (32, 3, 1)

ReLu(Conv2D) (32, 3, 1)

MaxPool2D (32, 3, 1)

ReLu(Conv2D) (32, 3, 1)

MaxPool2D (32, 3, 1)

ReLu(Conv2D) (h, 3, 1)

implements the LBM with flexibility for defining a problem
and incredible computational performance on GPU up to
400 million lattice updates per second (mlups) on GeForce
RTX 3080 Ti. Therefore, if it takes 100 lattice updates to
calculate the VVF for a lattice with 256 × 64 dimensions,
the computation takes only 4.4 ms to complete. Note that the
nominal transmission frequency of the Collective Perception
Messages (CPM) standardised by ETSI is equal to 10 Hz. It
is therefore expected that the EV will receive the perception

obtained by roadside infrastructures equipped with sensors
and wireless connectivity every 100 ms.

B. BEV occupancy grid and VVF data representation

With the generated VVF at hand, this section explains
how the occupancy grid map and the VVF are pre-processed
before being fed into the DNN, see the first two steps at the
left-hand side of Fig. 3: Input and Reconstructed Input. The
occupancy grid consists of pixels (or cells) and represents the
BEV image using ternary values for each pixel, specifically,
(1) for unoccupied cells, (2) for cells occupied by road
participants, and (3) for cells covered by the TV. The VVF is
represented by two float-valued images, with sizes equal to
that of the occupancy grid map, which contain the calculated
longitudinal and lateral velocity for each cell of the map.
At the Input step, one may observe that for each element
of the observation window h, we have vertically stacked
the occupancy grid and the VVF, where w and l denote
the number of pixels representing the width and length of
the BEV map, respectively. At the Reconstructed Input data
preparation step, the input data is transformed into three
spatio-temporal images, where we have concatenated the
observation windows of each image. To the best of our
knowledge, for the first time in the related literature, we
introduce grid time-sequence images in the data preparation
step, enabling the following CNN layers to obtain a more
comprehensive overview of the entire observation time.

The size of the BEV occupancy grid is configured as
32 × 256 pixels. The 20-meter lateral coverage has enough
capacity for the TV’s adjacent participant to be included,
and the 200-meter longitudinal coverage assures enough
space for comprising a complete lane change or overtaking
manoeuvre. The pre-processed input data to the DNN is a
three-channel image of size (h×32×256) representing BEV,
longitudinal and lateral VVF.



C. GRU-CNN Model Design

This section presents the DNN model architecture that
is employed to generate trajectories for the TV using the
pre-processed historical observation data of BEV images
and VVFs. Fig. 3 illustrates the model architecture, wherein
the initial layers comprise CNN layers succeeded by a
Recurrent Neural Network (RNN) encoder. CNNs are widely
acknowledged for extracting image features, and enabling
the identification of spatial patterns through convolution and
pooling operations. Each convolutional layer applies a set of
filters to the input image, producing a collection of feature
maps that capture distinct aspects of the BEV and VVF input
images. Subsequently, the pooling layers downsample the
feature maps while preserving important information. These
layers are succeeded by Gate Recurrent Unit (GRU) layers,
which capture temporal features extracted by the CNN. GRU
layers, similar to LSTM networks extensively employed in
the literature [4], [23], possess fewer parameters to train and
facilitate learning. The GRU layers consist of gated units that
selectively retain or forget information from preceding time
steps, enabling the network to capture sequential information.
Afterwards, to decode the extracted spatio-temporal features
we used fully connected (FC) layers, transferring encoded
feature size into the predicted trajectory for the TV. The
specific architecture and hyper-parameters of the CNN layers
utilised in this study are presented in Table I.

It is worth noting that in the existing literature, it is com-
mon to employ a decoder RNN subsequent to the encoder
GRU. However, in our study, we deliberately omitted this
layer to compel the CNN to comprehend both spatial and
temporal aspects of the provided observation history. This is
accomplished by aligning the output channel number of the
final CNN layer and the encoding GRU layer with the obser-
vation history h. Considering the high computational costs
associated with RNN layers, our study demonstrates that
avoiding an additional decoder GRU layer not only enhances
the overall agility of the architecture but also encourages the
CNN layers to extract spatio-temporal features.

D. Training Process

During the training phase, the DNN estimates the future
trajectory of the TV and compares it with its ground truth
by evaluating the (differentiable) “Huber Loss” function, Lδ ,
which applies a δ threshold to strike a balance between the
Mean Squared Error (MSE) and the Mean Absolute Error
(MAE). Let us define by (xj , yj), j = 1, . . . p the coordinates
of the ground truth trajectory on the BEV map, and by
(x̂j , ŷj) the predicted trajectory on the same coordinate
system. Let us also construct the 2p-dimensional column
vectors of stacked coordinates, i.e., z for the ground truth and
ẑ for the predicted trajectory. Then, the Huber loss function
can be read as:

Lδ =

{
1
2 ||ẑ− z||22, ||ẑ− z||1 ≤ δ.

δ
(
||ẑ− z||1 − δ

2

)
, otherwise.

(1)

While the quadratic nature of MSE magnifies the values
of outliers to avoid them, the MAE weights all errors larger

TABLE II
COMPARING THE TRAJECTORY PREDICTION ERROR IN METERS BASED

ON EQ. (2) FOR VARIOUS METHODS. THE BEST AND SECOND-BEST

RESULTS ARE IN BOLD AND UNDERLINED, RESPECTIVELY.

Methods 1s 2s 3s 4s 5s

CS-LSTM [4] 0.19 0.57 1.16 1.96 2.96

STDAN [24] 0.19 0.27 0.48 0.91 1.66

MMNTP [5] 0.19 0.36 0.56 0.82 1.19

S-LSTM [25] 0.22 0.62 1.27 2.15 3.41

NLS-LSTM [23] 0.22 0.61 1.24 2.10 3.27

VVF-TP 0.12 0.24 0.41 0.66 0.98

than δ on the same linear scale. In practice, our focus lies
on improving the overall trajectory prediction performance
rather than solely mitigating outlier errors. To this end,
intuitively, the Huber Loss function applies MSE to small
error values, which results in amplifying them, and MAE to
large error values, leading the DNN to spend less learning
time to avoid outlier errors.

IV. PERFORMANCE EVALUATION

The performance evaluation of the trajectory prediction
method developed in this article (hereafter referred to as the
VVF-TP) is carried out for highway driving scenarios in two
parts. First, a comparative study to assess the performance
against the SOTA methods, second, an ablation analysis to
show how the VVF and observation window length affect
the prediction performance, separately. In this section, the
selected dataset and the evaluation metrics are explained,
before presenting the quantitative/qualitative performance
evaluation results. During training the parameter δ in the
Huber Loss function in Eq. (1) is set at δ = 1 m, and the
rest of network parameters are given in Table. I.

A. Dataset

The highD dataset has been collected in six different lo-
cations in Germany and contains 110,000 unique trajectories
for various types of vehicles moving on two or three-lane
roads [26]. It has been widely used for evaluating trajectory
prediction performance in highway driving scenarios, as it
covers both heavy and light traffic conditions, which cause
different driving behaviours throughout the dataset. For a fair
comparison of the final results with the SOTA literature, the
highD dataset has been divided into training, testing, and
validation subsets with ratios 70-20-10 %, respectively. The
time granularity between consecutive frames is 0.2 seconds.
It is worth mentioning that the associated VVF to this
dataset using the methodology described in Section III.A
has been made publicly available at https://github.com/Amir-
Samadi/VVF-TP.



TABLE III
COMPARING THE EFFECT OF FOUR DIFFERENT INPUT STATES ON THE RMSE OF THE PREDICTION ERROR. COLUMN x CORRESPONDS TO THE RMSE

OF THE LONGITUDINAL DISTANCE BETWEEN THE TWO TRAJECTORIES, EQ. (3), COLUMN y CORRESPONDS TO THE RMSE OF THE LATERAL DISTANCE

AND COLUMN R TO THE RMSE OF THE DISTANCE, EQ. (2). THE BEST AND SECOND-BEST RESULTS ARE IN BOLD AND UNDERLINED, RESPECTIVELY.

State VVF Long
Obs

1s 2s 3s 4s 5s

x y R x y R x y R x y R x y R

S1 ✗ ✗ 1.53 0.10 1.53 2.84 0.19 2.85 4.14 0.27 4.15 5.44 0.34 5.45 6.73 0.41 6.75

S2 ✗ ✓ 0.28 0.07 0.30 0.57 0.14 0.60 0.93 0.20 0.95 1.36 0.27 1.39 1.86 0.33 1.89

S3 ✓ ✗ 0.25 0.10 0.27 0.48 0.18 0.50 0.76 0.25 0.80 1.12 0.32 1.62 1.56 0.38 1.60

S4 ✓ ✓ 0.17 0.05 0.12 0.22 0.10 0.24 0.39 0.15 0.41 0.63 0.21 0.66 0.94 0.28 0.98

Fig. 4. Comparing the predicted trajectories using different input states for left and right lane-change (right and left column, respectively) for three
consecutive frames (starting from top to bottom) along with the ground truth (GT). The target vehicle (TV) and the surrounding vehicles (SVs) are
coloured green and amber respectively.

B. Evaluation Metrics

Similar to several recent studies, the root mean square er-
ror (RMSE) of the distance between the predicted trajectory
and its ground truth has been used in this paper to measure
the prediction accuracy (the lower the RMSE the better)
of the VVF-TP method. We report the RMSE separately
for the longitudinal (x) and the lateral (y) directions, in
addition to the RMSE of the distance separation between
the two trajectories that are usually reported in the literature.
This allows us to obtain a more in-depth understanding of
how lateral/longitudinal accuracy contributes to the overall
prediction error. The RMSE of the distance between the
predicted trajectory and its ground truth can be written as

RMSE =

√
1
p

p∑
j=1

[
(x̂j − xj)

2
+ (ŷj − yj)

2
]
, (2)

while the RMSE, e.g., at the longitudinal direction, is calcu-
lated as

RMSE =

√
1
p

p∑
j=1

(x̂j − xj)
2
, (3)

and a similar expression can be written for the lateral error.

C. Comparative Results

There are several SOTA methods for trajectory predic-
tion in which the evaluation metrics are reported based on
the highD dataset. These methods can be divided into: (i)
Single-modal prediction models such as the CS-LSTM [4],
S-LSTM [25], and NLS-LSTM [23] that are developed
based on social pooling and LSTM, and (ii) multi-modal
approaches like the STDAN [24] and MMNTP [5] that con-
sider more than one possible manoeuvres. The performance
evaluation using the RMSE calculated in Eq. (2) is presented
in Table II for five timesteps in the future, starting from one
to five seconds with step equal to a second. The VVF-TP
outperforms all other methods for all timesteps. The RMSE
is reduced (on average) by 16 % in all five timesteps with
respect to the second-best result that belongs to the recently
published works in [5], [24].

D. Ablation Analysis

In this section, the impact of augmenting the input data to
the DNN using the generated VVF and the effect of the size
of the observation window (history of past observations for
the target vehicle) on the quality of trajectory prediction are
investigated in detail. Bearing that in mind, the prediction
accuracy using the RMSE calculated in Eq. (2) and Eq. (3)



is evaluated for four different input states S1 to S4. In S1,
the observation window degenerates to the current perception
frame, i.e., h = 1 and the VVF is omitted from the input. The
input state S2 is the same as S1 except that an observation
window of h = 10 frames (or two seconds) is available for
the target vehicle. In S3, the VVF is considered with h = 1
frame and S4 takes into account the VVF and h = 10 frames.

The quantitative and qualitative results for the four states
described in the previous paragraph are given in Table III
and Fig. 4, respectively. According to Table III, the second-
best performance in the longitudinal direction belongs to
S3, whereas S2 performs better in the lateral direction.
The overall prediction performance based on the RMSE
in Eq. (2) is better in S3 than S2 (in four timesteps
out of five) indicating that the inclusion of the VVF in
the input data is more beneficial than a long history of
past observations. Next, according to Fig. 4, S4 predicts
much earlier the lane change trajectory than the other input
configurations suggesting that the combination of the long
observation window with the inclusion of the VVF lead to
the best performance. Moreover, similar to Table III, Fig. 4
illustrates that the S3 incurs larger/smaller prediction errors
in the lateral/longitudinal direction than S2. Finally, adding
a VVF when there is only a single observation available can
significantly improve the longitudinal prediction accuracy
(compare S3 with S1 in Fig. 4-left).

V. CONCLUSION

The results obtained in this study suggest that a nature-
inspired phenomenon such as fluid flow motion has the
potential to be used for modelling the imminent interactions
among road participants, and add meaningful information in
the form of a velocity vector field (VVF) to the conven-
tional bird’s eye view representation of the driving scene.
Accordingly, a learning-based trajectory prediction approach
adapted to digest the new information could achieve higher
performance than the state-of-art methods in short/long-
term prediction horizons. Also, the model’s performance
remains consistent when the number of available past states
of surrounding vehicles decreases, which would prove useful
in driving environments with occlusions.

The proposed prediction model in this study was designed
and tested for highway driving scenarios, however, the same
logic could apply to more generic conditions such as urban
environments. Adapting the proposed model to operate in
complex road segments such as urban intersections and
roundabouts is an important area of future work. Moreover,
regarding practical concerns, the VVF generation process
should operate in real-time to become a part of decision-
making, motion planning and control of an autonomous
vehicle. These limitations should be addressed in a future
study to prove the applicability of the proposed approach in
real-life operations.

APPENDIX

To generate the 2d velocity vector field using the Lattice
Boltzmann Method (LBM) with (D2Q9), each cell in the

Fig. 5. Adjacent lattice cells interaction in the overall D2Q9 grid.

lattice (the BEV map) interacts with eight surrounding cells
plus itself (nine directions) via 2d lattice vectors of unit
magnitude, e⃗i, see Fig. 5. Firstly, the velocity vectors at
the boundary cells are set; Recall from Section III.A the
four boundary conditions used in the fluid flow simulation.
Then, the velocity vector, u⃗, for each of the remaining cells
is initialized, and based on that a density fi, i = 0, . . . 8 is
assigned to each direction ei. The values of (fi, u⃗) for each
cell are iteratively updated until there is no significant change
in the average velocity (< 0.01 m/s) for all cells and the
boundary conditions including speed limits are also satisfied.
Each iteration consists of the following two steps:

Streaming step: Adjacent cells exchange the densities
between opposite vectors. For instance, in Fig. 5 cell A
interacts with cells B and C by exchanging density via{
fA
5 ← fB

5 , fA
1 → fB

1

}
and

{
fA
6 ← fC

6 , fA
2 → fC

2

}
pairs,

respectively.
Collision step: This is executed in each cell separately.

First, the equilibrium density is calculated using nine den-
sities and their contributing weights (ωi). Subsequently, the
nine densities and the cell’s velocity vector are updated using
Eq. 4 below (order matters).

feq
i = ωiρ

[
1 + 3 (e⃗i · u⃗)− 3

2 (u⃗ · u⃗) +
9
2 (e⃗i · u⃗)

2
]
,

fi = fi + (feq
i − fi)/τ ,

ρ =
8∑

i=0

fi,

u⃗ =
8∑

i=0

fie⃗i.

(4)

According to [22], the updating weights for stationary
(e⃗0), diagonal (e⃗i, i ∈ {2, 4, 6, 8}), and orthogonal (e⃗i, i ∈
{1, 3, 5, 7}) directions are 4

9 , 1
36 and 1

9 , respectively. Finally,



in fluid flow simulations, τ is the update rate obtained from
the kinematic viscosity property of the fluid which has been
set equal to 0.003 in this study. It should be noted that at
each iteration update, the velocity vectors corresponding to
the boundary conditions are set equal to the boundary values.
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