
warwick.ac.uk/lib-publications

A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:

http://wrap.warwick.ac.uk/179156

Copyright and reuse:

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to cite it.

Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/179156
mailto:wrap@warwick.ac.uk

Exact Bayesian Inference for
Diffusion-based Models

A thesis submitted in partial fulfilment of the requirements for the degree
of Doctor of Philosophy in Statistics (Research)

by Timothée Stumpf-Fétizon
Department of Statistics, University of Warwick

December 2022

Contents

1 Introduction 1
1.1 Summary of Thesis . 4
1.2 Conventions . 5
1.3 Symbols . 6

2 MCMC Methods for Intractable Likelihood Models 7
2.1 A Very Short Introduction to Markov Chain Monte Carlo 8

2.1.1 Accept-Reject MCMC . 10
2.1.2 Metropolis-Hastings Kernel . 12
2.1.3 Barker Kernel . 13

2.2 Augmented MCMC . 13
2.2.1 Gibbs Sampling and Model Parameterization 14
2.2.2 Pseudo-Marginal MCMC . 17

2.3 Bernoulli Factory MCMC . 20
2.3.1 2-Coin Barker Algorithm . 21
2.3.2 Portkey Barker Algorithm . 22

2.4 Assessing MCMC Performance . 23
2.5 Discussion . 24

3 Data Augmentation for Stochastic Differential Equations 25
3.1 Diffusion Processes as SDE Solutions . 25
3.2 Theory and Properties of Itō Diffusions 27

3.2.1 Markov Property and Likelihood 27
3.2.2 Quadratic Variation . 28
3.2.3 Itō’s Formula and Closure under Transformation 28
3.2.4 Change of Volatility and the Lamperti Transform 29
3.2.5 Change of Drift and the Girsanov Theorem 30

3.3 Complete Transition Density . 32
3.4 Alternative Dominating Measures . 34
3.5 Approximate Simulation and Estimation 35

4 Retrospective Simulation and Estimation 37
4.1 Sample Path Simulation . 38

4.1.1 Poisson Coin . 39
4.1.2 Exact Algorithm . 40
4.1.3 Batch EA . 44

ii

Contents

4.2 Transition Density Estimation . 44
4.2.1 Poisson Estimator . 45
4.2.2 Auxiliary Transition Density . 46

4.3 Simulation of Lower Bounded Brownian Bridges (EA2) 48
4.3.1 Simulating the Brownian Bridge Minimum 48
4.3.2 Filling in the Lower Bounded Bridge 49

4.4 Simulation of Bounded Brownian Bridges (EA3) 51
4.4.1 Probabilities as Alternating Cauchy Sequences 52
4.4.2 Simulating the Brownian Bridge Bounds 53
4.4.3 Filling in the Bounded Bridge . 57
4.4.4 Layer Refinement . 57

4.5 Discussion . 58

5 Exact Inference for Itō Diffusion Models 60
5.1 Data Augmentation Strategy . 62

5.1.1 Standing Assumptions and Complete Transition Density 63
5.1.2 Marginal Noncentered Transition Density 64
5.1.3 Auxiliary Noncentered Transition Density 67

5.2 Marginal Algorithm . 68
5.2.1 Retrospective Simulation . 69
5.2.2 Parameter Update . 69
5.2.3 Bridge Update . 72

5.3 Auxiliary Algorithm . 73
5.3.1 Retrospective Simulation . 74
5.3.2 Parameter Update . 75
5.3.3 Bridge and Poisson Process Update 76

5.4 Approximate Algorithm . 77
5.4.1 Parameter Update . 78
5.4.2 Bridge Update . 78

5.5 MAP and Maximum Likelihood Estimation 79
5.5.1 Log Transition Density Estimation 79
5.5.2 E-Step . 80
5.5.3 M-Step . 80
5.5.4 Standard Error Estimation . 80

5.6 Bayesian Prediction . 81
5.7 Bayesian Model Evaluation . 82
5.8 Simulation Study . 83

5.8.1 Extension Regime . 85
5.8.2 Infill Regime . 87

5.9 Discussion . 88

6 Exact Inference for Markov Switching Diffusion Models 90
6.1 Data Augmentation Strategy . 92

6.1.1 Standing Assumptions and Complete Transition Density 93

iii

Contents

6.1.2 Marginal Noncentered Transition Density 94
6.1.3 Auxiliary Noncentered Transition Density 96

6.2 Simulation of Markov Jump Processes . 97
6.2.1 Transition and Stationary Distribution 98
6.2.2 Forward and Backward Simulation 99
6.2.3 Rejection Bridge Simulation . 99
6.2.4 Direct Bridge Simulation . 100
6.2.5 Uniformized Bridge Simulation . 101

6.3 Marginal Algorithm . 103
6.3.1 Diffusion Parameter Update . 104
6.3.2 Regime Parameter Update . 105
6.3.3 Independence Hidden Data Update 106
6.3.4 Conditional Hidden Data Update 108

6.4 Auxiliary Algorithm . 111
6.4.1 Diffusion Parameter Update . 112
6.4.2 Regime Parameter Update . 112
6.4.3 Independence Hidden Data Update 113
6.4.4 Conditional Hidden Data Update 113

6.5 Approximate Algorithm . 114
6.5.1 Diffusion Parameter Update . 115
6.5.2 Regime Parameter Update . 115
6.5.3 Independence Hidden Data Update 115
6.5.4 Conditional Hidden Data Update 116

6.6 MAP Estimation . 117
6.6.1 Log Transition Density Estimation 117
6.6.2 E-Step . 118
6.6.3 M-Step . 118
6.6.4 Standard Error Estimation . 119
6.6.5 Avoiding Absorbing States . 120

6.7 Simulation Study . 120
6.7.1 Extension Regime . 123
6.7.2 Infill Regime . 125

6.8 Demonstration: Weak Mean Reversion for T-Bill Spreads 126
6.9 Discussion . 131

7 Approximate Inference for Stochastic Volatility Diffusions 133
7.1 Inference Strategy . 134
7.2 Latent Diffusion Approximation and Local Consistency 136
7.3 Complete Transition Density . 138
7.4 Markov Jump Processes with Tridiagonal Generators 139

7.4.1 Linear Solve and Stationary Distribution 140
7.4.2 Eigendecomposition and Bridge Simulation 141

7.5 Marginal Algorithm . 141
7.5.1 Diffusion Parameter Update . 142

iv

Contents

7.5.2 Regime Parameter Update . 142
7.5.3 Hidden Data Update . 143

7.6 Simulation Studies and Discussion . 143

8 Automatic Implementation of Retrospective Algorithms 148
8.1 A Very Short Introduction to Symbolic Computation 148
8.2 A Simple Recursive Bound Generator . 149
8.3 Bounding the Path Integrand . 151
8.4 Specifying the CIR Process in Sympy . 151

v

List of Figures

1.1 Example trajectory from a mean-reverting diffusion process. The process
is driven down from its starting value by a negative drift which subsides
once it reaches a smaller value. We discretely observe the process at the
labeled locations. 1

1.2 Example trajectory from Markov switching diffusion process. The pro-
cess switches to a different regime at the halfway mark, upon which it
exhibits larger volatility. This change in regime could be identified from
the observations at the labeled locations. 2

2.1 Variate of a Markov chain with stationary distribution N [0, 1], started
from 𝜃(0) = 4. The black line shows the ergodic average and the dark
shaded area the empirical 90% interval which estimates the 90% credible
interval. The first 10 iterations in the red shaded area are not included in
the computation of the statistics to reduce the bias from the initialization
(burn-in). 8

2.2 Ergodic averages of 16 variates of a Markov chain with stationary distri-
bution N [0, 1], started from 𝜃(0) = 4. The range of the ergodic averages
narrows with the runtime. 10

2.3 Trajectory of a Metropolis Markov chain exploring a bivariate standard
Gaussian distribution. The size of the marker corresponds to the number
of rejections at the location. The black circle contains a 90% credibility
region. 11

2.4 100 iterations of the centered Gibbs sampler of Example 2 with 𝑎 = 0,
𝜎 = 1 and 𝜏 = 1 (left) or 𝜏 = 1/5 (right), initialized at (2, 2). The
right panel shows a run of the noncentered Gibbs sampler for 𝜏 = 1/5
of Example 3 in the original space (𝐵, Θ). Mixing is degraded by the
increase in the fraction of missing information from left to middle. The
black circles contain 90% credibility regions. 17

2.5 Graph of the hierarchical linear model in CP (left) and NCP (right). . . 17
2.6 100 iterations of the centered (left) and noncentered (right) Gibbs sampler

of Examples 2 and 3 with 𝑎 = 0, 𝜎 = 1 and 𝜏 = 1/5, initialized at (2, 2).
The noncentered run is shown in the original space (𝐵, Θ). The black
circles contain 90% credibility regions. 18

vi

List of Figures

2.7 Contrasting a marginal (blue) and a pseudo-marginal (orange) trace plot
for the model 𝐴𝑖|𝑏𝑖 ∼ N [𝑏𝑖, 1], 𝐵𝑖|𝜃 ∼ N [𝜃, 1], 𝜋(𝜃) ∝ 1, with number of
data points ̂𝚤 = 1 (left) and ̂𝚤 = 10. Both samplers use the same proposal
for Θ. The relative performance of the pseudo-marginal algorithm quickly
degrades with ̂𝚤. 19

2.8 Probability flow diagram of the vanilla 2-coin algorithm. Nodes (𝐹0, 𝐹1,
𝐹2) refer to coin flips, edges give the probabilities of moving to the corre-
sponding node. 21

2.9 Probability flow diagram of the portkey 2-coin algorithm. Nodes (𝐸, 𝐹0,
𝐹1, 𝐹2) refer to coin flips, edges give the probabilities of moving to the
corresponding node. 22

3.1 Illustration of the Girsanov theorem in action. The plotted paths were
sampled from the Wiener measure, and colored according to the Radon-
Nikodym derivative of the measure induced by the OU process d𝑋𝑡 =
−𝑋𝑡 d𝑡 + d𝑊𝑡 against the Wiener measure. Since the OU process reverts
to 0, paths that deviate farther from 0 have lower RND. 31

4.1 Illustration of the exact algorithm. The left panel shows the Brownian
bridge skeleton and an implicit sample of the full path 𝑥[0,𝜔]. The right
panel shows the corresponding integrand path and a sample of the Poisson
process Ψ. epi 𝜑(𝑥[0,𝜔]) is shaded red. Since none of the points fall into
epi 𝜑(𝑥[0,𝜔]), the skeleton is accepted. 41

4.2 Illustration of the Poisson coin algorithm in the EA2 setting. The left
panel shows the Brownian bridge skeleton and an implicit sample of the
full path 𝑥[0,𝜔]. The right panel shows the corresponding integrand path
and a sample of the Poisson process Ψ. epi 𝜑(𝑥[0,𝜔]) is shaded red. Since
some of the points fall into epi 𝜑(𝑥[0,𝜔]), the skeleton is rejected. Both
panels show the location of the bridge minimum/integrand maximum in
blue. 42

4.3 Illustration of the minimum skeleton (left), and its refinement after densely
interpolating the bridge (right). The green line has to be attained at some
point. As we interpolate more finely, we accumulate information on where
it is attained. 51

4.4 Illustration of the alternating Cauchy sequence coin simulation algorithm.
The dividing horizontal line is randomly drawn between 0 and 1. If the
sequence stabilizes in the green region, the coin comes up heads, and vice
versa. The event is determined by the time the sequence reaches the blue
element. 52

5.1 Plate diagram for the marginal noncentered model. 64

vii

List of Figures

5.2 Illustration of a noncentered and a centered path, and the propagation
of the noncentered to the centered path bounds. The blue-shaded area
corresponds to the set to which we bound the noncentered 𝑍 and the
centered 𝑋. While the uniform bounds on 𝑍 imply linear bounds bounds
on 𝑋, we uniformize the bounds on 𝑋 for simplicity. The red and green-
shaded area correspond to the slack of the uniformized bounds on 𝑋.
. 65

5.3 Plate diagram for the auxiliary noncentered model. 67
5.4 Input time series for the extension regime, generated according to the

logistic growth model with parameters (𝛽, 𝜅, 𝜌) = (1, 1, 1/8). The darkest
region corresponds to the smallest input series, with lighter regions being
appended successively to obtain the larger input series. 83

5.5 Input time series for the infill regime, generated according to the logistic
growth model with parameters (𝛽, 𝜅, 𝜌) = (1, 1, 1/8). The lightest dots
correspond to the slowest observation frequency, with darker dots filled in
to obtain the higher observation frequencies. 84

5.6 Sampling efficiency in the extension regime for the auxiliary (blue) and
marginal (orange) algorithms. The left panel shows the distribution of
CPU time per iteration (T/I) throughout the MCMC run. The medium
panel shows estimates of the required number of MCMC iterations to
generate an effective sample (I/ES), where each dot corresponds to an
element of Θ, and the square to the fit metric defined in (5.98). The right
panel shows estimates of the required CPU time to generate an effective
sample (T/ES). Notice that the right panel is obtained by scaling the
middle panel by the mean of the distributions in the left panel. 86

5.7 Trace plots of Θ for the 800-observation time series in the extension regime
for the auxiliary (blue) and marginal (orange) algorithms. 86

5.8 Trace plot of (5.98) for the 800-observation time series in the extension
regime for the auxiliary (blue) and marginal (orange) algorithms. 87

5.9 Posterior marginals of Θ in the extension regime, as estimated by a KDE.
Darker shades correspond to a larger observation number. 87

5.10 Sampling efficiency in the infill regime for the auxiliary (blue) and marginal
(orange) algorithms. The left panel shows the distribution of CPU time
per iteration (T/I) throughout the MCMC run. The medium panel shows
estimates of the required number of MCMC iterations to generate an ef-
fective sample (I/ES), where each dot corresponds to an element of Θ, and
the square to the fit metric defined in (5.98). The right panel shows esti-
mates of the required CPU time to generate an effective sample (T/ES).
Notice that the right panel is obtained by scaling the middle panel by the
mean of the distributions in the left panel. 88

5.11 Trace plots of Θ for the 800-observation time series in the infill regime for
the auxiliary (blue) and marginal (orange) algorithms. 88

5.12 Trace plot of (5.98) for the 800-observation time series in the infill regime
for the auxiliary (blue) and marginal (orange) algorithms. 89

viii

List of Figures

5.13 Posterior marginals of Θ in the infill regime, as estimated by a KDE.
Darker shades correspond to a larger observation number. 89

6.1 Illustration of a mean switching and a volatility switching time series.
The left series follows d𝑉𝑡 = (1/8)(𝑉𝑡(1 − 𝑉𝑡/𝜅𝑌𝑡

) d𝑡 + d𝑊𝑡) where 𝜅1 = 1
(blue) and 𝜅2 = 2 (orange). The right series follows d𝑉𝑡 = 𝜌𝑌𝑡

(𝑉𝑡(1 −
𝑉𝑡) d𝑡 + d𝑊𝑡), where 𝜌1 = 1/8 (blue) and 𝜌2 = 1/2 (orange). We observe
the diffusion discretely. 91

6.2 Illustration of the regime trajectory corresponding to Figure 6.1. 91
6.3 Plate diagram for the marginal noncentered model. 𝑉 ̇𝜏 and 𝑉 ̈𝜏 may be

observed or latent, depending on whether ̇𝜏 , ̈𝜏 ∈ 𝑠. 94
6.4 Plate diagram for the auxiliary noncentered model. 𝑉 ̇𝜏 and 𝑉 ̈𝜏 may be

observed or latent, depending on whether ̇𝜏 , ̈𝜏 ∈ 𝑠. 96
6.5 Jump-hold construction of a 2-state Markov jump process. State holding

times are distributed exponentially. 97
6.6 Input time series for the extension regime, generated according to the

switching logistic growth model with parameters (𝛽0, 𝜅0, 𝜌0) = (1, 1/2, 1/8)
and (𝛽1, 𝜅1, 𝜌1) = (1, 1, 1/8). The blue line corresponds to the trajectory
of 𝑉 when in state 1, and the orange to state 0. The darkest region cor-
responds to the smallest input series, with lighter regions being appended
successively to obtain the larger input series. 120

6.7 Input time series for the infill regime, generated according to the switch-
ing logistic growth model with parameters (𝛽0, 𝜅0, 𝜌0) = (1, 1/2, 1/8) and
(𝛽1, 𝜅1, 𝜌1) = (1, 1, 1/8). The lightest dots correspond to the slowest ob-
servation frequency, with darker dots filled in to obtain the higher obser-
vation frequencies. 121

6.8 Sampling efficiency in the infill regime for the auxiliary (blue) and marginal
(orange) algorithms. The left panel shows the distribution of CPU time
per iteration (T/I) throughout the MCMC run. The middle panel shows
estimates of the required number of MCMC iterations to generate an ef-
fective sample (I/ES), where each dot corresponds to an element of Θ and
Λ, and the squares to the miscellaneous posterior summaries defined in
(6.138) and following. The right panel shows estimates of the required
CPU time to generate an effective sample (T/ES). Notice that the right
panel is obtained by scaling the middle panel by the mean of the distri-
butions in the left panel. 123

6.9 Trace plots of Θ and Λ for the 800-observation time series in the extension
regime for the auxiliary (blue) and marginal (orange) algorithms. We plot
the y-axis on the log scale due to the heavy tails of the posterior. 124

6.10 Trace plot of various posterior summaries for the 800-observation time se-
ries in the extension regime for the auxiliary (blue) and marginal (orange)
algorithms. 124

ix

List of Figures

6.11 Posterior marginals of Θ and Λ in the extension regime, as estimated by
a KDE. Darker shades correspond to a larger observation number. We
plot the y-axis on the log scale due to the heavy tails of the posterior. . . 125

6.12 Sampling efficiency in the infill regime for the auxiliary (blue) and marginal
(orange) algorithms. The left panel shows the distribution of CPU time
per iteration (T/I) throughout the MCMC run. The middle panel shows
estimates of the required number of MCMC iterations to generate an ef-
fective sample (I/ES), where each dot corresponds to an element of Θ and
Λ, and the squares to the miscellaneous posterior summaries defined in
(6.138) and following. The right panel shows estimates of the required
CPU time to generate an effective sample (T/ES). Notice that the right
panel is obtained by scaling the middle panel by the mean of the distri-
butions in the left panel. 126

6.13 Trace plots of Θ and Λ for the 800-observation time series in the infill
regime for the auxiliary (blue) and marginal (orange) algorithms. We
plot the y-axis on the log scale due to the heavy tails of the posterior. . . 127

6.14 Trace plot of various posterior summaries for the 800-observation time
series in the infill regime for the auxiliary (blue) and marginal (orange)
algorithms. 127

6.15 Posterior marginals of Θ and Λ in the infill regime, as estimated by a
KDE. Darker shades correspond to a larger observation number. We plot
the y-axis on the log scale due to the heavy tails of the posterior. 128

6.16 (Top) Time series of T-Bill spreads. (Bottom) Stacked posterior regime
probabilities Pr [𝑌𝑡 = 𝑖|𝑣𝑠], as inferred by the MCMC algorithm. 128

6.17 Trace plots of 𝜌𝑖 for the exact MCMC algorithm. These are the parameters
that mix most slowly. 128

6.18 Comparison of the posterior marginals of 𝜌𝑖 for the exact MCMC algo-
rithm and the approximate algorithm with various rates of data impu-
tation per day. These are the parameters for which the approximate
algorithm exhibits the largest bias. 129

6.19 Comparison of autocorrelation functions of 𝜌𝑖 for the exact MCMC algo-
rithm and the approximate algorithm with various rates of data imputa-
tion per day. These are the parameters that mix most slowly. 129

6.20 Posterior marginals of the elements of 𝜃 for the exact MCMC algorithm. 130

7.1 Example trajectory from the Heston model with (blue) d𝑉𝑡 = 𝑉𝑡√𝑈𝑡 d𝑊 𝑉
𝑡

and (orange) d𝑈𝑡 = (1 − 𝑈𝑡) d𝑡 + √𝑈𝑡 d𝑊 𝑈
𝑡 134

7.2 Illustration of approximating a trajectory of 𝑈 (|𝒢| = ∞) by a step func-
tion on 𝒢 for different resolutions. 136

7.3 Plate diagram for the approximate Stochastic volatility class considered in
this chapter. 𝑉 ̇𝜏 and 𝑉 ̈𝜏 may be observed or latent, depending on whether
̇𝜏 , ̈𝜏 ∈ 𝑠. 138

x

List of Figures

7.4 Input time series 𝑣𝑠 (blue) and unknown volatility series 𝑢 (orange) for the
grid resolution (|𝒢|) regime, generated according to the Tanh-gCIR model
with parameters (𝜇𝑉 , 𝛽𝑉) = (0, 1) and (𝜇𝑈 , 𝛽𝑈 , 𝜌𝑈 , 𝛾𝑈) = (1, 1, 1, .75). . . 143

7.5 Sampling efficiency in the grid resolution regime. The left panel shows
the distribution of CPU time per iteration (T/I) throughout the MCMC
run. The middle panel shows estimates of the required number of MCMC
iterations to generate an effective sample (I/ES), where dots refer to el-
ements of Θ and diamonds to Ξ. Notice that the right panel is obtained
by scaling the middle panel by the mean of the distributions in the left
panel. 145

7.6 Trace plots of Θ and Ξ for |𝒢| = 64. 146
7.7 Posterior marginals of Θ and Ξ in the grid resolution regime, as estimated

by a KDE. Darker shades correspond to a larger |𝒢|. 147
7.8 Posterior marginals of 𝜌(𝑌𝑡) in the grid resolution regime. The solid col-

ored lines denote the posterior median, and shading in decreasing opacity
denotes 50%, 75% and 87.5% credibility intervals, respectively. The solid
black line corresponds to the ground truth volatility trajectory. 147

xi

Acknowledgements

I am grateful to my academic supervisors Krzysztof Łatuszyński and Gareth Roberts,
for their imaginative and confident guidance.

I would also like to to recognize Omiros Papaspiliopoulos for setting me on this journey,
and my fellow travelers Ian Hamilton, Santhosh Narayanan and Simon Gansinger, for
their good company in times of upheaval.

xii

Declaration of Authenticity

I hereby declare that this thesis is the result of my own work and research, except
where otherwise indicated. This thesis has not been submitted for examination to any
institution other than the University of Warwick.

xiii

Abstract

We develop methods to carry out Bayesian inference for diffusion-based continuous-
time models, formulated as stochastic differential equations (SDEs). The transition
density implied by such SDEs is intractable, which complicates likelihood-based inference
from discrete observations. In spite of this obstacle, we seek methods that are exact in
the sense that they target the correct posterior distribution, in contrast to prevailing
discretization approaches.

We begin by discussing the main approaches to likelihood-based inference under in-
tractability, and their application to diffusion-based models. This discussion is followed
by a presentation of the fundamental inference algorithms for ordinary Itō diffusion
inference, of computational difficulties they meet in practice, and of recent improve-
ments motivated by our research on more complex diffusion-based models. These include
Markov switching diffusions and stochastic volatility models, where a latent continuous-
time process modifies the dynamics of an observable diffusion process. We follow up
by developing Markov chain Monte Carlo (MCMC) and Monte Carlo Expectation Max-
imization (MCEM) inference algorithms for the more complex settings, and evaluate
them systematically. We close with a discussion of practical hurdles to adoption of
exact algorithms, and propose solutions to overcome those hurdles.

xiv

1 Introduction

All will be revealed, retrospectively.

Mathematical models for data that evolves randomly and continuously in time have be-
come increasingly popular across different scientific disciplines since the 1940s, when the
foundations of Stochastic calculus were laid for the analysis of such models. Collectively,
these models are known as diffusion processes. In many cases, practical diffusion models
arise as the limiting case of models originally formulated in discrete time. Examples in-
clude models in mathematical finance [19], genetics [113, 86], physics [121] and chemistry
[50].

We will be interested in models that can be described, at least for some finite time, as
stochastic differential equations (SDEs) of form

d𝑉𝑡 = 𝜇(𝑉𝑡) d𝑡 + 𝜎(𝑉𝑡) d𝑊𝑡, (𝑡 ∈ [0, 𝜔]) (1.1)

where 𝑊 is a Brownian motion on the canonical filtered probability space

(Ω = 𝒞[0, 𝜔], ℱ = ℬ(𝒞[0, 𝜔]), {ℱ𝑡 ∶ 𝑡 ∈ [0, 𝜔]} , 𝕎) , (1.2)

with 𝒞[0, 𝜔] being the set of continuous functions on [0, 𝜔], {ℱ𝑡 ∶ 𝑡 ∈ [0, 𝜔]} the natural
filtration of 𝑊 , and 𝕎 the Wiener measure induced by 𝑊 . 𝑉𝑡 takes values in an interval
𝒱 ⊆ 𝐑 for some instantaneous drift function 𝜇 ∶ 𝒱 → 𝐑 and instantaneous volatility
function 𝜎 ∶ 𝒱 → [0, ∞).

t

0

v t

v0

v1
v2

v3

v4

v5

t

0

µ
(v

t)

Figure 1.1: Example trajectory from a mean-reverting diffusion process. The process is
driven down from its starting value by a negative drift which subsides once
it reaches a smaller value. We discretely observe the process at the labeled
locations.

1

1 Introduction

An SDE is a concise representation of the stochastic integral equation

𝑉𝑡 − 𝑉0 = ∫
𝑡

0
𝜇(𝑉𝑢) d𝑢 + ∫

𝑡

0
𝜎(𝑉𝑢) d𝑊𝑢, (𝑡 ∈ [0, 𝜔]) (1.3)

but it also provides intuition on why such models are attractive from an applied perspec-
tive. A person wishing to describe a stochastic process in continuous time will often find
it easiest to reason about it based on its local behavior, with 𝜇 describing the strength
and direction of deterministic forces affecting the process, and 𝜎 describing the strength
of the randomness, depending on where the process happens to be. In particular, 𝜇 can
be used to describe attractive or repulsive regions of 𝒱, and induce mean reversion. To
strip away the complexities of the continuous time formalism, we can also reason about
SDEs in terms of the discrete approximation

𝑉𝑡 − 𝑉0 = 𝜖𝜇(𝑉0) +
√

𝑡𝜎(𝑉0)(𝑊𝑡 − 𝑊0), (𝑡 ∈ [0, 𝜔]) (1.4)

known as the Euler-Maruyama approximation to the SDE. The SDE may then be seen
as the limit of the approximation as 𝑡 → 0. It is clear that for a fixed step size 𝑡,
the discrete equation describes a Markov process with a transition density 𝜋(𝑣𝑡|𝑣0).
Analogously, under appropriate regularity conditions on 𝜇 and 𝜎 [96], an SDE defines
a continuous-time Markov process with a transition density 𝜋(𝑣𝑡|𝑣0) for any positive 𝑡.
We call such a process a diffusion process. We will take a particular interest in Markov
switching diffusion models, where we allow for SDEs of form

d𝑉𝑡 = 𝜇(𝑉𝑡, 𝑌𝑡) d𝑡 + 𝜎(𝑉𝑡, 𝑌𝑡) d𝑊𝑡, (1.5)

where 𝑌𝑡 takes a discrete number of values. This allows for exogenous, discrete breaks
in 𝜇 and 𝜎 and therefore in the behavior of the process.

t

v t

v0 v1
v2

v3

v4

v5

Figure 1.2: Example trajectory from Markov switching diffusion process. The process
switches to a different regime at the halfway mark, upon which it exhibits
larger volatility. This change in regime could be identified from the obser-
vations at the labeled locations.

In scientific practice, both drift and volatility are often parameterized as 𝜇𝜃 and 𝜎𝜃 by
a vector of free parameters 𝜃. This naturally raises the question of how to infer those
parameters based on discretely observed data. Standard statistical methodology relies on
evaluating the likelihood of the observed data under a given model. Within the Bayesian

2

1 Introduction

framework, given a discrete set of observation times 𝑠 and the corresponding observation
{𝑉𝑠 = 𝑣𝑠}, the posterior density over 𝜃 is given by

𝜋(𝜃|𝑣𝑠) =

prior
⏞𝜋(𝜃)

likelihood
⏞⏞⏞⏞⏞⏞⏞⏞⏞∏(̇𝑠∼ ̈𝑠)∈𝑠 𝜋(𝑣 ̈𝑠|𝑣 ̇𝑠, 𝜃)

∫ 𝜋(𝜃′) ∏(̇𝑠∼ ̈𝑠)∈𝑠 𝜋(𝑣 ̈𝑠|𝑣 ̇𝑠, 𝜃′) d𝜃′
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

prior predictive

, (1.6)

where the notation (̇𝑠 ∼ ̈𝑠) ∈ 𝑠 is to be understood as iterating over neighbouring ordered
pairs in 𝑠, the transition density 𝜋(𝑣 ̈𝑠|𝑣 ̇𝑠, 𝜃) is now parameterized by 𝜃, and the factoriza-
tion of the likelihood is due to the Markov property. The prior predictive density (also
known as marginal likelihood or evidence) typically follows from an intractable integra-
tion problem with respect to 𝜃, and therefore most of the field of Bayesian computation
seeks to approximate 𝜋(𝜃|𝑣𝑠) without requiring evaluations of the denominator. We say
that a computational method is exact or computationally consistent if that method pro-
vides arbitrarily accurate answers as its computational budget increases. Discretizing
the model as in (1.4) is not an exact method for any given 𝜖 since the discretization
introduces a bias into the posterior distribution. The diffusion context poses a particu-
lar challenge to the application of exact computational frameworks because for all but
a small class of diffusion processes, the transition density 𝜋(𝑣 ̈𝑠|𝑣 ̇𝑠, 𝜃) is implied by the
SDE, but not explicitly available for evaluation. Accordingly, if we wish to estimate the
parameters of such an intractable diffusion model, we have the option of either extending
exact methods appropriately, or of renouncing exact methods entirely, and resorting to
discretization schemes such as (1.4). We see two main reasons for persisting with exact
methods:

• The magnitude of the bias in approximate methods is difficult to predict. Accord-
ingly, practitioners may have to run an inference algorithm with various choices of
step size 𝜖, hoping that the inference eventually stabilizes.

• Assuming that both step size and Monte Carlo sample size are increased at an
optimal rate, the best approximate methods have an asymptotic mean square
error of more than 𝒪 [1/√

computational budget], which is the rate of exact Monte
Carlo methods under favorable conditions.

To the extent that the exact methods studied here may be thought of as adaptive,
randomized discretization methods, they can also be more parsimonious than methods
with fixed step sizes, allocating effort to the most difficult part of the diffusion. Indeed,
for many diffusion models, drift or volatility are highly variable on some parts of the
trajectory, increasing the error of discretization methods, and less variable in others,
where discretization performs better. The exact methods shift their effort to those
highly variable parts of the trajectory, while often allocating no additional effort to the
stable parts. The downside of the exact methods is that they build on theoretical aspects
of diffusions that would not be essential to addressing the question of inference diligently
if the transition density could be evaluated. Conversely, static discretization methods

3

1 Introduction

are conceptually simple, and require only limited knowledge of the theory of diffusions
to be developed and deployed. This thesis puts exact methods front and center, though
it includes approximate methods for the purpose of benchmarking the exact ones, or as
a stepping stone to exact methods.

1.1 Summary of Thesis

Overall, the contributions of the thesis fall along two lines:

• On the one hand, the development of more practical, reliable and scalable algo-
rithms for basic Itō diffusion inference by building on novel and existing method-
ology. In particular, the thesis contains the first algorithms for exact Bayesian
inference in Itō diffusions that do not require user-specified tunings, and only a
few lines of code for customization by the user.

• On the other hand, the development of algorithms for broader and more challenging
classes of diffusion models by leveraging our refinements for Itō diffusions. In
particular, the thesis contains the first practical algorithms for exact Bayesian
inference in Markov switching diffusions and an algorithm for Bayesian inference
in fully continuous time stochastic volatility models.

With some exceptions, Chapters 2-4 of the thesis are mostly background material, while
the fifth has original elements that factor into the development of the fully original
Chapters 6-8. The structure of the thesis is as follows:

• The second chapter introduces generic approaches to exact inference when the
likelihood is intractable, in particular the approach of data augmentation, to obtain
an extended, tractable model.

• The third chapter provides the necessary theoretical background on diffusion mod-
els to apply the intractable likelihood inference principles to diffusions.

• The fourth chapter provides methods that address the infinite dimensional nature
of diffusion paths, based on the principle of retrospective simulation. These include
the family of exact (simulation) algorithms.

• The fifth chapter applies the background material to develop model-agnostic, self-
tuned and robust algorithms for exact Bayesian diffusion inference.

• The sixth chapter takes insights from the ordinary diffusion case and extends them
to build exact Bayesian inference algorithms for Markov switching diffusions.

• The seventh chapter presents an approximate representation of Stochastic volatility
models as Markov switching diffusions, and leverages the methodology of the sixth
chapter to construct a Bayesian inference algorithm.

4

1 Introduction

• The eight chapter addresses some previously challenging aspects of implementing
exact simulation and inference algorithms, and shows how to automate them.

1.2 Conventions

Throughout the thesis, these conventions are adhered to:

• Random variables and events are written in uppercase (𝐴), random variates and
most other deterministic objects in lowercase (𝑎).

• Measures are written in blackboard bold (𝔸). 𝔸|𝐶 is the measure 𝔸 conditioned
on the event 𝐶. For a random variable 𝐵, 𝔸|𝑏 is a shorthand for 𝔸| {𝐵 = 𝑏}. For
better readability, we write 𝔸|𝑏[𝐷] to evaluate 𝔸|𝑏 at the event 𝐷.

• For a discrete random variable 𝐴, 𝜋(𝑎) denotes the probability mass function of 𝐴
at the variate 𝑎, i.e. Pr [𝐴 = 𝑎]. For a continuous random variable 𝐵, 𝜋(𝑏) denotes
the probability density function of 𝐵 at the variate 𝑏.

• For a set or function 𝑎, ̌𝑎 = inf 𝑎 and ̂𝑎 = sup 𝑎.

• For a set or function 𝑎, 𝑎↓ ≤ ̌𝑎 and 𝑎↑ ≥ ̂𝑎 are lower and upper bounds on 𝑎,
respectively.

• Similarly, when indexing a set with an integer index 𝑘, e.g. 𝑎 = {𝑎𝑘 ∶ 𝑘 = 1, … , �̂�},
�̂� refers to the cardinality |𝑎|. When using a continuous index 𝑡, ̂𝑡 refers to the
upper end of the indexing interval.

• For a time-indexed set 𝑎 = {𝑎𝑡 ∶ 𝑡 ∈ [0, ∞)} and a set of times 𝑏 ⊂ [0, ∞), 𝑎𝑏
denotes {𝑎𝑡 ∶ 𝑡 ∈ 𝑏}.

• For three sets 𝑎, 𝑏, 𝑐 such that 𝑎 ⊆ 𝑏 and a function 𝑓 ∶ 𝑏 → 𝑐, 𝑓(𝑎) denotes the
application of 𝑓 to each element in 𝑎.

• As mentioned above, (̇𝑎 ∼ ̈𝑎) ∈ 𝑎 denotes an iteration over the neighbouring pairs
in the ordered set 𝑎.

• N [𝑎; 𝑏, 𝑐] is the Gaussian density function with variate 𝑎, mean 𝑏 and variance 𝑐.

• For continuous paths 𝑧 and intervals 𝑎 ∈ 𝐑, we may abuse notation by under-
standing 𝑧 ⊆ 𝑎 to mean ⋂𝑡 {𝑧𝑡 ∈ 𝑎}, i.e. 𝑧 is bounded within 𝑎.

5

1 Introduction

1.3 Symbols

Though many symbols do not have fixed definitions across different chapters, the fol-
lowing definitions apply throughout the thesis:

• 𝑡 is a time index. 𝜔 is the “end of continuous time”.

• 𝑉 is a generic diffusion process and 𝑣 a variate of the process. 𝜇 is the instantaneous
drift, 𝜎 the instantaneous volatility. Its state space is denoted 𝒱.

• 𝑋 = 𝜂(𝑉) is the reduced or Lamperti transformed analogue of 𝑉 and 𝑥 = 𝜂(𝑣) is
a variate of the process. 𝛿 is the instantaneous drift. Its state space is denoted 𝒳.

• 𝑊 is the Wiener process and 𝑤 is a variate of the process.

• 𝑠 is a set of observation times.

• Θ is a vector of unknown parameters, 𝜃 is a variate thereof. 𝒯 denotes the corre-
sponding parameter space.

• 𝑌 is a discrete space, continuous time Markov jump process with state space 𝒴.

• For a set 𝑎, ℬ(𝑎) is the Borel 𝜎-algebra generated by all the open sets in 𝑎.

6

2 MCMC Methods for Intractable
Likelihood Models

We proceed with a more careful investigation of how the intractable transition density
of diffusion models complicates Bayesian inference, and explore strategies to overcome
that difficulty. The discussion applies more broadly to complex, intractable models, and
we therefore adopt the generic setting where we infer a vector of unknowns Θ with prior
distribution 𝜋(𝜃) on 𝒯 ⊆ 𝐑𝑑 from an observational event {𝐴 = 𝑎} with model 𝜋(𝑎|𝜃),
yielding the posterior density

𝜋(𝜃|𝑎) = 𝜋(𝑎|𝜃)𝜋(𝜃)
∫ 𝜋(𝑎|𝜃′)𝜋(𝜃′) d𝜃′⏟⏟⏟⏟⏟⏟⏟

𝜋(𝑎)

(2.1)

with respect to the Lebesgue measure. In most cases, the integral 𝜋(𝑎) in the denomina-
tor is not analytically solvable, precluding the exact evaluation of posterior summaries,
generally expressed as

E [𝑓(Θ)|𝑎] = ∫ 𝑓(𝜃) 𝜋(𝑎|𝜃)𝜋(𝜃)
∫ 𝜋(𝑎|𝜃′)𝜋(𝜃′) d𝜃′ d𝜃, (2.2)

for integrable test functions 𝑓 with respect to the posterior measure. This basic difficulty
motivates the field of Bayesian computation, which seeks to reliably approximate the
intractable integrals. The essential insights from the theory of numerical integration
carry over to this setting: quadrature methods work well for low-dimensional unknowns,
but suffer from the curse of dimensionality, an exponential slowdown with the dimension
of Θ. The main approach to Bayesian computation is the Monte Carlo method, where
samples (𝜃(1), … , 𝜃(�̂�)) are generated from the posterior, and E [𝑓(Θ)|𝑎] is approximated
by its unbiased estimator �̂�−1 ∑�̂�

𝑘=1 𝑓(𝜃(𝑘)). The variance of the estimator is in principle
invariant in the dimension of Θ, which explains the popularity of Monte Carlo methods
in solving high-dimensional Bayesian inference problems. The reader may consult [104]
for the bird’s-eye view on Monte Carlo methods.

In this thesis, we strongly emphasize Markov Chain Monte Carlo (MCMC) algorithms,
which are briefly introduced in Section 2.1. MCMC substitutes the global problem of
normalization - how likely is an outcome relative to the entirety of outcomes - for a
local problem which merely requires knowledge of the relative likelihood of any two
outcomes. It offers great flexibility in exploiting this locality, and in fortuitous cases

7

2 MCMC Methods for Intractable Likelihood Models

delivers on the CLT’s “promise” to lift the curse of dimensionality. The flexibility of
the framework is both a feature and a bug - it allows for various strategies to adapt to
individual problems, but it will often fail unless these degrees of freedom are exploited
well. Decades of practice and theory have resulted in much knowledge of how to best
adapt the framework to difficult sampling problems, and adopting the framework allows
us to benefit from that knowledge in addressing our specific problem. The purpose of
this chapter is to provide an overview of the possibilities that MCMC offers, and to
justify the higher-order choices that we make in the light of those possibilities.

The introduction serves to emphasize the problems that arise in the MCMC setting when
the transition density is unavailable. Sections 2.2 and 2.3 introduce workarounds to the
intractable likelihood problem. Section 2.4 discusses how to assess the computational
efficiency of such workarounds. Finally, Section 2.5 draws conclusions for the specific
diffusion inference problem and sets out the strategy going forward.

2.1 A Very Short Introduction to Markov Chain Monte Carlo

0 10
k

−2

0

2

4

θ(
k
)

200 400 600 800 1000
k

Figure 2.1: Variate of a Markov chain with stationary distribution N [0, 1], started from
𝜃(0) = 4. The black line shows the ergodic average and the dark shaded area
the empirical 90% interval which estimates the 90% credible interval. The
first 10 iterations in the red shaded area are not included in the computation
of the statistics to reduce the bias from the initialization (burn-in).

Since direct sampling methods are usually only available for analytically tractable pos-
teriors, the development of indirect posterior sampling methods is the core challenge
of Bayesian computation. Nonetheless, the definitions and methods of this chapter can
be applied regardless of the specific objective and notation of Bayesian statistics, so we
will consider the general task of sampling from any distribution 𝜋(𝜃) on 𝒯. One ap-
proach to indirect sampling, known as Markov Chain Monte Carlo, is to construct a
tractable Markov kernel 𝑃(𝜃, d𝜃†) with limiting distribution 𝜋(𝜃). The Markov chain
(𝜃(1), … , 𝜃(�̂�)) is then simulated for �̂� steps, an example of which is shown in Figure 2.1,

8

2 MCMC Methods for Intractable Likelihood Models

and the expectation w.r.t. 𝜋(𝜃) is approximated by the ergodic average

1
�̂�

�̂�
∑
𝑘=1

𝑓(𝜃(𝑘)). (E [𝑓(Θ)] < ∞) (2.3)

There are various requirements for a “good” Markov chain - simulation of 𝑃(𝜃, d𝜃†)
should be easy, but it should also quickly “forget its past”. Equivalently, the 𝑘-transition
kernel 𝑃 𝑘(𝜃, 𝜗) should quickly approach Pr [Θ ∈ 𝜗] for any starting value 𝜃 and any
measurable set 𝜗 ∈ ℬ(𝒯). To make this notion precise, we may apply various concepts
from the theory of Markov chains, see e.g. [91]. One popular metric of proximity between
the 𝑘-kernel and the stationary distribution is the total variation distance, which in this
instance is given by

∣𝑃 𝑘(𝜃, ⋅) − 𝜋∣TV = sup𝜗∈ℬ(𝒯) ∣𝑃 𝑘(𝜃, 𝜗) − 𝜋(𝜗)∣ , (2.4)

i.e. the distance is low if the 𝑘-step Markov chain and the stationary distribution assigns
similar probabilities to all Borel sets. We call the kernel geometrically ergodic if this
distance eventually decays exponentially fast, i.e.

∣𝑃 𝑘(𝜃, ⋅) − 𝜋∣TV = 𝒪(𝛾−𝑘). (𝛾 ∈ (0, 1), 𝑘 ≥ 𝑐, 𝑐 < ∞) (2.5)

If a geometric bound can be obtained for sup𝜃∈𝒯 ∣𝑃 𝑘(𝜃, ⋅) − 𝜋∣TV, the Markov chain is
said to be uniformly ergodic. If on top of being geometrically ergodic 𝑃 is reversible or
in detailed balance, i.e.

𝜋(d𝜃)𝑃 (𝜃, d𝜃†) = 𝜋(d𝜃†)𝑃 (𝜃†, d𝜃), (𝜃, 𝜃† ∈ 𝒯) (2.6)

then the ergodic average satisfies the Markov chain central limit theorem (MCCLT).

Theorem 1 (Markov chain central limit theorem (e.g. [91])). Let 𝑃 be a geometrically
ergodic Markov kernel on 𝒯, and {Θ(𝑘)}𝑘 a Markov chain following 𝑃 . Then, for square-
integrable functions such that E [𝑓2(Θ)] < ∞, the ergodic averages are asymptotically
normally distributed, i.e.

√�̂� ⎛⎜
⎝

�̂�−1
�̂�

∑
𝑘=1

𝑓(Θ(𝑘)) − E [𝑓(Θ)]⎞⎟
⎠

⇒ N [0, 𝜎2
𝑓] (E [𝑓2(Θ)] < ∞) (2.7)

for some finite asymptotic variance 𝜎2
𝑓 .

See Figure 2.2 for an illustration of the MCCLT in action. Since the variance of a Monte
Carlo estimate under independent sampling is �̂�−1 Var [𝑓(Θ)], the ratio 𝜎2

𝑓/ Var [𝑓(Θ)]
captures the efficiency of the algorithm in estimating the expectation of 𝑓 . Ideally, 𝜎2

𝑓
does not increase exponentially as the dimension of Θ increases, since that would return
us to the curse of dimensionality. Good MCMC algorithms are often domain-specific,

9

2 MCMC Methods for Intractable Likelihood Models

0 200 400 600 800 1000
k

−1.0

−0.5

0.0

0.5

1.0

1.5

k̄
−
1

k̄ ∑ k
=
1

θ(
k
)

Figure 2.2: Ergodic averages of 16 variates of a Markov chain with stationary distribution
N [0, 1], started from 𝜃(0) = 4. The range of the ergodic averages narrows
with the runtime.

but abide by a set of principles shaped by a large body of theory and practice, see e.g.
[22] for a comprehensive volume and [54] for a summary of the start of the art.

An important reason for the popularity of MCMC is that it is often easier to target
a high-dimensional distribution by a sequence of simple, local moves, as opposed to
designing a one-shot proposal, as in rejection sampling or importance sampling, which
usually suffers from the curse of dimensionality. Even local computations are difficult in
the intractable likelihood context, since they typically consist of evaluating the odds

𝜋(𝜃†)
𝜋(𝜃) (2.8)

for some pair of values (𝜃, 𝜃†). Therefore, we cannot immediately apply standard MCMC
techniques to target 𝜋(𝜃). Various strategies exist to surmount this problem, some more
conventional and others more exotic. Part of the goal of this thesis is to investigate the
appeal of the more exotic techniques. We continue by elaborating on the importance of
the odds for MCMC simulation, and follow up with a discussion of techniques that avoid
their direct evaluation. This will set the stage for the more specific case of inference for
diffusion models.

2.1.1 Accept-Reject MCMC

While there are many ways of constructing kernels 𝑃(𝜃, d𝜃†) with limiting distribution
𝜋(𝜃), the most generic recipe is to first generate a candidate value from some simple
proposal kernel 𝑄(𝜃, d𝜃†) = 𝜅(𝜃†|𝜃) d𝜃†. This value is then accepted with probability

𝛼𝛽(𝜃, 𝜃†) = 𝛽 (𝜋(𝜃†)
𝜋(𝜃)

𝜅(𝜃|𝜃†)
𝜅(𝜃†|𝜃)) (2.9)

10

2 MCMC Methods for Intractable Likelihood Models

−2 0 2
Θ1

−2

−1

0

1

2

Θ
2

Figure 2.3: Trajectory of a Metropolis Markov chain exploring a bivariate standard Gaus-
sian distribution. The size of the marker corresponds to the number of re-
jections at the location. The black circle contains a 90% credibility region.

for an appropriate balancing function 𝛽 ∶ [0, ∞] → [0, 1], and rejected otherwise, such
that the Markov chain remains at 𝜃. Notice that any intractable normalizing constant
in 𝜋(𝜃) cancels out, so the acceptance probability can be computed without knowledge
of the normalizing constant. The corresponding Markov kernel is

𝑃(𝜃, d𝜃†) = 𝛼𝛽(𝜃, 𝜃†)𝑄(𝜃, d𝜃†) + 𝛿𝜃(d𝜃†) ∫(1 − 𝛼𝛽(𝜃, 𝜃†))𝑄(𝜃, d𝜃†), (2.10)

where 𝛿𝜃 is the point mass at 𝜃. We assume that 𝑃 is irreducible, i.e. any part of
the support of 𝜋(𝜃) can be reached with positive probability by the resulting Markov
chain. This is easily ensured by choosing 𝑄 such that it support overlaps with 𝜋. In
addition, 𝑃 has to be aperiodic, which roughly corresponds to the stronger condition
that the Markov chain can reach any part of the support of 𝜋(𝜃) at any iteration.
Furthermore, if 𝛽 is chosen such that 𝑃 is reversible, the Markov chain induced by 𝑃
has 𝜋(𝜃) as its stationary and limiting distribution. The reader may consult [119] for
an extensive technical discussion of those aspects. Figure 2.3 provides an illustration
of an accept-reject Markov chain. For our purposes, two choices of 𝛽 are relevant:
The standard Metropolis-Hastings kernel, and the Barker kernel, which has specific
virtues in the intractable likelihood setting. The reader may also refer to [120] for a
more extensive discussion of balancing functions, and to [62] for an alternative view on
balancing functions, in which they serve to construct a continuous-time Markov chain.

11

2 MCMC Methods for Intractable Likelihood Models

Algorithm 1 Accept-reject MCMC targeting 𝜋(𝜃) with proposal density 𝜅(𝜃†|𝜃), bal-
ancing function 𝛽.

repeat
𝜃† ∼ 𝜅(𝜃†|𝜃)
𝑢 ∼ Uniform [0, 1]
𝛼𝛽(𝜃, 𝜃†) ← 𝛽 (𝜋(𝜃†)

𝜋(𝜃)
𝜅(𝜃|𝜃†)
𝜅(𝜃†|𝜃))

if 𝛼𝛽(𝜃, 𝜃†) ≤ 𝑢 then
𝜃 ← 𝜃†

until ∞

2.1.2 Metropolis-Hastings Kernel

The Metropolis-Hastings algorithm, which originates with [89] and [58], is by far the
most popular accept-reject algorithm. It consists of accepting the proposal 𝜃† with
probability

𝛼MH(𝜃, 𝜃†) = min [1, 𝜋(𝜃†)
𝜋(𝜃)

𝜅(𝜃|𝜃†)
𝜅(𝜃†|𝜃)] . (2.11)

For a given proposal kernel 𝑄 and candidate 𝜃†, 𝛼MH is the largest acceptance prob-
ability which preserves reversibility. [99, 118] showed that maximizing the acceptance
probability results in the optimal reversible algorithm, in the following sense.

Theorem 2 (Peskun ordering [99, 118]). Let 𝑃(𝜃, d𝜃†) be an accept-reject Markov kernel
targeting 𝜋(𝜃) with proposal kernel 𝑄(𝜃, d𝜃†) = 𝜅(𝜃†|𝜃) d𝜃† and acceptance probability

𝛼𝛽(𝜃, 𝜃†) = 𝛽 (𝜋(𝜃†)
𝜋(𝜃)

𝜅(𝜃|𝜃†)
𝜅(𝜃†|𝜃)) . (𝛽 ∶ [0, ∞] → [0, 1]) (2.12)

Suppose 𝑄 and 𝛽 are chosen such that 𝑃 is irreducible, aperiodic and reversible. Then,
𝛽(𝑏) = min [1, 𝑏] minimizes the asymptotic variance of the ergodic average �̂�−1 ∑�̂�

𝑘=1 𝑓(Θ(𝑘))
for any square-integrable 𝑓.

The Peskun ordering justifies the enduring dominance of the Metropolis-Hastings choice.
Nonetheless, the implication that the Metropolis kernel dominates any other assumes
that the acceptance decision is reached with the same computational effort for all
choices.

12

2 MCMC Methods for Intractable Likelihood Models

2.1.3 Barker Kernel

The Barker algorithm, which originates with [9], consists of accepting 𝜃† with probabil-
ity

𝛼B(𝜃, 𝜃†) = 𝜋(𝜃†)𝜅(𝜃|𝜃†)
𝜋(𝜃†)𝜅(𝜃, 𝜃†) + 𝜋(𝜃)𝜅(𝜃†, 𝜃)

= (𝜋(𝜃†)
𝜋(𝜃)

𝜅(𝜃|𝜃†)
𝜅(𝜃†|𝜃)) / (1 − 𝜋(𝜃†)

𝜋(𝜃)
𝜅(𝜃|𝜃†)
𝜅(𝜃†|𝜃)) .

(2.13)

It is easy to see that 𝛼B ≤ 𝛼MH, thus Barker’s algorithm is suboptimal in the Peskun
sense. Nevertheless, the difference in acceptance probability is at most within a factor
of 2:

2−1𝛼MH(𝜃, 𝜃†) ≤ 𝛼B(𝜃, 𝜃†) ≤ 𝛼MH(𝜃, 𝜃†). (2.14)
As shown by [80], that implies a bound on the relative inefficiency of the Barker algorithm
versus the Metropolis algorithm, given by the following theorem.

Theorem 3 (Barker variance bound [80]). Suppose that the test function 𝑓 is square-
integrable with respect to 𝜋(𝜃), and that the Metropolis algorithm with proposal 𝑄 admits a
Monte Carlo CLT for E [𝑓(Θ)], with asymptotic variance 𝜎2

MH. Then, Barker’s algorithm
with the same proposal admits a Monte Carlo CLT as well, with asymptotic variance 𝜎2

B
that satisfies

𝜎2
MH ≤ 𝜎2

B ≤ 2𝜎2
MH + Var [Θ] . (2.15)

Hence, it is guaranteed not to be “substantially worse”, and Section 2.3.1 shows how the
intractable likelihood setting can contravene the preference of the Peskun ordering for
the MH algorithm.

2.2 Augmented MCMC

For the rest of this section, we return to the specific task of targeting from a Bayesian
posterior 𝜋(𝜃|𝑎). Having introduced the framework of accept-reject MCMC, it is clear
that we cannot compute the acceptance probability when 𝜋(𝑎|𝜃) is intractable. A time-
tested workaround is to find an unbiased estimator of the likelihood, i.e. a random
variable 𝐵 and an extended, tractable model 𝜋(𝑏, 𝑎|𝜃) such that

𝜋(𝑎|𝜃) = ∫ 𝜋(𝑎, 𝑏|𝜃)ℚ(d𝑏), (2.16)

where ℚ is an appropriate dominating measure. The random variable 𝐵 is variably
known as the missing data, latent variable or auxiliary variable, depending on the specific
statistical context. We may then devise an algorithm that targets

𝜋(𝜃, 𝑏|𝑎) ∝ 𝜋(𝑎|𝑏, 𝜃)𝜋(𝑏|𝜃)𝜋(𝜃). (2.17)

13

2 MCMC Methods for Intractable Likelihood Models

The key insight is that the algorithm indirectly targets the marginal 𝜋(𝑎|𝜃) as well: For
a posterior sample {(𝜃(1), 𝑏(1)), … , (𝜃(�̂�), 𝑏(�̂�))}, the marginal chain over Θ is distributed
according to 𝜋(𝜃|𝑎). This approach is pervasive in computational statistics and often
referred to as (missing) data augmentation.

Example 1 (Exponential mixture of Weibulls). Suppose that

𝐴|𝑏 ∼ Weibull [𝑏, 𝑘] , 𝐵|𝜃 ∼ Exp [𝜃] . (𝑘, 𝜃 > 0) (2.18)

Then the marginal distribution 𝜋(𝑎|𝜃) = ∫ Weibull [𝑎; 𝑏, 𝑘] Exp [𝑏; 𝜃] d𝜃 is an intractable
integral, but the joint 𝜋(𝑎, 𝑏|𝜃) = Weibull [𝑎; 𝑏, 𝑘] Exp [𝑏; 𝜃] can easily be evaluated.

We will generally refer to an algorithm targeting the extended posterior 𝜋(𝜃, 𝑏|𝑎) as an
augmented algorithm, and to an algorithm targeting 𝜋(𝜃|𝑎) as a marginal algorithm.
Two generic frameworks to design augmented algorithms are known as Gibbs sampling
and Pseudo-marginal MCMC, which we explore in the following sections. A common
theme with augmented algorithms is that they generate estimates with larger asymp-
totic variance than the hypothetical marginal chain, though exceptions exist, see e.g.
[117]. Alternatively, in the case of Bayesian inference for diffusion models, it is pos-
sible to target 𝜋(𝜃|𝑎) directly, but at a computational cost per MCMC iteration that
is larger than for an algorithm targeting 𝜋(𝜃, 𝑏|𝑎). This potentially induces a tradeoff
between the computational cost per iteration of the algorithm, and the statistical effi-
ciency of carrying out such an iteration. This tradeoff is one of the key methodological
subjects of investigation of this thesis. Due to the centrality of the subject, we proceed
with an abstract presentation of the main techniques for constructing augmented and
marginal algorithms in the intractable likelihood setting. Their properties will motivate
key choices in the design of algorithms for Bayesian diffusion inference.

2.2.1 Gibbs Sampling and Model Parameterization

One of the key paradigms in MCMC, known as Gibbs sampling [46, 24], consists of
partitioning the target space, and updating the elements of that partition in sequence,
conditional on all other elements. In the instance of targeting 𝜋(𝜃, 𝑏|𝑎), we partition
(Θ, 𝐵) into its elements Θ and 𝐵. Given the starting values (𝜃(𝑘), 𝑏(𝑘)), we obtain the
update by way of

Θ(𝑘+1) ∼ 𝜋(𝜃|𝑏(𝑘), 𝑎) ∝ 𝜋(𝑎|𝑏(𝑘), 𝜃)𝜋(𝜃), (2.19)
𝐵(𝑘+1) ∼ 𝜋(𝑏|𝜃(𝑘+1), 𝑎) ∝ 𝜋(𝑎|𝑏, 𝜃(𝑘+1))𝜋(𝑏|𝜃(𝑘+1)). (2.20)

The distributions 𝜋(𝜃|𝑏, 𝑎) and 𝜋(𝑏|𝜃, 𝑎) are called the full conditional distributions. The
corresponding transition kernel has 𝜋(𝜃, 𝑏|𝑎) as its stationary and limiting distribution
[44]. This applies for any random or deterministic ordering of full conditional updates

14

2 MCMC Methods for Intractable Likelihood Models

(random vs. deterministic scan), as long as all the full conditionals are updated at every
iteration of the algorithm [115]. For many models, sampling from those full conditionals
is easy or even trivial - therefore, Gibbs sampling is an example of the divide-and-conquer
principle in action.

Algorithm 2 Deterministic scan Gibbs sampler with 𝐵-Θ blocking for posterior density
𝜋(𝜃, 𝑏|𝑎), initial value (𝜃, 𝑏).

repeat
𝜃 ∼ 𝜋(𝜃|𝑏, 𝑎)
𝑏 ∼ 𝜋(𝑏|𝜃, 𝑎)

until ∞

Example 2 (Linear hierarchical model in centered parameterization). For the following
“centered” hierarchical model

𝐴|𝑏 ∼ N [𝑏, 𝜎2] , 𝐵|𝜃 ∼ N [𝜃, 𝜏2] , 𝜋(𝜃) ∝ 1. (2.21)

a valid Gibbs sampler consists of the updates

𝐵|𝑎, 𝜃 ∼ N [(𝜎−2𝑎 + 𝜏−2𝜃)/(𝜎−2 + 𝜏−2), 1/(𝜎−2 + 𝜏−2)] , (2.22)
Θ|𝑎, 𝑏 ∼ N [𝑏, 𝜏2] . (2.23)

In other instances, even the full conditionals 𝜋(𝜃|𝑏, 𝑎) and 𝜋(𝑏|𝜃, 𝑎) cannot be sampled
directly. Even so, we may update each of those by way of an accept-reject step (with
respective proposals 𝜅(𝜃†|𝜃, 𝑏) and 𝜅(𝑏†|𝑏, 𝜃)) that is invariant for the conditional model.
Such a procedure still has the correct limiting distribution. Indeed, a Metropolis-within-
Gibbs proposal can be seen as a conventional Metropolis proposal that only changes
one coordinate at a time. If that coordinate is chosen randomly, the Metropolis-within-
Gibbs proposal still fulfills all the requirements laid out in Section 2.1.1. Iterating a
MwG update gives a full conditional update in the limit, therefore it is asymptotically
equivalent to a pure Gibbs update. Conversely, the pure Gibbs update, e.g. to 𝜋(𝜃|𝑏, 𝑎),
is a Metropolis-within-Gibbs update with proposal 𝜅(𝜃|𝑏) = 𝜋(𝜃|𝑏, 𝑎) and acceptance
probability 1:

min [1, 𝜋(𝑎, 𝜃†|𝑏)
𝜋(𝑎, 𝜃|𝑏)

𝜅(𝜃|𝜃†)
𝜅(𝜃†|𝜃)] = min [1, 𝜋(𝑎, 𝜃†|𝑏)

𝜋(𝑎, 𝜃|𝑏)
𝜋(𝜃|𝑏, 𝑎)
𝜋(𝜃†|𝑏, 𝑎)]

= min [1, 𝜋(𝜃†|𝑏, 𝑎)
𝜋(𝜃|𝑏, 𝑎)

𝜋(𝜃|𝑏, 𝑎)
𝜋(𝜃†|𝑏, 𝑎)] = 1

(2.24)

Metropolis-within-Gibbs samplers are particularly attractive in computational terms
when we find ourselves in the conditional independence setting where 𝑎 and 𝑏 are ̂𝚤-
dimensional, and 𝜋(𝑎, 𝑏|𝜃) = ∏ ̂𝚤

𝑖=1 𝜋(𝑎𝑖|𝑏𝑖, 𝜃)𝜋(𝑏𝑖|𝜃). Then, the latent variable update
factorizes:

𝜋(𝑏|𝑎, 𝜃) =
̂𝚤

∏
𝑖=1

𝜋(𝑏𝑖|𝑎𝑖, 𝜃) (2.25)

15

2 MCMC Methods for Intractable Likelihood Models

Hence, the Metropolis-within-Gibbs updates to 𝐵𝑖 can be carried out independently. The
efficiency of the full update to 𝐵 does not suffer from the usual curse of dimensionality
that affects accept-reject updates, and little is lost from doing dependent rather than
independent Gibbs updates!

Just as data augmentation, Gibbs sampling is a tremendously useful technique, and the
two are often complimentary. Nevertheless, Gibbs samplers are known to exhibit poor
performance when the elements of the partition exhibit strong posterior dependence. In
the augmentation context, 𝐵 and Θ are highly dependent whenever the missing data 𝐵
is substantially more informative about Θ than 𝐴 - the effect of the unknown dominates
the effect of the known. In the terminology of [82, 97], Gibbs samplers for augmented
posteriors fail when the fraction of missing information is very large. Figure 2.4 gives an
example of lowered efficiency in the presence of a large fraction of missing information
in the hierarchical linear model context.

Definition 1 (Bayesian fraction of missing information [82, 97]). Consider a joint model
𝜋(𝑎, 𝑏, 𝜃) and a square-integrable test function 𝑓 ∶ 𝒯 → 𝐑. We define the Bayesian
fraction of missing information by

𝛾𝑓 = 1 − E [Var [𝑓(Θ)|𝑎, 𝑏]
Var [𝑓(Θ)|𝑎] |𝑎] , (Var [𝑓(Θ)|𝑎] < ∞) (2.26)

and note that the fraction is 1 if 𝜋(𝜃|𝑎, 𝑏) is singular. The maximal correlation coefficient
is defined by

𝛾 = sup
𝑓∶Var[𝑓(Θ)|𝑎]<∞

𝛾𝑓 , (2.27)

and corresponds to the geometric rate of convergence in (2.5), assuming that geometric
ergodicity holds.

This effect is particularly strong in the Bayesian diffusion inference context, where the
fraction can be 1 [108]! One remedy is to reparameterize the model by way of a map
𝐶 = 𝑓(𝐵, Θ), such that 𝐶 and Θ are a priori independent, i.e. 𝜋(𝑐, 𝜃) = 𝜋(𝑐)𝜋(𝜃).
(𝐶, Θ) is known as a noncentered parameterization (NCP) of the model, as opposed
to the centered parameterization (CP) (𝐵, Θ) [43, 97]. Gibbs samplers that target the
noncentered posterior typically perform well when the fraction of missing information is
large.

Example 3 (Linear hierarchical model in noncentered parameterization). Consider the
linear hierarchical model defined in Example 2, and define 𝐶 = 𝐵 − Θ. Then, an
equivalent formulation of the model in noncentered parameterization is given by

𝐴|𝑐, 𝜃 ∼ N [𝜃 + 𝑐, 𝜎2] , 𝐶 ∼ N [0, 𝜏2] , 𝜋(𝜃) ∝ 1. (2.28)

16

2 MCMC Methods for Intractable Likelihood Models

−2.5 0.0 2.5
B

−4

−2

0

2

4

Θ

−2.5 0.0 2.5
B

−4

−2

0

2

4

Θ

Figure 2.4: 100 iterations of the centered Gibbs sampler of Example 2 with 𝑎 = 0, 𝜎 = 1
and 𝜏 = 1 (left) or 𝜏 = 1/5 (right), initialized at (2, 2). The right panel
shows a run of the noncentered Gibbs sampler for 𝜏 = 1/5 of Example 3 in
the original space (𝐵, Θ). Mixing is degraded by the increase in the fraction
of missing information from left to middle. The black circles contain 90%
credibility regions.

The corresponding noncentered Gibbs sampler consists of the updates

𝐶|𝑎, 𝜃 ∼ N [𝜎−2(𝑎 − 𝜃)/(𝜎−2 + 𝜏−2), 𝜎−2/(𝜎−2 + 𝜏−2)] , (2.29)
Θ|𝑎, 𝑐 ∼ N [𝑎 − 𝑐, 𝜎2] . (2.30)

In particular, this algorithm has a geometric rate of convergence bounded away from 1
as 𝛾 → 1.

𝐴 𝐵 Θ 𝐴𝐶 Θ

Figure 2.5: Graph of the hierarchical linear model in CP (left) and NCP (right).

Figure 2.6 shows how the noncentered Gibbs sampler outperforms the centered Gibbs
sampler in a large fraction of missing information setting. In fact, the settings where
centered and noncentered Gibbs samplers perform well are somewhat complimentary,
particularly for the hierarchical linear model. Nonetheless, there are instances where
posterior dependence within both (𝐵, Θ) and (𝐶, Θ) is large, and attempts have been
made to generate synergies between the strategies [126]. Even so, in some instances no
parameterization achieves good performance, and Gibbs sampling is not a panacea.

2.2.2 Pseudo-Marginal MCMC

In instances where no parameterization of the model results in a satisfactory Gibbs sam-
pler, an algorithm that jointly updates (𝐵, Θ) can exhibit better performance. Such

17

2 MCMC Methods for Intractable Likelihood Models

−2.5 0.0 2.5
B

−4

−2

0

2

4

Θ

−2.5 0.0 2.5
B

−4

−2

0

2

4

Θ

1Figure 2.6: 100 iterations of the centered (left) and noncentered (right) Gibbs sampler
of Examples 2 and 3 with 𝑎 = 0, 𝜎 = 1 and 𝜏 = 1/5, initialized at (2, 2).
The noncentered run is shown in the original space (𝐵, Θ). The black circles
contain 90% credibility regions.

algorithms are often referred to as pseudo-marginal algorithms [11, 4], in that they rep-
resent an approximation to marginal algorithms. A candidate pair (𝑏†, 𝜃†) is generated
according to the proposal kernel 𝑄({𝑏, 𝜃} , {d𝑏†, d𝜃†}) = 𝜅(𝑏†, 𝜃†|𝜃, 𝑏)ℚ(d𝑏†) d𝜃† and ac-
cepted with probability

𝛼𝛽({𝑏, 𝜃} , {𝑏†, 𝜃†}) = 𝛽 (𝜋(𝑎|𝑏†, 𝜃†)
𝜋(𝑎|𝑏, 𝜃)

𝜋(𝑏†|𝜃†)
𝜋(𝑏|𝜃)

𝜋(𝜃†)
𝜋(𝜃)

𝜅(𝜃, 𝑏|𝑏†, 𝜃†)
𝜅(𝑏†, 𝜃†|𝜃, 𝑏)) , (2.31)

where 𝛽 could correspond either to a Metropolis or Barker balancing function. This is
merely accept-reject MCMC on an extended spate space, therefore, the resulting Markov
chain has limiting distribution 𝜋(𝑏, 𝜃|𝑎). The main difference lies in the fact that 𝐵 is
typically high-dimensional, matching 𝐴, while Θ is usually of low and fixed dimension.

Algorithm 3 Accept-reject pseudo-marginal MCMC for posterior density 𝜋(𝑏, 𝜃|𝑎), pro-
posal density 𝜅(𝑏†, 𝜃†|𝜃, 𝑏), balancing function 𝛽, initial value 𝜃.

repeat
𝑏†, 𝜃† ∼ 𝜅(𝑏†, 𝜃†|𝜃, 𝑏)
𝑢 ∼ Uniform [0, 1]
𝛼𝛽({𝑏, 𝜃} , {𝑏†, 𝜃†}) = 𝛽 (𝜋(𝑎|𝑏†,𝜃†)

𝜋(𝑎|𝑏,𝜃)
𝜋(𝑏†|𝜃†)
𝜋(𝑏|𝜃)

𝜋(𝜃†)
𝜋(𝜃)

𝜅(𝜃,𝑏|𝑏†,𝜃†)
𝜅(𝑏†,𝜃†|𝜃,𝑏))

if 𝛼𝛽({𝑏, 𝜃} , {𝑏†, 𝜃†}) ≤ 𝑢 then
𝑏, 𝜃 ← 𝑏†, 𝜃†

until ∞

Where 𝜋(𝑏|𝜃) is tractable, a standard choice is to set the proposal kernel 𝑄({𝑏, 𝜃} , {d𝑏†, d𝜃†}) =
𝜋(𝑏†|𝜃†)𝜅(𝜃†|𝜃)ℚ(d𝑏†) d𝜃†, which is an independence proposal for 𝐵 according to its prior

18

2 MCMC Methods for Intractable Likelihood Models

distribution. The simplified acceptance probability is

𝛼𝛽({𝑏, 𝜃} , {𝑏†, 𝜃†}) = 𝛽 (𝜋(𝑎|𝑏†, 𝜃†)
𝜋(𝑎|𝑏, 𝜃)

𝜋(𝜃†)
𝜋(𝜃)

𝜅(𝜃|𝜃†)
𝜅(𝜃†|𝜃)) . (2.32)

which corresponds to the acceptance probability in the marginal algorithm after sub-
stituting 𝜋(𝑎|𝑏, 𝜃) for 𝜋(𝑎|𝜃). In this instance, the relative performance of the pseudo-
marginal algorithm relative to the marginal algorithm depends on

log Var [𝜋(𝑎|𝐵, 𝜃)|𝑎, 𝜃] = log ∫(𝜋(𝑎|𝑏, 𝜃) − 𝜋(𝑎|𝜃))2𝜋(𝑏|𝜃)ℚ(d𝑏), (2.33)

keeping in mind that 𝜋(𝑎|𝐵, 𝜃) is an unbiased estimator of 𝜋(𝑎|𝜃). The lower the vari-
ance, the closer the performance of the two algorithms, and we recover the marginal
algorithm when the variance is 0. One way of improving the estimator is to simply
sample more copies of 𝐵 and to average over the estimates, but it incurs the cost of
additional likelihood evaluations. [112, 33] give guidance on optimizing the trade-off
between estimator variance and cost of estimate evaluation.

0 200 400 600 800 1000
k

−4

−2

0

2

4

θ(
k
)

0 200 400 600 800 1000
k

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

θ(
k
)

Figure 2.7: Contrasting a marginal (blue) and a pseudo-marginal (orange) trace plot for
the model 𝐴𝑖|𝑏𝑖 ∼ N [𝑏𝑖, 1], 𝐵𝑖|𝜃 ∼ N [𝜃, 1], 𝜋(𝜃) ∝ 1, with number of data
points ̂𝚤 = 1 (left) and ̂𝚤 = 10. Both samplers use the same proposal for Θ.
The relative performance of the pseudo-marginal algorithm quickly degrades
with ̂𝚤.

While pseudo-marginal joint proposals can in some instances solve the Gibbs sampler’s
dependent update problem, the approach suffers from two shortcomings. The first is the
practical challenge of designing or automatically tuning good joint proposals. The second
is that in the conditional independence setting where 𝜋(𝑎, 𝑏|𝜃) = ∏𝑖 𝜋(𝑎𝑖|𝑏𝑖, 𝜃)𝜋(𝑏𝑖|𝜃),
the log variance increases at least linearly in ̂𝚤 [12]. This is most easily seen when
𝜋(𝑏†|𝜃, 𝑏) = ∏𝑖 𝜋(𝑏†

𝑖 |𝜃), in which case

log Var [𝜋(𝑎|𝐵, 𝜃)|𝑎, 𝜃] ≥
̂𝚤

∑
𝑖=1

log Var [𝜋(𝑎𝑖|𝐵𝑖, 𝜃)|𝑎𝑖, 𝜃] . (2.34)

19

2 MCMC Methods for Intractable Likelihood Models

In this instance, at least ̂𝚤 samples are required to stabilize the log variance of the
estimator, and ̂𝚤2 likelihood evaluations have to be performed. See Figure 2.7 for an
illustration. This is somewhat mitigated by recent extensions, such as [30].

2.3 Bernoulli Factory MCMC

Having considered the main augmented MCMC approaches and their general and indi-
vidual shortcomings, we face the question of whether we can forgo augmentation entirely.
Up to now, we have assumed that the acceptance decision is reached by first comput-
ing the acceptance probability 𝛼𝛽, and then reaching a decision according to the event
{𝑈 < 𝛼𝛽 ∶ 𝑈 ∼ Uniform [0, 1]}. Therefore, 𝛼𝛽 is just a means to an end, and we could
avoid its computation if we had another way of simulating a coin of probability 𝛼𝛽.

The alternative that we pursue here is to construct coins that provably have probability
of heads 𝛼𝛽, without requiring explicit knowledge of 𝛼𝛽. This is made possible by
the application of Bernoulli factories. A 2-parameter Bernoulli factory is an algorithm
which takes as an input two coin flip generators with probability of heads 𝑝1 and 𝑝2 and
generates coin flips with probability 𝑓(𝑝1, 𝑝2), without requiring explicit knowledge of
the arguments. The Bernoulli factory problem has been investigated in its own right
by e.g. [94, 79], but we are especially interested in applying it to MCMC balancing
functions. Suppose, then, that the acceptance probability for an MCMC algorithm can
be written as

𝛼𝛽(𝜃, 𝜃†) = 𝛽 (𝜋(𝑎, 𝜃†)
𝜋(𝑎, 𝜃)

𝜅(𝜃|𝜃†)
𝜅(𝜃†|𝜃)) = 𝛽 (𝑐1𝑝1

𝑐2𝑝2
) , (𝑐1, 𝑐2 > 0, 𝑝1, 𝑝2 ∈ [0, 1]) (2.35)

where 𝑐1, 𝑝1, 𝑐2 and 𝑝2 are functions of 𝜃 and 𝜃†, and that we possess a Bernoulli factory
with 𝑓(𝑝1, 𝑝2) = 𝛼𝛽(𝜃, 𝜃†). Then, we could simulate the acceptance decision by generat-
ing 𝑝1- and 𝑝2-flips, and applying the 𝑓(𝑝1, 𝑝2)-factory to those flips. The flips can be ob-
tained by way of unbiased estimators ̄𝑝1, ̄𝑝2 ∈ [0, 1], simulating {𝑈 < ̄𝑝1 ∶ 𝑈 ∼ Uniform [0, 1]}
or {𝑈 < ̄𝑝2 ∶ 𝑈 ∼ Uniform [0, 1]} respectively. While data augmentation may be used to
construct the unbiased estimators, the Bernoulli factory MCMC algorithm still has the
advantageous statistical properties of the marginal algorithm.

As discussed by [7, 79], there is no general solution to the factory problem for the
Metropolis balancing function. Conversely, [52] do develop a Bernoulli factory for
the Barker balancing function. Since the relative efficiency shortfall of Barker against
Metropolis is bounded, while the potential cost of augmentation is unbounded, a marginal
Barker algorithm could easily prevail over a pseudo-marginal Metropolis algorithm.
Therefore, we will now investigate the Barker balancing function factory, which [52]
dub the 2-coin algorithm, in more detail.

20

2 MCMC Methods for Intractable Likelihood Models

start

𝐹0

return 1 𝐹1 𝐹2 return 0

𝑐1
𝑐1+𝑐2

𝑐2
𝑐1+𝑐2

1−𝑝1𝑝1
1−𝑝2

𝑝2

Figure 2.8: Probability flow diagram of the vanilla 2-coin algorithm. Nodes (𝐹0, 𝐹1, 𝐹2)
refer to coin flips, edges give the probabilities of moving to the corresponding
node.

2.3.1 2-Coin Barker Algorithm

We will factorize the Barker acceptance odds to match the form

𝜋(𝑎, 𝜃†)
𝜋(𝑎, 𝜃)

𝜅(𝜃|𝜃†)
𝜅(𝜃†|𝜃) = 𝑐1(𝜃, 𝜃†)𝑝1(𝜃, 𝜃†)

𝑐2(𝜃, 𝜃†)𝑝2(𝜃, 𝜃†) . (𝑐1, 𝑐2 > 0, 𝑝1, 𝑝2 ∈ [0, 1]) (2.36)

Notice that this factorization is usually not unique, and that we typically suppress the
notational dependence of 𝑝1,2 and 𝑐1,2 on (𝜃, 𝜃†). The Bernoulli factory that generates
coins with those odds is known as the 2-coin algorithm, originally proposed by [52].
Figure 2.8 illustrates the steps of the algorithm.

Critically, the number of iterations until the algorithm terminates is a geometric random
variable with expectation

𝑐1 + 𝑐2
𝑐1𝑝1 + 𝑐2𝑝2

, (2.37)

where higher coin probabilities 𝑝1 and 𝑝2 result in faster termination. Therefore, it is
crucial to use a factorization of the acceptance odds that maximizes 𝑝1 and 𝑝2 while still
providing unbiased estimators ̄𝑝1 and ̄𝑝2.

Example 4 (Weibull mixture likelihood [122]). Suppose that

𝐴|𝑏 ∼ Weibull [𝑏, 𝑘] , 𝐵|𝜃 ∼ ℚ𝜃, 𝜋(𝜃) ∝ 1. (𝑘, 𝜃 > 0) (2.38)

for some measure ℚ𝜃(d𝑏). Then

𝜋(𝜃|𝑎) ∝ ∫ Weibull [𝑎; 𝑏, 𝑘] ℚ𝜃(d𝑏) = Eℚ𝜃
[Weibull [𝑎; 𝐵, 𝑘]] . (2.39)

Moreover, using the bound Weibull [𝑎; 𝑏, 𝑘] ≤ 𝑘/(𝑒𝑎) ≝ 𝑧, we write the acceptance odds
as

𝜅(𝜃|𝜃†)
𝜅(𝜃†|𝜃)

𝜋(𝜃†|𝑎)
𝜋(𝜃|𝑎) =

𝑐1

⏞𝜅(𝜃|𝜃†)
𝜅(𝜃†|𝜃)⏟

𝑐2

𝑝1

⏞⏞⏞⏞⏞𝑧−1𝜋(𝜃†|𝑎)
𝑧−1𝜋(𝜃|𝑎)⏟⏟⏟⏟⏟

𝑝2

, (2.40)

21

2 MCMC Methods for Intractable Likelihood Models

and obtain coins of probability 𝑧−1𝜋(𝜃|𝑎) by way of the event probability

Pr [𝑧−1 Weibull [𝑎; 𝐵, 𝑘] ≤ 𝑈|𝜃] = 𝑧−1𝜋(𝜃|𝑎), 𝐵|𝜃 ∼ ℚ𝜃, 𝑈 ∼ Unif [0, 1] (2.41)

2.3.2 Portkey Barker Algorithm

start

𝐸

return 1 𝐹1 𝐹0 𝐹2 return 0

1−𝑞

𝑞

𝑝1

1−𝑝1

𝑐1
𝑐1+𝑐2

𝑐2
𝑐1+𝑐2

𝑝2

1−𝑝2

Figure 2.9: Probability flow diagram of the portkey 2-coin algorithm. Nodes (𝐸, 𝐹0,
𝐹1, 𝐹2) refer to coin flips, edges give the probabilities of moving to the
corresponding node.

Even if the 2-coin factorization has been optimally designed, it is likely that 𝑝1 or 𝑝2
will be very small in some parts of the state space. In such cases, it is often preferable
to terminate the algorithm early and reject the proposal 𝜃†. [122] propose a variant
of the vanilla 2-coin Barker algorithm that incorporates such an “escape hatch”, which
they call the Portkey Barker algorithm. As displayed in Figure 2.9, at every iteration
of the 2-coin algorithm, it flips an additional coin with probability of heads 𝑞, and exits
if that coin comes up heads, thereby rejecting the proposal. The resulting acceptance
probability is

𝜋(𝜃†|𝑎)𝜅(𝜃|𝜃†)
𝜋(𝜃†|𝑎)𝜅(𝜃|𝜃†) + 𝜋(𝜃|𝑎)𝜅(𝜃†|𝜃) + (𝑐1 + 𝑐2)(𝑞−1 − 1)

≤ 𝜋(𝜃†|𝑎)𝜅(𝜃|𝜃†)
𝜋(𝜃†|𝑎)𝜅(𝜃|𝜃†) + 𝜋(𝜃|𝑎)𝜅(𝜃†|𝜃) ,

(2.42)

which implies a statistically less efficient algorithm. The mean number of iterations until
the algorithm terminates is again a geometric random variable with expectation

(𝑞 + (1 − 𝑞)𝑐1𝑝1 + 𝑐2𝑝2
𝑐1 + 𝑐2

)
−1

, (2.43)

which for nonzero 𝑞 is bounded above regardless of 𝑝1 and 𝑝2. In practice, 𝑝1 and 𝑝2 tend
to be small when the acceptance probability according to the vanilla algorithm would
have been low. Therefore, even though the Portkey version is statistically less efficient,
it can avoid long 2-coin run times that often result in rejections anyway.

22

2 MCMC Methods for Intractable Likelihood Models

2.4 Assessing MCMC Performance

Since we have loosely discussed the “efficiency” of various MCMC frameworks, it is worth
elaborating on that notion. Two aspects enter into the efficiency of an algorithm: The
cost of executing an iteration, and the degree of dependence of the Markov chain. Under
Theorem 1, the error variance of the �̂�-sample ergodic average in estimating E [𝑓(Θ)]
for square-integrable 𝑓 is 𝜎2

𝑓/�̂�, whereas it is Var [𝑓(Θ)] /�̂� for a Monte Carlo estimator
based on independent samples. Therefore, we define the notion of effective sample size
(ESS) by

(effective sample size)⏟⏟⏟⏟⏟⏟⏟⏟⏟
ESS

= �̂�Var [𝑓(Θ)]
𝜎2

𝑓
, (2.44)

where Var [𝑓(Θ)] /𝜎2
𝑓 is the effective sampling rate per iteration. This presumes that

the Markov chain admits a Monte Carlo central limit theorem, e.g. by way of geometric
ergodicity - see [70, 107] for a discussion of such conditions. In practice, the theorem is
typically taken for granted, in the hope that irregular estimates indicate when it fails
to hold. Notice that the ESS depends on the specific function 𝑓 - an algorithm can
have high effective sampling rate for some functions and low rates for others. Since
we are interested in comparing the performance of MCMC algorithms with different, or
even random runtimes per iteration, we adopt the average runtime per effective sample
metric:

(avg. time per eff. sample)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
T/ES

= (avg. time per iteration)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
T/I

×
𝜎2

𝑓
Var [𝑓(Θ)] . (2.45)

This metric depends on both hardware and implementation, therefore it only has ex-
ternal validity if the implementations of all algorithms under consideration give similar
attention to exploiting the available hardware. There are other, possibly conceptually
superior notions of performance, but this one has the benefit of being amenable to es-
timation from empirical MCMC output. As it happens, all the quantities in (2.45) are
typically highly intractable - and even more so for an intractable likelihood algorithm,
and we have to resort to Monte Carlo estimation to assess the quality of our Monte Carlo
estimate.

T/I is usually assessed by measuring and averaging the CPU wall time at each iteration.
The asymptotic variance can be estimated by reference to its representation in terms of
the autocovariance of the Markov chain:

𝜎2
𝑓 = Var [𝑓(Θ)] + 2

∞
∑
𝑘=1

Cov𝑃 [𝑓(Θ(0)), 𝑓(Θ(𝑘))] , (2.46)

where the covariance operator is applied with respect to the Markov chain 𝑃 . The most
straightforward approach to estimation then consists of truncating the infinite sum, and
plugging in the empirical covariance of the Markov chain. The truncation is necessary
to obtain a computable estimator, but it induces a bias-variance trade-off. Heuristics for

23

2 MCMC Methods for Intractable Likelihood Models

navigating that tradeoff were proposed e.g. by [116], whose recommendations we follow
here. A more recent alternative for asymptotic variance estimation is presented in [123].
The reader may also consult [47] for a classic reference.

Note that estimation of 𝜎2
𝑓 is substantially more difficult than the expectation E [𝑓(Θ)]

itself, so expecting an MCMC algorithm to provide good estimates of its own variance
may be seen as well in excess of its original task, and therefore somewhat incoherent.
Nevertheless, maybe due to the lack of convincing alternatives, estimation of 𝜎2

𝑓 for select
functions 𝑓 continues to be the standard approach to validating MCMC runs, and we
adhere to that standard when assessing simulation output in Chapters 5, 6 and 7.

2.5 Discussion

Having introduced many complementary and alternative approaches to address the in-
tractable likelihood problem, we need to draw some conclusions for our diffusion inference
strategy. The general theme will be that some degree of augmentation is unavoidable in
this setting - the question is how much of it is necessary, and whether the Bernoulli fac-
tory MCMC approach presents a favorable tradeoff in our setting, which we investigate
in Chapters 5 and 6. We will follow the principle of maximally exploiting conditional
independence through Gibbs sampling since it affords us more hope of developing algo-
rithms that scale favorably (close to linearly) with the amount of input data.

There are important aspects of MCMC theory and practice that factor into the al-
gorithms that we develop in this thesis, but which are tangential to the intractable
likelihood setting and therefore not discussed in this chapter. One such topic is the
optimal scaling of conditional proposals of for 𝜅(𝜃†|𝜃). Particularly conclusive results on
optimal proposals exist for many Metropolis-Hastings algorithms on 𝐑𝑑, see e.g. [106]
for the Metropolis algorithm and [1] for the Barker algorithm. Notice that those do not
take into account the possiblity that iteration time may depend on the proposal. Such
results raise the question of how to implement optimal proposals, which is addressed in
the adaptive MCMC literature, see e.g. [5].

24

3 Data Augmentation for Stochastic
Differential Equations

In order to apply the data augmentation approach of Chapter 2 to diffusion models,
we require a better understanding of their properties, and the ability to simulate their
trajectories. It will be sufficient to understand time invariant Itō diffusions with SDE
representation

d𝑉𝑡 = 𝜇(𝑉𝑡) d𝑡 + 𝜎(𝑉𝑡) d𝑊𝑡, (𝑡 ∈ [0, 𝜔]) (3.1)

where 𝑊 is a Wiener process. Time invariance means that 𝜇 and 𝜎 do not depend on 𝑡,
other than through 𝑉𝑡. Throughout the thesis, we require that 𝜇 and 𝜎 are measurable
functions that almost surely satisfy

∫
𝜔

0
𝜇(𝑉𝑡) d𝑡 < ∞, ∫

𝜔

0
𝜎(𝑉𝑡) d𝑡 < ∞. (3.2)

In this chapter, we suppress dependence of 𝜇 and 𝜎 on any parameters 𝜃, which we
assume to be known and fixed for now. They will be reintroduced later on.

The development of a data augmentation scheme is first step towards applying the
intractable likelihood methods from Chapter 2. We begin in Section 3.1 by providing
conditions under which SDEs give rise to well-defined stochastic processes. Section 3.2
introduces some properties of SDEs that the derivation of the augmentation scheme in
the following Section 3.3 relies on. Section 3.4 discusses variations of that augmentation
scheme. Finally, Section 3.5 gives a brief account of approximation schemes for SDEs.

3.1 Diffusion Processes as SDE Solutions

To use an SDE as a statistical model, we first have to establish that an SDE implies
a well-defined stochastic process. Preferably, we establish that the SDE has a strong
and unique solution, i.e. for a given Wiener process 𝑊 , almost every variate 𝑤 implies
a unique solution 𝑣. The following theorem provides for existence of a strong solution
when 𝜇 and 𝜎 are sufficiently smooth.

Theorem 4 (Strong solution of stochastic differential equations [96]). Let 𝜇 and 𝜎 be
Lipschitz-continuous, i.e.

|𝜇(𝑎) − 𝜇(𝑏)| + |𝜎(𝑎) − 𝜎(𝑏)| ≤ 𝑐 |𝑎 − 𝑏| , (3.3)

25

3 Data Augmentation for Stochastic Differential Equations

for some constant 𝑐 and any 𝑎, 𝑏 ∈ 𝐑. Then, the SDE

d𝑉𝑡 = 𝜇(𝑉𝑡) d𝑡 + 𝜎(𝑉𝑡) d𝑊𝑡 (𝑡 ∈ [0, 𝜔]) (3.4)

has a strong and unique 𝑡-continuous solution for every initial condition {𝑉0 = 𝑣0}.
Moreover, 𝑉 is adapted to the natural filtration induced by 𝑊 .

Example 5 (Lipschitz continuity for Ornstein-Uhlenbeck SDEs). Consider the OU SDE
with 𝜇(𝑎) = −𝛽𝑎, 𝜎(𝑎) = 𝜎, 𝛽, 𝜎 > 0. Then,

|𝜇(𝑎) − 𝜇(𝑏)| + |𝜎(𝑎) − 𝜎(𝑏)| = |𝛽| |𝑎 − 𝑏| . (3.5)

Thus all Ornstein-Uhlenbeck SDEs have Lipschitz-continuous drift and volatility func-
tions and have strong and unique solutions.

Notice that for some SDEs, 𝑉 may be confined with probability 1 to a set 𝒱 ⊂ 𝐑. Some
models are not Lipschitz-continuous, but they can still be shown to imply unique and
continuous solutions once statements are restricted to 𝒱.

An SDE with a unique solution defines a diffusion process with Markovian transition
density 𝜋(𝑣 ̈𝜏 |𝑣 ̇𝜏) for any 0 < ̇𝜏 < ̈𝜏 < ∞, which fully characterizes the diffusion process.
Without loss of generality due to the time invariance of Itō diffusions, we merely need
consider the case 𝜋(𝑣𝜔|𝑣0). In some cases, it is possible to solve the SDE, and obtain the
explicit transition density. These solution methods are highly specific, as exemplified by
the solution of the OU process.

Example 6 (Solution of the OU SDE by variation of parameters). Consider an OU
process with SDE d𝑉𝑡 = −𝛽𝑉𝑡 d𝑡 + 𝜎 d𝑊𝑡. Apply Itō’s formula, introduced in Section
3.2.3, with 𝑓(𝑎, 𝑡) = 𝑎𝑒𝛽𝑡 and 𝑋𝑡 = 𝑓(𝑉𝑡, 𝑡):

d𝑋𝑡 = 𝜕𝑡𝑓(𝑉𝑡, 𝑡) d𝑡 + 𝜕𝑉𝑡
𝑓(𝑉𝑡, 𝑡) d𝑉𝑡 = 𝑒𝛽𝑡𝜎 d𝑊𝑡 (3.6)

Integrating from 0 to 𝜔, obtain

𝑋𝜔 = 𝑋0 + ∫
𝜔

0
𝑒𝛽𝑡𝜎 d𝑊𝑡 ⇔ 𝑉𝜔 = 𝑒−𝛽𝜔𝑉0 + 𝜎 ∫

𝜔

0
𝑒𝛽(𝑡−𝜔) d𝑊𝑡, (3.7)

and observe that the stochastic integral with deterministic integrand is a Gaussian random
variable. Furthermore, by the 0-mean and isometry properties of those integrals, we find
that it has moments

E [𝑉𝜔|𝑉0] = 𝑒−𝛽𝜔𝑉0 + 𝜎 E [∫
𝜔

0
𝑒𝛽(𝑡−𝜔) d𝑊𝑡] = 𝑒−𝛽𝜔𝑉0 (3.8)

Var [𝑉𝜔|𝑉0] = 𝜎2 E [(∫
𝜔

0
𝑒𝛽(𝑡−𝜔) d𝑊𝑡)

2
] = 𝜎2 ∫

𝜔

0
𝑒2𝛽(𝑡−𝜔) d𝑡 = 𝜎2

2𝛽 (1 − 𝑒−2𝛽𝜔). (3.9)

Accordingly,

𝑉𝜔|𝑉0 ∼ N [𝑒−𝛽𝜔𝑉0, 𝜎2

2𝛽 (1 − 𝑒−2𝛽𝜔)] . (3.10)

26

3 Data Augmentation for Stochastic Differential Equations

Techniques for solving SDEs do not generalize, and therefore 𝜋(𝑣𝜔|𝑣0) is not available for
almost all models. Nonetheless, through data augmentation we can find an augmented
density 𝜋(𝑣(0,𝜔]|𝑣0) for the complete path 𝑉(0,𝜔].

3.2 Theory and Properties of Itō Diffusions

The purpose of this section is to present some theory of SDEs that allow us to express
their law in terms of a more simple process. In particular, we will find that under mild
conditions, 𝑉 is equivalent to a process 𝑋 with constant volatility. In addition, we will
state conditions under which the support of a diffusion is nested within the support
of another diffusion with different drift, or even without drift. This will allow us to
formulate the density 𝜋(𝑣(0,𝜔]|𝑣0) with respect to a simple dominating measure.

3.2.1 Markov Property and Likelihood

From a statistical perspective, the Markov property is potentially the most useful prop-
erty of diffusion processes, because it allows for the factorization of its likelihood and
its characterization by a transition law. We have been referring to the Markov property
informally as a form of memorylessness, but due to its importance we include a more
formal statement here. Recall that 𝑉 is adapted to the filtration {ℱ𝑡}𝑡≥0. The (weak)
Markov property implies that the information provided by the past about the future,
represented by the filtration, is entirely reflected in the present:

Pr [𝑉 ̈𝜏 ∈ 𝐸|ℱ ̇𝜏] = Pr [𝑉 ̈𝜏 ∈ 𝐸|𝑉 ̇𝜏] . (0 < ̇𝜏 < ̈𝜏 < ∞, 𝐸 ∈ ℱ) (3.11)
The strong Markov property strengthens this statement to the case where ̇𝜏 is replaced
with a random stopping time ̇𝑇 . The fact that the Markov property applies to diffusion
processes justifies our focus on its transition law.

Theorem 5 (Strong Markov property for diffusions [96]). Let 𝑉 be a diffusion process
whose driving Brownian motion induces the natural filtration {ℱ𝑡}𝑡≥0. Then, the strong
Markov property holds, i.e.

Pr [𝑉 ̈𝜏 ∈ 𝐸|ℱ ̇𝑇] = Pr [𝑉 ̈𝜏 ∈ 𝐸|𝑉 ̇𝑇] (̇𝑇 < ̈𝜏 , 𝐸 ∈ ℱ). (3.12)
for stopping times ̇𝑇 .

Corollary 1 (Diffusion likelihood factorization). As a direct consequence, the transition
density 𝜋(𝑣 ̈𝜏 |𝑣 ̇𝜏) fully characterizes 𝑉 . Moreover, for any partition 𝜏 of [0, 𝜔], the
likelihood 𝜋(𝑣𝜏\{0}|𝑣0) factorizes to

𝜋(𝑣𝜏\{0}|𝑣0) = ∏
(̇𝜏∼ ̈𝜏)∈𝜏

𝜋(𝑣 ̈𝜏 |𝑣 ̇𝜏). (3.13)

Therefore, it is sufficient to get a handle on the individual transition density terms
𝜋(𝑣 ̈𝜏 |𝑣 ̇𝜏) in order to evaluate the whole likelihood.

27

3 Data Augmentation for Stochastic Differential Equations

3.2.2 Quadratic Variation

A critical property of a diffusion is that its quadratic variation is deterministic. The
elementary definition of quadratic variation for a stochastic process 𝑉 and a partition 𝜏
of [0, 𝑡] is

⟨𝑉 ⟩𝑡 = lim
mesh[𝜏]→0

∑
(̇𝜏∼ ̈𝜏)∈𝜏

(𝑉 ̈𝜏 − 𝑉 ̇𝜏)2, (𝑡 ∈ [0, 𝜔]) (3.14)

where mesh [𝜏] = max(̇𝜏∼ ̈𝜏)∈𝜏 ̈𝜏 − ̇𝜏 . In the case of diffusions, the resulting expression is
particularly simple.

Theorem 6 (Quadratic variation of diffusion processes [96]). Let 𝑉 be a diffusion process
with SDE d𝑉𝑡 = 𝜇(𝑉𝑡) d𝑡 + 𝜎(𝑉𝑡) d𝑊𝑡. Then the limit (3.14) converges in probability to

⟨𝑉 ⟩𝑡 = ∫
𝑡

0
𝜎2(𝑉𝑢) d𝑢. (𝑡 ∈ [0, 𝜔]) (3.15)

The same fact may also be expressed in SDE form by d ⟨𝑉 ⟩𝑡 = 𝜎2(𝑉𝑡) d𝑡. This de-
terministic relationship is of particular importance for statistical inference, because for
any 𝑡 ∈ (0, 𝜔], a path 𝑣[0,𝑡] with quadratic variation ⟨𝑣⟩𝑡 is only compatible with certain
volatility coefficients 𝜎. Therefore, knowledge of 𝑣[0,𝑡] restricts the possible inferences for
𝜎.

3.2.3 Itō’s Formula and Closure under Transformation

As seen in Example 6, we are frequently given a diffusion process 𝑉 and wish to translate
statements about 𝑉 to 𝑓(𝑉). This need is addressed by one of the essential results of
stochastic calculus, variably known as Itō’s formula or Itō’s lemma. A plethora of
versions of this theorem exist for various forms of Itō processes. For our purposes, it is
sufficient to state a result that applies to time-invariant Itō diffusions and time-invariant
transformations 𝑓 .

Theorem 7 (Itō’s formula for diffusion processes [96]). Let 𝑉 be a diffusion process with
SDE d𝑉𝑡 = 𝜇(𝑉𝑡) d𝑡 + 𝜎(𝑉𝑡) d𝑊𝑡, and 𝑓 ∶ 𝐑 → 𝐑 be twice differentiable. Then,

d𝑓(𝑉𝑡) = 𝑓 ′(𝑉𝑡) d𝑉𝑡 + 2−1𝑓″(𝑉𝑡) d ⟨𝑉 ⟩𝑡
= 𝑓 ′(𝑉𝑡)(𝜇(𝑉𝑡) d𝑡 + 𝜎(𝑉𝑡) d𝑊𝑡) + 2−1𝑓″(𝑉𝑡)𝜎2(𝑉𝑡) d𝑡
= (𝑓 ′(𝑉𝑡)𝜇(𝑉𝑡) + 2−1𝑓″(𝑉𝑡)𝜎(𝑉𝑡)) d𝑡 + 𝑓 ′(𝑉𝑡)𝜎2(𝑉𝑡) d𝑊𝑡.

(3.16)

Furthermore, the new SDE must have as its unique solution the diffusion process 𝑓(𝑉).

28

3 Data Augmentation for Stochastic Differential Equations

Example 7 (Squared Bessel process). Set 𝑓(𝑎) = 𝑎2, 𝑅 = 𝑓(𝑊). Then,

d𝑅𝑡 = 2𝑊𝑡 d𝑊𝑡 + d𝑡 = d𝑡 + 2√𝑅𝑡 d𝑊𝑡, (3.17)

which is the Squared Bessel process.

Therefore, Itō’s formula shows that the class of diffusion processes is closed under twice
differentiable transformations 𝑓 , and provides us with an algebra of diffusions. An ap-
parent limitation of the formula is that it requires 𝑓 to be twice differentiable everywhere,
which is not the case of many important transformations such as 𝑓(𝑎) = √𝑎. This is
usually bypassed by first demonstrating that 𝑉 is almost surely confined to a set 𝒱 ⊂ 𝐑,
whereupon it is valid to apply Itō’s formula if 𝑓 is twice differentiable on 𝒱.

3.2.4 Change of Volatility and the Lamperti Transform

A critical property of many diffusion processes that is critical for the ability to simulate
sample paths, among other things, is that they can be mapped 1-to-1 to a diffusion
process with constant volatility. A diffusion process is said to be reducible if there exists
a transformation 𝜂 ∶ 𝒱 → 𝒳 such that

d𝜂(𝑉𝑡) = 𝛿 ∘ 𝜂(𝑉𝑡) d𝑡 + d𝑊𝑡. (3.18)

for some drift function 𝛿 ∶ 𝒳 → 𝐑, i.e. the reduced process 𝑋 = 𝜂(𝑉) has unit volatility
coefficient. This transformation is often referred to as the Lamperti transform, but early
applications precede that naming [29].

From Itō’s formula, we know that the transformation 𝜂(𝑉) of a diffusion process 𝑉 has
unit volatility coefficient precisely when

𝜂′(𝑎)𝜎(𝑎) = 1 ⇒ 𝜂(𝑎) = ∫
𝑎

𝑣∗

d𝑏
𝜎(𝑏) . (𝑎, 𝑣∗ ∈ 𝒱) (3.19)

Notice that 𝑣∗ is merely a translation of 𝑋, and could bet set such that 𝜂(𝑣∗) = 0.
After fixing some 𝑣∗, we obtain a bijective transformation, and we denote its inverse
𝜂−1 ∶ 𝒳 → 𝒱. Assuming 𝜎′ is continuously differentiable, we insert 𝜂 back into Itō’s
formula, and obtain

𝛿(𝑎) = (𝜇
𝜎 − 𝜎′

2) ∘ 𝜂−1(𝑎). (𝑎 ∈ 𝒳) (3.20)

Theorem 8 (Lamperti transform [29]). Let 𝑉 be a diffusion process with support 𝒱 and
continuously differentiable volatility function 𝜎 on the support, and define the Lamperti
transform

𝜂(𝑎) = ∫
𝑎

𝑣∗

d𝑏
𝜎(𝑏) . (𝑎, 𝑣∗ ∈ 𝒱). (3.21)

Then 𝑋 = 𝜂(𝑉) has constant volatility, and SDE representation

d𝑋𝑡 = 𝛿(𝑋𝑡) d𝑡 + d𝑊𝑡. (3.22)

29

3 Data Augmentation for Stochastic Differential Equations

Example 8 (Lamperti transform for Ornstein-Uhlenbeck processes). Consider the OU [𝛽, 𝜎]
process with 𝜇(𝑎) = −𝛽𝑎, 𝜎(𝑎) = 𝜎, 𝛽, 𝜎 > 0. Then

𝜂(𝑎) = ∫
𝑎

0

d𝑏
𝜎 = 𝑎

𝜎 , 𝛿(𝑎) = −𝛽𝑎. (3.23)

Hence, the OU [𝛽, 𝜎] process is reducible to the OU [𝛽, 1] process.

Conveniently, the transition density of 𝑉 implies the transition density for 𝑋, and vice
versa, by the change of variable formula:

𝜋(𝑣𝜔|𝑣0) = |𝜂′(𝑣𝜔)| 𝜋(𝑥𝜔|𝑥0). (3.24)

Notice that for the Lamperti transform to be useful in practice, we require the integral
in (3.19) to be available in closed form. Moreover, while the reducibility requirement
is trivial in one dimension, it is much more restrictive in multiple dimensions. [2] gives
sufficient conditions for the existence of the transformation in multiple dimensions.

3.2.5 Change of Drift and the Girsanov Theorem

While there is no tractable transformation that modifies drift with the same ease as in
the volatility case, we can apply a relationship between the law of two diffusions with
different drift and identical volatility. This relationship is known as Girsanov’s theorem,
and we will apply a version of the result that applies to Itō diffusions.

Theorem 9 (Girsanov’s theorem [96]). Suppose that the diffusion processes 𝑉 and ̃𝑉
solve the SDEs

d𝑉𝑡 = 𝜇(𝑉𝑡) d𝑡 + 𝜎(𝑉𝑡) d𝑊𝑡, (𝑉0 = 𝑣0) (3.25)
d ̃𝑉𝑡 = ̃𝜇(̃𝑉𝑡) d𝑡 + 𝜎(̃𝑉𝑡) d𝑊𝑡. (̃𝑉0 = ̃𝑣0) (3.26)

and that the probability measure 𝕍 is induced by 𝑉 . Define the scaled drift differential

𝛾(𝑎) = ̃𝜇(𝑎) − 𝜇(𝑎)
𝜎(𝑎) , (𝑎 ∈ 𝒱) (3.27)

and assume that it is square-integrable. Furthermore, let the Doleans-Dade-exponential

exp [∫
𝑡

0
𝛾(𝑉𝑢) d𝑊𝑢 − 1

2 ∫
𝑡

0
𝛾2(𝑉𝑢) d𝑢] (𝑡 ∈ [0, 𝜔]) (3.28)

be a Martingale under 𝕍. A sufficient condition is Novikov’s condition, given by

E [exp [∫
𝜔

0
𝛾2(𝑉𝑡) d𝑡] |𝑣0] < ∞. (3.29)

30

3 Data Augmentation for Stochastic Differential Equations

Then, we may define

�̃�𝑡 = 𝑊𝑡 − ∫
𝑡

0
𝛾(𝑉𝑢) d𝑢, (𝑡 ∈ [0, 𝜔]) (3.30)

and a new probability measure �̃� under which �̃�𝑡 is a Brownian motion. Therefore, 𝑉
can be represented by the SDE

d𝑉𝑡 = ̃𝜇(𝑉𝑡) d𝑡 + 𝜎(𝑉𝑡) d�̃�𝑡. (3.31)

Furthermore, �̃� is absolutely continuous with respect to 𝕍, and the Radon-Nikodym-
derivative (RND) of �̃� with respect to 𝕍 is given by the Doleans-Dade-exponential:

d�̃�
d𝕍(𝑣(0,𝜔]) = exp [∫

𝜔

0
𝛾(𝑣𝑡) d𝑊𝑡 − 1

2 ∫
𝜔

0
𝛾2(𝑣𝑡) d𝑡]

= exp [∫
𝜔

0
𝛾(𝑣𝑡) d�̃�𝑡 + 1

2 ∫
𝜔

0
𝛾2(𝑣𝑡) d𝑡] ,

(3.32)

that is, the DDE is the density of the path 𝑥(0,𝜔] under �̃� with respect to 𝕍.

0.0 0.2 0.4 0.6 0.8 1.0
t

−2

−1

0

1

2

x
t

1Figure 3.1: Illustration of the Girsanov theorem in action. The plotted paths were sam-
pled from the Wiener measure, and colored according to the Radon-Nikodym
derivative of the measure induced by the OU process d𝑋𝑡 = −𝑋𝑡 d𝑡 + d𝑊𝑡
against the Wiener measure. Since the OU process reverts to 0, paths that
deviate farther from 0 have lower RND.

Therefore, if 𝑥(0,𝜔] has positive support under the diffusion measure �̃� associated with
̃𝜇, it also has positive support under 𝕍 associated with 𝜇. In particular, we may use

the special case 𝜇 = 0, and express the density of 𝑉 under �̃� with respect to a driftless
measure. Figure 3.1 illustrates such an application of the Girsanov theorem.

31

3 Data Augmentation for Stochastic Differential Equations

3.3 Complete Transition Density

With Girsanov’s theorem in hand, we can obtain the density of 𝑉(0,𝜔] with respect to a
tractable product measure. Since we will have to customize the result to various settings,
we provide a full derivation here, mimicking [29, 18]. To do so, we first need to reduce
𝑉 to align its volatility with 𝑊 . Setting 𝑋 = 𝜂(𝑉), we obtain

d𝑋𝑡 = 𝛿(𝑋𝑡) d𝑡 + d𝑊𝑡, (3.33)

𝛿(𝑎) = (𝜇
𝜎 − 𝜎′

2) ∘ 𝜂−1(𝑎), (𝑎 ∈ 𝒳) (3.34)

and define 𝕏 as the measure induced induced by 𝑋. Let 𝕎 be the measure under which
𝑋 is a Brownian motion, and assume that

exp [∫
𝜔

0
𝛿(𝑣𝑡) d𝑊𝑡 − 1

2 ∫
𝜔

0
𝛿2(𝑣𝑡) d𝑡] (3.35)

is a Martingale. Then, by Theorem 9 𝕏|𝑥0 is absolutely continuous with respect to 𝕎|𝑥0,
and the Radon-Nikodym-derivative is given by

d𝕏|𝑥0
d𝕎|𝑥0

(𝑥(0,𝜔]) = exp [∫
𝜔

0
𝛿(𝑋𝑡) d𝑊𝑡 + 1

2 ∫
𝜔

0
𝛿2(𝑋𝑡) d𝑡]

= exp [∫
𝜔

0
𝛿(𝑋𝑡) d𝑋𝑡 − 1

2 ∫
𝜔

0
𝛿2(𝑋𝑡) d𝑡] .

(3.36)

For this expression to be practically useful, we also require that 𝛿 be continuously dif-
ferentiable on 𝒳. It is sufficient to require that 𝜇 be once and 𝜎 be twice continuously
differentiable on 𝒱. Also define the integrated drift

Δ(𝑎) = ∫ 𝛿(𝑎) d𝑎. (3.37)

Then, we can remove the stochastic integral by applying Itō’s lemma to Δ(𝑋𝑡):

dΔ(𝑋𝑡) = 𝛿(𝑋𝑡) d𝑋𝑡 + 2−1𝛿′(𝑋𝑡) d𝑡
⇔ 𝛿(𝑋𝑡) d𝑋𝑡 = dΔ(𝑋𝑡) − 2−1𝛿′(𝑋𝑡) d𝑡

⇔ ∫
𝜔

0
𝛿(𝑋𝑡) d𝑋𝑡 = Δ(𝑋𝜔) − Δ(𝑥0) − ∫

𝜔

0
2−1𝛿′(𝑋𝑡) d𝑡,

(3.38)

and obtain the simplified RND

d𝕏|𝑥0
d𝕎|𝑥0

(𝑥(0,𝜔]) = exp [Δ(𝑥𝜔) − Δ(𝑥0) − ∫
𝜔

0
𝜑(𝑥𝑡) d𝑡] , (3.39)

𝜑(𝑎) = 2−1(𝛿2 + 𝛿′)(𝑎). (3.40)

32

3 Data Augmentation for Stochastic Differential Equations

We now need to change the dominating measure to 𝕎|𝑥{0,𝜔} × Leb, such that the
Lebesgue-dominated density 𝜋(𝑥𝜔|𝑥0) becomes the marginal. By the definition of con-
ditional probability, we note that

d𝕏|𝑥0
d𝕏|𝑥{0,𝜔}

(𝑥(0,𝜔]) = 𝜋(𝑥𝜔|𝑥0), d𝕎|𝑥0
d𝕎|𝑥{0,𝜔}

(𝑥(0,𝜔]) = N [𝑥𝜔; 𝑥0, 𝜔] , (3.41)

and accordingly,

𝜋(𝑥𝜔|𝑥0)
d𝕏|𝑥{0,𝜔}
d𝕎|𝑥{0,𝜔}

(𝑥(0,𝜔)) = N [𝑥𝜔; 𝑥0, 𝜔] d𝕏|𝑥0
d𝕎|𝑥0

(𝑥(0,𝜔])

= N [𝑥𝜔; 𝑥0, 𝜔] exp [Δ(𝑥𝜔) − Δ(𝑥0) − ∫
𝜔

0
𝜑(𝑥𝑡) d𝑡] .

(3.42)

In what follows, we define the complete transition density

𝜋(𝑥(0,𝜔]|𝑥0) = 𝜋(𝑥𝜔|𝑥0)
d𝕏|𝑥{0,𝜔}
d𝕎|𝑥{0,𝜔}

(𝑥(0,𝜔)) (3.43)

as the density of 𝑥(0,𝜔] with respect to 𝕎|𝑥{0,𝜔} × Leb, satisfying

𝜋(𝑥𝜔|𝑥0) = ∫ 𝜋(𝑥(0,𝜔]|𝑥0)𝕎|𝑥{0,𝜔}
(d𝑥(0,𝜔)), (3.44)

as needed. We obtain the complete transition density 𝜋(𝑥(0,𝜔), 𝑣𝜔|𝑥0) of the original
process by a simple change of variables:

𝜋(𝑥(0,𝜔), 𝑣𝜔|𝑣0) = |𝜂′(𝑣𝜔)| 𝜋(𝑥(0,𝜔]|𝑥0) (3.45)

Theorem 10 (Complete transition density of reduced diffusions [29, 18]). Let 𝑋 be a
diffusion process with support 𝒳, SDE representation d𝑋𝑡 = 𝛿(𝑋𝑡) d𝑡+d𝑊𝑡 and induced
measure 𝕏, meeting the following standing assumptions:

• 𝛿 is continuously differentiable.

• d𝕏|𝑥0/ d𝕎|𝑥0 exists, 𝕎 being the measure under which 𝑋 is a Brownian motion.
A sufficient condition is Novikov’s condition, given by

E [exp [∫
𝜔

0
𝛿2(𝑋𝑡) d𝑡] |𝑥0] < ∞. (𝑥0 ∈ 𝒳, 0 < 𝜔 < ∞) (3.46)

Then, there is a density 𝜋(𝑥(0,𝜔), 𝑥𝜔|𝑥0) with respect to 𝕎|𝑥{0,𝜔} × Leb given by

𝜋(𝑥(0,𝜔]|𝑥0) = N [𝑥𝜔; 𝑥0, 𝜔] exp [Δ(𝑥𝜔) − Δ(𝑥0) − ∫
𝜔

0
𝜑(𝑥𝑡) d𝑡] , (3.47)

𝜑(𝑎) = 2−1(𝛿2 + 𝛿′)(𝑎), (3.48)

Δ(𝑎) = ∫ 𝛿(𝑎) d𝑎, (3.49)

33

3 Data Augmentation for Stochastic Differential Equations

which satisfies
𝜋(𝑥𝜔|𝑥0) = ∫ 𝜋(𝑥(0,𝜔), 𝑣𝜔|𝑣0)𝕎|𝑥{0,𝜔}

(d𝑥(0,𝜔)). (3.50)

Corollary 2 (Complete transition density). Let 𝑉 be a diffusion process with support
𝒱, SDE representation d𝑉𝑡 = 𝜇(𝑉𝑡) d𝑡 + 𝜎(𝑉𝑡) d𝑊𝑡 and Lamperti transform 𝜂. Assume
𝑋 = 𝜂(𝑉) fulfills the standing assumptions of Theorem 10, with necessary conditions
including 𝜇 once and 𝜎 twice continuously differentiable. Moreover, let 𝕎 be the measure
under which 𝑋 is a Brownian motion. Then, there is a density 𝜋(𝑥(0,𝜔), 𝑣𝜔|𝑣0) with
respect to 𝕎|(𝑋{0,𝜔} = 𝜂(𝑣{0,𝜔})) × Leb given by

𝜋(𝑥(0,𝜔), 𝑣𝜔|𝑣0) = |𝜂′(𝑣𝜔)| N [𝜂(𝑣𝜔); 𝜂(𝑣0), 𝜔] 𝑒Δ∘𝜂(𝑣𝜔)−Δ∘𝜂(𝑣0)−∫𝜔
0 𝜑(𝑥𝑡) d𝑡 (3.51)

which satisfies

𝜋(𝑣𝜔|𝑣0) = ∫ 𝜋(𝑥(0,𝜔), 𝑣𝜔|𝑣0)𝕎|𝑋{0,𝜔}=𝜂(𝑣{0,𝜔})(d𝑥(0,𝜔)). (3.52)

Naturally, the Markov property transfers to the augmented setting, so analogously to
Corollary 1, for any partition 𝜏 of [0, 𝜔], the complete likelihood factorizes into a product
of complete transition densities:

𝜋(𝑥(0,𝜔]|𝑥0) = ∏
(̇𝜏∼ ̈𝜏)∈𝜏

𝜋(𝑥(̇𝜏, ̈𝜏]|𝑥 ̇𝜏). (3.53)

The complete transition density may be exploited for transition density estimation and
diffusion sample path simulation, and is at the heart of all the exact inference techniques
in this thesis. We further explore those applications in the following Chapter 4. Since the
complete transition density incorporates the intractable functional exp [− ∫𝜔

0 𝜑(𝑥𝑡) d𝑡],
further methodological preliminaries are necessary to arrive at an inference method.
These take the form of methods to either simulate from 𝜋(𝑣𝜔|𝑣0) or estimate it without
bias.

3.4 Alternative Dominating Measures

As an aside, notice that the Girsanov theorem allows us to construct transition densities
with respect to other tractable dominating measures, subject to obeying the requirements
of the theorem. The Wiener dominating measure is the best choice for a general theory,
in that it is absolutely continuous with a large class of both transient and mean-reverting
measures, and in that its simulation is particularly well understood. Nevertheless, it can
be preferable to express the complete transition density with respect to a measure which
has identical support to the target measure. In particular, if 𝒳 ∈ (0, ∞), such as for the
Bessel-3 process with SDE d𝑋𝑡 = 𝑋−1

𝑡 d𝑡+d𝑊𝑡, it is usually more elegant to express the
complete transition density with respect to said process. In addition, Bessel bridges can

34

3 Data Augmentation for Stochastic Differential Equations

be constructed in terms of Brownian bridges, so it is possible to adapt the retrospective
simulation methods of Chapter 4.

Suppose that d𝑋𝑡 = 𝛿(𝑋𝑡) d𝑡 + d𝑊𝑡 such that 𝒳 ∈ (0, ∞), and assume that ̃𝛿(𝑎) =
𝛿(𝑎) − 𝑎−1 fulfills the conditions of Theorem 9. Moreover, let ℝ be the measure under
which 𝑋 is the Bessel process and B3 [𝑥𝜔; 𝑥0, 𝜔] be the associated transition density.
Then, the complete transition density with respect to ℝ|𝑥{0,𝜔} ×Leb is given by [17] as

𝜋(𝑥(0,𝜔]|𝑥0) = 𝑥𝜔
𝑥0

B3 [𝑥𝜔; 𝑥0, 𝜔] exp [Δ̃(𝑥𝜔) − Δ̃(𝑥0) − ∫
𝜔

0
�̃�(𝑥𝑡) d𝑡] , (3.54)

�̃�(𝑎) = 2−1(̃𝛿2 + ̃𝛿′)(𝑎), (3.55)

Δ̃(𝑎) = ∫ ̃𝛿(𝑎) d𝑎. (3.56)

With some moderate complications, this result could be applied in a similar way as
Theorem 10 to construct exact Bayesian inference algorithms, though we do not further
pursue this idea here. We also note that [68] investigated the setting of Wright-Fisher
diffusions with support on (0, 1), for which they propose an appropriate and tractable
dominating measure with bounded support.

3.5 Approximate Simulation and Estimation

The tools developed in the previous section also allow us to present some more details
of approximate approaches to addressing the intractable transition density problem. As
pointed out in the introduction, a discrete time approximation to 𝑉 is given by the
linearization

𝑉𝑡 − 𝑉0 = 𝑡𝜇(𝑉0) +
√

𝑡𝜎(𝑉0)(𝑊𝑡 − 𝑊0). (𝑡 ∈ [0, 𝜔]) (3.57)

This is the Euler-Maruyama approximation to 𝑉 . 𝑡 is the step size of the approximation,
with smaller step-sizes resulting in a better approximation. This scheme converges both
weakly and strongly to 𝑉 as 𝑡 → 0 [76]. A higher-order method with better strong
convergence rates is given by

𝑉𝑡 − 𝑉0 = 𝑡𝜇(𝑉0) +
√

𝑡𝜎(𝑉0)(𝑊𝑡 − 𝑊0) + 1
2𝜎(𝑉0)𝜎′(𝑉0)((𝑊𝑡 − 𝑊0)2 − 𝑡), (3.58)

which is called the Milstein approximation to 𝑉 . We follow the common practice [40,
114, 3] of approximating the reduced process 𝑋 = 𝜂(𝑉) rather than 𝑉 :

𝑋𝑡 − 𝑋0 = 𝑡𝛿(𝑋0) +
√

𝑡(𝑊𝑡 − 𝑊0). (3.59)

In this instance, 𝜎′ = 0, and we get the higher-order Milstein approximation for free.
Moreover, approximating 𝑋 sometimes preserves the support of 𝑉 when approximation
of 𝑉 would not. An example of that is the logistic growth diffusion d𝑉𝑡 = 𝑉𝑡(𝛽(1 −

35

3 Data Augmentation for Stochastic Differential Equations

𝑉𝑡/𝜅) d𝑡 + 𝜌𝑉𝑡) d𝑊𝑡. That diffusion has support on (0, ∞], which could be violated
by its discretized version. Conversely, 𝑋 = −𝜌−1 log 𝑉 has support on 𝐑, and any
discretized simulation is appropriately mapped back to (0, ∞].
In either case, forward simulation is trivial since only Brownian motion need be sim-
ulated, while bridge simulation is more challenging, see e.g. [21]. The approximate
transition density is given by

̄𝜋(𝑥𝜔|𝑥0) = N [𝑥𝜔; 𝑥0 + 𝜔𝛿(𝑥0), 𝜔] . (3.60)

We apply this scheme to design approximate inference algorithms in Chapters 5 and
6. We can also transfer the logic of data augmentation to the discrete approximation,
imputing a skeleton of observations at times in (0, 𝜔). As the skeleton is refined, the
approximation becomes arbitrarily precise.

Theorem 11 (Consistency of Euler approximation). Let 𝜏 be a partition of [0, 𝜔], and
𝑋 be a diffusion process with transition density 𝜋(𝑥𝜔|𝑥0) and approximate transition
density ̄𝜋(𝑥 ̈𝜏 |𝑥 ̇𝜏) as in (3.60). Suppose we fill in 𝜏 such that mesh [𝜏] → 0. Then, by
the weak convergence property of the Euler scheme, ̄𝜋(𝑥𝜏\{0}|𝑥0) has as its marginal a
distribution that converges to 𝜋(𝑥𝜔|𝑥0):

𝜋(𝑥𝜔|𝑥0) = lim
mesh[𝜏]→0

∫ d𝑥𝜏\{0,𝜔} ∏
(̇𝜏∼ ̈𝜏)∈𝜏

̄𝜋(𝑥 ̈𝜏 |𝑥 ̇𝜏) (3.61)

This property lies at the heart of many simulated maximum likelihood and approximate
MCMC algorithms.

36

4 Retrospective Simulation and Estimation

Following the principle of data augmentation, we have obtained by Theorem 10 an
explicit probability model for a diffusion path 𝑋(0,𝜔] with SDE d𝑋𝑡 = 𝛿(𝑋𝑡) d𝑡 + d𝑊𝑡:

𝜋(𝑥(0,𝜔]|𝑥0) = N [𝑥𝜔; 𝑥0, 𝜔] exp [Δ(𝑥𝜔) − Δ(𝑥0) − ∫
𝜔

0
𝜑(𝑥𝑡) d𝑡] , (4.1)

𝜑(𝑎) = 2−1(𝛿2 + 𝛿′)(𝑎), (4.2)

Δ(𝑎) = ∫ 𝛿(𝑎) d𝑎, (4.3)

where 𝜋(𝑥(0,𝜔]|𝑥0) is a density with respect to 𝕎|𝑥{0,𝜔}×Leb, and 𝕎 is the measure under
which 𝑋 is a Brownian motion. We have assumed that 𝛿 is continuously differentiable
on the support 𝒳 and that it satisfies all requirements of Theorem 10. Throughout this
chapter, we shall also assume that 𝜑 has a uniform lower bound on 𝒳:

−∞ < inf
𝑎∈𝒳

𝜑(𝑥). (4.4)

That assumption is required in order to implement the sample path simulation algorithm
in Section 4.1, though it may be relaxed if the goal is merely to carry out Poisson coin
simulation or Poisson estimation such as in Subsections 4.1.1 and 4.2.1, which is all that
is required to implement the inference methods presented in the following chapters. In
that instance, it is sufficient to obtain a bound on 𝜑 for some subset of 𝒳.

The main impediment to applying this construction to either path simulation or infer-
ence lies in the functional exp [− ∫𝜔

0 𝜑(𝑥𝑡) d𝑡]. This is an integral over a nondifferentiable
path, preventing exact evaluation. We will address that obstacle with the strategy of ret-
rospective simulation, first proposed in [18], which consists of using unbiased estimators
of the intractable functional that use finite information, and leaving almost all of the
sample paths 𝑥(0,𝜔] indeterminate until that information is required. The information is
then simulated ex post.

We distinguish the case of sample path simulation according to 𝜋(𝑥(0,𝜔]|𝑥0), and unbiased
estimation thereof. Those tasks are intimately related and required to put the methods
of Chapter 2 into practice. We address simulation in Section 4.1 and density estimation
in Section 4.2. Both raise the need to simulate Brownian bridges given lower or two-
sided bounds on the sample path. This is enabled by the EA2 and EA3 algorithms
pioneered by [16, 15], presented in Sections 4.3 and 4.4 respectively. We also note the
various refinements of those methods discussed in [102], some of which factor into our
presentation, as well an extension to jump diffusions.

37

4 Retrospective Simulation and Estimation

4.1 Sample Path Simulation

In this section, we consider both forward simulation of 𝑋(0,𝜔] ∼ 𝜋(𝑥(0,𝜔]|𝑥0) and bridge
simulation of 𝑋(0,𝜔) ∼ 𝜋(𝑥(0,𝜔)|𝑥{0,𝜔}), where

𝜋(𝑥(0,𝜔)|𝑥{0,𝜔}) ≝
d𝕏|𝑥{0,𝜔}
d𝕎|𝑥{0,𝜔}

(𝑥(0,𝜔)) ∝ exp [− ∫
𝜔

0
𝜑(𝑥𝑡) d𝑡] . (4.5)

We will relate the problems of bridge simulation and forward simulation by way of the
construction of biased Brownian motion. This will allow us to address both problems
under a common rejection sampling framework.

Proposition 1 (Biased Brownian motion [18]). Let 𝑒Δ(𝑥𝜔)−(𝑥𝜔−𝑥0)2/(2𝜔) be integrable,
thus normalizable to a density 𝜅(𝑥𝜔|𝑥0), and assume that it has support on 𝐑. Recall
that 𝕏 denotes the diffusion measure induced by 𝑋, and 𝕎 the measure under which
𝑋 is a Brownian motion. We construct the biased Wiener measure �̃�|𝑥0 such that
𝑋𝜔 ∼ 𝜅(𝑥𝜔|𝑥0) and 𝑋(0,𝜔)|𝑥𝜔 ∼ 𝕎|𝑥{0,𝜔}, i.e. the bridge dynamics are unchanged from
the Wiener measure. Then,

d𝕎|𝑥0
d�̃�|𝑥0

(𝑥(0,𝜔]) = N [𝑥𝜔; 𝑥0, 𝜔]
𝜅(𝑥𝜔|𝑥0) ∝ 𝑒−(𝑥𝜔−𝑥0)2/(2𝜔)

𝑒Δ(𝑥𝜔)−(𝑥𝜔−𝑥0)2/(2𝜔) ∝ exp [−Δ(𝑥𝜔)] , (4.6)

d𝕏|𝑥0
d�̃�|𝑥0

(𝑥(0,𝜔]) = d𝕏|𝑥0
d𝕎|𝑥0

(𝑥(0,𝜔])
d𝕎|𝑥0
d�̃�|𝑥0

(𝑥(0,𝜔]) ∝ exp [− ∫
𝜔

0
𝜑(𝑥𝑡) d𝑡] . (4.7)

Therefore, up to normalizing constants, the forward measure 𝕏|𝑥0 has the same density
with respect to the forward measure �̃�|𝑥0 as the bridge measure 𝕏|𝑥{0,𝜔} has with respect
to the bridge measure 𝕎|𝑥{0,𝜔}.

Assuming we solve the 1-dimensional sampling problem from 𝜅(𝑥𝜔|𝑥0), it is then easy
to generate samples from �̃�|𝑥0. If we take a rejection sampling view, we accept forward
proposals 𝑥(0,𝜔] from �̃�|𝑥0 with the same probability as bridge proposals 𝑥(0,𝜔) from
𝕎|𝑥{0,𝜔}. If 𝜑 is lower bounded on 𝒳 by 𝜑↓, d𝕏|𝑥{0,𝜔}/ d𝕎|𝑥{0,𝜔} is bounded above by
𝑒−𝜑↓𝜔 (up to normalizing constants), and the acceptance probability of the corresponding
rejection sampler is given by

exp [∫
𝜔

0
(𝜑↓ − 𝜑(𝑥𝑡)) d𝑡] ≤ 1. (4.8)

Accordingly, both forward sampling and bridge sampling are largely reducible to flipping
a coin with probability exp [∫𝜔

0 (𝑓↓ − 𝑓𝑡) d𝑡] for some lower bounded path 𝑓 . We address
that task in the following Section 4.1.1.

38

4 Retrospective Simulation and Estimation

4.1.1 Poisson Coin

This section introduces the Poisson coin algorithm of [18], which lies at the heart of the
exact algorithms for diffusion simulation. It addresses the task of simulating coins with
probability exp [∫𝜔

0 (𝑓↓ − 𝑓𝑡) d𝑡] for 𝑓↓ ≤ 𝑓𝑡, which is intractable for nondifferentiable
𝑓 . Notice that we will need an upper bound 𝑓↑ ≥ 𝑓𝑡 to implement the Poisson coin
algorithm. The essential insight is that if we can construct a tractable event 𝐸 such that
Pr [𝐸] = 𝑝, evaluation of 𝑝 is not necessary to flipping 𝑝-coins if we can assess 𝐸. In
what follows, we require the notion of a Poisson process, which may be constructed as
follows:

Definition 2 (Homogeneous Poisson Process). Consider the point process Ψ on 𝐑𝑑.
Suppose that for every bounded set 𝐵 ∈ 𝐑𝑑,

|Ψ ∩ 𝐵| ∼ Pois [𝜆 × Vol [𝐵]] , (4.9)

where 𝜆 is called the rate of the Poisson process. Therefore, the expected number of points
in 𝐵 is proportional to the volume of 𝐵. Moreover, assume that for a collection of disjoint
sets {𝐵𝑖}, the cardinalities |Ψ ∩ 𝐵𝑖| are independent. Then, Ψ is a (homogeneuous) rate
𝜆 Poisson process. Notice that we may apply this definition recursively, i.e. Ψ ∩ 𝐵 is
again a Poisson process, but on 𝐵 rather than 𝐑𝑑. We use the shorthand PP [𝐵, 𝜆]
for a rate 𝜆 Poisson process on 𝐵. Finally, notice the property that given |Ψ ∩ 𝐵|, the
elements of Ψ ∩ 𝐵 are distributed uniformly and independently on 𝐵.

We further define the epigraph of 𝑡 ↦ 𝑓𝑡 − 𝑓↓ as

epi [𝑓𝑡 − 𝑓↓] = {(𝑡, 𝑎) ∈ [0, 𝜔] × [0, ∞) ∶ 𝑎 ≤ 𝑓𝑡 − 𝑓↓} , (4.10)

and notice that is has area ∫𝜔
0 (𝑓↓−𝑓𝑡) d𝑡. Furthermore, let Ψ ∼ PP [[0, 𝜔] × [0, 𝑓↑ − 𝑓↓], 1],

and notice that since epi [𝑓𝑡 − 𝑓↓] ⊂ [0, 𝜔] × [0, 𝑓↑ − 𝑓↓], the intersection epi [𝑓𝑡 − 𝑓↓] ∩ Ψ
is a unit rate Poisson process on the epigraph. Finally, we note that the distribution of
the cardinality of a Poisson process follows a Poisson law with rate equal to the measure
of its domain. Therefore,

∣epi [𝑓𝑡 − 𝑓↓] ∩ Ψ∣ ∼ Pois [∫
𝜔

0
(𝑓𝑡 − 𝑓↓) d𝑡] , (4.11)

Pr [∣epi [𝑓𝑡 − 𝑓↓] ∩ Ψ∣ = 0] = exp [∫
𝜔

0
(𝑓↓ − 𝑓𝑡) d𝑡] , (4.12)

i.e. {∣(epi 𝑓𝑡) ∩ Ψ∣ = 0} is an event of appropriate probability. We can assess the event
by observing that

{∣epi [𝑓𝑡 − 𝑓↓] ∩ Ψ∣ = 0} = ⋂
(𝑇 ,𝐴)∈Ψ

{𝐴 > 𝑓𝑇 − 𝑓↓} , (|Φ| < ∞ a.s.), (4.13)

so ascertaining the value of the event merely requires evaluating 𝑓 at a finite number of
locations.

39

4 Retrospective Simulation and Estimation

Theorem 12 (Poisson coin [18]). Let 𝑓 be a bounded, continuous function mapping
[0, 𝜔] ↦ [𝑓↓, 𝑓↑], and Ψ ∼ PP [[0, 𝜔] × [0, 𝑓↑ − 𝑓↓], 1]. Then

Pr [∣epi [𝑓𝑡 − 𝑓↓] ∩ Ψ∣ = 0] = exp [∫
𝜔

0
(𝑓↓ − 𝑓𝑡) d𝑡] . (4.14)

Corollary 3 (Complexity of Poisson coin). The average cost of simulating a variate
from Ψ is 𝜔(𝑓↑ − 𝑓↓), while the acceptance probability is 𝒪(𝑒𝜔(𝑓↓−𝑓↑)), which gives an
upper bounded on the expected runtime until the first acceptance of 𝒪(𝑒𝜔(𝑓↑−𝑓↓)).

4.1.2 Exact Algorithm

We now apply the Poisson coin algorithm to the rejection sampling problem for diffusion
bridges 𝑋(0,𝜔). For a given bridge path 𝑥(0,𝜔), the Poisson coin heads event corresponds
to

{∣epi [𝜑 − 𝜑↓] ∩ Ψ∣ = 0} = ⋂
(𝑇 ,Φ)∈Ψ

{Φ > 𝜑(𝑥𝑇) − 𝜑↓} . (4.15)

For models where 𝜑(𝑥) is uniformly bounded above in 𝒳 by 𝜑↑, simulation of Φ can
proceed without any inspection of 𝑥(0,𝜔). We class this class of models 𝒟1.

Definition 3 (𝒟1-class). Let 𝑋 be a diffusion process meeting the standing assumptions
of Theorem 10, and

𝜑(𝑎) ≤ sup
𝑎∈𝒳

𝜑(𝑎) < ∞. (𝑎 ∈ 𝒳) (4.16)

We call this upper bound 𝜑↑, and say that 𝑋 ∈ 𝒟1.

Example 9 (Tanh process). Let 𝑋 be the Tanh process with SDE d𝑋𝑡 = −𝛽 tanh [𝜇 − 𝑋𝑡] d𝑡+
d𝑊𝑡, 𝛽 > 0, inducing subexponential reversion to the stationary mean 𝜇. Then,

𝜑(𝑎) = 2−1(𝛽2 tanh [𝜇 − 𝑎]2 + 𝛽(1 − tanh [𝜇 − 𝑎]2)) (𝑎 ∈ 𝐑)
= 2−1((𝛽2 − 𝛽) tanh [𝜇 − 𝑎]2 + 𝛽)
≤ 𝛽2/2.

(4.17)

Therefore, 𝑋 ∈ 𝒟1.

Given {Ψ = 𝜓}, the Poisson coin is then simulated by retrospectively sampling the skele-
ton 𝑋{𝑡∶(𝑡,𝜙)∈𝜓} ∼ 𝕎|𝑥{0,𝜔}, and then accepting if ⋂(𝑡,𝜙)∈𝜓 {𝜙 > 𝜑(𝑥𝑡) − 𝜑↓}. See Figure
4.1 for an illustration of this algorithm in action. This algorithm is the original exact al-
gorithm first proposed by [18]. Notice that once 𝑥𝜏 has been accepted as a skeleton from
𝕏|𝑥{0,𝜔}, the path can be filled in at any finite subset of (0, 𝜔) according to 𝕎|𝑥𝜏∪{0,𝜔}.

40

4 Retrospective Simulation and Estimation

0 t↑

t

x
t

0 t↑

t

φ↓

φ↑

φ
(x

t)

ψ0

ψ1

Figure 4.1: Illustration of the exact algorithm. The left panel shows the Brownian bridge
skeleton and an implicit sample of the full path 𝑥[0,𝜔]. The right panel shows
the corresponding integrand path and a sample of the Poisson process Ψ.
epi 𝜑(𝑥[0,𝜔]) is shaded red. Since none of the points fall into epi 𝜑(𝑥[0,𝜔]), the
skeleton is accepted.

Algorithm 4 Bridge sampling 𝑋(0,𝜔) ∼ 𝜋(𝑥(0,𝜔)|𝑥{0,𝜔}) for 𝑋 ∈ 𝒟1 [18].
repeat

𝜓 ∼ PP [[0, 𝜔] × [0, 𝜑↑ − 𝜑↓], 1]
𝑥{𝑡∶(𝑡,𝜙)∈𝜓} ∼ 𝕎|𝑥{0,𝜔}

until ⋂(𝑡,𝜙)∈𝜓 {𝜙 > 𝜑(𝑥𝑡) − 𝜑↓}

Algorithm 5 Forward sampling 𝑋(0,𝜔] ∼ 𝜋(𝑥(0,𝜔]|𝑥0) for 𝑋 ∈ 𝒟1 [18].
repeat

𝑥𝜔 ∼ 𝜅(𝑥𝜔|𝑥0)
𝜓 ∼ PP [[0, 𝜔] × [0, 𝜑↑ − 𝜑↓], 1]
𝑥{𝑡∶(𝑡,𝜙)∈𝜓} ∼ 𝕎|𝑥{0,𝜔}

until ⋂(𝑡,𝜙)∈𝜓 {𝜙 > 𝜑(𝑥𝑡) − 𝜑↓}

While this procedure is strikingly elegant, the requirement of a uniform upper bound
𝜑↑ is very restrictive, and violated by such standard models as the Vasicek process
with SDE 𝛽(𝜇 − 𝑉𝑡) d𝑡 + 𝜎 d𝑊𝑡. If we wish to port the logic of the EA algorithm to
larger model classes, we must generate additional finite-dimensional information Ξ about
𝑋(0,𝜔). Given {Ξ = 𝜉}, the support of the conditional must be restricted to 𝒳𝜉 ⊂ 𝒳 such
that 𝜑 is upper bounded on that subset, i.e.

𝕎|𝑥{0,𝜔},𝜉[𝑋(0,𝜔) ∈ 𝒳𝜉] = 1, sup
𝑎∈𝒳𝜉

𝜑(𝑎) < ∞. (4.18)

41

4 Retrospective Simulation and Estimation

We then define
𝜑𝜉

↑ = sup
𝑎∈𝒳𝜉

𝜑(𝑎), (4.19)

though of course 𝜑𝜉
↑ may be loose in practice, if the supremum is too difficult to evaluate.

To obtain a practical EA algorithm, we further require that:

• Ξ be finite dimensional.

• we can simulate Ξ according to 𝕎|𝑥{0,𝜔}.

• we can simulate a skeleton 𝑋𝜏 according to 𝕎|(𝑥{0,𝜔}, 𝜉).
We can then operate an exact algorithm that first generates 𝜉, computes 𝜑𝜉

↑, generates
the Poisson process, and finally the skeleton 𝑥𝜏 . We will distinguish the classes 𝒟1 ⊂
𝒟2 ⊂ 𝒟3, each with an associated exact algorithm. Sections 4.3 and 4.4 describe how
to carry out those tasks for 𝒟2 and 𝒟3 respectively.

Algorithm 6 Bridge sampling 𝑋(0,𝜔) ∼ 𝜋(𝑥(0,𝜔)|𝑥{0,𝜔}) for 𝑋 ∉ 𝒟1 [16, 15].
repeat

𝜉 ∼ 𝕎|𝑥{0,𝜔}
𝜓 ∼ PP [[0, 𝜔] × [0, 𝜑𝜉

↑ − 𝜑↓], 1]
𝑥{𝑡∶(𝑡,𝜙)∈𝜓} ∼ 𝕎|(𝑥{0,𝜔}, 𝜉)

until ⋂(𝑡,𝜙)∈𝜓 {𝜙 > 𝜑(𝑥𝑡) − 𝜑↓}

0 h t↑

t

x↓

x
t

(h, x↓)

0 h t↑

t

φ↓

φ↑

φ
(x

t)

(h, φ↑)

ψ0

ψ1

ψ2

Figure 4.2: Illustration of the Poisson coin algorithm in the EA2 setting. The left panel
shows the Brownian bridge skeleton and an implicit sample of the full path
𝑥[0,𝜔]. The right panel shows the corresponding integrand path and a sample
of the Poisson process Ψ. epi 𝜑(𝑥[0,𝜔]) is shaded red. Since some of the points
fall into epi 𝜑(𝑥[0,𝜔]), the skeleton is rejected. Both panels show the location
of the bridge minimum/integrand maximum in blue.

42

4 Retrospective Simulation and Estimation

Definition 4 (𝒟2-class). Let 𝑋 be a diffusion process meeting the standing assumptions
of Theorem 10, and

lim sup
𝑎→∞

𝜑(𝑎) < ∞ or lim sup
𝑎→−∞

𝜑(𝑎) < ∞. (4.20)

Without loss of generality, we focus on the former case, which implies that

sup
𝑥↓≤𝑎

𝜑(𝑎) < ∞, (−∞ < 𝑥↓) (4.21)

i.e. 𝜑(𝑎) is bounded above on [𝑥↓, ∞). We then say that 𝑋 ∈ 𝒟2.

Example 10 (Bessel Process). Let 𝑋 be the Bessel process with SDE d𝑋𝑡 = 𝜈−1
2𝑋𝑡

d𝑡+d𝑊𝑡,
𝜈 > 3. Then,

𝜑(𝑎) = 𝑎2

2 ((𝜈 − 1
2)

2
+ 1 − 𝜈

2) (𝑎 ∈ [0, ∞))

= (𝜈2

8 − 𝜈
2 + 3

8) /𝑎2,
(4.22)

which is unbounded on [0, ∞), but bounded on [𝑥↓, ∞) for a lower bound 𝑥↓ on 𝑋. Thus,
𝑋 ∈ 𝒟2. Notice that for 𝜈 ∈ (2, 3) the symmetrical case applies, and 𝜑 is bounded on
(−∞, 𝑢] for an upper bound 𝑢.

Definition 5 (𝒟3-class). Let 𝑋 be a diffusion process meeting the standing assumptions
of Theorem 10, and

sup
𝑥↓≤𝑎≤𝑥↑

𝜑(𝑎) < ∞, (−∞ < 𝑥↓ < 𝑥↑ < ∞) (4.23)

i.e. 𝜑(𝑎) is bounded above on [𝑥↓, 𝑥↑]. We then say that 𝑋 ∈ 𝒟3.

Example 11 (Vasicek process). Let 𝑋 be the Vasicek process with SDE d𝑋𝑡 = −𝛽(𝜇 −
𝑋𝑡) d𝑡 + d𝑊𝑡, 𝛽 > 0. Then,

𝜑(𝑎) = 2−1(𝛽2(𝜇 − 𝑎)2 + 𝛽), (𝑎 ∈ 𝐑) (4.24)

which is unbounded on 𝐑, but bounded on [𝜇, 𝜑(𝑥↓) ∨ 𝜑(𝑥↑)] for bounds (𝑥↓, 𝑥↑) on 𝑋.
Thus, 𝑋 ∈ 𝒟3.

See Figure 4.2 for an illustration of the exact algorithm for 𝒟2. The successive classes
require heavier computational machinery to simulate the skeleton, but they also allow
for tighter bounds 𝜑𝜉

↑, which reduces the size of the Poisson process and the associated
bridge skeleton. We also note that in the case 𝒟3, we can obtain a bound

𝜑𝜉
↓ = inf

𝑎∈𝒳𝜉
𝜑(𝑎), (4.25)

even when 𝜑↓ = −∞. Such a bound can be applied in the Poisson coin algorithm of
Section 4.1.1, and the Poisson estimator of Section 4.2.1.

43

4 Retrospective Simulation and Estimation

4.1.3 Batch EA

A rule of thumb when applying EA algorithms is that rejections are more expensive than
acceptances. This is due to a generally positive correlation between 𝜑𝜉

↑ and ∫𝜔
0 𝜑(𝑥𝑡) d𝑡.

In addition, if ∫𝜔
0 𝜑(𝑥𝑡) d𝑡 is large, many rejections might precede an acceptance. As a

consequence, it is usually desirable to trade off much faster rejections for slightly slower
acceptances.

One option consists of partitioning Ψ vertically into 𝑛 independent Poisson processes:

Ψ =
𝑛

⋃
𝑖=1

Ψ𝑖, Ψ𝑖 ∼ PP [[0, 𝜔] × [((𝑖 − 1)/𝑛)(𝜑𝜉
↑ − 𝜑↓), (𝑖/𝑛)(𝜑𝜉

↑ − 𝜑↓)], 1] . (4.26)

We then sequentially evaluate

⋂
(𝑡,𝜙)∈𝜓𝑖

{𝜙 > 𝜑(𝑥𝑡) − 𝜑↓} , (𝑖 = 1, … , 𝑛) (4.27)

and reject as soon as the first event evaluates to false. Since we’re simulating Ψ from
the bottom, where most of the epigraph lies, we are likely to reject early on in the loop.
In the 𝑛-limit of infinitely small partitions, we may even simulate Ψ pointwise from the
bottom up, by first ascertaining the size of the Poisson process

|Ψ| ∼ Pois [𝜔(𝜑𝜉
↑ − 𝜑↓)] , (4.28)

and then, exploiting the properties of Uniform distribution order statistics, sequentially
sampling the point process according to

𝑡𝑗 ∼ Unif [0, 𝜔] , 𝜑𝑗 − 𝜑𝑗−1
𝜑𝜉↑ − 𝜑↓ ∼ Beta [1, |𝜓|] . (𝜑0 = 0, 𝑗 = 1, … , |𝜓|) (4.29)

We apply this technique to all Bernoulli MCMC algorithms in Chapters 5 and 6, and
since the time to generate a rejection is essentially constant in 𝜔(𝜑𝜉

↑ − 𝜑↓), the average
iteration time is substantially lowered.

4.2 Transition Density Estimation

The natural companion problem to simulating from 𝜋(𝑥(0,𝜔]|𝑥0) is to estimate the com-
plete transition density itself, without bias. Such a result is a stepping stone in deriving
the auxiliary algorithms in Chapters 5 and 6. In fact, given an unbiased estimator of
exp [− ∫𝜔

0 𝜑(𝑥𝑡) d𝑡], it directly follows that we can estimate 𝜋(𝑥(0,𝜔]|𝑥0) without bias as
well. We present such an estimator in Section 4.2.1. Section 4.2.2 shows how to apply
the result to obtain a model 𝜋(𝜓, 𝑥(0,𝜔]|𝑥0) with marginal 𝜋(𝑥(0,𝜔]|𝑥0).

44

4 Retrospective Simulation and Estimation

4.2.1 Poisson Estimator

The Poisson estimator, originally proposed in [17] and extended in [39], is an unbiased
estimator of functionals of form exp [∫𝜔

0 (𝑓↓ − 𝑓𝑡) d𝑡] for 𝑓↓ ≤ 𝑓𝑡 ≤ 𝑓↑. Our jumping off
point is the following representation of the exponentiated path integral as an expectation
over a Poisson variate.

Lemma 1 (Poisson representation of exponentiated path integral [17]). Let 𝑁 ∼ Pois [𝛽𝜔],
𝛽 > 0. The exponentiated path integral has the following probabilistic representation:

exp [∫
𝜔

0
(𝑓↓ − 𝑓𝑡) d𝑡] = 𝑒(𝛽+𝑓↓−𝑓↑)𝜔 E [(∫

𝜔

0

𝑓↑ − 𝑓𝑡
𝛽𝜔 d𝑡)

𝑁
] (4.30)

We may interpret the integrand in the expectation as an estimator that picks a random
term from the Taylor expansion of the exponentiated path integral.

Proof. We Taylor expand the expression, and rewrite it as an expectation with respect
to 𝑁 :

exp [∫
𝜔

0
(𝑓↓ − 𝑓𝑡) d𝑡] = 𝑒(𝑓↓−𝑓↑)𝜔 exp [𝛽𝜔 ∫

𝜔

0

𝑓↑ − 𝑓𝑡
𝛽𝜔 d𝑡]

= 𝑒(𝑓↓−𝑓↑)𝜔
∞

∑
𝑖=0

(𝛽𝜔)𝑖

𝑖! (∫
𝜔

0

𝑓↑ − 𝑓𝑡
𝛽𝜔 d𝑡)

𝑖

= 𝑒(𝛽+𝑓↓−𝑓↑)𝜔
∞

∑
𝑖=0

Pois [𝑖; 𝛽𝜔] (∫
𝜔

0

𝑓↑ − 𝑓𝑡
𝛽𝜔 d𝑡)

𝑖

= 𝑒(𝛽+𝑓↓−𝑓↑)𝜔 E [(∫
𝜔

0

𝑓↑ − 𝑓𝑡
𝛽𝜔 d𝑡)

𝑁
] ,

(4.31)

We now proceed to rewriting the representation as an integral with respect to a Poisson
process. Since the path integrals are equivalent to an evaluation of the integrand at a
random time, we obtain

exp [∫
𝜔

0
(𝑓↓ − 𝑓𝑡) d𝑡] = 𝑒(𝛽+𝑓↓−𝑓↑)𝜔 E ⎡⎢

⎣
(

𝑓↑ − 𝜔−1 ∫𝜔
0 𝑓𝑡 d𝑡

𝛽)
𝑁

⎤⎥
⎦

= 𝑒(𝛽+𝑓↓−𝑓↑)𝜔 E [
𝑁

∏
𝑖=1

𝑓↑ − E [𝑓𝑇𝑖
]

𝛽] (𝑇𝑖 ∼ Unif [0, 𝜔])

= 𝑒(𝛽+𝑓↓−𝑓↑)𝜔 E [∏
𝑇 ∈Ψ

𝑓↑ − 𝑓𝑇
𝛽] . (Ψ ∼ PP [[0, 𝜔], 𝛽])

(4.32)

45

4 Retrospective Simulation and Estimation

Accordingly,
̄𝑃𝛽 = 𝑒(𝛽+𝑓↓−𝑓↑)𝜔 ∏

𝑇 ∈Ψ

𝑓↑ − 𝑓𝑇
𝛽 , Ψ ∼ PP [[0, 𝜔], 𝛽] , (4.33)

is an unbiased estimator of the path functional. A natural tuning of 𝛽 is to set it to
𝑓↑ − 𝑓↓. [39] call this the Generalized Poisson estimator-1:

̄𝑃𝑓↑−𝑓↓ = ∏
𝑇 ∈Ψ

𝑓↑ − 𝑓𝑇
𝑓↑ − 𝑓↓ (4.34)

This is the formulation that we will typically abide by because it guarantees ̄𝑃𝑓↑−𝑓↓ ∈
[0, 1], i.e. the estimate is itself a probability. We refer the reader to [39] for a discussion
of estimation variance and alternative tunings of 𝛽.

Theorem 13 (Generalized Poisson estimator [17]). Let 𝑓 be a bounded, continuous
function mapping [0, 𝜔] ↦ [𝑓↓, 𝑓↑], and Ψ ∼ PP [[0, 𝜔], 𝑓↑ − 𝑓↓]. Then,

exp [∫
𝜔

0
(𝑓↓ − 𝑓𝑡) d𝑡] = E [∏

𝑇 ∈Ψ

𝑓↑ − 𝑓𝑇
𝑓↑ − 𝑓↓] , (4.35)

and ∏𝑇 ∈Ψ
𝑓↑−𝑓𝑇
𝑓↑−𝑓↓ ∈ [0, 1] is an unbiased estimator of exp [∫𝜔

0 (𝑓↓ − 𝑓𝑡) d𝑡]. Furthermore,
its second moment is given by

exp [∫
𝜔

0

(𝑓↑ − 𝑓𝑡)2

𝑓↑ − 𝑓↓ d𝑡 − (𝑓↑ − 𝑓↓)𝜔] . (4.36)

Corollary 4 (Complexity of Poisson coin algorithm). Poisson estimation has cost
𝒪(𝜔(𝑓↑ − 𝑓↓)), which is more expensive than a rejection with batch EA, identical in
cost to an acceptance, and cheaper than simulating to the first acceptance.

4.2.2 Auxiliary Transition Density

As seen in [17], an immediate application of the Poisson estimator is to estimate the
complete transition density without bias. Let Ψ ∼ PP [[0, 𝜔], 𝜑↑ − 𝜑↓], ℙ its induced
measure, and define the auxiliary transition density

𝜋(𝜓, 𝑥(0,𝜔]|𝑥0) = N [𝑥𝜔; 𝑥0, 𝜔] 𝑒Δ(𝑥𝜔)−Δ(𝑥0)−𝜑↓𝜔 ∏
𝑡∈𝜓

𝜑↑ − 𝜑(𝑥𝑡)
𝜑↑ − 𝜑↓ (4.37)

with dominating measure ℙ × 𝕎|𝑥{0,𝜔} × Leb. Then, by the Poisson estimator given in
Theorem 13, we find that the auxiliary transition density has the complete transition

46

4 Retrospective Simulation and Estimation

density as its marginal:

∫ 𝜋(𝜓, 𝑥(0,𝜔]|𝑥0)ℙ(d𝜓) = N [𝑥𝜔; 𝑥0, 𝜔] 𝑒Δ(𝑥𝜔)−Δ(𝑥0)−𝜑↓𝜔 ∫ ∏
𝑡∈𝜓

𝜑↑ − 𝜑(𝑥𝑡)
𝜑↑ − 𝜑↓ ℙ(d𝜓)

= N [𝑥𝜔; 𝑥0, 𝜔] 𝑒Δ(𝑥𝜔)−Δ(𝑥0)−𝜑↓𝜔 E [∏
𝑇 ∈Ψ

𝜑↑ − 𝜑(𝑥𝑇)
𝜑↑ − 𝜑↓]

= N [𝑥𝜔; 𝑥0, 𝜔] exp [Δ(𝑥𝜔) − Δ(𝑥0) − ∫
𝜔

0
𝜑(𝑥𝑡) d𝑡]

(4.38)

Since 𝜋(𝜓, 𝑥(0,𝜔]|𝑥0) can be evaluated from finite information, we can leverage it to
construct a conventional auxiliary MCMC algorithm. We follow this approach in the
auxiliary algorithms of Chapters 5 and 6.

Theorem 14 (Auxiliary transition density [17]). Let 𝑉 be a diffusion process with
Lamperti transform 𝜂 and 𝑋 = 𝜂(𝑉) having SDE representation d𝑋𝑡 = 𝛿(𝑋𝑡) d𝑡 + d𝑊𝑡.
Assume that 𝑋 fulfills the assumptions of Theorem 10. Moreover, let 𝛿2 + 𝛿′ be bounded.
Finally, define 𝕎 as the measure under which 𝑋 is a Brownian motion, and ℙ as the
measure induced by the unit rate Poisson process Ψ on [0, 𝜔]. Then, there is a density
𝜋(𝜓, 𝑥(0,𝜔), 𝑣𝜔|𝑣0) with respect to ℙ × 𝕎|(𝑋{0,𝜔} = 𝜂(𝑣{0,𝜔})) × Leb, given by

𝜋(𝜓(0,𝜔), 𝑥(0,𝜔), 𝑣𝜔|𝑣0) = |𝜂′(𝑣𝜔)| N [𝜂(𝑣𝜔); 𝜂(𝑣0), 𝜔 − 0] 𝑒Δ∘𝜂(𝑣𝜔)−Δ∘𝜂(𝑣0)−𝜑↓𝜔

× ∏
𝑡∈𝜓

𝜑↑ − 𝜑(𝑥𝑡)
𝜑↑ − 𝜑↓ , (4.39)

𝜑(𝑎) = 2−1(𝛿2 + 𝛿′)(𝑎), (4.40)

Δ(𝑎) = ∫ 𝛿(𝑎) d𝑎, (4.41)

which satisfies

𝜋(𝑣𝜔|𝑣0) = ∫ 𝜋(𝜓, 𝑥(0,𝜔), 𝑣𝜔|𝑣0)ℙ(d𝜓)𝕎|𝑋{0,𝜔}=𝜂(𝑣{0,𝜔})(d𝑥(0,𝜔)). (4.42)

Corollary 5 (Transition density estimator).

𝜋(Ψ, 𝑋(0,𝜔), 𝑣𝜔|𝑣0), Ψ ∼ ℙ, 𝑋(0,𝜔) ∼ 𝕎|(𝑋{0,𝜔} = 𝜂(𝑣{0,𝜔})) (4.43)

is an unbiased estimator of 𝜋(𝑣𝜔|𝑣0), only requiring evaluations of the Brownian bridge
𝑋(0,𝜔) at a finite number of times given by the Poisson estimator.

This is analogous to the Exact algorithm, and carries the same implication for extending
the estimator to models in 𝒟2 or 𝒟3 for which 𝜑 is not uniformly bounded on 𝐑. As
before, we will appropriately condition 𝕎|(𝑋{ ̇𝜏, ̈𝜏} = 𝜂(𝑣{ ̇𝜏, ̈𝜏})) on information {Ξ = 𝜉},
given which 𝜑 is almost surely bounded at 𝜑𝜉

↓ and 𝜑𝜉
↑, and interpolate 𝑋(̇𝜏, ̈𝜏) at the

required times such that 𝜉 is conserved. Sections 4.3 and 4.4 describe how to carry out
those tasks for 𝒟2 and 𝒟3, respectively.

47

4 Retrospective Simulation and Estimation

4.3 Simulation of Lower Bounded Brownian Bridges (EA2)

In this section, we consider the class of processes for which

sup
𝑥↓≤𝑎

𝜑(𝑎) < ∞, (−∞ < 𝑥↓) (4.44)

i.e. processes for which we can upper bound 𝜑 given a lower bound on the sample path.
𝑊 is a Brownian motion, and 𝕎 is its induced measure. The direct approach is to
simulate the minimum �̌� = min 𝑊[0,𝜔] of a Brownian bridge 𝑊(0,𝜔) ∼ 𝕎|𝑤{0,𝜔}. As a
matter of fact, we will devise a sampler for the joint law of the minimum �̌� and its first
passage time, i.e.

𝐻 = min
𝑡∈(0,𝜔)

{𝑡 ∶ 𝑊𝑡 = �̌�} . (4.45)

Therefore, the full conditioning set is given by

Ξ = (𝐻, �̌�), (4.46)

and once a sample (ℎ, �̌�) as been obtained,

sup
𝑡∈[0,𝜔]

𝜑(𝑊𝑡) = sup
ℎ≤𝑎

𝜑(𝑎) < ∞ (4.47)

almost surely. In addition, we need to be able to simulate skeletons from the lower
bounded Brownian bridge measure 𝕎|(𝑤{0,𝜔}, ℎ, �̌�). Section 4.3.1 addresses the first and
4.3.2 the second task. For brevity, we introduce the notation 𝔹 = 𝕎|𝑤{0,𝜔} for the Bridge
measure and 𝕃 = 𝕎|(𝑤{0,𝜔}, ℎ, �̌�) for the lower bounded bridge measure.

4.3.1 Simulating the Brownian Bridge Minimum

We directly state the relevant result on the joint density of (𝐻, �̌�).

Proposition 2 (Joint density of Brownian bridge minimum (𝐻, �̌�) [71]). Let 𝑊 be
a 𝑤0 → 𝑤𝜔 Brownian bridge. Then the minimum �̌� and its hitting time 𝐻 =
min𝑡∈(0,𝜔) {𝑡 ∶ 𝑊𝑡 = �̌�} follow the density

𝜋(ℎ, �̌�|𝑤{0,𝜔}) ∝ (�̌� − 𝑤0)(�̌� − 𝑤𝜔)
ℎ3(𝜔 − ℎ)3 exp [−(�̌� − 𝑤0)2

2ℎ − (�̌� − 𝑤𝜔)2

2(𝜔 − ℎ)] ,

(ℎ ∈ (0, 𝜔), �̌� < 𝑤0 ∧ 𝑤𝜔) (4.48)

and �̌� has marginal CDF

𝔹[�̌� ≤ �̌�] = exp [−2𝜔(�̌� − 𝑤0)(�̌� − 𝑤𝜔)] . (�̌� < 𝑤0 ∧ 𝑤𝜔) (4.49)

48

4 Retrospective Simulation and Estimation

Since the marginal CDF is easily inverted, we obtain a sample from 𝜋(�̌�|𝑤{0,𝜔}) by way
of the inverse transform method.

Algorithm 7 Sampling �̌� ∼ 𝔹 [71, Chapter 2].
𝑢 ∼ Uniform [0, 1]
�̌� ← ((𝑤0 + 𝑤𝜔) − √(𝑤0 − 𝑤𝜔)2 − 2𝜔 log 𝑢) /2

Sampling 𝐻 given �̌� is more involved, but [31, Chapter IV] provides an algorithm. Define
the Wald or Inverse Gaussian distribution by way of the following density:

𝜋(𝑎|𝜇, 𝜆) = √ 𝜆
2𝜋𝑎3 exp [−𝜆(𝑎 − 𝜇)2

2𝜇2𝑎] (𝑎 > 0) (4.50)

On the basis of that definition, a sample from 𝜋(ℎ|𝑤{0,𝜔}, �̌�) may be obtained by the
algorithm below.

Algorithm 8 Sampling 𝐻 ∼ 𝔹|�̌� [31, Chapter IV].
𝑢 ∼ Uniform [0, 1]
𝑐1 ← (𝑤𝜔 − �̌�)2/(2𝜔), 𝑐2 ← (�̌� − 𝑤0)2/(2𝜔), 𝑐3 ← √𝑐1/𝑐2
if 𝑢 < 1/(1 + 𝑐3) then

𝑎 ∼ Wald [𝑐3, 2𝑐1]
ℎ ← 𝜔/(1 + 𝑎)

else
𝑎 ∼ Wald [𝑐−1

3 , 2𝑐2]
ℎ ← 𝜔/(1 + 𝑎−1)

4.3.2 Filling in the Lower Bounded Bridge

Next, we consider the task of sampling the lower bounded bridge at a finite set of times.
Suppose, for brevity of notation, that only 𝑤{0,𝜔} have been revealed, and 𝑊(0,𝜔) follows
𝕃, conditional on the minimum. Given (ℎ, �̌�), the key result due to [6] is that the
trajectories either side of the minimum can be represented as independent bridges of the
Bessel-3 processes. The Bessel-3 process solves the SDE

d𝑅𝑡 = 𝑅−1
𝑡 d𝑡 + d𝑊𝑡, (4.51)

and we use the symbol ℝ to refer to its induced measure. Notice that a Bessel process
can be represented as a Wiener process conditioned on remaining positive.

Proposition 3 (Bessel decomposition of Brownian bridges [6]). Let 𝑊 be a 𝑤0 → 𝑤𝜔
Brownian bridge. Given its minimum and associated hitting time (ℎ, �̌�), 𝑊(0,ℎ) and

49

4 Retrospective Simulation and Estimation

𝑊(ℎ,𝜔) are independent, and their transformations

�⃗�𝑢 = 𝑊ℎ−𝑢 − �̌�, (𝑢 ∈ (0, ℎ)) (4.52)
�⃗�𝑢 = 𝑊ℎ+𝑢 − �̌�, (𝑢 ∈ (0, 𝜔 − ℎ)) (4.53)

are independent 0 → 𝑤0 − �̌� and 0 → 𝑤𝜔 − �̌� Bessel-3 bridges, respectively. Conversely,

𝑊𝑡 = {�̌� + �⃗�ℎ−𝑡 (𝑡 ∈ (0, ℎ))
�̌� + �⃗�𝑡−ℎ (𝑡 ∈ (ℎ, 𝜔)) (4.54)

follows 𝕃.

Algorithm 9 Sampling 𝑊𝑡 ∼ 𝕃 on 𝑡 ∈ (0, 𝜔)[6].

(𝑢, �̂�, 𝑟�̂�) ← {(ℎ − 𝑡, ℎ, 𝑤0 − �̌�) (𝑡 ∈ (0, ℎ))
(𝑡 − ℎ, 𝜔 − ℎ, 𝑤𝜔 − �̌�) (𝑡 ∈ (ℎ, 𝜔))

𝑟𝑢 ∼ ℝ|𝑟�̂� according to (ALG 10)
𝑤𝑡 ← 𝑟𝑢 + �̌�

The Bessel process may also be constructed by taking the Euclidean norm of a 3-
dimensional Brownian motion vector, i.e.

𝑊 (𝑛) ∼ 𝕎|(𝑊 (𝑛) = 0) ⇒ 𝑅 =
√√√
⎷

3
∑
𝑖=1

(𝑊 (𝑛))2 ∼ ℝ|(𝑅0 = 0). (4.55)

In a similar way, [13] show how to construct its bridges starting from 0 by adding up
multiple Brownian bridges. Given the Bessel bridge simulator 10, we sample skeletons
from 𝑊(0,𝜔) ∼ 𝕃 according to Algorithm 9.

Algorithm 10 Sampling 𝑅𝑢 ∼ ℝ|(𝑅0 = 0, 𝑅�̂� = 𝑟�̂�) on 𝑢 ∈ (0, �̂�) [13].

𝑏(𝑛)
𝑢 ∼ 𝕎|(𝐵(𝑛)

0 = 𝐵(𝑛)
�̂� = 0) (𝑛 = 1, 2, 3)

𝑟𝑢 ← √(𝑏(1)
𝑢)2 + (𝑏(2)

𝑢)2 + (𝑏(3)
𝑢 + 𝑟�̂�𝑢/�̂�)2

We now move on to the setting where in addition to (ℎ, �̌�), {𝑊𝜏 = 𝑤𝜏} has been re-
vealed at a set of times 𝜏 ⊂ [0, 𝜔], and therefore the law at any further times follows
𝕃|𝑤𝜏 . Without loss of generality, suppose that 𝜏 = { ̇𝜏 , ̈𝜏} ⊂ [ℎ, 𝜔], and that we wish
to sample according to the conditional law of 𝑊(ℎ,𝜔)|(𝑤{ ̇𝜏, ̈𝜏}, ℎ, �̌�). The key observa-
tion due to [53] is that since we can represent 𝑊(ℎ,𝜔) as a set of a set of 3 Brownian
bridges {�⃗�(𝑛) ∶ 𝑛 = 1, 2, 3} with �⃗�(𝑛)

0 = �⃗�(𝑛)
𝜔−ℎ = 0, we can represent the conditioning on

{𝑊𝜏 = 𝑤𝜏} as an event {�⃗�(𝑛)
{ ̇𝜏−ℎ, ̈𝜏−ℎ} = ⃗𝑏(𝑛)

𝜈−ℎ ∶ 𝑛 = 1, 2, 3}. Therefore, a sample from 𝑊𝜈

50

4 Retrospective Simulation and Estimation

for 𝜈 ⊂ { ̇𝜏 , ̈𝜏} can be obtained by way of a sample from {�⃗�(𝑛)
𝜈−ℎ ∶ 𝑛 = 1, 2, 3}, where �⃗�(𝑛)

𝜈−ℎ
follows the Brownian bridge law 𝕎|(�⃗�(𝑛)

{ ̇𝜏−ℎ, ̈𝜏−ℎ} = �⃗�(𝑛)
{ ̇𝜏−ℎ, ̈𝜏−ℎ}). Accordingly, the most di-

rect way of revealing 𝑊(0,𝜔) flexibly and iteratively consists of storing its skeleton in
terms of the representation

{ℎ, �̌�} ∪ {�⃗�(𝑛) ∶ 𝑛 = 1, 2, 3} ∪ {�⃗�(𝑛) ∶ 𝑛 = 1, 2, 3} , (4.56)

revealing the Brownian bridges �⃗�(𝑛) and �⃗�(𝑛) as needed.

4.4 Simulation of Bounded Brownian Bridges (EA3)

In this section, we consider the larger class of processes for which

sup
𝑥↓≤𝑎≤𝑥↑

𝜑(𝑎) < ∞, (−∞ < 𝑥↓ < 𝑥↑ < ∞) (4.57)

i.e. processes for which we can upper bound 𝜑 given a bounded sample path. The direct
solution would be to sample both �̌� and �̂� according to 𝔹, but the joint distribution
is intractable. Instead, the approach proposed by [15] is to partition the Brownian
bridge measure into the sum of conditional measures confined to increasing subintervals
ℓ1 ⊂ ℓ2 ⊂ ⋯ ⊂ 𝐑, where ℓ∞ = 𝐑. We index those intervals by 𝜆, and use the notation
{Λ ≤ 𝜆} = {𝑊 ⊆ ℓ𝜆} to indicate that 𝑊 is confined to the 𝜆-th layer. The decomposition
is then given by

𝔹(d𝑤(0,𝜔)) =
∞

∑
𝜆=1

𝔹[Λ = 𝜆]𝔹|𝜆(d𝑤(0,𝜔)), (4.58)

where we note that {Λ = 𝜆} = {ℓ𝜆−1 ⊂ 𝑊 ⊆ ℓ𝜆}.

0 h t̄

t

w↓

wt̄

w0

w′
w′′

w
t

1

0 h t̄

t

w↓

wt̄

w0

w′
w′′

w
t

1Figure 4.3: Illustration of the minimum skeleton (left), and its refinement after densely
interpolating the bridge (right). The green line has to be attained at some
point. As we interpolate more finely, we accumulate information on where it
is attained.

51

4 Retrospective Simulation and Estimation

Because simulation from 𝔹𝜆 turns out to be inefficient, the appropriate conditioning set
is more complicated. It consists of the global minimum (𝐻, �̌�), and a range [𝑊 ′, 𝑊 ″],
such that for a sample thereof,

sup
𝑡∈[0,𝜔]

𝜑(𝑊𝑡) = sup
ℎ≤𝑎≤𝑤″

𝜑(𝑎) < ∞. (4.59)

There is also a symmetrical case where we record the global maximum and the lower
layer. We do not treat that case separately since 𝔹 is symmetrical with respect to
reflections around the line connecting (0, 𝑤0) and (𝜔, 𝑤𝜔). In addition, we will require a
set of indicators {Γ(0,𝐻), Γ(𝐻,𝜔)}, showing whether 𝑊 exceeds 𝑊 ′ within the respective
time interval. In practice, it is often advantageous to refine the hitting indicators as 𝑊
is revealed at additional times, such as illustrated in Figure 4.3.

In a first step, we will describe how to initialize Ξ in Section 4.4.2. This will require
the flipping of coins with probabilities given as certain kinds of infinite sums, which we
discuss in Section 4.4.1. We then describe how to fill in the skeleton given Ξ in Section
4.4.3.

4.4.1 Probabilities as Alternating Cauchy Sequences

i

0

u

1

c i

Figure 4.4: Illustration of the alternating Cauchy sequence coin simulation algorithm.
The dividing horizontal line is randomly drawn between 0 and 1. If the
sequence stabilizes in the green region, the coin comes up heads, and vice
versa. The event is determined by the time the sequence reaches the blue
element.

An implementation of EA3 requires simulations from coins whose probability is only
available as an infinite series, of the form

𝑝 =
∞

∑
𝑖=1

(𝑎𝑖 − 𝑏𝑖). (𝑎𝑖, 𝑏𝑖 > 0, 𝑝 ∈ (0, 1)) (4.60)

52

4 Retrospective Simulation and Estimation

Define the sequence 𝑐 by the relations

𝑐2𝑖−1 =
𝑖−1
∑
𝑗=1

(𝑎𝑗 − 𝑏𝑗) + 𝑎𝑖, 𝑐2𝑖 = 𝑐2𝑖−1 − 𝑏𝑖, (𝑖 = 1, 2, …) (4.61)

and observe that lim𝑖→∞ 𝑐𝑖 = 𝑝. Furthermore, if it satisfies

𝑐2𝑖 < 𝑐2𝑖+2 < 𝑐2𝑖+1 < 𝑐2𝑖−1 ⇒ |𝑐𝑖+1 − 𝑐𝑖| < |𝑐𝑖 − 𝑐𝑖−1| , (𝑖 = 1, 2, …) (4.62)

it forms an alternating Cauchy sequence. Due to the decaying increments, once two
consecutive elements of a sequence fall on a given side of a value, all following elements
will as well. See Figure 4.4 for an illustration of the argument. Accordingly, coins of
probability 𝑝 may be simulated according to the event:

{𝑈 < 𝑝} = {∃𝑖 ∶ 𝑈 < 𝑐2𝑖−1 ∨ 𝑐2𝑖} , 𝑈 ∼ Uniform [0, 1] . (4.63)

The sequences that are used in EA3 converge exponentially fast.

Algorithm 11 Sampling 𝐶 ∼ Bernoulli [𝑝 = ∑∞
𝑖=1(𝑎𝑖 − 𝑏𝑖)], 𝑎𝑖, 𝑏𝑖 > 0 [15].

𝑢 ∼ Unif [0, 1], 𝑖 ← 0, 𝑑 ← 0
repeat

𝑖 ← 𝑖 + 1
𝑐 ← 𝑑 + 𝑎𝑖
𝑑 ← 𝑐 − 𝑏𝑖

until {𝑐 ∨ 𝑑 < 𝑢} ∨ {𝑐 ∧ 𝑑 > 𝑢}
if {𝑐 ∧ 𝑑 < 𝑢} then

𝑐 ← True
else

𝑐 ← False

4.4.2 Simulating the Brownian Bridge Bounds

We now dispose of the necessary tools simulate Λ. As previously hinted, it will not be
sufficient to merely simulate {Λ = 𝜆}, in fact, we will need to simulate a richer subset
of that event. Nonetheless, we will still {Λ = 𝜆} as a first step, and proceed with the
derivation of the algorithm.

Let {𝑑𝑖 ∶ 𝑖 = 1, 2, …} be a strictly increasing and diverging sequence starting at 0. More-
over, define the increasing sequence of intervals

{ℓ𝑖 = [𝑤0 ∧ 𝑤𝜔 − 𝑑𝑖, 𝑤0 ∨ 𝑤𝜔 + 𝑑𝑖] ∶ 𝑖 = 1, 2, …} , (4.64)

covering 𝐑. We also define the layer 𝑖 as the smallest index for which 𝑊 is bounded in
ℓ𝑖:

Λ = min {𝑖 ∶ 𝑊 ⊆ ℓ𝑖} (4.65)

53

4 Retrospective Simulation and Estimation

Thus, the CDF of Λ is given by

𝔹[Λ ≤ 𝜆] = 𝔹[𝑊 ⊆ ℓ𝜆]. (𝜆 = 1, 2, …) (4.66)

These containment probabilities are given by [32].

Proposition 4 (Containment probabilities of Brownian bridges [32]). Let 𝑊 be a 𝑤0 →
𝑤𝜔 Brownian bridge. Then, its containment probability is given by the infinite series

𝔹[𝑊 ⊆ [±𝑐]] =
∞

∑
𝑖=1

(𝑎𝑖 − 𝑏𝑖), (𝑐 > |𝑤0| ∨ |𝑤𝜔|) (4.67)

𝑎𝑖 = exp [−2𝜔−1(2𝑐𝑖 − 𝑐 − 𝑤0)(2𝑐𝑖 − 𝑐 − 𝑤𝜔)] , (4.68)
𝑏𝑖 = exp [−2𝑖𝜔−1(4𝑐2𝑖 + 2𝑐(𝑤𝜔 − 𝑤0))] . (4.69)

In addition, the infinite series is an alternating Cauchy sequence.

Therefore, we may sample from the distribution of Λ by resorting to Algorithm 11.

Algorithm 12 Sampling the layer Λ ∼ 𝔹 [15].
𝑢 ∼ Unif [0, 1], 𝜆 ← 0
repeat

𝜆 ← 𝜆 + 1
ℓ𝜆 = [𝑤0 ∧ 𝑤𝜔 − 𝑑𝜆, 𝑤0 ∨ 𝑤𝜔 + 𝑑𝜆]
𝑏 ← {𝑢 < 𝔹[𝑊 ⊆ ℓ𝜆]} according to (ALG 11), using the already sampled 𝑢

until 𝑏 = True

Given {Λ = 𝜆}, the direct approach consists of simulating from 𝔹|𝜆 by rejection sampling
from 𝔹. This is inadvisable since the expected number of attempts 𝑁 until success
corresponds to

E [𝑁] = E E [𝑁|𝜆] =
∞

∑
𝑖=0

1
𝔹[𝜆] × 𝔹[𝜆] = ∞, (4.70)

which is decidedly unappealing. The better option is to generate a proposal conditioned
on its minimum or maximum being located in ℓ𝜆 \ ℓ𝜆−1. We use the notation

𝐿𝜆 = {�̌� ∈ [𝑤0 ∧ 𝑤𝜔 − 𝑑𝜆, 𝑤0 ∧ 𝑤𝜔 − 𝑑𝜆−1]} , (4.71)

𝑈𝜆 = {�̂� ∈ [𝑤0 ∨ 𝑤𝜔 + 𝑑𝜆−1, 𝑤0 ∨ 𝑤𝜔 + 𝑑𝜆]} , (4.72)

for the respective events, noting that 𝐿𝜆 ∪ 𝑈𝜆 ⊃ {Λ = 𝜆}. The following proposition
establishes that such a proposal results in a valid rejection sampler.

54

4 Retrospective Simulation and Estimation

Proposition 5 (Conditioned 𝔹|𝜆-proposal [15]). Define the proposal measure

ℙ𝜆 = 𝔹|𝐿𝜆 + 𝔹|𝑈𝜆
2 . (4.73)

𝔹|𝜆 is absolutely continuous with respect to ℙ|𝜆, and proposals from the latter are accepted
with probability equal to the Radon-Nikodym derivative

d𝔹|𝜆
dℙ𝜆

(𝑤(0,𝜔)) ∝ 1Λ=𝜆
1 + 1𝐿𝜆∩𝑈𝜆

≤ 1. (4.74)

Proof.

d𝔹|𝜆
dℙ𝜆

(𝑤(0,𝜔)) = 2 d𝔹|𝜆
d(𝔹|𝐿𝜆 + 𝔹|𝑈𝜆)(𝑤(0,𝜔))

= 2 1Λ=𝜆 /𝔹[𝜆]
1𝐿𝜆

/𝔹[𝐿𝜆] + 1𝑈𝜆
/𝔹[𝑈𝜆]

= 𝔹[𝐿𝜆]
𝔹[𝜆]

1Λ=𝜆
1𝐿𝜆

+ 1𝑈𝜆

∝ 1Λ=𝜆
1 + 1𝐿𝜆∩𝑈𝜆

,

(4.75)

where 𝔹[𝐿𝜆] = 𝔹[𝑈𝜆] due to the symmetry of the layers, and 1𝐿𝜆
+ 1𝑈𝜆

= 1 + 1𝐿𝜆∩𝑈𝜆
almost surely under ℙ𝜆.

Hence, for any proposal from ℙ𝜆, we need only concern ourselves with the events {Λ = 𝜆}
and 𝐿𝜆∩𝑈𝜆 to accept or reject, and the remainder of the section addresses the simulation
of those events. Notice that the expected number of proposals per acceptance is bounded
above by

E [𝑁|𝜆] = 2𝔹[𝑈𝜆]
𝔹[𝜆] ≤ 2 𝔹[𝐿𝜆]

𝔹[𝐿𝜆, 𝜆] ≤ 2
𝔹[�̂� < 𝑤0 ∨ 𝑤𝜔 + 𝑑𝜆]

, (4.76)

which is small for sufficiently large 𝑑𝜆. As mentioned before, we may restrict ourselves
to proposing from 𝔹|𝐿𝜆 without loss of generality.

To assess the necessary events, we have to ascertain the precise location of �̌� . Given
𝐿𝜆, �̌� has the invertible CDF 𝔹|𝐿𝜆

[�̌� ≤ �̌�], so we may obtain a sample by way of the
inverse transform method, just as for Algorithm 7, using the algorithm below.

Algorithm 13 Sampling �̌� ∼ 𝔹|(�̌� ∈ [𝑎, 𝑏]).
𝑢 ∼ Uniform [0, 1]
�̃� ← 𝑢(𝑒−2𝜔(𝑏−𝑤0)(𝑏−𝑤𝜔) − 𝑒−2𝜔(𝑎−𝑤0)(𝑎−𝑤𝜔)) + 𝑒−2𝜔(𝑎−𝑤0)(𝑎−𝑤𝜔)

�̌� ← ((𝑤0 + 𝑤𝜔) − √(𝑤0 − 𝑤𝜔)2 − 2𝜔 log �̃�) /2

Next, we assess the event {Λ = 𝜆}. Recalling that 𝕃 = 𝔹|(ℎ, �̌�) for a given minimum
proposal (ℎ, �̌�), it has probability

𝕃[𝜆] = 𝕃[�̂�(0,ℎ) ∈ ℓ𝜆]𝕃[�̂�(ℎ,𝜔) ∈ ℓ𝜆], (4.77)

55

4 Retrospective Simulation and Estimation

where 𝕃[�̂�(0,ℎ) ∈ ℓ𝜆] is the containment probability of a Bessel bridge and given in
alternating Cauchy series form in [15].

Algorithm 14 Sampling {Λ = 𝜆} ∼ 𝕃 [15].
ℓ𝜆 ← [𝑤0 ∧ 𝑤𝜔 − 𝑑𝜆, 𝑤0 ∨ 𝑤𝜔 + 𝑑𝜆]
{�̂�(0,ℎ) ∈ ℓ𝜆} ∼ 𝕃 according to (ALG 11), using the series representation in [15]
{�̂�(ℎ,𝜔) ∈ ℓ𝜆} ∼ 𝕃
{Λ = 𝜆} ← {�̂�(0,ℎ) ∈ ℓ𝜆} ∪ {�̂�(ℎ,𝜔) ∈ ℓ𝜆}

If {Λ = 𝜆} is false, we discard the proposed minimum. Otherwise, we assess 𝑈𝜆, which
is true with probability

𝕃|𝜆[𝑈𝜆] = 1 − 𝕃|�̂�(0,ℎ)∈ℓ𝜆
[�̂�(0,ℎ) ∈ ℓ𝜆−1]𝕃|�̂�(ℎ,𝜔)∈ℓ𝜆

[�̂�(ℎ,𝜔) ∈ ℓ𝜆−1]. (4.78)

In keeping with Proposition 5, (ℎ, �̌�) is accepted with probability 1/2 if 𝑈𝜆 is true,
and probability 1 otherwise. These containment probabilities for upper bounded Bessel
bridges are also given in alternating Cauchy series form by [15]. If the proposal is
accepted, the hitting indicators follow from the escape events, i.e.

{Γ(0,ℎ) = 0 if �̂�(0,ℎ) ∈ ℓ𝜆−1
Γ(ℎ,𝜔) = 1 otherwise

, (4.79)

and likewise for Γ(ℎ,𝜔).

Algorithm 15 Sampling 𝑈𝜆 ∼ 𝕃|𝜆 [15].
ℓ𝜆 ← [𝑤0 ∧ 𝑤𝜔 − 𝑑𝜆, 𝑤0 ∨ 𝑤𝜔 + 𝑑𝜆]
{�̂�(0,ℎ) ∈ ℓ𝜆−1} ∼ 𝕃|(�̂�(0,ℎ) ∈ ℓ𝜆) according to (ALG 11), using the series represen-
tation in [15]
{�̂�(ℎ,𝜔) ∈ ℓ𝜆−1} ∼ 𝕃|(�̂�(ℎ,𝜔) ∈ ℓ𝜆)
𝑈𝜆 ← {�̂�(0,ℎ) ∉ ℓ𝜆−1} ∪ {�̂�(ℎ,𝜔) ∉ ℓ𝜆−1}

Algorithm 16 Sampling (𝐻, �̌�) ∼ 𝔹|(𝜆, 𝐿𝜆) [15].
repeat

(ℎ, �̌�) ∼ 𝔹|𝐿𝜆 according to (ALG 13)
{Λ = 𝜆} ∼ 𝕃 according to (ALG 14)
if {Λ = 𝜆} then

𝑈𝜆 ∼ 𝕃|𝜆 according to (ALG 15)
𝑢 ∼ Unif [0, 1]

until ({Λ = 𝜆} ∧ (¬𝑈𝜆 ∨ {𝑢 < 0.5})

56

4 Retrospective Simulation and Estimation

4.4.3 Filling in the Bounded Bridge

We return to considering the task of sampling the bridge, now bounded on both sides,
at a finite set of times. We begin again with the case where only 𝑤{0,𝜔} are known.
Define 𝕌 = 𝕃|(𝛾(0,ℎ), 𝛾(ℎ,𝜔)) as the conditional law of 𝑊(0,𝜔) given 𝜉. Without loss of
generality due to the conditional independence of 𝑊(0,ℎ) and 𝑊(ℎ,𝜔), suppose that we
wish to reveal 𝑊 at 𝜏 ⊂ (ℎ, 𝜔). Since 𝕌 ≪ 𝕃, we may obtain samples from 𝕌 by way of
rejection sampling from 𝕃, with Radon-Nikodym derivative

d𝕌
d𝕃 (𝑤(ℎ,𝜔)) =

d𝕃|𝛾(ℎ,𝜔)
d𝕃 (𝑤(ℎ,𝜔)) ∝ 1Γ(ℎ,𝜔)=𝛾(ℎ,𝜔)

. (4.80)

Accordingly, in analogy with the previous section, we use Algorithm 9 to propose 𝑤𝜏
according to 𝕃, and then enforce conformity with 𝛾(ℎ,𝜔). The corresponding probability
𝕃|𝑤𝜏

[𝛾(ℎ,𝜔)] is given by

𝕃|𝑤𝜏
[𝛾(ℎ,𝜔)] = 𝕃|𝑤𝜏,𝜆[𝛾(ℎ,𝜔)]𝕃|𝑤𝜏

[𝜆] = 𝕃|𝑤𝜏,𝜆[𝛾(ℎ,𝜔)] ∏
(̇𝜏∼ ̈𝜏)∈ ̃𝜏

𝕃|𝑤{�̇�,�̈�}
[�̂�(̇𝜏, ̈𝜏) ∈ ℓ𝜆], (4.81)

𝕃|𝑤𝜏,𝜆[𝛾(ℎ,𝜔)] =
⎧{
⎨{⎩

∏(̇𝜏∼ ̈𝜏)∈ ̃𝜏 𝕃|𝑤{�̇�,�̈�},�̂�(�̇�,�̈�)∈ℓ𝜆
[�̂�(̇𝜏, ̈𝜏) ∈ ℓ𝜆−1] (𝛾(ℎ,𝜔) = 0)

1 − ∏(̇𝜏∼ ̈𝜏)∈ ̃𝜏 𝕃|𝑤{�̇�,�̈�},�̂�(�̇�,�̈�)∈ℓ𝜆
[�̂�(̇𝜏, ̈𝜏) ∈ ℓ𝜆−1] (𝛾(ℎ,𝜔) = 1) , (4.82)

where ̃𝜏 = 𝜏 ∪ {ℎ, 𝜔}. These probabilities correspond to products of Bessel bridge
escape and containment probabilities provided in [15, Section 3.1.2], which are simulated
according to Algorithm 11. Also keep in mind that in the 𝛾(ℎ,𝜔) = 1 case, the coin
flips according to 𝕃|𝑤{�̇�,�̈�},�̂�(�̇�,�̈�)∈ℓ𝜆

[�̂�(̇𝜏, ̈𝜏) ∈ ℓ𝜆−1] refine the indicator 𝛾(ℎ,𝜔) into a set
{𝛾(̇𝜏, ̈𝜏) ∶ (̇𝜏 ∼ ̈𝜏) ∈ ̃𝜏}, at least one of which has to be 1. It is often preferable to record
the refined escape indicators, as that preserves conditional independence of 𝑊 between
the times 𝜏 .

If in addition {𝑊𝜏 = 𝑤𝜏} has been revealed at a set of times 𝜏 ⊂ [0, 𝜔], we suppose
again without loss of generality that 𝜏 = { ̇𝜏 , ̈𝜏} ⊂ [ℎ, 𝜔]. The sampling algorithm for
𝑊𝜈 with 𝜈 ⊂ (̇𝜏 , ̈𝜏) consists of first generating a proposal 𝑤𝜈 from 𝕃|𝑤{ ̇𝜏, ̈𝜏} as set out in
Section 4.3.2, then accepting with probability 𝕃|𝑤𝜈

[𝛾(̇𝜏, ̈𝜏)], in the process refining 𝛾(̇𝜏, ̈𝜏)
into {𝛾(̇𝜈, ̈𝜈) ∶ (̇𝜈 ∼ ̈𝜈) ∈ 𝜈 ∪ { ̇𝜏 , ̈𝜏}}.

4.4.4 Layer Refinement

In the following chapters, a key task will consist of either flipping a coin with probabil-
ity

exp [∫
𝜔

0
(𝜑𝜉

↓ − 𝜑(𝑥𝑡))] (4.83)

for some 𝜉-dependent bounds 𝜑𝜉
↓ and 𝜑𝜉

↑, or estimating that probability without bias.
Other things equal, the computational burden of this task quickly increases in 𝜔. In

57

4 Retrospective Simulation and Estimation

particular, as a consequence of Proposition 4, if we wish to keep 𝔹[𝑋(0,𝜔) ∈ ℓ𝜆] constant
as 𝜔 increases, then |ℓ𝜆| has to increase at rate 𝒪(√𝜔). Indeed, the sequence of intervals
is typically set as

{ℓ𝑖 = [𝑤0 ∧ 𝑤𝜔 − 𝑐𝑖√𝜔, 𝑤0 ∨ 𝑤𝜔 + 𝑐𝑖√𝜔] ∶ 𝑖 = 1, 2, …} , (4.84)

for some 𝑐 > 0. This scaling of ℓ𝜆 usually implies exponential growth of 𝜑𝜉
↑ − 𝜑𝜉

↓ in 𝜔.
The flipside is that the bound would tighten quickly if we could split the time interval
[0, 𝜔] into a few subintervals.

Consider the bridge 𝑋(0,𝜔) spanning 𝑥0 and 𝑥𝜔, and suppose that 𝜏 is a partition of
[0, 𝜔]. A simple divide-and-conquer approach to bound refinement proposed by [53] is
to first generate

𝑋𝜏\{0,𝜔} ∼ 𝕎|𝑥{0,𝜔}. (4.85)
Thereafter, given {𝑋𝜏 = 𝑥𝜏}, we sample the local layers Λ(̇𝜏, ̈𝜏) according to Section 4.4.2,
with ∣ℓ(̇𝜏, ̈𝜏)∣ decreasing at rate 𝒪(√mesh 𝜏). Therefore, the trajectory of a Brownian
bridge proposal for 𝑋 can be bounded with arbitrary accuracy by increasing |𝜏 |, at a
linear cost in |𝜏 |. Since the bounds on 𝑋 are now local, we also obtain the local bounds
𝜑↓

(̇𝜏, ̈𝜏) and 𝜑↑
(̇𝜏, ̈𝜏) on 𝜑. The Poisson coin algorithm may be applied separately on each

interval in 𝜏 , and the coin comes up heads if each subproposal on (̇𝜏 , ̈𝜏) is accepted. The
corresponding probability of heads is

∏
(̇𝜏∼ ̈𝜏)∈𝜏

exp [∫
̈𝜏

̇𝜏
(𝜑↓

(̇𝜏, ̈𝜏) − 𝜑(𝑥𝑡)) d𝑡] , (4.86)

which for many models and moderate |𝜏 | increases faster than 𝒪(|𝜏|), and hence realizes
computational savings. The main shortcoming of this method is that 𝜏 has to be set
in advance, requiring trial and error adjustments until the computional cost has been
roughly minimized.

4.5 Discussion

We have introduced methods for estimation of, or rejection sampling according to the
probability exp [∫𝜔

0 (𝜑↓ − 𝜑(𝑥𝑡)) d𝑡], which enables diffusion path simulation and com-
plete transition density estimation. Going forward, we will mainly treat those methods
as black boxes, merely emphasizing that flipping a coin or estimating the above proba-
bility has cost 𝒪(𝜔(𝜑↑ − 𝜑↓)). Critically, once we introduce dependence on parameters
𝜃, this quantity can be arbitrarily large, which raises concerns for the use of these tools
within an MCMC algorithm on a possibly unbounded space 𝒯. Worse still, if we wish to
use the Poisson coin algorithm within the 2-coin algorithm of Section 2.3.1, the runtime
could be exponentially large in 𝜔(𝜑↑ − 𝜑↓).
When designing exact MCMC algorithms, we will devise various mitigation schemes
that prevent expensive simulations from arising too often. In the case of the 2-coin

58

4 Retrospective Simulation and Estimation

algorithm, we have already introduced the Portkey 2-coin algorithm, which has bounded
expected runtime for given Poisson coin probabilities, though it remains unbounded
once we introduce parameters 𝜃. Complementarily, we have discussed the novel batch
EA algorithm in Section 4.1.3, which allows for quick simulation of tail tosses within the
2-coin algorithm.

59

5 Exact Inference for Itō Diffusion Models

In this chapter, we finally return to the overarching questions raised in the introduc-
tion: we consider SDEs that involve a vector of unknown scalars 𝜃, and the natural
task of estimating those parameters based on a sequence of observations. We define a
parameterized Itō diffusion model by way of the SDE

d𝑉𝑡 = 𝜇𝜃(𝑉𝑡) d𝑡 + 𝜎𝜃(𝑉𝑡) d𝑊𝑡, (𝑉0 = 𝑣0) (5.1)

where 𝜇𝜃 ∶ 𝐑 → 𝐑 and 𝜎𝜃 ∶ 𝐑 → (0, ∞) are valid drift and volatility functions for
any choice of 𝜃 in some set 𝒯, and 𝑊 is a standard Brownian motion. If 𝜇 and 𝜎 are
Lipschitz-continuous, the SDE is solved by a unique stochastic diffusion process, though
broader conditions exist, see Section 3.1. Where necessary, we further restrict 𝒯 such
that the SDE has a unique solution for all elements of 𝒯. For each 𝜃, the SDE implies
a transition density 𝜋(𝑣𝑡|𝑣0, 𝜃), which we assume to be intractable. We will mostly
work within a Bayesian inference setting, where we treat the parameters as a random
variable, denoted Θ, and assign some prior density 𝜋(𝜃) with support on 𝒯. Given a set
of observation times 𝑠 and corresponding observations 𝑣𝑠, the posterior density of Θ is
given by

𝜋(𝜃|𝑣𝑠) =
𝜋(𝜃) ∏(̇𝑠∼ ̈𝑠)∈𝑠 𝜋(𝑣 ̈𝑠|𝑣 ̇𝑠, 𝜃)

∫ 𝜋(𝜃′) ∏(̇𝑠∼ ̈𝑠)∈𝑠 𝜋(𝑣 ̈𝑠|𝑣 ̇𝑠, 𝜃′) d𝜃′ . (5.2)

This is an example of the twice intractable inference problem. On the one hand, the
denominator is typically not available, as is common in Bayesian models. Therefore, ex-
pectations of test functions 𝑓 with respect to the posterior, denoted E [𝑓(Θ)|𝑣𝑠], cannot
be derived analytically. On the other hand, the transition density 𝜋(𝑣𝑡|𝑣0, 𝜃) is unavail-
able as well, so we cannot evaluate the numerator either! This puts our task outside of
the standard Bayesian computational setting, which assumes that the numerator can be
evaluated, and we find ourselves in the setting of Chapter 2. Likelihood-based estimation
has usually relied on an Euler approximation to the transition density, as laid out in
Section 3.5. Bayesian examples of such approximate procedures are found e.g. in [69],
[37], [35] and [108], while Maximum likelihood estimation dominates in Econometrics,
as seen for example in [29], [98], [109], [34]. Higher-order expansions of the transition
density have also been proposed, e.g. in [3].

Nonetheless, we need not give up on the benefits of the Bayesian approach and its compu-
tational methods. On the contrary, by leveraging the techniques introduced in Chapters
2, 3, and 4, we can provide an orthodox numerical treatment of the Bayesian inference
problem. In a first step, in Section 5.1 we apply the hidden data augmentation strategy

60

5 Exact Inference for Itō Diffusion Models

discussed in Section 3.3. This is a natural starting point to any of the intractable like-
lihood inference strategies discussed in Chapter 2. It results in an explicit joint model
𝜋(𝑣, 𝜃) involving the entire diffusion path. Due to the Markov property and the resulting
conditional independence structure, the natural strategy for that extended posterior is to
carry out Gibbs sampling. To execute a Gibbs sampling approach successfully, we need
to be mindful of posterior dependence of model variables, an issue previously discussed
in Section 2.2.1. We do so in Section 5.1.2 by changing variables to obtain the model’s
noncentered parameterization. We proceed to addressing the infinite dimensionality of
𝑉 in accordance with the retrospective sampling approach of Chapter 4, allowing us
to implement the infinite dimensional algorithm based on finite information only. One
option is to carry out further data augmentation, which we do in Section 5.1.3 based
on the Poisson estimator methodology of Section 4.2. Based on those developments, we
present two MCMC algorithms in Sections 5.2 and 5.3 that target 𝜋(𝜃|𝑣𝑠), one of which
more conventionally relies on the additional auxiliary variables, while the other imple-
ments the Bernoulli factory MCMC strategy introduced in Section 2.3. In what follows,
we refer to those algorithms as the auxiliary and the marginal algorithm, respectively.
The auxiliary algorithm presented here is closely related to the one originally proposed
by [111], while the marginal algorithm improves on the methodology of [52]. We note
that in investigating the more complicated problem of inference for jump diffusions, [53]
have recently made various other improvements over the latter paper, many of which
apply to other diffusion settings.

We will also present a method for approximate posterior sampling based on Euler dis-
cretization, based on the work of [108] on data augmentation for diffusion inference.
Finally, in Section 5.5 we present an EM algorithm for exact MAP inference, derived
from the treatment of maximum likelihood estimation for diffusions given in [17]. Notice
that exact maximum likelihood estimation was also investigated from a pure simulated
likelihood angle in [14].

The choice between the auxiliary and the marginal algorithm is determined by a com-
plicated tradeoff. Following the logic of Section 2.2, the marginal algorithm is likely to
be more efficient statistically since it has fewer latent variables. Nevertheless, it also
has the statistical disadvantage pointed out in Section 2.1 of relying on the suboptimal
Barker acceptance procedure, rather than the Metropolis procedure used by the auxil-
iary algorithm. Furthermore, due to the phenomena described in Section 2.3, acceptance
decisions in the marginal algorithm are typically more expensive to carry out. We expect
each single iteration of the marginal algorithm to be more beneficial, while the iteration
time favors the auxiliary algorithm. The net effect may depend on the specific setting
at hand, and is experimentally investigated in the simulation studies of Section 5.8.1.

In the broader context of the thesis, the chapter serves two main purposes. Firstly,
many concepts that are required for inference in more complicated models are more
easily introduced in the plain Itō diffusion setting. Once they have been properly moti-
vated and explored in the more simple setting, the treatment of the complicated setting
will be a natural extension. Secondly, recent advances in the development of inference

61

5 Exact Inference for Itō Diffusion Models

algorithms for those complicated models also allow for more efficient inference in the Itō
diffusion context. Thirdly, we systematically explore the tradeoff between the auxiliary
and marginal algorithm in this more simple setting.

Remark 1 (Unbounded iteration time of exact MCMC algorithms). Whichever way
we pursue, it will transpire that the central difficulty of implementing exact MCMC
algorithms lies in the path integrand

𝜑𝜃(𝑎) = 2−1(𝛿2
𝜃 + 𝛿′

𝜃)(𝑎) (5.3)

being unbounded in 𝜃, even for fixed 𝑎, with 𝛿𝜃 standing for the drift of the Lamperti-
transformed diffusion. Hence, in accordance with the discussion of Section 4.5, there are
parts of 𝒯 in which exact algorithms, which are central to implementing the algorithms
of this chapter, have arbitrarily long runtime, often of complexity 𝒪(𝜔(𝜑↑

𝜃 − 𝜑↓
𝜃)) or

even 𝒪(𝑒𝜔(𝜑↑
𝜃−𝜑↓

𝜃)) for 𝜃-dependent bounds 𝜑↓
𝜃 and 𝜑↑

𝜃. Loosely speaking, we will aim at
developing methods such that

EΘ∼𝜋(𝜃|𝑣𝑠) [Time per Iteration] < ∞, (5.4)

i.e. such that there is control of time per iteration when considering regions where the
posterior probability is large. Keep in mind that this will require having some control of
𝜑𝜃† for any proposal 𝜃†. We have already introduced some mitigation techniques, namely
the batch EA method of Section 4.1.3 and the Portkey Barker algorithm of Section 2.3.2.
We further discuss those aspects in Sections 5.2.2 and 5.3.2.

5.1 Data Augmentation Strategy

We begin by obtaining an explicit model 𝜋(𝑣, 𝜃) by following the development given in
Section 3.3. We introduce the diffusion bridges 𝑉(̇𝑠, ̈𝑠), upon which we can access the
complete transition density 𝜋(𝑣(̇𝑠, ̈𝑠]|𝑣 ̇𝑠, 𝜃). The associated posterior on the augmented
state space (𝑉 , Θ) is given by

𝜋(𝑣, 𝜃|𝑣𝑠) ∝ 𝜋(𝜃) ∏
(̇𝑠∼ ̈𝑠)∈𝑠

𝜋(𝑣(̇𝑠, ̈𝑠]|𝑣 ̇𝑠, 𝜃), (5.5)

where we keep in mind that by targeting the augmented posterior, we also implicitly
target the marginal posterior of interest.

The natural way of constructing an MCMC algorithm that targets (5.5) is to do Gibbs
sampling, i.e. alternating updates to the full conditionals 𝜋(𝑣|𝑣𝑠, 𝜃) and 𝜋(𝜃|𝑣). As
pointed out by [108], this is not immediately possible for many models, since 𝑉 po-
tentially contains perfect information about elements of 𝜃, and vice versa. Hence, for
distinct values 𝜃 and 𝜃†, the full conditionals 𝜋(𝑣|𝑣𝑠, 𝜃) and 𝜋(𝑣|𝑣𝑠, 𝜃†) may have disjoint
support, and the Gibbs sampler is reducible and nonergodic. We can solve this prob-
lem with an invertible change of variables from (𝑉 , Θ) to the alternative noncentered

62

5 Exact Inference for Itō Diffusion Models

parameterization (𝑍, Θ). Under the new parameterization, the Gibbs sampler with full
conditionals 𝜋(𝑧|𝑣𝑠, 𝜃) and 𝜋(𝜃|𝑣𝑠, 𝑧) is ergodic, and targets the marginal posterior

𝜋(𝑧, 𝜃|𝑣𝑠) ∝ 𝜋(𝜃) ∏
(̇𝑠∼ ̈𝑠)∈𝑠

𝜋(𝑧(̇𝑠, ̈𝑠), 𝑣 ̈𝑠|𝑣 ̇𝑠, 𝜃). (5.6)

The details of the change of variable are given in Section 5.1.2. To implement the
marginal algorithm, we must avoid the evaluation of expressions that involve the infinite
dimensional path 𝑧.

In accordance with Section 4.2.2 and Theorem 14, a further augmentation step with the
auxiliary Poisson process Ψ results in the auxiliary posterior

𝜋(𝜓, 𝑧, 𝜃|𝑣𝑠) ∝ 𝜋(𝜃) ∏
(̇𝑠∼ ̈𝑠)∈𝑠

𝜋(𝜓(̇𝑠, ̈𝑠), 𝑧(̇𝑠, ̈𝑠), 𝑣 ̈𝑠|𝑣 ̇𝑠, 𝜃), (5.7)

which is derived in Section 5.1.3. Critically, the RHS can be evaluated in finite time,
which allows for the development of an ordinary Metropolis-within-Gibbs sampler on
the augmented space in Section 5.3.

5.1.1 Standing Assumptions and Complete Transition Density

Once 𝜃 is conditioned upon, the complete transition density is obtained as in the known
SDE case given in Section 3.3 and Theorem 10. The Lamperti transform now depends
on 𝜃 and corresponds to

𝜂𝜃(𝑎) = ∫
𝑎

𝑣∗

d𝑏
𝜎𝜃(𝑏) , (𝑣∗, 𝑎 ∈ 𝒱) (5.8)

and the reduced process 𝑋 = 𝜂𝜃(𝑉) follows the SDE

d𝑋𝑡 = 𝛿𝜃(𝑋𝑡) d𝑡 + d𝑊𝑡, (𝑋0 = 𝜂𝜃(𝑣0)) (5.9)

𝛿𝜃(𝑎) = (𝜇𝜃
𝜎𝜃

− 𝜎′
𝜃

2) ∘ 𝜂−1
𝜃 (𝑎). (5.10)

Suppose now that the usual assumptions apply for every 𝜃 ∈ 𝒯, i.e.

• 𝛿𝜃(𝑎) is continuously differentiable in 𝑎 ∈ 𝒳.

• The Novikov condition applies, i.e. E𝑋(�̇�,�̈�]
[exp [∫ ̈𝑠

̇𝑠 𝛿2
𝜃(𝑋𝑡) d𝑡] |𝑥 ̇𝑠, 𝜃] < ∞.

Define 𝕎 as the measure under which 𝑋 is a Brownian motion. Then, by Theorem 10,
the complete transition density with respect to the dominating measure 𝕎|(𝑋{ ̇𝑠, ̈𝑠} =

63

5 Exact Inference for Itō Diffusion Models

𝑉 ̇𝑠

𝑉 ̈𝑠

𝑍(̇𝑠, ̈𝑠)

Θ
(̇𝑠 ∼ ̈𝑠) ∈ 𝑠

Figure 5.1: Plate diagram for the marginal noncentered model.

𝜂𝜃(𝑣{ ̇𝑠, ̈𝑠})) × Leb is given by

𝜋(𝑥(̇𝑠, ̈𝑠), 𝑣 ̈𝑠|𝑣 ̇𝑠, 𝜃) = |𝜂′
𝜃(𝑣 ̈𝑠)| N [𝜂𝜃(𝑣 ̈𝑠); 𝜂𝜃(𝑣 ̇𝑠), ̈𝑠 − ̇𝑠] d𝕏|(𝑋 ̇𝑠 = 𝜂𝜃(𝑣 ̇𝑠), 𝜃)

d𝕎|(𝑋 ̇𝑠 = 𝜂𝜃(𝑣 ̇𝑠)) (𝑥(̇𝑠, ̈𝑠), 𝜂𝜃(𝑣 ̈𝑠)),
(5.11)

d𝕏|(𝑥 ̇𝑠, 𝜃)
d𝕎|𝑥 ̇𝑠

(𝑥(̇𝑠, ̈𝑠]) = exp [Δ𝜃(𝑥 ̈𝑠) − Δ𝜃(𝑥 ̇𝑠) − ∫
̈𝑠

̇𝑠
𝜑𝜃(𝑥𝑡) d𝑡] , (5.12)

𝜑𝜃(𝑎) = 1
2 (𝛿2

𝜃(𝑎) + 𝛿′
𝜃(𝑎)) , (5.13)

Δ𝜃(𝑎) = ∫ 𝛿𝜃(𝑎) d𝑎. (5.14)

The result elucidates the connection between the dominating measure 𝕎|(𝑋{ ̇𝑠, ̈𝑠} =
𝜂𝜃(𝑣{ ̇𝑠, ̈𝑠})) and the failure of Gibbs sampling - for distinct values 𝜃 ≠ 𝜃†, 𝕎|(𝑋{ ̇𝑠, ̈𝑠} =
𝜂𝜃(𝑣{ ̇𝑠, ̈𝑠})) and 𝕎|(𝑋{ ̇𝑠, ̈𝑠} = 𝜂𝜃†(𝑣{ ̇𝑠, ̈𝑠})) have support on bridge paths with distinct end-
points, and they are mutually singular. Therefore, 𝜋(𝑥(̇𝑠, ̈𝑠), 𝑣 ̈𝑠|𝑣 ̇𝑠, 𝜃) and 𝜋(𝑥(̇𝑠, ̈𝑠), 𝑣 ̈𝑠|𝑣 ̇𝑠, 𝜃†)
are mutually singular as well, precluding a move between values of Θ that change the
endpoints of the bridge paths. Conversely, an appropriate change of variables must re-
sult in a density with respect to a dominating measure that is invariant in 𝜃. This is an
extreme version of the failure of Gibbs sampling where the fraction of missing informa-
tion is large. In this instance, the latent variable has infinite dimension, and the fraction
of missing information is 1. The phenomenon was investigated in detail in [108].

5.1.2 Marginal Noncentered Transition Density

When the fraction of missing information is large, the performance of Gibbs sampling
may typically be improved by changing variables to a noncentered parameterization, as
discussed in Section 2.2.1. We obtain this parameterization by removing the dependence
of the imputed bridge on the endpoints 𝜂𝜃(𝑣{ ̇𝑠, ̈𝑠}). Let 𝜁𝜃(𝑥𝑡; 𝑣{ ̇𝑠, ̈𝑠}) be defined by

𝜁𝜃(𝑥𝑡; 𝑣{ ̇𝑠, ̈𝑠}) = 𝑥𝑡 − 𝜂𝜃(𝑣 ̇𝑠) − (𝜂𝜃(𝑣 ̈𝑠) − 𝜂𝜃(𝑣 ̇𝑠))(𝑡 − ̇𝑠)/(̈𝑠 − ̇𝑠), (𝑡 ∈ (̇𝑠, ̈𝑠)) (5.15)

We then change variables to 𝑍(̇𝑠, ̈𝑠) = 𝜁𝜃(𝑋(̇𝑠, ̈𝑠); 𝑣{ ̇𝑠, ̈𝑠}). Critically, if 𝑋(̇𝑠, ̈𝑠) is a Brownian
bridge connecting (̇𝑠, 𝑥 ̇𝑠) and (̈𝑠, 𝑥 ̈𝑠), then 𝑍(̇𝑠, ̈𝑠) is a Brownian bridge connecting (̇𝑠, 0)

64

5 Exact Inference for Itō Diffusion Models

ṡ s̈

t

z↓

0

z↑
z t

(a) noncentered path.

ṡ s̈

t

x↓

xṡ

xs̈

x↑

x
t

(b) Centered path.

Figure 5.2: Illustration of a noncentered and a centered path, and the propagation of the
noncentered to the centered path bounds. The blue-shaded area corresponds
to the set to which we bound the noncentered 𝑍 and the centered 𝑋. While
the uniform bounds on 𝑍 imply linear bounds bounds on 𝑋, we uniformize
the bounds on 𝑋 for simplicity. The red and green-shaded area correspond
to the slack of the uniformized bounds on 𝑋.

and (̈𝑠, 0), and vice versa. The change of variables is illustrated in Figure 5.2. In addition,
let 𝜁−1

𝜃 be the inverse of 𝜁𝜃 in its first argument, i.e.

𝜁−1
𝜃 (𝑧𝑡; 𝑣{ ̇𝑠, ̈𝑠}) = 𝑧𝑡 + 𝜂𝜃(𝑣 ̇𝑠) + (𝜂𝜃(𝑣 ̈𝑠) − 𝜂𝜃(𝑣 ̇𝑠))(𝑡 − ̇𝑠)/(̈𝑠 − ̇𝑠). (𝑡 ∈ (̇𝑠, ̈𝑠)) (5.16)

We further define ℤ|(𝑥{ ̇𝑠, ̈𝑠}, 𝜃) and 𝔹(̇𝑠, ̈𝑠) as the pushforward measures induced by 𝑍(̇𝑠, ̈𝑠)
under 𝕏|(𝑥{ ̇𝑠, ̈𝑠}, 𝜃) and 𝕎|(𝑥{ ̇𝑠, ̈𝑠}, 𝜃) respectively. Moreover, we note that under 𝔹(̇𝑠, ̈𝑠),
𝑍(̇𝑠, ̈𝑠) is a Brownian bridge hitting 0 at times (̇𝑠, ̈𝑠). Then, taking into account that
probabilities have to be preserved under the change of variables, we find that

dℤ|(𝑥{ ̇𝑠, ̈𝑠}, 𝜃)
d𝔹(̇𝑠, ̈𝑠)

(𝑧(̇𝑠, ̈𝑠)) =
d𝕏|(𝑥{ ̇𝑠, ̈𝑠}, 𝜃)
d𝕎|(𝑥{ ̇𝑠, ̈𝑠}, 𝜃) ∘ 𝜁−1

𝜃 (𝑧(̇𝑠, ̈𝑠); 𝑣{ ̇𝑠, ̈𝑠})

= N [𝑥 ̈𝑠; 𝑥 ̇𝑠, ̈𝑠 − ̇𝑠]
𝜋(𝑥 ̈𝑠|𝑥 ̇𝑠, 𝜃)

d𝕏|(𝑥 ̇𝑠, 𝜃)
d𝕎|(𝑥 ̇𝑠, 𝜃)(𝜁−1

𝜃 (𝑧(̇𝑠, ̈𝑠); 𝑣{ ̇𝑠, ̈𝑠}), 𝑥 ̈𝑠).
(5.17)

Substituting that identity, we find the joint density of (𝑧(̇𝑠, ̈𝑠), 𝑥 ̈𝑠):

𝜋(𝑧(̇𝑠, ̈𝑠), 𝑥 ̈𝑠|𝑥 ̇𝑠, 𝜃) = 𝜋(𝑥 ̈𝑠|𝑥 ̇𝑠, 𝜃)
dℤ|(𝑥{ ̇𝑠, ̈𝑠}, 𝜃)

d𝔹(̇𝑠, ̈𝑠)
(𝑧(̇𝑠, ̈𝑠))

= N [𝑥 ̈𝑠; 𝑥 ̇𝑠, ̈𝑠 − ̇𝑠] d𝕏|(𝑥 ̇𝑠, 𝜃)
d𝕎|(𝑥 ̇𝑠, 𝜃)(𝜁−1

𝜃 (𝑧(̇𝑠, ̈𝑠); 𝑣{ ̇𝑠, ̈𝑠}), 𝑥 ̈𝑠)
(5.18)

65

5 Exact Inference for Itō Diffusion Models

Finally, we change variables from 𝑋 ̈𝑠 to 𝑉 ̈𝑠, which gives us the noncentered complete
transition density

𝜋(𝑧(̇𝑠, ̈𝑠), 𝑣 ̈𝑠|𝑣 ̇𝑠, 𝜃) = |𝜂′
𝜃(𝑣 ̈𝑠)| N [𝜂𝜃(𝑣 ̈𝑠); 𝜂𝜃(𝑣 ̇𝑠), ̈𝑠 − ̇𝑠]

× d𝕏|(𝑋 ̇𝑠 = 𝜂𝜃(𝑣 ̇𝑠), 𝜃)
d𝕎|(𝑋 ̇𝑠 = 𝜂𝜃(𝑣 ̇𝑠), 𝜃)(𝜁−1

𝜃 (𝑧(̇𝑠, ̈𝑠); 𝑣{ ̇𝑠, ̈𝑠}), 𝜂𝜃(𝑣 ̈𝑠))

=

𝑑𝜃(𝑣{�̇�,�̈�})
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
∣𝜂′

𝜃(𝑣 ̈𝑠)∣ N [𝜂𝜃(𝑣 ̈𝑠); 𝜂𝜃(𝑣 ̇𝑠), ̈𝑠 − ̇𝑠] 𝑒Δ𝜃∘𝜂𝜃(𝑣�̈�)−Δ𝜃∘𝜂𝜃(𝑣�̇�)

× exp [− ∫
̈𝑠

̇𝑠
𝜑𝜃 ∘ 𝜁−1

𝜃 (𝑧𝑡; 𝑣{ ̇𝑠, ̈𝑠}) d𝑡]
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑞𝜃(𝑧(�̇�,�̈�),𝑣{�̇�,�̈�})

(5.19)

with respect to 𝔹(̇𝑠, ̈𝑠) × Leb. See Figure 5.1 for the corresponding graphical model.
Armed with this density, we could in principle proceed to designing an ergodic Gibbs
sampler. The remaining obstacle is that the paths 𝑧(̇𝑠, ̈𝑠) are infinite dimensional, and
that the exponentiated path integrals 𝑞𝜃(𝑧(̇𝑠, ̈𝑠), 𝑣{ ̇𝑠, ̈𝑠}) usually cannot be expressed in
terms of a finite computation. One solution is to add additional latent variables, upon
which we obtain a density which can be evaluated. This dual augmentation, derived in
the following section, gives rise to the auxiliary algorithm.

Whether we carry out additional augmentation or not, we will require the ability to
bound 𝜑𝜃 ∘ 𝜁−1

𝜃 on (̇𝑠, ̈𝑠) in terms of the noncentered path 𝑧(̇𝑠, ̈𝑠), based on finite informa-
tion. To save on ink, we frequently use the tilde accent as in

�̃�𝜃 = 𝜑𝜃 ∘ 𝜁−1
𝜃 (5.20)

to refer to the composition of a function in 𝑧(̇𝑠, ̈𝑠) with 𝜁−1
𝜃 . In the EA3 setting of Section

4.4, that information consists of lower and upper bounds

−∞ < 𝑧↓
(̇𝑠, ̈𝑠) ≤ 𝑧𝑡 ≤ 𝑧↑

(̇𝑠, ̈𝑠) < ∞. (𝑡 ∈ (̇𝑠, ̈𝑠)) (5.21)

Since 𝑥𝑡 = 𝜁−1
𝜃 (𝑧𝑡; 𝑣{ ̇𝑠, ̈𝑠}) is positive monotonous in 𝑧𝑡, the bounds are easily propa-

gated:

𝑥𝑡 ∈ (𝑧↓
(̇𝑠, ̈𝑠) + 𝜂𝜃(𝑣 ̇𝑠) + (𝜂𝜃(𝑣 ̈𝑠) − 𝜂𝜃(𝑣 ̇𝑠))(𝑡 − ̇𝑠)/(̈𝑠 − ̇𝑠),

𝑧↑
(̇𝑠, ̈𝑠) + 𝜂𝜃(𝑣 ̇𝑠) + (𝜂𝜃(𝑣 ̈𝑠) − 𝜂𝜃(𝑣 ̇𝑠))(𝑡 − ̇𝑠)/(̈𝑠 − ̇𝑠)) (𝑡 ∈ (̇𝑠, ̈𝑠))

∈ (𝑧↓
(̇𝑠, ̈𝑠) + 𝜂𝜃(𝑣 ̇𝑠) + min𝑡∈(̇𝑠, ̈𝑠) [(𝜂𝜃(𝑣 ̈𝑠) − 𝜂𝜃(𝑣 ̇𝑠))(𝑡 − ̇𝑠)] /(̈𝑠 − ̇𝑠),

𝑧↑
(̇𝑠, ̈𝑠) + 𝜂𝜃(𝑣 ̇𝑠) + max𝑡∈(̇𝑠, ̈𝑠) [(𝜂𝜃(𝑣 ̈𝑠) − 𝜂𝜃(𝑣 ̇𝑠))(𝑡 − ̇𝑠)] /(̈𝑠 − ̇𝑠))

∈ (𝑧↓
(̇𝑠, ̈𝑠) + 𝜂𝜃(𝑣 ̇𝑠) ∧ 𝜂𝜃(𝑣 ̈𝑠)⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑥↓
(�̇�,�̈�)

, 𝑧↑
(̇𝑠, ̈𝑠) + 𝜂𝜃(𝑣 ̇𝑠) ∨ 𝜂𝜃(𝑣 ̈𝑠)⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑥↑
(�̇�,�̈�)

).

(5.22)

66

5 Exact Inference for Itō Diffusion Models

𝑉 ̇𝑠

𝑉 ̈𝑠

𝑍(̇𝑠, ̈𝑠)

Ψ(̇𝑠, ̈𝑠)

Θ

(̇𝑠 ∼ ̈𝑠) ∈ 𝑠

Figure 5.3: Plate diagram for the auxiliary noncentered model.

Notice that relative to the bounds on 𝑍, these bounds are “loose” when the difference
between 𝜂𝜃(𝑣 ̇𝑠) and 𝜂𝜃(𝑣 ̈𝑠) is large. This is illustrated in Figure 5.2. We proceed to
solving for the bounds

−∞ < �̃�↓
𝜃(𝑧(̇𝑠, ̈𝑠), 𝑣{ ̇𝑠, ̈𝑠}) ≤ 𝜑𝜃(𝑥) ≤ �̃�↑

𝜃(𝑧(̇𝑠, ̈𝑠), 𝑣{ ̇𝑠, ̈𝑠}) < ∞ (𝑥 ∈ (𝑥↓
(̇𝑠, ̈𝑠), 𝑥↑

(̇𝑠, ̈𝑠))) (5.23)

with the procedural methods developed in Chapter 8.

5.1.3 Auxiliary Noncentered Transition Density

We can avoid evaluations of the complete transition density by carrying out an additional
data augmentation step. We do so by resorting to the transition density estimator
introduced in Section 4.2, and adapting it to the noncentered parameterization.

The setup is similar. Let Ψ(̇𝑠, ̈𝑠) be a 2-dimensional Poisson process on [̇𝑠, ̈𝑠]× [0, ∞) with
induced measure ℙ(̇𝑠, ̈𝑠), and assume that for every 𝜃, we have access to upper and lower
bounds for 𝜑𝜃(𝑥𝑡) on (̇𝑠, ̈𝑠). Given these bounds, we define the truncation

𝛾𝜃(𝜓(̇𝑠, ̈𝑠), 𝑥(̇𝑠, ̈𝑠)) = {𝑡 ∶ (𝑡, 𝜙) ∈ 𝜓(̇𝑠, ̈𝑠), 𝜙 ≤ (𝜑↑
𝜃 − 𝜑↓

𝜃)(𝑥(̇𝑠, ̈𝑠))} , (5.24)

and notice that ∣𝛾𝜃(Ψ(̇𝑠, ̈𝑠), 𝑧(̇𝑠, ̈𝑠))∣ is almost surely finite. By Theorems 13 and 14, we
obtain the centered auxiliary complete transition density

𝜋(𝜓(̇𝑠, ̈𝑠), 𝑥(̇𝑠, ̈𝑠), 𝑣 ̈𝑠|𝑣 ̇𝑠, 𝜃)

= 𝑑𝜃(𝑣{ ̇𝑠, ̈𝑠})𝑒(̇𝑠− ̈𝑠)𝜑↓
𝜃(𝑥(�̇�,�̈�)) ∏

𝑡∈𝛾𝜃(𝜓(�̇�,�̈�),𝑥(�̇�,�̈�))
{(𝜑𝜃

↑ − 𝜑𝜃
𝜑↑

𝜃 − 𝜑↓
𝜃

) (𝑥(̇𝑠, ̈𝑠))}
𝑡

(5.25)

with respect to ℙ(̇𝑠, ̈𝑠) × 𝕎|(𝑋{ ̇𝑠, ̈𝑠} = 𝜂𝜃(𝑣{ ̇𝑠, ̈𝑠})) × Leb, and with 𝑑𝜃(𝑣{ ̇𝑠, ̈𝑠}) is defined as
in (5.19). Changing variables from 𝑋(̇𝑠, ̈𝑠) to 𝑍(̇𝑠, ̈𝑠) = 𝜁𝜃(𝑋(̇𝑠, ̈𝑠); 𝑣{ ̇𝑠, ̈𝑠}), we move to the

67

5 Exact Inference for Itō Diffusion Models

noncentered auxiliary complete transition density

𝜋(𝜓(̇𝑠, ̈𝑠), 𝑧(̇𝑠, ̈𝑠), 𝑣 ̈𝑠|𝑣 ̇𝑠, 𝜃)

= 𝑑𝜃(𝑣{ ̇𝑠, ̈𝑠}) 𝑒(̇𝑠− ̈𝑠)�̃�↓
𝜃(𝑧(�̇�,�̈�),𝑣{�̇�,�̈�}) ∏

𝑡∈𝛾𝜃(𝜓(�̇�,�̈�),𝑥(�̇�,�̈�),𝑣{�̇�,�̈�})
{(�̃�↑

𝜃 − �̃�𝜃
�̃�↑

𝜃 − �̃�↓
𝜃
) (𝑧(̇𝑠, ̈𝑠), 𝑣{ ̇𝑠, ̈𝑠})}

𝑡⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
̄𝑞𝜃(𝜓(�̇�,�̈�),𝑧(�̇�,�̈�),𝑣{�̇�,�̈�})

,

(5.26)

which is a density with respect to ℙ(̇𝑠, ̈𝑠) × 𝔹(̇𝑠, ̈𝑠) × Leb, and where ̄𝑞𝜃(𝜓(̇𝑠, ̈𝑠), 𝑧(̇𝑠, ̈𝑠), 𝑣{ ̇𝑠, ̈𝑠})
acts as the path integral estimate on the noncentered path. See Figure 5.1 for the
corresponding graphical model. Since the product in the density is almost surely finite,
there is no further obstacle to evaluating 𝜋(𝜓(̇𝑠, ̈𝑠), 𝑧(̇𝑠, ̈𝑠), 𝑣 ̈𝑠|𝑣 ̇𝑠, 𝜃), though we still have to
address subtleties around the representation of the infinite dimensional path 𝑧 and the
computation of the bounds on 𝜑𝜃.

5.2 Marginal Algorithm

In this section, broadly following [53], we develop an MCMC algorithm that targets the
marginal posterior

𝜋(𝑧, 𝜃|𝑣𝑠) ∝ 𝜋(𝜃) ∏
(̇𝑠∼ ̈𝑠)∈𝑠

𝜋(𝑧(̇𝑠, ̈𝑠), 𝑣 ̈𝑠|𝑣 ̇𝑠, 𝜃). (5.27)

We work within the Gibbs sampling framework, where the most simple blocking scheme
consists of the updates

𝑍 ∶ 𝜋(𝑧|𝑣𝑠, 𝜃) ∝ ∏
(̇𝑠∼ ̈𝑠)∈𝑠

𝜋(𝑧(̇𝑠, ̈𝑠), 𝑣 ̈𝑠|𝑣 ̇𝑠, 𝜃), (5.28)

Θ ∶ 𝜋(𝜃|𝑣𝑠, 𝑧) ∝ 𝜋(𝜃) ∏
(̇𝑠∼ ̈𝑠)∈𝑠

𝜋(𝑧(̇𝑠, ̈𝑠), 𝑣 ̈𝑠|𝑣 ̇𝑠, 𝜃). (5.29)

Since the full conditional of 𝑍 factorizes into terms related to the individual bridges
𝑍(̇𝑠, ̈𝑠), we may carry out the first update independently for each bridge according to

𝜋(𝑧(̇𝑠, ̈𝑠)|𝑣 ̇𝑠, 𝜃) ∝ 𝜋(𝑧(̇𝑠, ̈𝑠), 𝑣 ̈𝑠|𝑣 ̇𝑠, 𝜃). ((̇𝑠 ∼ ̈𝑠) ∈ 𝑠) (5.30)

In keeping with the discussion in Section 2.2, we deem a method that exploits conditional
independence to be most likely to result in a scalable procedure. Besides, while the
dependence between 𝑍 and Θ typically increases with the observation horizon 𝜔, the
additional data will also tend to concentrate the marginal 𝜋(𝜃|𝑣𝑠). As seen in Section
2.2.1, if both the full conditional and the marginal concentrate at similar rates, the
efficiency of the Gibbs sampler is not affected.

68

5 Exact Inference for Itō Diffusion Models

5.2.1 Retrospective Simulation

In what follows, assume that the full conditional updates evolve by way of an accept-
reject coin flip, where the acceptance probability depends on the complete transition
densities 𝜋(𝑧(̇𝑠, ̈𝑠), 𝑣 ̈𝑠|𝑣 ̇𝑠, 𝜃), involving the path integral

∫
̈𝑠

̇𝑠
�̃�𝜃(𝑧𝑡, 𝑣{ ̇𝑠, ̈𝑠}) d𝑡. (5.31)

Clearly, it is neither possible to exhaustively store 𝑧, nor to evaluate its path integral
when 𝑧 is rough. Hence, in order to implement the marginal algorithm, we need to
avoid explicit likelihood evaluations. Indeed, we will use the Bernoulli factory MCMC
approach introduced in Section 2.3 to simulate the accept-reject coin. All acceptance
odds are represented in the form 𝑐1𝑝1

𝑐2𝑝2
, (5.32)

where 𝑝1 and 𝑝2 are of form exp [− ∫ ̈𝑠
̇𝑠 𝑓(𝑧𝑡) d𝑡] or exp [− ∫ ̈𝑠

̇𝑠 𝑓(𝑧𝑡, 𝑧†
𝑡) d𝑡] for paths 𝑧𝑡 and

𝑧†
𝑡 and some nonnegative integrand 𝑓 with known upper bound. Coins with probability

corresponding to such functionals can be simulated by the Poisson coin algorithm of
Section 4.1. This only requires evaluation of 𝑧(̇𝑠, ̈𝑠) at a finite set of times. Therefore,
while the algorithm is formulated in terms of the infinite-dimensional path 𝑧(̇𝑠, ̈𝑠), that
path need not be determined until required by the Poisson coin algorithm. Indeed, in
the most general setting, 𝑧(̇𝑠, ̈𝑠) is represented in memory as (modulo some additional
information specified in Section 4.4)

({𝑧 ̇𝜈 ∶ ̇𝜈 ∈ 𝜈(̇𝑠, ̈𝑠)} , 𝑧↓
(̇𝑠, ̈𝑠), 𝑧↑

(̇𝑠, ̈𝑠)) , (5.33)

where 𝜈(̇𝑠, ̈𝑠) is the set of times at which 𝑧(̇𝑠, ̈𝑠) has been previously evaluated. The bounds
on 𝑧(̇𝑠, ̈𝑠) are sufficient to evaluate the uniform bounds on the integrand 𝑓 . Since 𝑧(̇𝑠, ̈𝑠)
is proposed according to the Brownian bridge measure 𝔹(̇𝑠, ̈𝑠), any additional evaluations
can be carried out according to the conditional Brownian bridge simulation methods in
Sections 4.3 and 4.4. That information is then propagated forward throughout the run
of the algorithm.

5.2.2 Parameter Update

We implement the update to 𝜋(𝜃|𝑣𝑠, 𝑧) as a Barker-within-Gibbs update. For a generic
proposal 𝜅(𝜃†|𝜃), we could express the Barker acceptance odds in the following format

69

5 Exact Inference for Itō Diffusion Models

that is compatible with the 2-coin algorithm:

𝛼Θ
1 − 𝛼Θ

= 𝜋(𝜃†|𝑣𝑠, 𝑧)
𝜋(𝜃|𝑣𝑠, 𝑧)

𝜅(𝜃|𝜃†)
𝜅(𝜃†|𝜃)

= 𝜅(𝜃|𝜃†)
𝜅(𝜃†|𝜃)

𝜋(𝜃†)
𝜋(𝜃) ∏

(̇𝑠∼ ̈𝑠)∈𝑠

𝜋(𝑧(̇𝑠, ̈𝑠), 𝑣 ̈𝑠|𝑣 ̇𝑠, 𝜃†)
𝜋(𝑧(̇𝑠, ̈𝑠), 𝑣 ̈𝑠|𝑣 ̇𝑠, 𝜃)

= 𝜅(𝜃|𝜃†)
𝜅(𝜃†|𝜃)

𝜋(𝜃†)
𝜋(𝜃) ∏

(̇𝑠∼ ̈𝑠)∈𝑠

𝑑𝜃†(𝑣{ ̇𝑠, ̈𝑠})
𝑑𝜃(𝑣{ ̇𝑠, ̈𝑠})

𝑒− ∫�̈�
�̇� �̃�𝜃† (𝑧𝑡,𝑣{�̇�,�̈�}) d𝑡

𝑒− ∫�̈�
�̇� �̃�𝜃(𝑧𝑡,𝑣{�̇�,�̈�}) d𝑡

=

𝑐1

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞𝜅(𝜃|𝜃†)𝜋(𝜃†) ∏(̇𝑠∼ ̈𝑠)∈𝑠 𝑑𝜃†(𝑣{ ̇𝑠, ̈𝑠})𝑒(̈𝑠− ̇𝑠)�̃�↓
𝜃† (𝑧(�̇�,�̈�),𝑣{�̇�,�̈�})

𝜅(𝜃†|𝜃)𝜋(𝜃) ∏(̇𝑠∼ ̈𝑠)∈𝑠 𝑑𝜃(𝑣{ ̇𝑠, ̈𝑠})𝑒(̈𝑠− ̇𝑠)�̃�↓
𝜃(𝑧(�̇�,�̈�),𝑣{�̇�,�̈�})

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑐2

×

𝑝1

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
∏(̇𝑠∼ ̈𝑠)∈𝑠 𝑒∫�̈�

�̇� �̃�↓
𝜃† (𝑧(�̇�,�̈�),𝑣{�̇�,�̈�})−�̃�𝜃† (𝑧𝑡,𝑣{�̇�,�̈�}) d𝑡

∏(̇𝑠∼ ̈𝑠)∈𝑠 𝑒∫�̈�
�̇� �̃�↓

𝜃(𝑧(�̇�,�̈�),𝑣{�̇�,�̈�})−�̃�𝜃(𝑧𝑡,𝑣{�̇�,�̈�}) d𝑡
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑝2

,

(5.34)

where 𝛼Θ is the acceptance probability for the Θ-update, 𝑝1 and 𝑝2 are probabilities
because 𝜑↓

𝜃 − 𝜑𝜃 < 0 by definition. While this factorization of the acceptance odds pro-
duces a valid 2-coin algorithm and was successfully implemented by [52], it is nonscalable
in the length of the time series, and illustrates why it is critical to choose the correct
factorization. Indeed,

lim
𝜔→∞

∏
(̇𝑠∼ ̈𝑠)∈𝑠

exp [∫
̈𝑠

̇𝑠
�̃�↓

𝜃(𝑧(̇𝑠, ̈𝑠), 𝑣{ ̇𝑠, ̈𝑠}) − �̃�𝜃(𝑧𝑡, 𝑣{ ̇𝑠, ̈𝑠}) d𝑡] → 0 (5.35)

almost surely unless 𝜑𝜃(𝑋𝑡) = 0 almost everywhere in time. Therefore, 𝑝1 and 𝑝2 are
increasingly small in the large 𝜔 regime, and the runtime (2.37) of the 2-coin algorithm
diverges. This applies regardless of the attempted step size from 𝜃 to 𝜃†, and is not
helped in the Portkey barker setting, where the acceptance probability goes to 0 rather
than the runtime.

We therefore proceed to constructing a 2-coin algorithm whose runtime accelerates as
∣𝜃† − 𝜃∣ diminishes. The key operation consists of obtaining an integrand that vanishes
in the step size:

𝛼Θ
1 − 𝛼Θ

= 𝜅(𝜃|𝜃†)
𝜅(𝜃†|𝜃)

𝜋(𝜃†)
𝜋(𝜃) ∏

(̇𝑠∼ ̈𝑠)∈𝑠

𝑑𝜃†(𝑣{ ̇𝑠, ̈𝑠})
𝑑𝜃(𝑣{ ̇𝑠, ̈𝑠})

𝑒− ∫�̈�
�̇� �̃�𝜃† (𝑧𝑡,𝑣{�̇�,�̈�}) d𝑡

𝑒− ∫�̈�
�̇� �̃�𝜃(𝑧𝑡,𝑣{�̇�,�̈�}) d𝑡

= 𝜅(𝜃|𝜃†)
𝜅(𝜃†|𝜃)

𝜋(𝜃†)
𝜋(𝜃) ∏

(̇𝑠∼ ̈𝑠)∈𝑠

𝑑𝜃†(𝑣{ ̇𝑠, ̈𝑠})
𝑑𝜃(𝑣{ ̇𝑠, ̈𝑠})

exp [− ∫
̈𝑠

̇𝑠
𝜒𝑡 d𝑡] ,

(5.36)

70

5 Exact Inference for Itō Diffusion Models

where 𝛼Θ is the acceptance probability of the Θ-update, and we define

𝜒𝑡 = (�̃�𝜃† − �̃�𝜃)(𝑧𝑡, 𝑣{ ̇𝑠, ̈𝑠}), (𝑡 ∈ (̇𝑠, ̈𝑠)) (5.37)

and denote its positive and negative parts 𝜒(+)
𝑡 and 𝜒(−)

𝑡 . We obtain a factorization of
the acceptance odds in an appropriate form:

𝛼Θ
1 − 𝛼Θ

=

𝑐1

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞𝜅(𝜃|𝜃†)𝜋(𝜃†) ∏(̇𝑠∼ ̈𝑠)∈𝑠 𝑑𝜃†(𝑣{ ̇𝑠, ̈𝑠})
𝜅(𝜃†|𝜃)𝜋(𝜃) ∏(̇𝑠∼ ̈𝑠)∈𝑠 𝑑𝜃(𝑣{ ̇𝑠, ̈𝑠})⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑐2

𝑝1

⏞⏞⏞⏞⏞⏞⏞⏞⏞∏(̇𝑠∼ ̈𝑠)∈𝑠 𝑒− ∫�̈�
�̇� 𝜒(+)

𝑡 d𝑡

∏(̇𝑠∼ ̈𝑠)∈𝑠 𝑒− ∫�̈�
�̇� 𝜒(−)

𝑡 d𝑡
⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑝2

, (5.38)

where the integrands are nonnegative by definition, and therefore 𝑝1 and 𝑝2 are proba-
bilities. Notice that the 𝑝1- and 𝑝2-coins can be simulated by independently simulating
a Poisson coin corresponding to each factor in the product, and checking if all factor
coins came up heads. The trivial upper bounds on 𝜒(+)

𝑡 and 𝜒(−)
𝑡 in the range (̇𝑠, ̈𝑠)

are (𝜑↑
𝜃† − 𝜑↓

𝜃)(𝑥(̇𝑠, ̈𝑠)) and (𝜑↑
𝜃 − 𝜑↓

𝜃†)(𝑥(̇𝑠, ̈𝑠)), respectively. This factorization is advanta-
geous in terms of 2-coin algorithm runtime because 𝑝1 and 𝑝2 decrease with the step size
∣𝜃† − 𝜃‡∣. In fact, we can derive vanishing quantitative bounds on the integrand given
the step size.

Proposition 6 (Difference integrand bound). Let C be a convex set such that 𝜃, 𝜃† ∈ C
and assume that 𝜒𝑡 is differentiable on C. Then, by the multivariate mean value theorem,
there exists an 𝑎 ∈ (0, 1) such that

𝜒𝑡 = (∇𝜃�̃�𝜃(𝑧𝑡, 𝑣{ ̇𝑠, ̈𝑠})∣𝜃=(1−𝑎)𝜃†+𝑎𝜃‡
) ⋅ (𝜃† − 𝜃‡), (𝑡 ∈ (̇𝑠, ̈𝑠)) (5.39)

and by the Cauchy-Schwarz inequality we obtain the bound

|𝜒𝑡| ≤ sup
𝑎∈[0,1]

∣∇𝜃�̃�𝜃(𝑧𝑡, 𝑣{ ̇𝑠, ̈𝑠})∣𝜃=(1−𝑎)𝜃†+𝑎𝜃‡
∣ |𝜃† − 𝜃‡|. (5.40)

If the posterior contracts at sufficient rate as the observation horizon 𝜔 recedes, the
optimal step size |𝜃† − 𝜃‡| can decrease sufficiently quickly to ensure that the expected
2-coin algorithm runtime is bounded above in 𝜔.

Example 12 (OU process). Suppose that d𝑉𝑡 = −𝛽𝑉𝑡 + d𝑊𝑡 with 𝛽 > 0, so 𝑋 follows
the same SDE. Then,

�̃�𝛽(𝑧𝑡, 𝑣{ ̇𝑠, ̈𝑠}) = (𝛽2𝜔−1(𝑧𝑡, 𝑣{ ̇𝑠, ̈𝑠})2 − 𝛽)/2, (5.41)
𝜕𝛽�̃�𝛽(𝑧𝑡, 𝑣{ ̇𝑠, ̈𝑠}) = (𝛽𝜔−1(𝑧𝑡, 𝑣{ ̇𝑠, ̈𝑠})2 − 1/2), (5.42)

71

5 Exact Inference for Itō Diffusion Models

and |𝜒𝑡| is uniformly bounded on (̇𝑠, ̈𝑠) by the tractable expression

|𝜒𝑡| ≤ sup
𝑎∈[0,1]

∣((1 − 𝑎)𝛽† + 𝑎𝛽‡)𝜁−1(𝑧𝑡, 𝑣{ ̇𝑠, ̈𝑠})2 − 1/2∣ |𝛽† − 𝛽‡|

≤ ((𝛽† ∨ 𝛽‡)𝜁−1(𝑧𝑡; 𝑣{ ̇𝑠, ̈𝑠})2 + 1/2)|𝛽† − 𝛽‡|
≤ ((𝛽† ∨ 𝛽‡)(𝜁−1(𝑧↓

(̇𝑠, ̈𝑠); 𝑣{ ̇𝑠, ̈𝑠})2 ∨ 𝜁−1(𝑧↑
(̇𝑠, ̈𝑠); 𝑣{ ̇𝑠, ̈𝑠})2) + 1/2)|𝛽† − 𝛽‡|.

(5.43)

Remark 2 (Sensitivity to proposal). Atypically, the 2-coin algorithm above has com-
plexity depending on the gradient ∇𝜃�̃�𝜃(𝑧𝑡, 𝑣{ ̇𝑠, ̈𝑠}), rather than 𝜑𝜃. Nevertheless, the
example illustrates that in many instances, we cannot bound the integrand for a given
step size, nor the 2-coin algorithm runtime on an unbounded 𝒯.

5.2.3 Bridge Update

Contrary to the parameter update, the bridge update to 𝜋(𝑧|𝑣𝑠, 𝜃) requires a more con-
crete discussion of the proposal mechanism. Since we will often retrospectively reveal
𝑧 based on some constraints, we require a proposal for which such conditional simula-
tion is well understood. Hence, it is natural to independently propose according to the
Brownian bridge measure, i.e.

𝑍†
(̇𝑠, ̈𝑠) ∼ 𝔹(̇𝑠, ̈𝑠). (5.44)

Notice that we write the proposal density 𝜅(𝑧†
(̇𝑠, ̈𝑠)) with respect to the same dominat-

ing measure as the full conditional, which is 𝔹(̇𝑠, ̈𝑠), therefore 𝜅(𝑧†
(̇𝑠, ̈𝑠)) = 1. Exploiting

conditional independence, we can carry out an independent Barker-within-Gibbs update
to each bridge 𝑍†

(̇𝑠, ̈𝑠). The following factorization results in a valid 2-coin algorithm to
sample the acceptance decision:

𝛼𝑍(�̇�,�̈�)

1 − 𝛼𝑍(�̇�,�̈�)

=
𝜋(𝑧†

(̇𝑠, ̈𝑠)|𝑣{ ̇𝑠, ̈𝑠}, 𝜃)
𝜋(𝑧(̇𝑠, ̈𝑠)|𝑣{ ̇𝑠, ̈𝑠}, 𝜃)

=
𝜋(𝑧†

(̇𝑠, ̈𝑠), 𝑣 ̈𝑠|𝑣 ̇𝑠, 𝜃)
𝜋(𝑧(̇𝑠, ̈𝑠), 𝑣 ̈𝑠|𝑣 ̇𝑠, 𝜃)

= 𝑒− ∫�̈�
�̇� �̃�𝜃(𝑧†

𝑡 ,𝑣{�̇�,�̈�}) d𝑡

𝑒− ∫�̈�
�̇� �̃�𝜃(𝑧𝑡,𝑣{�̇�,�̈�}) d𝑡

=

𝑐1

⏞⏞⏞⏞⏞⏞⏞𝑒(̈𝑠− ̇𝑠)�̃�↓
𝜃(𝑧†

(�̇�,�̈�),𝑣{�̇�,�̈�})

𝑒(̈𝑠− ̇𝑠)�̃�↓
𝜃(𝑧(�̇�,�̈�),𝑣{�̇�,�̈�})⏟⏟⏟⏟⏟⏟⏟

𝑐2

𝑝1

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑒∫�̈�

�̇� {(�̃�↓
𝜃−�̃�𝜃)(𝑧†

(�̇�,�̈�),𝑣{�̇�,�̈�})}
𝑡

d𝑡

𝑒∫�̈�
�̇� {(�̃�↓

𝜃−�̃�𝜃)(𝑧(�̇�,�̈�),𝑣{�̇�,�̈�})}
𝑡

d𝑡⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑝2

.

(5.45)

Since each bridge is of fixed length, this 2-coin algorithm typically terminates quickly.
Nonetheless, because 𝜑𝜃 involves the square of the drift function of 𝑋, it is usually

72

5 Exact Inference for Itō Diffusion Models

positive for a broad range of arguments, which suggests taking a similar route as in the
parameter step and differencing the integrands. Define

𝜉𝑡 = �̃�𝜃(𝑧†
𝑡 , 𝑣{ ̇𝑠, ̈𝑠}) − �̃�𝜃(𝑧𝑡, 𝑣{ ̇𝑠, ̈𝑠}), (𝑡 ∈ (̇𝑠, ̈𝑠)) (5.46)

and denote its positive and negative parts 𝜉(+)
𝑡 and 𝜉(−)

𝑡 . We obtain the following alter-
native 2-coin algorithm:

𝛼𝑍(�̇�,�̈�)

1 − 𝛼𝑍(�̇�,�̈�)

= 𝑒− ∫�̈�
�̇� �̃�𝜃(𝑧†

𝑡 ,𝑣{�̇�,�̈�}) d𝑡

𝑒− ∫�̈�
�̇� �̃�𝜃(𝑧𝑡,𝑣{�̇�,�̈�}) d𝑡

= exp [− ∫
̈𝑠

̇𝑠
𝜉𝑡 d𝑡]

=

𝑝1

⏞⏞⏞⏞⏞𝑒− ∫�̈�
�̇� 𝜉(+)

𝑡 d𝑡

𝑒− ∫�̈�
�̇� 𝜉(−)

𝑡 d𝑡⏟⏟⏟⏟⏟
𝑝2

,

(5.47)

with 𝑐1 = 𝑐2 = 1. Corresponding bounds are given by

𝜉(+)
𝑡 ≤ �̃�↑

𝜃(𝑧†
(̇𝑠, ̈𝑠), 𝑣{ ̇𝑠, ̈𝑠}) − �̃�↓

𝜃(𝑧(̇𝑠, ̈𝑠), 𝑣{ ̇𝑠, ̈𝑠}), (𝑡 ∈ (̇𝑠, ̈𝑠)) (5.48)

𝜉(−)
𝑡 ≤ �̃�↑

𝜃(𝑧(̇𝑠, ̈𝑠), 𝑣{ ̇𝑠, ̈𝑠}) − �̃�↓
𝜃(𝑧†

(̇𝑠, ̈𝑠), 𝑣{ ̇𝑠, ̈𝑠}). (𝑡 ∈ (̇𝑠, ̈𝑠)) (5.49)

The disadvantage of this algorithm is that the integrand 𝜉𝑡 has to be evaluated for both
𝑧†

(̇𝑠, ̈𝑠) and 𝑧(̇𝑠, ̈𝑠) when simulating 𝑝1- and 𝑝2-tosses. In practice, we have found that the
version using the integrand 𝜉𝑡 runs moderately faster.

If the bridge update suffers from a very low acceptance probability, we can reduce the
step size of the bridge update by conditioning on additional values on the path of 𝑉 .
We elaborate on this idea in Section 6.3.4 within the Markov switching context, where
its application is more critical.

5.3 Auxiliary Algorithm

In this section, broadly following [111], we develop the alternative MCMC algorithm
that targets the extended posterior

𝜋(𝜓, 𝑧, 𝜃|𝑣𝑠) ∝ 𝜋(𝜃) ∏
(̇𝑠∼ ̈𝑠)∈𝑠

𝜋(𝜓(̇𝑠, ̈𝑠), 𝑧(̇𝑠, ̈𝑠), 𝑣 ̈𝑠|𝑣 ̇𝑠, 𝜃). (5.50)

The density on the RHS almost surely depends only on a finite number of evaluations
of 𝑧, therefore it can be fully evaluated with finite computation, and we can apply

73

5 Exact Inference for Itō Diffusion Models

conventional accept-reject methods. The natural Gibbs sampler for this model consists
of the updates

(Ψ, 𝑍) ∶ 𝜋(𝜓, 𝑧|𝑣𝑠, 𝜃) ∝ ∏
(̇𝑠∼ ̈𝑠)∈𝑠

𝜋(𝜓(̇𝑠, ̈𝑠), 𝑧(̇𝑠, ̈𝑠), 𝑣 ̈𝑠|𝑣 ̇𝑠, 𝜃), (5.51)

Θ ∶ 𝜋(𝜃|𝑣𝑠, 𝜓, 𝑧) ∝ 𝜋(𝜃) ∏
(̇𝑠∼ ̈𝑠)∈𝑠

𝜋(𝜓(̇𝑠, ̈𝑠), 𝑧(̇𝑠, ̈𝑠), 𝑣 ̈𝑠|𝑣 ̇𝑠, 𝜃). (5.52)

As for the marginal algorithm, the full conditional of (Ψ, 𝑍) factorizes into terms relating
to the sections (Ψ(̇𝑠, ̈𝑠), 𝑍(̇𝑠, ̈𝑠)). Thus, we independently update those according to

𝜋(𝜓(̇𝑠, ̈𝑠), 𝑧(̇𝑠, ̈𝑠)|𝑣{ ̇𝑠, ̈𝑠}, 𝜃) ∝ 𝜋(𝜓(̇𝑠, ̈𝑠), 𝑧(̇𝑠, ̈𝑠), 𝑣 ̈𝑠|𝑣 ̇𝑠, 𝜃). ((̇𝑠 ∼ ̈𝑠) ∈ 𝑠) (5.53)

Compared to the marginal algorithm, this algorithm involves additional conditioning in
the update to 𝜋(𝜃|𝑣𝑠, 𝜓, 𝑧).
While this blocking scheme is identical to the one proposed in [111], a notable differ-
ence is that both updates of this algorithm use Metropolis-within-Gibbs, while [111]
uses rejection sampling to obtain an independent sample from 𝜋(𝜓, 𝑧|𝑣𝑠, 𝜃), which mixes
more quickly than the Metropolis-within-Gibbs update. Conversely, the cost of the
Metropolis-within-Gibbs update is equivalent to Poisson estimation, while the rejection
sampling update requires Poisson coin simulation until the first success, which is typ-
ically more expensive. Moreover, it is restricted to models for which 𝜑𝜃 is uniformly
lower bounded, since otherwise the Radon-Nikodym derivative is unbounded. One such
model is the Wright-Fisher diffusion as seen in [52]. Moreover, as shown in Proposition
7, whenever the rejection sampler can be implemented, Proposition 7 shows that the
Metropolis-within-Gibbs update is uniformly ergodic, which means that it quickly ap-
proaches the exact full conditional update when iterated a few times. Therefore, there
is little downside to using Metropolis-within-Gibbs, for the upside of greater generality
and comparability to the marginal algorithm.

5.3.1 Retrospective Simulation

While the joint density of the auxiliary model can be fully evaluated based on a finite
subset of (𝜓(̇𝑠, ̈𝑠), 𝑧(̇𝑠, ̈𝑠)), that subset is not known ahead of time, and may evolve depending
on 𝜃. Therefore, just as in the marginal algorithm, we take the retrospective simulation
approach, defining the model and the algorithm based on infinite-dimensional quantities,
but only revealing as much information as required to carry out accept-reject decisions.
Indeed, the information required for any state of the Markov chain is determined by

̃𝛾𝜃(𝜓(̇𝑠, ̈𝑠), 𝑧(̇𝑠, ̈𝑠), 𝑣{ ̇𝑠, ̈𝑠}) = {𝑡 ∶ (𝑡, 𝜙) ∈ 𝜓(̇𝑠, ̈𝑠), 𝜙 ≤ (�̃�↑
𝜃 − �̃�↓

𝜃)(𝑧(̇𝑠, ̈𝑠), 𝑣{ ̇𝑠, ̈𝑠})} . (5.54)

Therefore, if 𝜓(̇𝑠, ̈𝑠) is proposed according to ℙ(̇𝑠, ̈𝑠), we reveal ̃𝛾𝜃(𝜓(̇𝑠, ̈𝑠), 𝑧(̇𝑠, ̈𝑠), 𝑣{ ̇𝑠, ̈𝑠}) as a
Poisson process on the rectangle [̇𝑠, ̈𝑠] × [0, (�̃�↑

𝜃 − �̃�↓
𝜃)(𝑧(̇𝑠, ̈𝑠), 𝑣{ ̇𝑠, ̈𝑠})], with 𝑧(̇𝑠, ̈𝑠) revealed

at times corresponding to ̃𝛾𝜃(𝜓(̇𝑠, ̈𝑠), 𝑧(̇𝑠, ̈𝑠), 𝑣{ ̇𝑠, ̈𝑠}).

74

5 Exact Inference for Itō Diffusion Models

Suppose now that 𝜙↑ is the largest value of �̃�↑
𝜃 − �̃�↓

𝜃 so far encountered since 𝜓(̇𝑠, ̈𝑠) was
proposed, and 𝜓(̇𝑠, ̈𝑠) is represented as and revealed up to

{𝑡 ∶ (𝑡, 𝜙) ∈ 𝜓(̇𝑠, ̈𝑠), 𝜙 ≤ 𝜙↑} . (5.55)

When proposing a new parameter value 𝜃† such that �̃�↑
𝜃† −�̃�↓

𝜃† ≤ 𝜙↑, then ̃𝛾𝜃† is a subset
of the previously revealed times, and no new information needs to be revealed. In the
opposite case, we additionally reveal 𝜓(̇𝑠, ̈𝑠) on [̇𝑠, ̈𝑠] × [𝜙↑, (�̃�↑

𝜃† − �̃�↓
𝜃†)(𝑧(̇𝑠, ̈𝑠), 𝑣{ ̇𝑠, ̈𝑠})] and

update 𝜙↑ ← �̃�↑
𝜃† −�̃�↓

𝜃† . 𝑧(̇𝑠, ̈𝑠) is then revealed at the new times in ̃𝛾𝜃† . As in the marginal
algorithm, when 𝑧(̇𝑠, ̈𝑠) is proposed according to 𝔹(̇𝑠, ̈𝑠), we use the previously presented
conditional Brownian bridge simulation methods of Sections 4.3 and 4.4. This finally
allows for the evaluation of the product

∏
𝑡∈�̃�𝜃(𝜓(�̇�,�̈�),𝑧(�̇�,�̈�),𝑣{�̇�,�̈�})

{(�̃�↑
𝜃 − �̃�𝜃

�̃�↑
𝜃 − �̃�↓

𝜃
) (𝑧(̇𝑠, ̈𝑠), 𝑣{ ̇𝑠, ̈𝑠})}

𝑡
. (5.56)

5.3.2 Parameter Update

We implement the update to 𝜋(𝜃|𝑣𝑠, 𝜓, 𝑧) as a Metropolis-within-Gibbs update. For a
generic proposal 𝜅(𝜃†|𝜃), the acceptance probability is

𝛼Θ = 1 ∧ 𝜋(𝜃†|𝑣𝑠, 𝜓, 𝑧)
𝜋(𝜃|𝑣𝑠, 𝜓, 𝑧)

𝜅(𝜃|𝜃†)
𝜅(𝜃†|𝜃)

= 1 ∧ 𝜅(𝜃|𝜃†)
𝜅(𝜃†|𝜃)

𝜋(𝜃†)
𝜋(𝜃) ∏

(̇𝑠∼ ̈𝑠)∈𝑠

𝜋(𝜓(̇𝑠, ̈𝑠), 𝑧(̇𝑠, ̈𝑠), 𝑣 ̈𝑠|𝑣 ̇𝑠, 𝜃†)
𝜋(𝜓(̇𝑠, ̈𝑠), 𝑧(̇𝑠, ̈𝑠), 𝑣 ̈𝑠|𝑣 ̇𝑠, 𝜃)

= 1 ∧ 𝜅(𝜃|𝜃†)
𝜅(𝜃†|𝜃)

𝜋(𝜃†)
𝜋(𝜃) ∏

(̇𝑠∼ ̈𝑠)∈𝑠

𝑑𝜃†(𝑣{ ̇𝑠, ̈𝑠})
𝑑𝜃(𝑣{ ̇𝑠, ̈𝑠})

̄𝑞𝜃†(𝜓(̇𝑠, ̈𝑠), 𝑧(̇𝑠, ̈𝑠), 𝑣{ ̇𝑠, ̈𝑠})
̄𝑞𝜃(𝜓(̇𝑠, ̈𝑠), 𝑧(̇𝑠, ̈𝑠), 𝑣{ ̇𝑠, ̈𝑠})

.

(5.57)

Notably, we need to evaluate ̄𝑞𝜃†(𝜓(̇𝑠, ̈𝑠), 𝑧(̇𝑠, ̈𝑠), 𝑣{ ̇𝑠, ̈𝑠}), which corresponds to a Poisson
estimator evaluation at expected cost 𝒪((̈𝑠 − ̇𝑠)(�̃�↑

𝜃† − �̃�↓
𝜃†)(𝑧(̇𝑠, ̈𝑠), 𝑣{ ̇𝑠, ̈𝑠})).

Remark 3 (Sensitivity to proposal). Since the expected cost is unbounded on 𝒯, aggres-
sive proposals 𝜃† can result in arbitrarily expensive acceptance probability evaluations,
even if that acceptance probability is extremely small. Moreover, unlike in the marginal
algorithm, there is no possible mitigation through batch EA or Portkey Barker that allows
for cheap rejection of 𝜃†. If evaluation of the acceptance probability would be prohibitive,
e.g. in terms of memory, the proposal has to be rejected on faith, resulting in loss of
pure exactness.

75

5 Exact Inference for Itō Diffusion Models

5.3.3 Bridge and Poisson Process Update

As for the parameter update, we implement the bridge and Poisson process update to
𝜋(𝜓, 𝑧|𝑣𝑠, 𝜃) as a Metropolis-within-Gibbs update. We use the independence proposal

Ψ†
(̇𝑠, ̈𝑠) ∼ ℙ(̇𝑠, ̈𝑠), 𝑍†

(̇𝑠, ̈𝑠) ∼ 𝔹(̇𝑠, ̈𝑠), (5.58)

where we notice that we write the proposal density 𝜅(𝜓†
(̇𝑠, ̈𝑠))𝜅(𝑧†

(̇𝑠, ̈𝑠)) with respect to the
dominating measure ℙ(̇𝑠, ̈𝑠) × 𝔹(̇𝑠, ̈𝑠), therefore 𝜅(𝜓†

(̇𝑠, ̈𝑠))𝜅(𝑧†
(̇𝑠, ̈𝑠)) = 1. We accept indepen-

dently update (Ψ(̇𝑠, ̈𝑠), 𝑍(̇𝑠, ̈𝑠)) with probability

𝛼(Ψ(�̇�,�̈�),𝑍(�̇�,�̈�)) = 1 ∧
𝜋(𝜓†

(̇𝑠, ̈𝑠), 𝑧†
(̇𝑠, ̈𝑠)|𝑣{ ̇𝑠, ̈𝑠}, 𝜃)

𝜋(𝜓†
(̇𝑠, ̈𝑠), 𝑧(̇𝑠, ̈𝑠)|𝑣{ ̇𝑠, ̈𝑠}, 𝜃)

= 1 ∧
𝜋(𝜓†

(̇𝑠, ̈𝑠), 𝑧†
(̇𝑠, ̈𝑠), 𝑣 ̈𝑠|𝑣 ̇𝑠, 𝜃)

𝜋(𝜓(̇𝑠, ̈𝑠), 𝑧(̇𝑠, ̈𝑠), 𝑣 ̈𝑠|𝑣 ̇𝑠, 𝜃)

= 1 ∧
̄𝑞𝜃(𝜓†

(̇𝑠, ̈𝑠), 𝑧†
(̇𝑠, ̈𝑠), 𝑣{ ̇𝑠, ̈𝑠})

̄𝑞𝜃(𝜓(̇𝑠, ̈𝑠), 𝑧(̇𝑠, ̈𝑠), 𝑣{ ̇𝑠, ̈𝑠})
.

(5.59)

As in the marginal algorithm, this independence proposal may suffer from very low
acceptance probabilities if observations are far apart in time. We can adopt the local-
ization ideas of Section 6.4.4 to reduce the step size of the update. Nonetheless, we note
that in the framework of [88], we can easily demonstrate that an update with indepen-
dence proposal is uniformly ergodic for the class of models where rejection sampling is
possible.

Proposition 7 (Uniform ergodicity of bridge and Poisson process update). Let 𝜋(𝜓(̇𝑠, ̈𝑠), 𝑧(̇𝑠, ̈𝑠)|𝑣{ ̇𝑠, ̈𝑠}, 𝜃)
be the full conditional, and 𝜅(𝜓(̇𝑠, ̈𝑠), 𝑧(̇𝑠, ̈𝑠)) the independence proposal as defined above. If
𝜑𝜃 is uniformly bounded below on the reduced support 𝒳 = 𝜂𝜃(𝒱) for every 𝜃 ∈ 𝒯, the
update is uniformly ergodic.

Proof. By [88, Theorem 2.1], the update is uniformly ergodic if for any given 𝜃, there is
an upper bound to

𝜋(𝜓(̇𝑠, ̈𝑠), 𝑧(̇𝑠, ̈𝑠)|𝑣{ ̇𝑠, ̈𝑠}, 𝜃)
𝜅(𝜓(̇𝑠, ̈𝑠), 𝑧(̇𝑠, ̈𝑠))
= ̄𝑞𝜃(𝜓(̇𝑠, ̈𝑠), 𝑧(̇𝑠, ̈𝑠), 𝑣{ ̇𝑠, ̈𝑠})

= 𝑒(̇𝑠− ̈𝑠)�̃�↓
𝜃(𝑧(�̇�,�̈�),𝑣{�̇�,�̈�}) ∏

𝑡∈𝛾𝜃(𝜓(�̇�,�̈�),𝑥(�̇�,�̈�),𝑣{�̇�,�̈�})
{(�̃�↑

𝜃 − �̃�𝜃
�̃�↑

𝜃 − �̃�↓
𝜃
) (𝑧(̇𝑠, ̈𝑠), 𝑣{ ̇𝑠, ̈𝑠})}

𝑡

≤ exp [(̇𝑠 − ̈𝑠) inf
𝑎∈𝒳

𝜑𝜃(𝑎)] ,

(5.60)

i.e. if 𝜑𝜃 is uniformly bounded below on 𝒳.

76

5 Exact Inference for Itō Diffusion Models

5.4 Approximate Algorithm

In developing an approximate Bayesian inference algorithm, we rely on the Euler ap-
proximation framework introduced in Section 3.5. It results in the transition density
approximation

̄𝜋(𝑣 ̈𝑠|𝑣 ̇𝑠, 𝜃) = |𝜂′
𝜃(𝑣 ̈𝑠)| N [𝜂𝜃(𝑣 ̈𝑠); 𝜂𝜃(𝑣 ̇𝑠) + (̈𝑠 − ̇𝑠)𝛿𝜃 ∘ 𝜂𝜃(𝑣 ̇𝑠), ̈𝑠 − ̇𝑠] . (5.61)

The natural way of refining this approximation is through a partial data augmentation
with a finite subset of 𝑋(̇𝑠, ̈𝑠). Let 𝑢[̇𝑠, ̈𝑠] be a partition of [̇𝑠, ̈𝑠], and �̄�(̇𝑠, ̈𝑠) = 𝑋𝑢[�̇�,�̈�]\{ ̇𝑠, ̈𝑠}.
We obtain the approximate density

̄𝜋(𝑣 ̈𝑠, ̄𝑥(̇𝑠, ̈𝑠)|𝑣 ̇𝑠, 𝜃) = |𝜂′
𝜃(𝑣 ̈𝑠)| ∏

(�̇�∼�̈�)∈𝑢[�̇�,�̈�]

N [𝑥 ̈𝑠; 𝑥 ̇𝑠 + (̈𝑠 − ̇𝑠)𝛿𝜃(𝑥 ̇𝑠), ̈𝑠 − ̇𝑠] , (5.62)

lim
mesh 𝑢[�̇�,�̈�]→0

E�̄�(�̇�,�̈�)
[̄𝜋(𝑣 ̈𝑠, �̄�(̇𝑠, ̈𝑠)|𝑣 ̇𝑠, 𝜃)|𝑣{ ̇𝑠, ̈𝑠}, 𝜃] = 𝜋(𝑣 ̈𝑠|𝑣 ̇𝑠, 𝜃), (5.63)

and due to weak convergence of the Euler-Maruyama scheme, it recovers the correct
transition density as mesh 𝑢[̇𝑠, ̈𝑠] → 0. We can apply this reasoning to posterior sampling
by iterating parameter updates Θ|�̄�(̇𝑠, ̈𝑠) and hidden data updates �̄�(̇𝑠, ̈𝑠)|Θ. As the mesh
𝑢 is refined, the full conditionals 𝜋(𝜃| ̄𝑥(̇𝑠, ̈𝑠)) and 𝜋(̄𝑥(̇𝑠, ̈𝑠)|𝜃) become increasingly narrow,
until for mesh 𝑢[̇𝑠, ̈𝑠] → 0 we recover the mutual singularity of the exact case. This
phenomenon kicks in even for moderate mesh sizes and is investigated in detail by [108].
The cure is the same as in the exact case, and consists of noncentering the imputed
observations. We define the noncentered approximate density as

̄𝜋(𝑣 ̈𝑠, ̄𝑧(̇𝑠, ̈𝑠)|𝑣 ̇𝑠, 𝜃)
= |𝜂′

𝜃(𝑣 ̈𝑠)| ∏
𝑧𝑡∈ ̄𝑧(�̇�,�̈�)

∣𝜕𝑧𝑡
𝜁−1

𝜃 (𝑧𝑡; 𝑣{ ̇𝑠, ̈𝑠})∣

∏
(�̇�∼�̈�)∈𝑢[�̇�,�̈�]

N [𝜁−1
𝜃 (𝑧�̈�; 𝑣{ ̇𝑠, ̈𝑠}); 𝜁−1

𝜃 (𝑧�̇�;𝑣{�̇�,�̈�})+(�̈�−�̇�) ̃𝛿𝜃(𝑧�̇�,𝑣{�̇�,�̈�}),
�̈�−�̇�] ,

(5.64)

where we slightly abuse notation by setting 𝜁−1
𝜃 (𝑧 ̇𝑠; 𝑣{ ̇𝑠, ̈𝑠}) = 𝑣 ̇𝑠 and 𝜁−1

𝜃 (𝑧 ̈𝑠; 𝑣{ ̇𝑠, ̈𝑠}) = 𝑣 ̈𝑠,
and notice that the Jacobian drops from the formula:

∣𝜕𝑧𝑡
𝜁−1

𝜃 (𝑧𝑡; 𝑣{ ̇𝑠, ̈𝑠})∣ = 1. (𝑡 ∈ (̇𝑠, ̈𝑠)) (5.65)

This parameterization of the missing data conserves ergodicity as mesh 𝑢[̇𝑠, ̈𝑠] → 0. It
gives us a viable, approximate augmentation scheme within the same Gibbs blocking
scheme as in the marginal algorithm of Section 5.2. The approximate posterior targeted
by that sampler is

̄𝜋(̄𝑧, 𝜃|𝑣𝑠) ∝ 𝜋(𝜃) ∏
(̇𝑠∼ ̈𝑠)∈𝑠

̄𝜋(𝑣 ̈𝑠, ̄𝑧(̇𝑠, ̈𝑠)|𝑣 ̇𝑠, 𝜃) (5.66)

77

5 Exact Inference for Itō Diffusion Models

and its Gibbs updates are

̄𝑍 ∶ ̄𝜋(̄𝑧|𝑣𝑠, 𝜃) ∝ ∏
(̇𝑠∼ ̈𝑠)∈𝑠

̄𝜋(̄𝑧(̇𝑠, ̈𝑠), 𝑣 ̈𝑠|𝑣 ̇𝑠, 𝜃), (5.67)

Θ ∶ ̄𝜋(𝜃|𝑣𝑠, ̄𝑧) ∝ 𝜋(𝜃) ∏
(̇𝑠∼ ̈𝑠)∈𝑠

̄𝜋(̄𝑧(̇𝑠, ̈𝑠), 𝑣 ̈𝑠|𝑣 ̇𝑠, 𝜃). (5.68)

As usual, the first update decomposes into bridge updates according to

̄𝜋(̄𝑧(̇𝑠, ̈𝑠)|𝑣 ̇𝑠, 𝜃) ∝ ̄𝜋(̄𝑧(̇𝑠, ̈𝑠), 𝑣 ̈𝑠|𝑣 ̇𝑠, 𝜃). ((̇𝑠 ∼ ̈𝑠) ∈ 𝑠) (5.69)

Since the iteration time of the approximate algorithm is deterministic, it is will suited
for “warm-starting” the exact algorithms, allowing them to start from a set of values
close to the posterior mode, and setting any tuning parameters to useful starting values.
Once properly tuned, it is less likely that the exact algorithms will visit parts of 𝒯 where
iteration times are onerous. This is very helpful in avoiding the concerns foreshadowed
in Remark 1, and we follow that practice in our simulation studies in Section 5.8.

5.4.1 Parameter Update

We implement the update to ̄𝜋(𝜃|𝑣𝑠, 𝜓, 𝑧) as a Metropolis-within-Gibbs update. For a
generic proposal 𝜅(𝜃†|𝜃), the acceptance probability is

𝛼Θ = 1 ∧ ̄𝜋(𝜃†|𝑣𝑠, ̄𝑧)
̄𝜋(𝜃|𝑣𝑠, ̄𝑧)

𝜅(𝜃|𝜃†)
𝜅(𝜃†|𝜃)

= 1 ∧ 𝜅(𝜃|𝜃†)
𝜅(𝜃†|𝜃)

𝜋(𝜃†)
𝜋(𝜃) ∏

(̇𝑠∼ ̈𝑠)∈𝑠

̄𝜋(̄𝑧(̇𝑠, ̈𝑠), 𝑣 ̈𝑠|𝑣 ̇𝑠, 𝜃†)
̄𝜋(̄𝑧(̇𝑠, ̈𝑠), 𝑣 ̈𝑠|𝑣 ̇𝑠, 𝜃) .

(5.70)

5.4.2 Bridge Update

We again implement the update ̄𝜋(̄𝑧(̇𝑠, ̈𝑠), 𝑣 ̈𝑠|𝑣 ̇𝑠, 𝜃) as a Metropolis-within-Gibbs update,
with the independence proposal

̄𝑍†
(̇𝑠, ̈𝑠) ∼ 𝔹(̇𝑠, ̈𝑠), (5.71)

though we note that more sophisticated proposal mechanisms have been proposed, such
as by [34]. There are various ways to choose 𝑢†

[̇𝑠, ̈𝑠], the most simple of which is to simply
fix it to some grid width a fixed spacing. Notice that in this instance the dominating
measure of ̄𝜋(̄𝑧(̇𝑠, ̈𝑠), 𝑣 ̈𝑠|𝑣 ̇𝑠, 𝜃) is Leb∣ ̄𝑧(�̇�,�̈�)∣, therefore we also write the proposal density
𝜅(̄𝑧†

(̇𝑠, ̈𝑠)) with respect to Leb∣ ̄𝑧†
(�̇�,�̈�)∣:

𝜅(̄𝑧†
(̇𝑠, ̈𝑠)) =

∏(�̇�∼�̈�)∈𝑢†
[�̇�,�̈�]

N [𝑧†
�̈�; 𝑧†

�̇�, �̈� − �̇�]
N [0; 0, ̈𝑠 − ̇𝑠] , (5.72)

78

5 Exact Inference for Itō Diffusion Models

where ̄𝑧 ̈𝑠 = 0. We accept the proposal with probability

𝛼 ̄𝑍(�̇�,�̈�)
= 1 ∧

̄𝜋(̄𝑧†
(̇𝑠, ̈𝑠)|𝑣{ ̇𝑠, ̈𝑠}, 𝜃)

̄𝜋(̄𝑧(̇𝑠, ̈𝑠)|𝑣{ ̇𝑠, ̈𝑠}, 𝜃)
𝜅(̄𝑧(̇𝑠, ̈𝑠))
𝜅(̄𝑧†

(̇𝑠, ̈𝑠))

= 1 ∧
𝜅(̄𝑧(̇𝑠, ̈𝑠))
𝜅(̄𝑧†

(̇𝑠, ̈𝑠))
̄𝜋(̄𝑧†

(̇𝑠, ̈𝑠), 𝑣 ̈𝑠|𝑣 ̇𝑠, 𝜃)
̄𝜋(̄𝑧(̇𝑠, ̈𝑠), 𝑣 ̈𝑠|𝑣 ̇𝑠, 𝜃) .

(5.73)

5.5 MAP and Maximum Likelihood Estimation

A natural companion problem to posterior sampling is maximum a posteriori (MAP)
estimation, i.e. finding the set of values 𝜃‡ such that

𝜃‡ = argmax
𝜃

𝜋(𝜃, 𝑣𝑠\{0}|𝑣0). (5.74)

The MAP estimator also corresponds to the maximum likelihood estimator when setting
𝜋(𝜃) ∝ 1. In this section, we modify an approach originally proposed for Itō diffusions
[17]. It consists of constructing a Monte Carlo EM algorithm, a framework introduced by
[124], by leveraging parts of the Gibbs sampler that we developed for posterior sampling.
An EM algorithm is an optimization consists of an E-step (for expectation), where a lower
bound to the objective is constructed, and an M-step (for maximization), where the
lower bound is maximized. These steps are alternated until some convergence criterion
is reached. An MCEM algorithm replaces the construction of the lower bound with an
unbiased estimator thereof.

5.5.1 Log Transition Density Estimation

In order to construct a MCEM algorithm, we require an unbiased estimator of the log
complete transition density, and more specifically of the path integral therein:

log 𝜋(𝑧(̇𝑠, ̈𝑠), 𝑣 ̈𝑠|𝑣 ̇𝑠, 𝜃) = log 𝑑𝜃(𝑣{ ̇𝑠, ̈𝑠}) − ∫
̈𝑠

̇𝑠
𝜑𝜃(𝑥𝑡) d𝑡. (5.75)

Unbiased estimation is easily accomplished by uniform sampling along the path:

−(̈𝑠 − ̇𝑠)𝜑𝜃(𝑥𝑈), 𝑈 ∼ Unif [̇𝑠, ̈𝑠] . (5.76)

Thus, we define the log augmented transition density estimator

̄ℓ𝑢(𝑧(̇𝑠, ̈𝑠), 𝑣 ̈𝑠|𝑣 ̇𝑠, 𝜃) = log 𝑑𝜃(𝑣{ ̇𝑠, ̈𝑠}) − (̈𝑠 − ̇𝑠)𝜑𝜃(𝑥𝑢), (5.77)
E𝑈 [̄ℓ𝑈(𝑧(̇𝑠, ̈𝑠), 𝑣 ̈𝑠|𝑣 ̇𝑠, 𝜃)] = log 𝜋(𝑧(̇𝑠, ̈𝑠), 𝑣 ̈𝑠|𝑣 ̇𝑠, 𝜃). (5.78)

The relative simplicity of the log augmented transition estimator is the main benefit of
taking the MCEM approach.

79

5 Exact Inference for Itō Diffusion Models

5.5.2 E-Step

The E-step consists of finding a lower bound on the objective 𝜋(𝜃, 𝑣𝑠\{0}|𝑣0). It is obtained
by averaging the joint density over the posterior of the latent variables, i.e.

𝑄(𝜃†, 𝜃) = E𝑍 [log 𝜋(𝑍, 𝜃†, 𝑣𝑠\{0}|𝑣0)|𝑣𝑠, 𝜃]
= ∑

(̇𝑠∼ ̈𝑠)∈𝑠
E𝑍(�̇�,�̈�)

[log 𝜋(𝑍(̇𝑠, ̈𝑠), 𝑣 ̈𝑠|𝑣 ̇𝑠, 𝜃†)|𝑣{ ̇𝑠, ̈𝑠}, 𝜃] + log 𝜋(𝜃†), (5.79)

where we take expectations with respect to 𝜋(𝑧(̇𝑠, ̈𝑠)|𝑣{ ̇𝑠, ̈𝑠}, 𝜃). Since this integral is in-
tractable, we may instead obtain samples from 𝜋(𝑧(̇𝑠, ̈𝑠)|𝑣{ ̇𝑠, ̈𝑠}, 𝜃) by repeatedly carrying
out the bridge update from Section 5.2.3. That results in a dependent sequence of ̂𝑙
samples 𝑧(𝑙), to which we independently add the uniform variates (𝑢(𝑙)

(̇𝜏, ̈𝜏) ∶ (̇𝑠 ∼ ̈𝑠) ∈ 𝑠).
Given such a sequence, we obtain the unbiased 𝑄-estimator:

�̄�(𝜃†) = log 𝜋(𝜃†) + ̂𝑙−1
̂𝑙

∑
𝑙=1

∑
(̇𝑠∼ ̈𝑠)∈𝑠

̄ℓ𝑢(𝑙)
�̇�,�̈�

(𝑧(𝑙)
(̇𝑠, ̈𝑠), 𝑣 ̈𝑠|𝑣 ̇𝑠, 𝜃†), (5.80)

where the fidelity of the estimator depends on the mixing properties of 𝜋(𝑧(̇𝑠, ̈𝑠)|𝑣{ ̇𝑠, ̈𝑠}, 𝜃)
and the sample size ̂𝑙.

5.5.3 M-Step

Having carried out the approximate E-step, we proceed to maximize the estimated lower
bound functions by solving the optimization problems

argmax
𝜃†

�̄�(𝜃†). (5.81)

If we assume that 𝜋(𝜃), 𝜇𝜃 and 𝜎𝜃 are continuously differentiable in 𝜃, as is usually the
case in applications, �̄�(𝜃†) is also continuously differentiable and it is easily optimized
with the help of a numerical optimization routine, e.g. BFGS.

5.5.4 Standard Error Estimation

From the perspective of maximum likelihood estimation, the natural companion prob-
lem to obtaining the MLE 𝜃‡ is to provide its standard errors. Such analysis of the
MLE is justified by a range of conditions on both the observation sampling design and
the transition density of the model to ensure that the MLE is asymptotically normal
around the true value 𝜃0, see e.g. [3]. Assuming those conditions are met, the sampling
covariance of the MLE is close to the inverse Fisher information matrix, i.e.

Cov [𝜃‡] ≈ (E [−∇2
𝜃 log 𝜋(𝑉𝑠\{0}|𝑣0, 𝜃)∣

𝜃=𝜃0
])

−1
, (5.82)

80

5 Exact Inference for Itō Diffusion Models

where the covariance and expectation operators are applied with respect to the data
generating process. The natural estimate thereof is the observed information, replacing
the expectation by the observed data, i.e.

ℐobs(𝜃) = −∇2
𝜃 log 𝜋(𝑣𝑠\{0}|𝑣0, 𝜃), (5.83)

noting that the estimate is obtained by evaluating the observed information at ℐobs(𝜃‡).
Since 𝜋(𝑣𝑠\{0}|𝑣0, 𝜃) is of course intractable, we follow [84] in constructing an estimator of
the observed information on the basis of the MCEM output. We first define the complete
and missing information

ℐcom(𝜃) = E𝑍 [−∇2
𝜃 log 𝜋(𝑣𝑠\{0}, 𝑍|𝑣0, 𝜃)|𝑣𝑠, 𝜃] = −∇2

𝜃𝑄(𝜃, 𝜃), (5.84)

ℐmis(𝜃) = Var𝑍 [∇𝜃 log 𝜋(𝑣𝑠\{0}, 𝑍|𝑣0, 𝜃)|𝑣𝑠, 𝜃]
= E𝑍 [(∇𝜃 log 𝜋(𝑣𝑠\{0}, 𝑍|𝑣0, 𝜃) − ∇𝜃𝑄(𝜃, 𝜃))2|𝑣𝑠, 𝜃] ,

(5.85)

noting that expectation and variance are applied with respect to the bridge update
𝜋(𝑍|𝑣𝑠, 𝜃). Under mild conditions given by [84], we then decompose the observed infor-
mation as

ℐobs(𝜃‡) = ℐcom(𝜃‡) − ℐmis(𝜃‡). (5.86)

The complete and missing information are again intractable, but we may use the output
of last step of the MCEM algorithm to construct estimators thereof. For the complete
information,

−∇2
𝜃�̄�(𝜃)∣

𝜃=𝜃‡
(5.87)

is an unbiased estimator of ℐcom(𝜃‡), while for the missing information ℐmis(𝜃‡), the
sample variance

1
̂𝑙 − 1

̂𝑙
∑
𝑙=1

⎛⎜
⎝

∑
(̇𝑠∼ ̈𝑠)∈𝑠

∇𝜃 ̄ℓ𝑢(𝑙)
�̇�,�̈�

(𝑧(𝑙)
(̇𝑠, ̈𝑠), 𝑣 ̈𝑠|𝑣 ̇𝑠, 𝜃†)∣

𝜃=𝜃‡
− ∇𝜃�̄�(𝜃)∣

𝜃=𝜃‡
⎞⎟
⎠

2

(5.88)

would be unbiased if the MCEM samples were independent. Adjustments can be made
by using (2.46), otherwise the estimate may be seen as a lower bound on the missing
information.

5.6 Bayesian Prediction

Where the parameters 𝜃 are not of intrinsic interest, the goal of the modelling exercise
often consists of ascertaining the expectation E [𝑓(𝑉fut)|𝑣pres] of a test function 𝑓 of
the diffusion at some future date, conditioning on the last known state of the diffusion.
A typical example is the pricing of European options. If 𝑉 is the price process of
the underlying asset, then the expected payoff at expiration of a European call with

81

5 Exact Inference for Itō Diffusion Models

expiration time “fut” and strike price “strike” is E [max [𝑉fut − strike, 0] |𝑣pres]. The
option price corresponds to the discounted expected value.

In the Bayesian formalism, uncertainty about 𝜃 is explicitly incorporated into the ex-
pected value, in accordance with the full probability model:

E [𝑓(𝑉fut)|𝑣pres] = ∬ 𝑓(𝑣fut)𝜋(𝑣fut|𝑣pres, 𝜃)𝜋(𝜃|𝑣𝑠) d𝜃 d𝑣fut, (5.89)

where we presume that fut > pres ≥ 𝜔, and our uncertainty about 𝜃 is captured by its
posterior density 𝜋(𝜃|𝑣𝑠). While this expectation is of course intractable in general, we
have developed all the necessary material to construct a Monte Carlo estimator. We
may use one of the posterior inference algorithms developed in this chapter to sample
Θ, and the forward simulation method of Section 4.1 to sample 𝑉 (𝑘)

fut . We then obtain a
sample from the distribution of 𝑓(𝑉fut) by evaluating 𝑓(𝑣(𝑘)

fut), and an unbiased estimator
by averaging over �̂� samples:

�̂�−1
�̂�

∑
𝑘=1

𝑓(𝑣(𝑘)
fut), 𝑣(𝑘)

fut ∼ 𝜋(𝑣fut|𝑣pres, 𝜃(𝑘)), 𝜃(𝑘) ∼ 𝜋(𝜃|𝑣𝑠). (5.90)

No such general solution is available for estimation of E [𝑓(𝑉(pres,fut])|𝑣pres] on the basis
of exact algorithms, i.e. when pricing American options, though in special cases exact
estimation is still possible, e.g. using the Poisson estimator of Section 4.2.1.

5.7 Bayesian Model Evaluation

A standard Bayesian approach to model evaluation consists of specifying [51] The qual-
ity of a prediction is assessed according to a score function 𝜍(𝑣fut, 𝜋𝑣pres→𝑣fut

), where
𝜋𝑣pres→𝑣fut

is the conditional model for 𝑉fut specified in Section 5.6. We seek to maximize
the expected score

E𝑉pres,𝑉fut
[𝜍(𝑉fut, 𝜋𝑉pres→𝑉fut

)] , (5.91)

which averages over the true data-generating process. A “good” model is a model for
which the expected score is large. Using a set 𝑣𝑠‡ of held-out data, we obtain an unbiased
estimator:

(|𝑠| − 1)−1 ∑
(̇𝑠∼ ̈𝑠)∈𝑠‡

𝜍(𝑣 ̈𝑠, 𝜋𝑣�̇�→𝑣�̈�
). (5.92)

The default choice for 𝜍 is the log score for which 𝜍(𝑣fut, 𝜋𝑣pres→𝑣fut
) = log 𝜋(𝑣fut|𝑣pres, 𝑣𝑠).

Another option is the more easily estimated continuous ranked probability score (CRSP),
given by

𝜍(𝑣fut, 𝜋𝑣pres→𝑣fut
) = 2−1 E [|𝐴 − 𝐵|] − E [|𝐴 − 𝑣fut|] , (5.93)

𝐴, 𝐵 ∼ 𝜋𝑣pres→𝑣fut
, 𝐴 ⟂ 𝐵 (5.94)

82

5 Exact Inference for Itō Diffusion Models

The CRSP is a strictly proper scoring rule in the language of [51], and it can be estimated
without bias given samples from 𝜋(𝑣fut|𝑣pres, 𝑣𝑠) at log-linear complexity in the number
of samples [59]. It may be seen as a “pragmatic” scoring rule that rewards predictions
close to 𝑣fut, rather than requiring large support exactly at 𝑣fut. Another alternative is
the following proper scoring rule that only depends on the predictive mean 𝜇𝑣pres→𝑣fut
and predictive SD 𝜍𝑣pres→𝑣fut

:

𝜍(𝑣fut, 𝜋𝑣pres→𝑣fut
) = −𝜍−2

𝑣pres→𝑣fut
(𝑣fut − 𝜇𝑣pres→𝑣fut

)2 − log 𝜍2
𝑣pres→𝑣fut

. (5.95)

This rule corresponds to the log score when 𝜋𝑣pres→𝑣fut
is Gaussian.

5.8 Simulation Study

0 100 200 400 800
t

0.5

1.0

1.5

v t

1Figure 5.4: Input time series for the extension regime, generated according to the logistic
growth model with parameters (𝛽, 𝜅, 𝜌) = (1, 1, 1/8). The darkest region
corresponds to the smallest input series, with lighter regions being appended
successively to obtain the larger input series.

In this section, we venture to explore the scaling behavior of our methods in two
regimes:

• The extension regime, where we append further data to the end of the time series,
at constant observation frequency. This regime is akin to the large-𝑛 regime for
IID data.

• The infill regime, where we increase the observation frequency such that mesh 𝑠 →
0.

We study the two regimes in the context of the logistic growth model, usually applied to
population dynamics and defined by the SDE

d𝑉𝑡 = 𝜌𝑉𝑡(𝛽(1 − 𝑉𝑡/𝜅) d𝑡 + d𝑊𝑡), (𝛽, 𝜅, 𝜌 > 0) (5.96)

83

5 Exact Inference for Itō Diffusion Models

0 100
t

0.5

1.0

1.5

v t

1Figure 5.5: Input time series for the infill regime, generated according to the logistic
growth model with parameters (𝛽, 𝜅, 𝜌) = (1, 1, 1/8). The lightest dots cor-
respond to the slowest observation frequency, with darker dots filled in to
obtain the higher observation frequencies.

where 𝜌 is a scale parameter, 𝛽 is the reproduction rate and 𝜅−1 is the carrying capacity
of the environment. We set the following prior distribution on 𝜃:

log 𝛽, log 𝜅, log 𝜌 ∼ N [0, 1] (5.97)

This is a fairly heavy-tailed (lognormal) prior which somewhat discourages computa-
tionally problematic values at the edges of the parameter space. The model is easily
implemented by way of a symbolic prexprocessor, as described in Chapter 8, requiring
only the following code snippet:

v = sp.symbols('v', positive=True)
x = sp.symbols('x', real=True)
b, k, r = sp.symbols('b k r', positive=True)
thi = sp.Array([b, k, r])
mu = b * r * v * (1 - k * v)
sig = r * v

Therefore, further manual analysis of the model is not necessary for the purpose of
implementation.

We follow the efficiency notion of average CPU time per effective sample (T/ES) set
out in Section 2.4 and (2.45), and estimate it from the output of the MCMC algorithm.
Both the average time per iteration (T/I) and the average number of iterations per
effective sample (I/ES) are estimated from MCMC output for various statistics. The
computational cost is part deterministic and part random, with either part affected
differently in the scaling regimes. It is clear that the deterministic part of the cost per
iteration is linear in the number of observations in both regimes. For the extension
regime, the optimistic scenario is that random costs remain linear in expectation, while
the effective sample size remains constant. For the infill regime, we note that random

84

5 Exact Inference for Itō Diffusion Models

costs depend on the length of the time series and the uncertainty about the diffusion
bridges. Since the length of the series is constant but uncertainty is reduced, random
costs should decrease. Clearly, conclusions from those experiments have limited external
validity, and should be seen as setting a benchmark for the behavior of the algorithms
under favorable circumstances, i.e. for models that are fairly smooth in 𝜃 and exhibit
sufficient posterior concentration rates. Other than tracking these performance metrics
for the elements of 𝜃, we may also investigate the mixing of a more global statistic. For
comparability between algorithms with different state spaces, we evaluate the density

𝜋(𝑣𝑠\{0}, ̆𝑧(𝑘), ̆𝜓(𝑘), 𝜃(𝑘)|𝑣0) = 𝜋(𝜃) ∏
(̇𝑠∼ ̈𝑠)∈𝑠

𝜋(𝑣 ̈𝑠, ̆𝑧(𝑘)
(̇𝑠, ̈𝑠), ̆𝜓(𝑘)

(̇𝑠, ̈𝑠)|𝜃(𝑘), 𝑣 ̇𝑠), (5.98)

where 𝜃(𝑘) is the value at MCMC iteration 𝑘, and ̆𝑧(𝑘)
(̇𝑠, ̈𝑠) and ̆𝜓(𝑘)

(̇𝑠, ̈𝑠) are random samples
from 𝔹(̇𝑠, ̈𝑠) and ℙ(̇𝑠, ̈𝑠), rather than being taken from the MCMC chain. Therefore, by
Theorem 14,

E𝔹(�̇�,�̈�)×ℙ(�̇�,�̈�)
[𝜋(𝑣𝑠\{0}, ̆𝑍, Ψ̆, 𝜃(𝑘)|𝑣0)] = 𝜋(𝑣𝑠\{0}, 𝜃(𝑘)|𝑣0), (5.99)

i.e. the summary has a natural interpretation as an unbiased estimator of the joint
density on the minimal state space Θ. This quantity allows us to assess whether the
algorithm is mixing adequately in terms of model fit, while avoiding the storage of the
large objects 𝑍 and Ψ during the run of the algorithm.

Each MCMC run that contributes to this section’s results consists of 100000 iterations,
of which we discard 10000 for burn-in. We precede the exact MCMC run by an approx-
imate run of 10000 iterations according to the algorithm of Section 5.4. We target an
acceptance probability of 23.4% for Metropolis-within-Gibbs steps, and 25% for Barker-
within-Gibbs, with a Portkey probability of 1%. Step sizes are adapted according to
the Adapting Increasingly Rarely (AIR) method of [25]. This method is a variant of
the most commonly used stochastic optimization methods for MCMC tuning, improving
their practical and especially theoretical properties by modifying the tuning parameters
at increasing intervals, rather than at every iteration.

For Poisson coin simulations within the marginal algorithm we adopt the limiting batch
EA version of Section 4.1.3. When the integrand bounds in Poisson estimator simulations
within the auxiliary algorithm exceed 10000, the proposal is rejected to avoid memory
errors. Such events occur a few times in the auxiliary simulations, and while they
represent a small departure from exactness, proposals implying such large bounds would
usually result in rejection even if the full simulation were to be carried out. Nevertheless,
in this instance, the marginal version is fully exact as the batch EA method avoids
carrying out excessively expensive simulations without loss of exactness.

5.8.1 Extension Regime

For the extension regime, we run the marginal and augmented algorithms on a time series
of 100, 200, 400 and 800 observations respectively, with an inter-observation interval of

85

5 Exact Inference for Itō Diffusion Models

20 23

Sec. per Iter. [log2]

100

200

400

800N
o
of

O
bs

er
va

tio
ns

25 26

Iter. per Eff. Sample [log2]
25 27

Sec. per Eff. Sample [log2]

1Figure 5.6: Sampling efficiency in the extension regime for the auxiliary (blue) and
marginal (orange) algorithms. The left panel shows the distribution of CPU
time per iteration (T/I) throughout the MCMC run. The medium panel
shows estimates of the required number of MCMC iterations to generate
an effective sample (I/ES), where each dot corresponds to an element of Θ,
and the square to the fit metric defined in (5.98). The right panel shows
estimates of the required CPU time to generate an effective sample (T/ES).
Notice that the right panel is obtained by scaling the middle panel by the
mean of the distributions in the left panel.

10000 50000 90000

0.5

1.0

1.5

β

10000 50000 90000
Iteration

0.9

1.0

1.1

κ

10000 50000 90000

0.12

0.14

ρ

1Figure 5.7: Trace plots of Θ for the 800-observation time series in the extension regime
for the auxiliary (blue) and marginal (orange) algorithms.

1. The series is generated from the logistic growth model with parameters (𝛽, 𝜅, 𝜌) =
(1, 1, 1/8) and plotted in Figure 5.4.

We observe very similar performance between the marginal and the auxiliary algorithms.
Figure 5.6 provides various performance summaries, showing that the algorithms are
similar in their T/I and I/ES, and accordingly in their T/ES. T/I variance is higher for
the marginal algorithm, with a pronounced right tail. We deem the measurements in
Figure 5.6 to be consistent with a linear scaling of T/ES in the number of observations.
T/I appears to follow the linear scaling particularly closely, while I/ES shows no clear
upward trend. For a less quantitative, but more robust and transparent assessment of
efficiency, Figure 5.7 displays the full traces for Θ in the 800-observation run.

For all elements of Θ, we observe concentration of the posterior around the true sim-
ulation values (𝛽, 𝜅, 𝜌) = (1, 1, 1/8), see Figure 5.9. The concentration rate for 𝜅 is

86

5 Exact Inference for Itō Diffusion Models

10000 50000 90000
Iteration

−100

−50

π(vs\{0}, z̆
(k), ψ̆(k), θ(k)|v0)

1Figure 5.8: Trace plot of (5.98) for the 800-observation time series in the extension regime
for the auxiliary (blue) and marginal (orange) algorithms.

0 2 4

β

1 2
Parameter Value

κ

0.10 0.15

ρ

1Figure 5.9: Posterior marginals of Θ in the extension regime, as estimated by a KDE.
Darker shades correspond to a larger observation number.

slightly slower at the longer time series end, which could be due to random idiosyn-
crasies in the simulated data. Nonetheless, concentration rates are sufficient to keep
T/ES approximately linear, while I/ES remains constant.

5.8.2 Infill Regime

For the infill regime, we interpolate the first 100 observations used in the extension
experiment at frequencies 2, 4 and 8, with identical parameters (𝛽, 𝜅, 𝜌) = (1, 1, 1/8).
The resulting observations are plotted in Figure 5.5.

In this instance, we observe a clear improvement of the marginal over the auxiliary
algorithm in the higher observation frequency range, see Figure 5.10. The auxiliary
algorithm appears linear in T/I and constant in I/ES, while the marginal algorithm
appears sublinear in T/I and possibly decreasing in I/ES. Therefore, we conjecture that
the auxiliary algorithm is linear and the marginal algorithm sublinear in T/ES. For
completeness, we again provide full traces for Θ in Figure 5.11.

Unlike the extension regime, the infill regime only results in the concentration of the
𝜌-marginal, see Figure 5.13. Therefore, the higher frequency is only informative about
the scale of the drift, while the information about the other drift parameters is already
reflected in the slowest frequency.

87

5 Exact Inference for Itō Diffusion Models

20 22

Sec. per Iter. [log2]

100

200

400

800N
o
of

O
bs

er
va

tio
ns

25

Iter. per Eff. Sample [log2]
25 27

Sec. per Eff. Sample [log2]

1Figure 5.10: Sampling efficiency in the infill regime for the auxiliary (blue) and marginal
(orange) algorithms. The left panel shows the distribution of CPU time per
iteration (T/I) throughout the MCMC run. The medium panel shows esti-
mates of the required number of MCMC iterations to generate an effective
sample (I/ES), where each dot corresponds to an element of Θ, and the
square to the fit metric defined in (5.98). The right panel shows estimates
of the required CPU time to generate an effective sample (T/ES). Notice
that the right panel is obtained by scaling the middle panel by the mean of
the distributions in the left panel.

10000 50000 90000
0

2

4
β

10000 50000 90000
Iteration

0.5

1.0

1.5

κ

10000 50000 90000

0.11

0.12

0.13
ρ

1Figure 5.11: Trace plots of Θ for the 800-observation time series in the infill regime for
the auxiliary (blue) and marginal (orange) algorithms.

5.9 Discussion

Overall, on the basis of both simulation experiments and theoretical arguments, we
cannot express strong recommendations for either the marginal or the auxiliary marginal
approach. Properly implemented and configured, both methods can reliably scale in
both extension and infill regimes, with no departure from exactness for the marginal
algorithm, and minimal departure for the auxiliary one. There is some evidence of a
minor scaling edge for the marginal algorithm in the infill regime. Both algorithms
rely on complex foundations, with the additional groundwork on Bernoulli factories in
the marginal case, and the need to properly specify the nonunique 2-coin factorization.
Therefore, in terms of parsimony, the auxiliary algorithm is slightly more accessible.

In the light of Remark 1, we emphasize that the average iteration time appears well-

88

5 Exact Inference for Itō Diffusion Models

10000 50000 90000
Iteration

−50

0
π(vs\{0}, z̆

(k), ψ̆(k), θ(k)|v0)

1Figure 5.12: Trace plot of (5.98) for the 800-observation time series in the infill regime
for the auxiliary (blue) and marginal (orange) algorithms.

0 2 4

β

1 2
Parameter Value

κ

0.10 0.15

ρ

1Figure 5.13: Posterior marginals of Θ in the infill regime, as estimated by a KDE. Darker
shades correspond to a larger observation number.

behaved, and the presented algorithms mostly avoid regions of the algorithms’ state
space in which T/I is prohibitively large. This is due to a combination of mitigation
techniques, including warm starting. In the case of the marginal algorithm, batch EA,
portkey Barker and the new 2-coin algorithm of Section 5.2.2 are essential. While defini-
tive statements are difficult to make for general diffusion models, we believe that the
algorithms of this chapter are well-behaved when the posterior concentrates sufficiently
quickly, and exludes regions of 𝒯 where 𝜑𝜃 is large or highly variable. In summary,
both frameworks are adequate foundations for the development of MCMC algorithms
for more complex models, as seen in the following Chapters 6 and 7.

89

6 Exact Inference for Markov Switching
Diffusion Models

The primary limitation of the Itō diffusion models that we have focused on up to now
is that they are time-invariant, i.e. the dynamics specified by the SDE do not depend
on the clock index 𝑡. Nonetheless, many stochastic phenomena are best modelled by
dynamics whose parameters are allowed to depend on a time changing regime.

Our regime-switching framework is as follows. Let 𝑌 be a latent, discrete space, con-
tinuous time Markov jump process with states {1, … , �̂�} and denote the set of possible
trajectories by 𝒴. The jump process evolves according to its generator matrix 𝜆, where
𝜆𝑖,𝑗≠𝑖 ≥ 0 are the jump rates from state 𝑖 to 𝑗 and the diagonal elements are given by
𝜆𝑖𝑖 = − ∑𝑗≠𝑗 𝜆𝑖𝑗. We follow the common convention of denoting the exit rates 𝜆𝑖 = −𝜆𝑖𝑖.
The density function of 𝑌 is defined with respect to the measure 𝕃 induced by a rate 1
marked Poisson process, and given by

𝜋(𝑦|𝜆) = exp [∫
𝜔

0
(1 − 𝜆𝑦𝑡

) d𝑡] ∏
(̇𝑟∼ ̈𝑟)∈𝑟∪{0}

𝜆𝑦�̇�𝑦�̈�
, (𝑦 ∈ 𝒴) (6.1)

where 𝑟 is the set of times at which the trajectory 𝑦 changes values. The latent process
controls the dynamics of the observable process 𝑉 by way of the Markov switching SDE

d𝑉𝑡 = 𝜇𝜃(𝑉𝑡, 𝑌𝑡) d𝑡 + 𝜎𝜃(𝑉𝑡)𝜌𝜃(𝑌𝑡) d𝑊𝑡, (𝑉0 = 𝑣0, 𝑉0 ⟂ 𝑌0) (6.2)

where 𝑊 is a standard Brownian motion and 𝜃 ∈ 𝒯 is a parameter vector. Figures 6.1
and 6.2 show example trajectories from 𝑉 and 𝑌 . Suppose that the SDE admits a unique
solution for every 𝑦 ∈ 𝒴 and 𝜃 and therefore a Markov transition density 𝜋(𝑣𝑡+𝜖|𝑣𝑡, 𝑦, 𝜃),
which we assume to be intractable. As usual, let 𝑉 be observed at times 𝑠 with values
𝑣𝑠, while all other quantities are unknown, i.e. 𝜃 and 𝜆 denote variates of the random
variables Θ and Λ. Our primary aim is to generate samples from the exact posterior

𝜋(𝑦, 𝜃, 𝜆|𝑣𝑠) =
𝜋(𝜃)𝜋(𝜆)𝜋(𝑦|𝜆) ∏(̇𝑠∼ ̈𝑠)∈𝑠 𝜋(𝑣 ̈𝑠|𝑣 ̇𝑠, 𝑦[̇𝑠, ̈𝑠), 𝜃)

∭ 𝜋(𝜃′)𝜋(𝜆′)𝜋(𝑦′|𝜆′) ∏(̇𝑠∼ ̈𝑠)∈𝑠 𝜋(𝑣 ̈𝑠|𝑣 ̇𝑠, 𝑦′
[̇𝑠, ̈𝑠), 𝜃′)𝕃(d𝑦′) d𝜃′ d𝜆′ (6.3)

for a given product prior 𝜋(𝜃, 𝜆) = 𝜋(𝜃)𝜋(𝜆). The factorization of the volatility term is
necessary for technical reasons discussed in Section 6.1.1. It need not be unique and this
arbitrariness does not affect the algorithms presented in this chapter.

Discrete time versions of such models are common in economics and finance, where they
were first proposed to infer business cycles from GDP growth data [56]. Other economic

90

6 Exact Inference for Markov Switching Diffusion Models

0 ω

t

1

2v t

1

0 ω

t

1

v t

1Figure 6.1: Illustration of a mean switching and a volatility switching time series. The
left series follows d𝑉𝑡 = (1/8)(𝑉𝑡(1 − 𝑉𝑡/𝜅𝑌𝑡

) d𝑡 + d𝑊𝑡) where 𝜅1 = 1 (blue)
and 𝜅2 = 2 (orange). The right series follows d𝑉𝑡 = 𝜌𝑌𝑡

(𝑉𝑡(1 − 𝑉𝑡) d𝑡 + d𝑊𝑡),
where 𝜌1 = 1/8 (blue) and 𝜌2 = 1/2 (orange). We observe the diffusion
discretely.

0 ω

t

0

1

y t

1Figure 6.2: Illustration of the regime trajectory corresponding to Figure 6.1.

time series exhibiting cyclical regime shifts include exchange rates [36], interest rates
[23], stock prices [57], commodity prices [41] and energy prices [93]. Regime switching
processes also lend themselves to modelling structural breaks in economic regimes, such
as in [74, 87]. While discrete time models are dominant in econometrics, we are interested
in their continuous-time formulation given above, for which few inference methods are
available. Mathematicians have long investigated stability and optimal control of such
models [48, 10, 85]. Just as the transition density of standard Itō diffusion models is
typically intractable, so is the transition density of a Markov switching model. Therefore,
the statistical literature relies on discrete approximations of the switching diffusion [65,
81], a limitation which we seek to address. We also note the related literature which
relaxes the recurrent Markovian assumption on the latent process, see e.g. [73, 38].

This chapter largely mimics the structure of the previous Chapter 5 on Itō diffusion
inference. We begin by setting out an explicit joint model 𝜋(𝑣, 𝑦, 𝜃, 𝜆) involving the
diffusion and the regime path. Gibbs sampling on that space will require an appropriate
reparameterization. The infinite dimensional terms may be addressed by a marginal
Bernoulli factory MCMC algorithm, or an auxiliary algorithm that relies on additional
nuisance variables. Sections 6.3 and 6.4 present analogous marginal and auxiliary algo-
rithms, Section 6.5 discusses approximate Bayesian inference and Section 6.6 proposes
an MCEM algorithm for MAP inference. All algorithms in this section are fully novel.

In conjunction with the novel aspects of the previous chapter, this chapter seeks to

91

6 Exact Inference for Markov Switching Diffusion Models

extend the methodology for diffusion inference to a more complex and challenging class
of models. Therefore, it represents the main payoff from the work underlying this thesis.
While the approach of this chapter is similar to the previous one, the computational
problem is much harder. On the one hand, we seek to explore a posterior that is higher-
dimensional, and often exhibits new dependencies and multiple modes. Any MCMC
method struggles with such geometries. Moreover, Markov switching diffusions can
exhibit strong drift discontinuities when 𝑌 changes states, which is precisely where our
retrospective simulation methods are most expensive, as laid out by Remark 1.

6.1 Data Augmentation Strategy

The underlying theme of this section is to cast the data augmentation strategy in terms
of the simple Itō diffusion setting to the largest extent possible. We can do so by
observing that conditional on a regime trajectory 𝑦 with transition times 𝑟 and the
corresponding diffusion values 𝑣𝑟, 𝑉 is independent of Λ, and by the Markov property
𝜋(𝑣𝑟, 𝑣𝑠\{0}|𝑣0, 𝑦, 𝜃) factorizes as follows:

𝜋(𝑣𝜏\{0}|𝑣0, 𝑦, 𝜃) = ∏
(̇𝜏∼ ̈𝜏)∈𝜏

𝜋(𝑣 ̈𝜏 |𝑣 ̇𝜏 , 𝑦 ̇𝜏 , 𝜃), (6.4)

where we define the ordered set of event times 𝜏 = 𝑟∪𝑠. Since 𝑦 is by definition constant
within (̇𝜏 , ̈𝜏), 𝜋(𝑣 ̈𝜏 |𝑣 ̇𝜏 , 𝑦 ̇𝜏 , 𝜃) is the law of a time-invariant diffusion process. Therefore, if
we include 𝑌 and 𝑉𝑟 in the augmented model, we will be able to port many arguments
and techniques with only minor modifications. We will also introduce the inter-event
diffusion bridges 𝑉(̇𝜏, ̈𝜏) in Section 6.1.1, resulting in the extended posterior

𝜋(𝑣, 𝑦, 𝜃, 𝜆|𝑣𝑠) ∝ 𝜋(𝜃)𝜋(𝜆) ∏
(̇𝜏∼ ̈𝜏)∈𝜏

𝜋(𝑣(̇𝜏, ̈𝜏]|𝑣 ̇𝜏 , 𝑦 ̇𝜏 , 𝜃)𝜋(𝑦 ̈𝜏 |𝑦 ̇𝜏 , 𝜆). (6.5)

Then, in the accustomed manner, in Section 6.1.2 we reparameterize the bridges 𝑉(̇𝜏, ̈𝜏)
to obtain a model in terms of the noncentered bridges 𝑧(̇𝜏, ̈𝜏):

𝜋(𝑣𝑟, 𝑧, 𝑦, 𝜃, 𝜆|𝑣𝑠) ∝ 𝜋(𝜃)𝜋(𝜆) ∏
(̇𝜏∼ ̈𝜏)∈𝜏

𝜋(𝑧(̇𝜏, ̈𝜏), 𝑣 ̈𝜏 |𝑣 ̇𝜏 , 𝑦 ̇𝜏 , 𝜃)𝜋(𝑦 ̈𝜏 |𝑦 ̇𝜏 , 𝜆) (6.6)

Under this parameterization, we can design an ergodic marginal Gibbs sampler with full
conditionals 𝜋(𝜃, 𝜆|𝑣𝜏 , 𝑧, 𝑦) and 𝜋(𝑣𝑟, 𝑧, 𝑦|𝑣𝑠, 𝜃). We will also consider an extended, finite
dimensional version with auxiliary stochastic process Ψ in Section 6.1.3, targeting the
posterior

𝜋(𝑣𝑟, 𝜓, 𝑧, 𝑦, 𝜃, 𝜆|𝑣𝑠) ∝ 𝜋(𝜃)𝜋(𝜆) ∏
(̇𝜏∼ ̈𝜏)∈𝜏

𝜋(𝜓(̇𝜏, ̈𝜏), 𝑧(̇𝜏, ̈𝜏), 𝑣 ̈𝜏 |𝑣 ̇𝜏 , 𝑦 ̇𝜏 , 𝜃)𝜋(𝑦 ̈𝜏 |𝑦 ̇𝜏 , 𝜆). (6.7)

Since the development largely parallels Chapter 5, the reader is best served by first
reading Section 5.1, which introduces critical concepts with lighter notation.

92

6 Exact Inference for Markov Switching Diffusion Models

6.1.1 Standing Assumptions and Complete Transition Density

Conditional on 𝜃 and 𝑦, the complete transition density follows from a slightly extended
version of the argument in Section 5.1.1. We define the transformation

𝜂𝜃(𝑎) = ∫
𝑎

𝑣∗

d𝑏
𝜎𝜃(𝑏) , (𝑣∗, 𝑎 ∈ 𝒱) (6.8)

which yields the reduced process 𝑋 = 𝜂𝜃(𝑉) with SDE

d𝑋𝑡 = 𝛿𝜃(𝑋𝑡, 𝑦 ̇𝜏) d𝑡 + 𝜌𝜃(𝑦 ̇𝜏) d𝑊𝑡, (𝑋0 = 𝜂𝜃(𝑣0), 𝑡 ∈ [̇𝜏 , ̈𝜏)) (6.9)

𝛿𝜃(𝑎, 𝑏) = (𝜇𝜃(⋅, 𝑏)
𝜎𝜃

− 𝜎′
𝜃

2) ∘ 𝜂−1
𝜃 (𝑎). (6.10)

Notice that while 𝛿𝜃(𝑋𝑡, 𝑦 ̇𝜏) is discontinuous at times 𝑟, 𝑋 itself remains continuous.
This would not be the case if we allowed general volatility functions 𝜎𝜃(𝑣𝑡, 𝑦𝑡) and used
the discontinuous transformation 𝜂𝜃(𝑣𝑡, 𝑦𝑡) = ∫ d𝑣𝑡

𝜎𝜃(𝑣𝑡,𝑦𝑡) . The transformed process has no
tractable dominating process, substantially complicating the development of an MCMC
algorithm. Therefore, we limit ourselves to studying Markov switching diffusions with
the volatility factorization 𝜎𝜃(𝑣𝑡)𝜌𝜃(𝑦𝑡).
We require throughout that for any 𝜃 ∈ 𝒯, 𝑏 ∈ {1, … , 𝑘} and ̇𝜏 < ̈𝜏 ,

• 𝛿𝜃(𝑎, 𝑏) is continuously differentiable in 𝑎 on 𝒱.

• The Novikov condition applies, i.e. E𝑋(�̇�,�̈�]
[exp [∫ ̈𝜏

̇𝜏 𝛿2
𝜃(𝑋𝑡, 𝑏) d𝑡] |𝑥 ̇𝜏 , {𝑦 ̇𝜏 = 𝑏} , 𝜃] <

∞. This is sufficient, albeit not necessary.

Since in this instance 𝑋 is not a unit-volatility process, the derivation from the Itō
diffusion case is slightly modified. Let 𝕏|(𝑥 ̇𝜏 , 𝑦 ̇𝜏 , 𝜃) be induced by 𝑋(̇𝜏, ̈𝜏] for 𝑋 ̇𝜏 = 𝑥 ̇𝜏
and 𝑌 ̇𝜏 = 𝑦 ̇𝜏 . Furthermore, let 𝕄|(𝑥 ̇𝜏 , 𝑦 ̇𝜏 , 𝜃) be the driftless measure induced by d𝑋𝑡 =
𝜌𝜃(𝑦 ̇𝜏) d𝑊𝑡. Then, by Theorem 3.2.5, 𝕄|(𝑥 ̇𝜏 , 𝑦 ̇𝜏 , 𝜃) ≫ 𝕏|(𝑥 ̇𝜏 , 𝑦 ̇𝜏 , 𝜃), and the RND between
the two measures is

d𝕏|(𝑥 ̇𝜏 , 𝑦 ̇𝜏 , 𝜃)
d𝕄|(𝑥 ̇𝜏 , 𝑦 ̇𝜏 , 𝜃)(𝑥(̇𝜏, ̈𝜏]) = exp [∫

̈𝜏

̇𝜏

𝛿𝜃(𝑥𝑡, 𝑦 ̇𝜏)
𝜌𝜃(𝑦 ̇𝜏) d𝑊𝑡 + 1

2 ∫
̈𝜏

̇𝜏

𝛿2
𝜃(𝑥𝑡, 𝑦 ̇𝜏)
𝜌2

𝜃(𝑦 ̇𝜏) d𝑡] . (6.11)

For the rest of the derivation, the logic of Theorem 10 applies almost unchanged, with
slightly modified definitions, and gives us the complete transition density with respect

93

6 Exact Inference for Markov Switching Diffusion Models

𝑉 ̇𝜏

𝑉 ̈𝜏

𝑍(̇𝜏, ̈𝜏)

Θ

𝑌 ̇𝜏𝑌Λ

(̇𝜏 ∼ ̈𝜏) ∈ 𝑠 ∪ 𝑅

Figure 6.3: Plate diagram for the marginal noncentered model. 𝑉 ̇𝜏 and 𝑉 ̈𝜏 may be ob-
served or latent, depending on whether ̇𝜏 , ̈𝜏 ∈ 𝑠.

to the dominating measure 𝕄|(𝑋{ ̇𝜏, ̈𝜏} = 𝜂𝜃(𝑣{ ̇𝜏, ̈𝜏}), 𝑦 ̇𝜏 , 𝜃) × Leb:

𝜋(𝑥(̇𝜏, ̈𝜏), 𝑣 ̈𝜏 |𝑣 ̇𝜏 , 𝑦 ̇𝜏 , 𝜃) = |𝜂′
𝜃(𝑣 ̈𝜏)| N [𝜂𝜃(𝑣 ̈𝜏); 𝜂𝜃(𝑣 ̇𝜏), (̈𝜏 − ̇𝜏)𝜌2

𝜃(𝑦 ̇𝜏)]

× d𝕏|(𝑋 ̇𝜏 = 𝜂𝜃(𝑣 ̇𝜏), 𝑦 ̇𝜏 , 𝜃)
d𝕄|(𝑋 ̇𝜏 = 𝜂𝜃(𝑣 ̇𝜏), 𝑦 ̇𝜏 , 𝜃)(𝑥(̇𝜏, ̈𝜏), 𝜂𝜃(𝑣 ̈𝜏)),

(6.12)

d𝕏|(𝑥 ̇𝜏 , 𝑦 ̇𝜏 , 𝜃)
d𝕄|(𝑥 ̇𝜏 , 𝑦 ̇𝜏 , 𝜃)(𝑥(̇𝜏, ̈𝜏]) = exp [Δ𝜃(𝑥 ̈𝜏 , 𝑦 ̇𝜏) − Δ𝜃(𝑥 ̇𝜏 , 𝑦 ̇𝜏)

𝜌2
𝜃(𝑦 ̇𝜏) − ∫

̈𝜏

̇𝜏
𝜑𝜃(𝑥𝑡, 𝑦 ̇𝜏) d𝑡] , (6.13)

𝜑𝜃(𝑎, 𝑏) = 1
2 (𝛿2

𝜃(𝑎, 𝑏)
𝜌2

𝜃(𝑏) + 𝜕𝑎𝛿𝜃(𝑎, 𝑏)) , (6.14)

Δ𝜃(𝑎, 𝑏) = ∫ 𝛿𝜃(𝑎, 𝑏) d𝑎. (6.15)

Just as in the Itō diffusion case, we note that for distinct values 𝜃 ≠ 𝜃†, 𝕄|(𝑋 ̇𝜏 =
𝜂𝜃(𝑣 ̇𝜏), 𝑦 ̇𝜏 , 𝜃) and 𝕄|(𝑋 ̇𝜏 = 𝜂𝜃†(𝑣 ̇𝜏), 𝑦 ̇𝜏 , 𝜃†) are mutually singular, and therefore 𝜋(𝑥(̇𝜏, ̈𝜏), 𝑣 ̈𝜏 |𝑣 ̇𝜏 , 𝑦 ̇𝜏 , 𝜃)
and 𝜋(𝑥(̇𝜏, ̈𝜏), 𝑣 ̈𝜏 |𝑣 ̇𝜏 , 𝑦 ̇𝜏 , 𝜃†) are mutually singular as well. Hence, a noncentered parame-
terization is required.

6.1.2 Marginal Noncentered Transition Density

We proceed to changing variables from the centered bridges 𝑋(̇𝜏, ̈𝜏) to noncentered, a
priori independent bridges. Again, only minor changes are required compared to the Itō
diffusion setting of Section 5.1.2. We define

𝜁𝜃(𝑥𝑡; 𝑦 ̇𝜏 , 𝑣{ ̇𝜏, ̈𝜏}) = 𝑥𝑡 − 𝜂𝜃(𝑣 ̇𝜏) − (𝜂𝜃(𝑣 ̈𝜏) − 𝜂𝜃(𝑣 ̇𝜏)) 𝑡− ̇𝜏
̈𝜏− ̇𝜏

𝜌𝜃(𝑦 ̇𝜏) , (𝑡 ∈ (̇𝜏 , ̈𝜏)) (6.16)

and let 𝜁−1
𝜃 be the inverse in the first argument:

𝜁−1
𝜃 (𝑧𝑡; 𝑦 ̇𝜏 , 𝑣{ ̇𝜏, ̈𝜏}) = 𝜌𝜃(𝑦 ̇𝜏)𝑧𝑡 + 𝜂𝜃(𝑣 ̇𝜏) + (𝜂𝜃(𝑣 ̈𝜏) − 𝜂𝜃(𝑣 ̇𝜏)) 𝑡 − ̇𝜏

̈𝜏 − ̇𝜏 (𝑡 ∈ (̇𝜏 , ̈𝜏)) (6.17)

94

6 Exact Inference for Markov Switching Diffusion Models

We change variables to 𝑍(̇𝜏, ̈𝜏) = 𝜁𝜃(𝑋(̇𝜏, ̈𝜏); 𝑦 ̇𝜏 , 𝑣{ ̇𝜏, ̈𝜏}) and note that under 𝕄|(𝑥 ̇𝜏 , 𝑦 ̇𝜏 , 𝜃),
𝑍(̇𝜏, ̈𝜏) is a Brownian bridge spanning the origin at times (̇𝜏 , ̈𝜏). We further define
ℤ|(𝑥{ ̇𝑠, ̈𝑠}, 𝑦 ̇𝜏 , 𝜃) and 𝔹(̇𝜏, ̈𝜏) as the pushforward measures induced by 𝑍(̇𝜏, ̈𝜏) under 𝕏|(𝑥{ ̇𝜏, ̈𝜏}, 𝑦 ̇𝜏 , 𝜃)
and 𝕎|(𝑥{ ̇𝜏, ̈𝜏}, 𝑦 ̇𝜏 , 𝜃), respectively. Probabilities being conserved under a change of vari-
able, we find that

dℤ|(𝑥{ ̇𝜏, ̈𝜏}, 𝑦 ̇𝜏 , 𝜃)
d𝔹(̇𝜏, ̈𝜏)

(𝑧(̇𝜏, ̈𝜏)) =
d𝕏|(𝑥{ ̇𝜏, ̈𝜏}, 𝑦 ̇𝜏 , 𝜃)
d𝕄|(𝑥{ ̇𝜏, ̈𝜏}, 𝑦 ̇𝜏 , 𝜃) ∘ 𝜁−1

𝜃 (𝑧(̇𝜏, ̈𝜏); 𝑦 ̇𝜏 , 𝑣{ ̇𝜏, ̈𝜏})

= N [𝑥 ̈𝜏 ; 𝑥 ̇𝜏 , (̈𝜏 − ̇𝜏)𝜌2
𝜃(𝑦 ̇𝜏)]

𝜋(𝑥 ̈𝜏 |𝑥 ̇𝜏 , 𝑦 ̇𝜏 , 𝜃)

× d𝕏|(𝑥 ̇𝜏 , 𝑦 ̇𝜏 , 𝜃)
d𝕎|(𝑥 ̇𝜏 , 𝑦 ̇𝜏 , 𝜃)(𝜁−1

𝜃 (𝑧(̇𝜏, ̈𝜏); 𝑦 ̇𝜏 , 𝑣{ ̇𝜏, ̈𝜏}), 𝑥 ̈𝜏),

(6.18)

which, in conjunction with 𝜋(𝑥(̇𝜏, ̈𝜏), 𝑣 ̈𝜏 |𝑣 ̇𝜏 , 𝑦 ̇𝜏 , 𝜃), gives us the noncentered complete tran-
sition density:

𝜋(𝑧(̇𝜏, ̈𝜏), 𝑣 ̈𝜏 |𝑣 ̇𝜏 , 𝑦 ̇𝜏 , 𝜃) = |𝜂′
𝜃(𝑣 ̈𝜏)| N [𝜂𝜃(𝑣 ̈𝜏); 𝜂𝜃(𝑣 ̇𝜏), (̈𝜏 − ̇𝜏)𝜌2

𝜃(𝑦 ̇𝜏)]

× d𝕏|(𝑋 ̇𝜏 = 𝜂𝜃(𝑣 ̇𝜏), 𝑦 ̇𝜏 , 𝜃)
d𝕄|(𝑋 ̇𝜏 = 𝜂𝜃(𝑣 ̇𝜏), 𝑦 ̇𝜏 , 𝜃)(𝜁−1

𝜃 (𝑧(̇𝜏, ̈𝜏); 𝑦 ̇𝜏 , 𝑣{ ̇𝜏, ̈𝜏}), 𝜂𝜃(𝑣 ̈𝜏))

=

𝑑𝜃(𝑣{�̇�,�̈�},𝑦�̇�)
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
∣𝜂′

𝜃(𝑣 ̈𝜏)∣ N [𝜂𝜃(𝑣 ̈𝜏); 𝜂𝜃(𝑣 ̇𝜏), (̈𝜏 − ̇𝜏)𝜌2
𝜃(𝑦 ̇𝜏)] 𝑒Δ𝜃(𝜂𝜃(𝑣�̈�),𝑦�̇�)−Δ𝜃(𝜂𝜃(𝑣�̇�),𝑦�̇�)

× exp [− ∫
̈𝜏

̇𝜏
𝜑𝜃(𝜁−1

𝜃 (𝑧𝑡; 𝑦 ̇𝜏 , 𝑣{ ̇𝜏, ̈𝜏}), 𝑦 ̇𝜏) d𝑡]
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑞𝜃(𝑧(�̇�,�̈�),𝑣{�̇�,�̈�},𝑦�̇�)

,

(6.19)

where the dominating measure is 𝔹(̇𝜏, ̈𝜏) × Leb, and

∫ 𝜋(𝑧(̇𝜏, ̈𝜏), 𝑣 ̈𝜏 |𝑣 ̇𝜏 , 𝑦 ̇𝜏 , 𝜃)𝔹(̇𝜏, ̈𝜏)(d𝑧(̇𝜏, ̈𝜏)) = 𝜋(𝑣 ̈𝜏 |𝑣 ̇𝜏 , 𝑦 ̇𝜏 , 𝜃). (6.20)

See Figure 6.3 for the corresponding graphical model. As in the previous chapter, we
will use the notation

�̃�𝜃(𝑧𝑡, 𝑦 ̇𝜏 , 𝑣{ ̇𝜏, ̈𝜏}) = 𝜑𝜃(𝜁−1
𝜃 (𝑧𝑡; 𝑦 ̇𝜏 , 𝑣{ ̇𝜏, ̈𝜏}), 𝑦 ̇𝜏) (6.21)

to denote composition with 𝜁−1
𝜃 in 𝑥𝑡, with analogous expressions for the bounds �̃�↓

𝜃 and
�̃�↑

𝜃. Any noncentered Brownian bridge bounds

−∞ < 𝑧↓
(̇𝜏, ̈𝜏) ≤ 𝑧𝑡 ≤ 𝑧↑

(̇𝜏, ̈𝜏) < ∞ (𝑡 ∈ (̇𝜏 , ̈𝜏)) (6.22)

95

6 Exact Inference for Markov Switching Diffusion Models

𝑉 ̇𝜏

𝑉 ̈𝜏

𝑍(̇𝜏, ̈𝜏)

Ψ(̇𝜏, ̈𝜏)

Θ

𝑌 ̇𝜏𝑌Λ

(̇𝜏 ∼ ̈𝜏) ∈ 𝑠 ∪ 𝑅

Figure 6.4: Plate diagram for the auxiliary noncentered model. 𝑉 ̇𝜏 and 𝑉 ̈𝜏 may be ob-
served or latent, depending on whether ̇𝜏 , ̈𝜏 ∈ 𝑠.

are propagated to 𝑥(̇𝜏, ̈𝜏) through

𝑥𝑡 ∈ (𝜌𝜃(𝑦 ̇𝜏)𝑧↓
(̇𝜏, ̈𝜏) + 𝜂𝜃(𝑣 ̇𝜏) + (𝜂𝜃(𝑣 ̈𝜏) − 𝜂𝜃(𝑣 ̇𝜏))(𝑡 − ̇𝜏)/(̈𝜏 − ̇𝜏),

𝜌𝜃(𝑦 ̇𝜏)𝑧↑
(̇𝜏, ̈𝜏) + 𝜂𝜃(𝑣 ̇𝜏) + (𝜂𝜃(𝑣 ̈𝜏) − 𝜂𝜃(𝑣 ̇𝜏))(𝑡 − ̇𝜏)/(̈𝜏 − ̇𝜏))

∈ (𝜌𝜃(𝑦 ̇𝜏)𝑧↓
(̇𝜏, ̈𝜏) + 𝜂𝜃(𝑣 ̇𝜏) ∧ 𝜂𝜃(𝑣 ̈𝜏)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑥↓
(�̇�,�̈�)

, 𝜌𝜃(𝑦 ̇𝜏)𝑧↑
(̇𝜏, ̈𝜏) + 𝜂𝜃(𝑣 ̇𝜏) ∨ 𝜂𝜃(𝑣 ̈𝜏)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑥↑
(�̇�,�̈�)

). (6.23)

6.1.3 Auxiliary Noncentered Transition Density

We now proceed to deriving a finite-dimensional auxiliary model analogous to Section
5.1.3. Let Ψ(̇𝜏, ̈𝜏) be a 2-dimensional Poisson process on [̇𝜏 , ̈𝜏] × [0, ∞) with induced
measure ℙ(̇𝜏, ̈𝜏), and assume that for every 𝜃 and 𝑦 ̇𝜏 , we have access to upper and lower
bounds for 𝜑𝜃(𝑥𝑡, 𝑦 ̇𝜏) on 𝑡 ∈ (̇𝜏 , ̈𝜏). Given these bounds, we define the truncation

𝛾𝜃(𝜓(̇𝜏, ̈𝜏), 𝑥(̇𝜏, ̈𝜏), 𝑦 ̇𝜏) = {𝑡 ∶ (𝑡, 𝜙) ∈ 𝜓(̇𝜏, ̈𝜏), 𝜙 ≤ (𝜑↑
𝜃 − 𝜑↓

𝜃)(𝑥(̇𝜏, ̈𝜏), 𝑦 ̇𝜏)} . (6.24)

Again, ∣𝛾𝜃(Ψ(̇𝜏, ̈𝜏), 𝑥(̇𝜏, ̈𝜏), 𝑦 ̇𝜏)∣ is almost surely finite. By Theorem 13 and analogy to
Theorem 14, we obtain the centered auxiliary complete transition density

𝜋(𝜓(̇𝜏, ̈𝜏), 𝑥(̇𝜏, ̈𝜏), 𝑣 ̈𝜏 |𝑣 ̇𝜏 , 𝑦 ̇𝜏 , 𝜃)

= 𝑑𝜃(𝑣{ ̇𝜏, ̈𝜏}, 𝑦 ̇𝜏)𝑒(̇𝜏− ̈𝜏)𝜑𝜃
↓(𝑥(�̇�,�̈�),𝑦�̇�) ∏

𝑡∈𝛾𝜃(𝜓(�̇�,�̈�),𝑥(�̇�,�̈�),𝑦�̇�)
{(𝜑↑

𝜃 − 𝜑𝜃
𝜑↑

𝜃 − 𝜑↓
𝜃
) (𝑥(̇𝜏, ̈𝜏), 𝑦 ̇𝜏)}

𝑡
.

(6.25)

96

6 Exact Inference for Markov Switching Diffusion Models

𝑌 (𝜏0) 𝑌 (𝜏1) 𝑌 (𝜏2) ...
Exp(𝜆𝑌 (𝜏0)) Exp(𝜆𝑌 (𝜏1)) Exp(𝜆𝑌 (𝜏2))

Figure 6.5: Jump-hold construction of a 2-state Markov jump process. State holding
times are distributed exponentially.

Changing variables from 𝑋 to 𝑍, we move to the noncentered auxiliary complete transi-
tion density
𝜋(𝜓(̇𝜏, ̈𝜏), 𝑧(̇𝜏, ̈𝜏), 𝑣 ̈𝜏 |𝑣 ̇𝜏 , 𝑦 ̇𝜏 , 𝜃)

= 𝑑𝜃(𝑣{ ̇𝜏, ̈𝜏}, 𝑦 ̇𝜏) 𝑒(̇𝜏− ̈𝜏)�̃�↓
𝜃(𝑧(�̇�,�̈�),𝑦�̇�,𝑣{�̇�,�̈�}) ∏

𝑡∈𝛾𝜃(𝜓(�̇�,�̈�),𝑥(�̇�,�̈�),𝑦�̇�)
{(�̃�↑

𝜃 − �̃�𝜃
�̃�↑

𝜃 − �̃�↓
𝜃
) (𝑧(̇𝜏, ̈𝜏), 𝑦 ̇𝜏 , 𝑣{ ̇𝜏, ̈𝜏})}

𝑡⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
̄𝑞𝜃(𝜓(�̇�,�̈�),𝑧(�̇�,�̈�),𝑣{�̇�,�̈�},𝑦�̇�)

,

(6.26)

which is a density with respect to ℙ(̇𝜏, ̈𝜏)×𝔹(̇𝜏, ̈𝜏)×Leb, and where ̄𝑞𝜃(𝜓(̇𝜏, ̈𝜏), 𝑧(̇𝜏, ̈𝜏), 𝑣{ ̇𝜏, ̈𝜏}, 𝑦 ̇𝜏)
acts as the path integral estimate on the noncentered path. See Figure 6.4 for the
corresponding graphical model.

6.2 Simulation of Markov Jump Processes

Up to now, we have treated the trajectory of the Markov jump process as fixed, even
though the process is latent in our framework. In order to infer 𝑌 as well, we require
procedures for its forward, backward, and bridge simulation. Formally, these correspond
to simulating according to 𝜋(𝑦(0,𝜔]|𝑦0, 𝜆), 𝜋(𝑦[0,𝜔)|𝑦𝜔, 𝜆), and 𝜋(𝑦(0,𝜔)|𝑦{0,𝜔}, 𝜆) for a given
generator 𝜆. 𝜆 is a �̂� × �̂� matrix where 0 ≤ 𝜆𝑖𝑗 gives the jump rate from state 𝑖 to state
𝑗 for 𝑖 ≠ 𝑗. The diagonal entries are set to 𝜆𝑖𝑖 = − ∑𝑗≠𝑖 𝜆𝑖𝑗 such that row sums are
0. It is also convenient to define 𝜆𝑖 = −𝜆𝑖𝑖. We further impose the following standing
assumptions:

• 𝑌 is irreducible, i.e. any state is reachable from any other state. It is necessary
for every column of 𝜆 to have at least one nonzero element. It is sufficient for all
elements of 𝜆 to be nonzero.

• The process is nonexplosive, i.e. 𝜆𝑖𝑗 < ∞ for all pairs 𝑖 ≠ 𝑗.

These assumptions are sufficient for the system to be positive-recurrent, i.e. the time
to return to a state after visiting it for the first time is finite almost surely and in
expectation. In the context of Bayesian inference for an unknown generator Λ, this is
easily ensured by setting a prior for which 0 < 𝜆𝑖𝑗 < ∞ almost surely.

We will work with the jump-hold representation of 𝑌 , given by the almost surely finite
set of transition times 𝑅 and corresponding destination states:

{(�̇�, 𝑌�̇�) ∶ �̇� ∈ 𝑅} (6.27)

97

6 Exact Inference for Markov Switching Diffusion Models

The construction is most easily understood in the �̂� = 2 case, illustrated in Figure 6.5.
Here, from a starting value of 𝑖, 𝑌 switches to the other state after a holding time with
distribution Exp [𝜆𝑖]. Since the exponential distribution is memoryless, 𝑌 is Markovian
- the holding time conditional on {𝑌�̇� = 𝑖} always has distribution Exp [𝜆𝑖], regardless
of the previous trajectory. In the general instance, from a starting value of 𝑖, 𝑌 switches
to state 𝑗 after a holding time 𝐸𝑗 ∼ Exp [𝜆𝑖𝑗], if it has not switched to another state
yet. Therefore, the new state corresponds to the smallest of the potential holding times.
From an initial event {𝑌�̇� = 𝑖}, the law of the next transition pair follows from

(�̈�, 𝑌�̈�) = (�̇� + min
𝑗

𝐸𝑗, argmin
𝑗

𝐸𝑗) . (6.28)

We proceed with the statement of some relevant properties of Markov jump processes
before presenting the necessary simulation algorithms.

6.2.1 Transition and Stationary Distribution

A useful property of Markov jump processes is that the probabilities 𝑝𝑖𝑗(̇𝜏 , ̈𝜏) = Pr [𝑌 ̈𝜏 = 𝑗|𝑌 ̇𝜏 = 𝑖]
can be described in terms of the Kolmogorov backward and forward equations

𝜕𝑝𝑖𝑗(̇𝜏 , ̈𝜏)
𝜕 ̇𝜏 = − ∑

𝑘
𝜆𝑖𝑘𝑝𝑘𝑗(̇𝜏 , ̈𝜏), (6.29)

𝜕𝑝𝑖𝑗(̇𝜏 , ̈𝜏)
𝜕 ̈𝜏 = ∑

𝑘
𝑝𝑖𝑘(̇𝜏 , ̈𝜏)𝜆𝑘𝑗, (6.30)

for ̇𝜏 < ̈𝜏 and 𝑖, 𝑗 = 1, … , �̂�. These are systems of linear ordinary differential equations,
and, assuming that 𝜆 can be eigendecomposed, either system is solved by

𝑝𝑖𝑗(̇𝜏 , ̈𝜏) = {𝑒𝜔𝜆}𝑖𝑗 , (6.31)

where the exponential on the right hand side is to be understood as the matrix exponen-
tial. It is easily obtained from the eigendecomposition 𝜆 = 𝑞(diag 𝜀)𝑞−1 as 𝑝𝑖𝑗(̇𝜏 , ̈𝜏) =
{𝑞𝑒𝜔𝜀𝑞−1}𝑖𝑗. 𝑌 being positive recurrent necessitates the existence of the limiting distri-
bution

̄𝑝𝑗 = lim
̈𝜏→∞

𝑝𝑖𝑗(̇𝜏 , ̈𝜏), (𝑖, 𝑗 = 1, … , �̂�) (6.32)

i.e. all the rows of the transition probability matrix 𝑝(̇𝜏 , ̈𝜏) tend to the same limit, which
we call ̄𝑝. We obtain that limit by observing that the balance equations

̄𝑝𝑗𝜆𝑗 = ∑
𝑖≠𝑗

̄𝑝𝑖𝜆𝑖𝑗 (6.33)

must hold, subject to ∑𝑖 ̄𝑝𝑖 = 1. Intuitively, the balance equations require the prob-
ability flow out of a state to be equal to the flow into the state. The solution can be
represented and solved for in terms of the linear system

𝜆T ̄𝑝 = 0, 1T ̄𝑝 = 1. (6.34)

98

6 Exact Inference for Markov Switching Diffusion Models

6.2.2 Forward and Backward Simulation

The forward simulation algorithm follows from the jump-hold construction of 𝑌 for
a finite number of states �̂�. In this instance, We obtain a full trajectory from 𝑌 by
repeating the procedure until �̈� > 𝜔.

Algorithm 17 Forward simulation of 𝑦(0,𝜔] ∼ 𝜋(𝑦(0,𝜔]|𝑦0, 𝜆).
(𝑡, 𝑦𝑡) ← (0, 𝑦0), 𝑦(0,𝜔] ← {(𝑡, 𝑦𝑡)}
while 𝑡 ≤ 𝜔 do

𝑒𝑗 ∼ Exp [𝜆𝑦𝑡
] for 𝑗 = 1, … , �̂�

(𝑡, 𝑦𝑡) ← (𝑡 + min𝑗 𝑒𝑗, argmin𝑗 𝑒𝑗)
𝑦(0,𝜔] ← 𝑦(0,𝜔] ∪ {(𝑡, 𝑦𝑡)}

𝑦(0,𝜔] ← {(𝑡, 𝑦𝑡) ∈ 𝑦(0,𝜔] ∶ 0 < 𝑡 ≤ 𝜔}

Backward simulation according to 𝜋(𝑦[0,𝜔)|𝑦𝜔, 𝜆) is most easily carried out by exploiting
the representation

𝜋(𝑦[0,𝜔)|𝑦𝜔, 𝜆) =
𝐾

∑
𝑦0=1

𝜋(𝑦(0,𝜔)|𝑦{0,𝜔}, 𝜆)𝜋(𝑦0|𝑦𝜔, 𝜆), (6.35)

which suggests simulating 𝑌0 ∼ 𝜋(𝑦0|𝑦𝜔, 𝜆) and 𝑌(0,𝜔) ∼ 𝜋(𝑦(0,𝜔)|𝑌0, 𝑦𝜔, 𝜆) in sequence.
𝜋(𝑦0|𝑦𝜔, 𝜆) is obtained by way of Bayes’ theorem:

𝜋(𝑦0|𝑦𝜔, 𝜆) = 𝑝𝑦𝜔,𝑦0
(0, 𝜔)

̄𝑝𝑦0

̄𝑝𝑦𝜔

(6.36)

6.2.3 Rejection Bridge Simulation

The brute-force approach to bridge sampling consists of rejection sampling 𝑦†
(0,𝜔] from

the forward proposal 𝜋(𝑦(0,𝜔]|𝑦0, 𝜆) and accepting 𝑦†
(0,𝜔) if 𝑦†

𝜔 = 𝑦𝜔. This occurs with
probability 𝑝𝑦0,𝑦𝜔

(0, 𝜔), which goes to 0 in concert with 𝜔 unless 𝑦0 = 𝑦𝜔. [95] proposes a
tweak to avoid that shortfall which consists of sampling from the distribution of the first
state change, given that at least one change occurs. That distribution has an explicit
quantile function, allowing sampling according to the inverse transform method:

− log [1 − 𝑢(1 − 𝑒𝜔𝜆𝑦(0))] /𝜆𝑦(0) (𝑢 ∈ [0, 1]) (6.37)

The new state then takes value 𝑗 with probability 𝜆𝑦(0),𝑗/𝜆𝑦(0). Hence, even the tweaked
method will perform badly if 𝜆𝑦(0),𝑦(𝜔)/𝜆𝑦(0) is small. On the other hand, each iteration
only has cost 𝒪(�̂�), so a lot of trajectories can be simulated cheaply.

99

6 Exact Inference for Markov Switching Diffusion Models

6.2.4 Direct Bridge Simulation

Motivated by the inefficiency of rejection sampling in certain contexts, [63] proposed
a more robust method to directly sample from the joint distribution of the next jump
time and state. Such a sampling procedure could then be applied iteratively until all
the jumps have been simulated. We distinguish the two cases of equality and inequality
in current and final states (𝑦 ̇𝜏 , 𝑦𝜔).
We begin with the case 𝑦 ̇𝜏 ≠ 𝑦𝜔, where at least one jump must occur by definition. The
joint density of the next jump time and state (̈𝑇 , 𝑌 ̈𝑇) is given by

𝜋(̈𝜏 , 𝑦 ̈𝜏 |𝑦{ ̇𝜏,𝜔}) = 𝜋(𝑦𝜔|𝑦 ̈𝜏)
𝜋(𝑦𝜔|𝑦 ̇𝜏)𝜋(𝑦 ̈𝜏 | ̈𝜏 , 𝑦 ̇𝜏)𝜋(̈𝜏 |𝑦 ̇𝜏)

=
𝑝𝑦�̈�,𝑦𝜔

(̈𝜏 , 𝜔)
𝑝𝑦�̇�,𝑦𝜔

(̇𝜏 , 𝜔)
𝜆𝑦�̇�,𝑦�̈�

𝜆𝑦�̇�

Exp [̈𝜏 − ̇𝜏 ; 𝜆𝑦�̇�
]

∝ 𝜆𝑦�̇�,𝑦�̈�

�̂�
∑
𝑘=1

{𝑞}𝑦�̈�,𝑘 {𝑞−1}𝑘,𝜔 exp [𝜔𝜀𝑘 − ̈𝜏(𝜆 ̇𝜏 + 𝜀𝑘)] .

(6.38)

We then extract the 𝑌 ̈𝑇 -marginal by integrating out the holding time. The resulting
expression recurs throughout this section, we therefore define

𝑓𝑦�̈�
(𝑡) ∝ ∫

𝑡

̇𝜏
𝜋(̈𝜏 , 𝑦 ̈𝜏 |𝑦{ ̇𝜏,𝜔}) d ̈𝜏

= 𝜆𝑦�̇�,𝑦�̈�

�̂�
∑
𝑘=1

{𝑞}𝑦�̈�,𝑘 {𝑞−1}𝑘,𝜔 𝑒𝜔𝜀𝑘 ∫
𝑡

̇𝜏
exp [− ̈𝜏(𝜆 ̇𝜏 + 𝜀𝑘)] d ̈𝜏

= 𝜆𝑦�̇�,𝑦�̈�

�̂�
∑
𝑘=1

{𝑞}𝑦�̈�,𝑘 {𝑞−1}𝑘,𝜔 𝑒𝜔𝜀𝑘

⎧{
⎨{⎩

(𝑡 − ̇𝜏) (𝜆 ̇𝜏 + 𝜀𝑘 = 0)
𝑒− ̇𝜏(𝜆�̇�+𝜀𝑘) − 𝑒−𝑡(𝜆�̇�+𝜀𝑘)

𝜆 ̇𝜏 + 𝜀𝑘
otherwise

(6.39)
and note that 𝜋(𝑦 ̈𝜏 |𝑦{ ̇𝜏,𝜔}) ∝ 𝑓𝑦�̈�

(𝜔). Since the marginal is a categorical distribution, it
is easily renormalized. Given 𝑦 ̈𝜏 , we obtain the conditional CDF

Pr [̈𝑇 ≤ ̈𝜏 |𝑦{ ̇𝜏, ̈𝜏,𝜔}] =
∫ ̈𝜏

̇𝜏 𝜋(̈𝜏 , 𝑦 ̈𝜏 |𝑦{ ̇𝜏,𝜔}) d ̈𝜏
∫𝜔

̇𝜏 𝜋(̈𝜏 , 𝑦 ̈𝜏 |𝑦{ ̇𝜏,𝜔}) d ̈𝜏

=
𝑓𝑦�̈�

(̈𝜏)
𝑓𝑦�̈�

(𝜔) .
(6.40)

This expression is not analytically invertible, but we can still apply the inverse transform
method by noting that there is a random variable 𝑈 such that

𝑓𝑦�̈�
(̈𝑇) − 𝑈𝑓𝑦�̈�

(𝜔) = 0, 𝑈 ∼ Uniform [0, 1] . (6.41)

100

6 Exact Inference for Markov Switching Diffusion Models

Therefore, the solution of 𝑓𝑦�̈�
(̈𝜏) − 𝑢𝑓𝑦�̈�

(𝜔) = 0 in ̈𝜏 for a given uniform variate 𝑢 is a
draw from the conditional CDF.

We next consider the closely related case 𝑦 ̇𝜏 = 𝑦𝜔 = 𝑖, where either no jumps occur,
or 2 or more jumps occur. We first evaluate the no-jump event, which has conditional
probability

Pr [no jumps|𝑌 ̇𝜏 = 𝑌𝜔 = 𝑖] = Pr [no jumps, 𝑌𝜔 = 𝑌 ̇𝜏 |𝑌 ̇𝜏 = 𝑖]
Pr [𝑌𝜔 = 𝑌 ̇𝜏 |𝑌 ̇𝜏 = 𝑖]

= Pr [̈𝑇 > 𝜔|𝑌 ̇𝜏 = 𝑖]
Pr [𝑌𝜔 = 𝑖|𝑌 ̇𝜏 = 𝑖]

= 𝑒−(𝜔− ̇𝜏)𝜆𝑖

𝑝𝑖𝑖(̇𝜏 , 𝜔) ,

(6.42)

where the second step is due to {no jumps} ⊂ {𝑌𝜔 = 𝑌 ̇𝜏}. If there are no further jumps,
the algorithm terminates. If there are further jumps, the joint density of (̈𝑇 , 𝑌 ̈𝑇) is given
by 𝜋(̈𝜏 , 𝑦 ̈𝜏 |𝑦{ ̇𝜏,𝜔}), and all remaining steps can proceed as in the 𝑦 ̇𝜏 ≠ 𝑦𝜔 case.

The main appeal of the direct method is its robustness - it only requires as many iter-
ations as the 𝑌 -bridge carries out jumps. Its main downside is the need for an eigen-
decomposition of 𝜆 at 𝒪(�̂�3) cost, a cost per iteration of order 𝒪(�̂�2) to compute 𝑓𝑖 for
all states, and the need for an iterative numerical root finder, which itself might require
many function evaluations.

6.2.5 Uniformized Bridge Simulation

[64] contrast rejection sampling and direct sampling with the uniformization approach.
It consists of decomposing 𝑌 into a convolution of an unmarked Poisson process Φ of
intensity 𝜆↑ = max𝑖 𝜆𝑖 with a discrete time process ̆𝑌 that transitions at epochs given
by Φ, according to the probabilities

�̆� = id +𝜆/𝜆↑. (6.43)

While Φ generates events at least as often at 𝑌 transitions in any state, the self-
transitions in ̆𝑌 cause it to marginally generate as many transitions to other states as 𝑌 .
Indeed, noting that |Φ| ∼ Pois [𝜔𝜆↑], we find that the marginal transition probabilities

101

6 Exact Inference for Markov Switching Diffusion Models

are given by

Pr [̆𝑌𝜔 = 𝑗| ̆𝑌0 = 𝑖] =
∞

∑
𝑛=0

Pois [𝑛; 𝜔𝜆↑] Pr [̆𝑌𝜔 = 𝑗| ̆𝑌0 = 𝑖, |Φ| = 𝑛]

=
∞

∑
𝑛=0

𝑒−𝜔𝜆↑ (𝜔𝜆↑)𝑛

𝑛! {�̆�𝑛}
𝑖𝑗

= 𝑒−𝜔𝜆↑
∞

∑
𝑛=0

1
𝑛! {(𝜔𝜆↑�̆�)𝑛}

𝑖𝑗

= 𝑒−𝜔𝜆↑ {𝑒𝜔𝜆↑�̆�}
𝑖𝑗

= {𝑒𝜔𝜆}𝑖𝑗
= 𝑝𝑖𝑗(0, 𝜔),

(6.44)

where we have applied the elementary definition of the matrix exponential. Since ̆𝑌
marginally follows the same transition probabilities as 𝑌 , the two processes are equiva-
lent. We may therefore use the discretized construction in terms of ̆𝑌 and Φ to obtain
𝑌 -bridges. The procedure begins by simulating from the conditional distribution of |Φ|,
which follows from Bayes’ law:

Pr [|Φ| = 𝑛|𝑌0 = 𝑖, 𝑌𝜔 = 𝑗] = Pr [|Φ| = 𝑛] Pr [𝑌𝜔 = 𝑗|𝑌0 = 𝑖, |Φ| = 𝑛]
Pr [𝑌𝜔 = 𝑗|𝑌0 = 𝑖]

= Pois [𝑛; 𝜔𝜆↑]
{�̆�𝑛}

𝑖𝑗
𝑝𝑖𝑗(0, 𝜔) .

(6.45)

We can sample from the corresponding CDF

Pr [|Φ| ≤ 𝑛|𝑌0 = 𝑖, 𝑌𝜔 = 𝑗] =
𝑛

∑
𝑛′=1

Pois [𝑛′; 𝜔𝜆↑]
{�̆�𝑛′}

𝑖𝑗
𝑝𝑖𝑗(0, 𝜔) (6.46)

using the inverse transform method, by finding

max {𝑛 ∶ 𝑈 ≤ Pr [|Φ| ≤ 𝑛|𝑌0 = 𝑖, 𝑌𝜔 = 𝑗]} , 𝑈 ∼ Unif [0, 1] . (6.47)

The sequence of matrix powers �̆�𝑛 is also required by the next step of the procedure,
and should be stored. Conditional on {|Φ| = 𝑛}, Φ consists of 𝑛 uniformly distributed
points on [0, 𝜔]. Finally, conditional on {Φ = 𝜙}, transition probabilities of 𝑌 between
times (̇𝜏 ∼ ̈𝜏) ∈ 𝜙 again follow from Bayes’ law:

Pr [𝑌 ̈𝜏 = 𝑗|𝑌 ̇𝜏 = 𝑖, 𝑌𝜔 = 𝑘, Φ = 𝜙] = Pr [𝑌 ̈𝜏 = 𝑗|𝑌 ̇𝜏 = 𝑖, Φ = 𝜙]

× Pr [𝑌𝜔 = 𝑘|𝑌 ̈𝜏 = 𝑗, Φ = 𝜙]
Pr [𝑌𝜔 = 𝑘|𝑌 ̇𝜏 = 𝑖, Φ = 𝜙]

∝ {�̆�}
𝑖𝑗

{�̆�|𝜙∩(̈𝜏,𝜔]|}
𝑗𝑘

(6.48)

102

6 Exact Inference for Markov Switching Diffusion Models

This method has similar complexity characteristics as direct sampling, requiring a 𝒪(�̂�3)
upfront investment and an expenditure of order 𝒪(�̂�2) at each iteration. In practice,
it iterates more quickly than the direct sampler because it doesn’t require additional
iterative procedures. On the other hand, the number of iterations in direct sampling
lower bounds the number of iterations of uniformized sampling. Whether it is preferable
to direct sampling depends on tr [𝜆↑ id +𝜆] - where that trace is large, many virtual
jumps occur, which requires iterations that direct sampling avoids.

6.3 Marginal Algorithm

In this section, we develop an MCMC algorithm that targets the marginal posterior

𝜋(𝑣𝑟, 𝑧, 𝑦, 𝜃, 𝜆|𝑣𝑠) ∝ 𝜋(𝜃)𝜋(𝜆) ∏
(̇𝜏∼ ̈𝜏)∈𝜏

𝜋(𝑧(̇𝜏, ̈𝜏), 𝑣 ̈𝜏 |𝑣 ̇𝜏 , 𝑦 ̇𝜏 , 𝜃)𝜋(𝑦 ̈𝜏 |𝑦 ̇𝜏 , 𝜆). (6.49)

We construct a Gibbs sampler with full conditionals

(Θ, Λ) ∶ 𝜋(𝜃, 𝜆|𝑣𝜏 , 𝑧, 𝑦) ∝ 𝜋(𝜃)𝜋(𝜆) ∏
(̇𝜏∼ ̈𝜏)∈𝜏

𝜋(𝑧(̇𝜏, ̈𝜏), 𝑣 ̈𝜏 |𝑣 ̇𝜏 , 𝑦 ̇𝜏 , 𝜃)𝜋(𝑦 ̈𝜏 |𝑦 ̇𝜏 , 𝜆), (6.50)

(𝑉𝑅, 𝑍, 𝑌) ∶ 𝜋(𝑣𝑟, 𝑧, 𝑦|𝑣𝑠, 𝜃, 𝜆) ∝ ∏
(̇𝜏∼ ̈𝜏)∈𝜏

𝜋(𝑧(̇𝜏, ̈𝜏), 𝑣 ̈𝜏 |𝑣 ̇𝜏 , 𝑦 ̇𝜏 , 𝜃)𝜋(𝑦 ̈𝜏 |𝑦 ̇𝜏 , 𝜆), (6.51)

where, keeping in mind that the set of jumps 𝑅 and event times 𝑇 follow deterministically
from 𝑌 , and that 𝑅 is almost surely finite, the dominating measure of the latter is the
product measure

𝕃(d𝑦) ∏
(̇𝜏∼ ̈𝜏)∈𝜏

𝔹(̇𝜏, ̈𝜏)(d𝑧(̇𝜏, ̈𝜏)) ∏
̇𝑟∈𝑟

Leb(d𝑣 ̇𝑟). (6.52)

Therefore, the parameterization of the diffusion bridges evolves according to the number
of jumps in 𝑌 . This blocking is likely to be negatively affected by inevitable depen-
dence between Θ and 𝑌 , but it offers various opportunities for exploiting conditional
independence and tuning proposals. The immediate benefit is that the (Θ, Λ)-update
decomposes into the independent updates

Θ ∶ 𝜋(𝜃|𝑣𝜏 , 𝑧, 𝑦) ∝ 𝜋(𝜃) ∏
(̇𝜏∼ ̈𝜏)∈𝜏

𝜋(𝑧(̇𝜏, ̈𝜏), 𝑣 ̈𝜏 |𝑣 ̇𝜏 , 𝑦 ̇𝜏 , 𝜃), (6.53)

Λ ∶ 𝜋(𝜆|𝑦) ∝ 𝜋(𝜆) ∏
(̇𝜏∼ ̈𝜏)∈𝜏

𝜋(𝑦 ̈𝜏 |𝑦 ̇𝜏 , 𝜆). (6.54)

In particular, the Λ-update is conjugate for the class of priors discussed in Section 6.3.2,
and may thus be sampled exactly. In addition, the Θ-update simplifies further for models
in the class

d𝑉𝑡 = 𝜇𝜃𝑌𝑡
(𝑉𝑡) d𝑡 + 𝜎(𝑉𝑡)𝜌𝜃𝑌𝑡

d𝑊𝑡, 𝜃 = (𝜃1, … , 𝜃�̂�), (6.55)

103

6 Exact Inference for Markov Switching Diffusion Models

with product prior 𝜋(𝜃) = ∏�̂�
𝑘=1 𝜋(𝜃𝑘). Now, each Θ𝑘 may be updated independently

according to

𝜋(𝜃𝑘|𝑣𝜏 , 𝑧, 𝑦) ∝ 𝜋(𝜃𝑘) ∏
(̇𝜏∼ ̈𝜏)∈𝜏∶𝑦�̇�=𝑘

𝜋(𝑧(̇𝜏, ̈𝜏), 𝑣 ̈𝜏 |𝑣 ̇𝜏 , 𝑦 ̇𝜏 , 𝜃𝑘). (6.56)

We exploit that structure in designing the algorithm for the experiments in Sections 6.8
and 6.7. Conversely, the main departure, and indeed complication compared to the Itō
diffusion algorithm is that the (𝑉𝑅, 𝑍, 𝑌)-update does not immediately factorize. This is
due to the fact that in this setup, none of the elements of 𝑌 are known and conditioned
upon. We would have to move to the setting of [20], where 𝑌 is observed along with 𝑉
at times 𝑠 to obtain the independent updates

𝜋(𝑣𝑟∩(̇𝑠, ̈𝑠), 𝑧(̇𝑠, ̈𝑠), 𝑦(̇𝑠, ̈𝑠)|𝑣{ ̇𝑠, ̈𝑠}, 𝑦{ ̇𝑠, ̈𝑠}, 𝜃, 𝜆),
∝ ∏

(̇𝜏∼ ̈𝜏)∈(𝜏∩(̇𝑠, ̈𝑠))
𝜋(𝑧(̇𝜏, ̈𝜏), 𝑣 ̈𝜏 |𝑣 ̇𝜏 , 𝑦 ̇𝜏 , 𝜃)𝜋(𝑦 ̈𝜏 |𝑦 ̇𝜏 , 𝜆). (6.57)

Since this setting excludes many applications where 𝑌 is entirely latent, we will remain
in the unobserved setting, which is easily adapted to the observed one. Having to update
(𝑉𝑅, 𝑍, 𝑌) jointly is extremely difficult for long trajectories, and we adopt the strategy of
randomly conditioning on finite subsets of 𝑌 and 𝑉 in order to obtain more manageable
updates.

Remark 4 (Diffusion bridge representation). Our representation of the infinite-dimensional
paths 𝑧 remains unchanged from Section 5.2.1.

6.3.1 Diffusion Parameter Update

We carry out the diffusion parameter by way of a Barker-within-Gibbs step with generic
proposal density 𝜅(𝜃†|𝜃), following the strategy developed in Section 5.2.2. The proposal
has acceptance odds

𝛼Θ
1 − 𝛼Θ

= 𝜋(𝜃†|𝑣𝜏 , 𝑧, 𝑦)
𝜋(𝜃|𝑣𝜏 , 𝑧, 𝑦)

𝜅(𝜃|𝜃†)
𝜅(𝜃†|𝜃)

= 𝜅(𝜃|𝜃†)
𝜅(𝜃†|𝜃)

𝜋(𝜃†)
𝜋(𝜃) ∏

(̇𝜏∼ ̈𝜏)∈𝜏

𝜋(𝑧(̇𝜏, ̈𝜏), 𝑣 ̈𝜏 |𝑣 ̇𝜏 , 𝑦 ̇𝜏 , 𝜃†)
𝜋(𝑧(̇𝜏, ̈𝜏), 𝑣 ̈𝜏 |𝑣 ̇𝜏 , 𝑦 ̇𝜏 , 𝜃)

= 𝜅(𝜃|𝜃†)
𝜅(𝜃†|𝜃)

𝜋(𝜃†)
𝜋(𝜃) ∏

(̇𝜏∼ ̈𝜏)∈𝜏

𝑑𝜃†(𝑣{ ̇𝜏, ̈𝜏}, 𝑦 ̇𝜏)
𝑑𝜃(𝑣{ ̇𝜏, ̈𝜏}, 𝑦 ̇𝜏)

𝑒− ∫�̈�
�̇� �̃�𝜃† (𝑧𝑡,𝑦�̇�,𝑣{�̇�,�̈�}) d𝑡

𝑒− ∫�̈�
�̇� �̃�𝜃(𝑧𝑡,𝑦�̇�,𝑣{�̇�,�̈�}) d𝑡

.

(6.58)

We define the appropriate vanishing integrand

𝜐𝑡 = �̃�𝜃†(𝑧𝑡, 𝑦 ̇𝜏 , 𝑣{ ̇𝜏, ̈𝜏}) − �̃�𝜃(𝑧𝑡, 𝑦 ̇𝜏 , 𝑣{ ̇𝜏, ̈𝜏}), (𝑡 ∈ (̇𝜏 , ̈𝜏)) (6.59)

104

6 Exact Inference for Markov Switching Diffusion Models

with positive and negative parts 𝜐(+)
𝑡 and 𝜐(−)

𝑡 , and obtain the valid 2-coin factorization

𝛼Θ
1 − 𝛼Θ

= 𝜅(𝜃|𝜃†)
𝜅(𝜃†|𝜃)

𝜋(𝜃†)
𝜋(𝜃) ∏

(̇𝜏∼ ̈𝜏)∈𝑠

𝑑𝜃†(𝑣{ ̇𝜏, ̈𝜏}, 𝑦 ̇𝜏)
𝑑𝜃(𝑣{ ̇𝜏, ̈𝜏}, 𝑦 ̇𝜏) exp [− ∫

̈𝜏

̇𝜏
𝜐𝑡 d𝑡]

=

𝑐1

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞𝜅(𝜃|𝜃†)𝜋(𝜃†) ∏(̇𝜏∼ ̈𝜏)∈𝑠 𝑑𝜃†(𝑣{ ̇𝜏, ̈𝜏}, 𝑦 ̇𝜏)
𝜅(𝜃†|𝜃)𝜋(𝜃) ∏(̇𝜏∼ ̈𝜏)∈𝑠 𝑑𝜃(𝑣{ ̇𝜏, ̈𝜏}, 𝑦 ̇𝜏)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑐2

𝑝1

⏞⏞⏞⏞⏞⏞⏞⏞⏞∏(̇𝜏∼ ̈𝜏)∈𝑠 𝑒− ∫�̈�
�̇� 𝜐(+)

𝑡 d𝑡

∏(̇𝜏∼ ̈𝜏)∈𝑠 𝑒− ∫�̈�
�̇� 𝜐(−)

𝑡 d𝑡
⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑝2

.
(6.60)

Naive bounds on the integrands in the range 𝑡 ∈ (̇𝜏 , ̈𝜏) are given by are given by

𝜐(+)
𝑡 ≤ �̃�↑

𝜃†(𝑧(̇𝜏, ̈𝜏), 𝑦 ̇𝜏 , 𝑣 ̇𝜏, ̈𝜏) − �̃�↓
𝜃(𝑧(̇𝜏, ̈𝜏), 𝑦 ̇𝜏 , 𝑣 ̇𝜏, ̈𝜏), (6.61)

𝜐(−)
𝑡 ≤ �̃�↑

𝜃(𝑧(̇𝜏, ̈𝜏), 𝑦 ̇𝜏 , 𝑣 ̇𝜏, ̈𝜏) − �̃�↓
𝜃†(𝑧(̇𝜏, ̈𝜏), 𝑦 ̇𝜏 , 𝑣 ̇𝜏, ̈𝜏), (6.62)

and vanishing bounds can be obtained following identical arguments as for Itō diffusions,
proceeding from the inequality

|𝜐𝑡| ≤ sup
𝑎∈[0,1]

∣∇𝜃�̃�𝜃(𝑧𝑡, 𝑦 ̇𝜏 , 𝑣{ ̇𝜏, ̈𝜏})∣𝜃=(1−𝑎)𝜃†+𝑎𝜃‡
∣ |𝜃† − 𝜃‡|. (6.63)

6.3.2 Regime Parameter Update

Since the full conditional density for Λ does not involve the augmented transition den-
sities, it is the easiest update to carry out:

𝜋(𝜆|𝑦) ∝ 𝜋(𝑦|𝜆)𝜋(𝜆) (6.64)

For jump times 𝑟, the density 𝜋(𝑦|𝜆) with respect to 𝕃 is given by

𝜋(𝑦|𝜆) = exp [∫
𝜔

0
(1 − 𝜆𝑦𝑡

) d𝑡] ∏
(̇𝑟∼ ̈𝑟)∈𝑟∪{0}

𝜆𝑦�̇�𝑦�̈�
. (6.65)

Defining the cumulative holding times 𝜒𝑖 = ∫𝜔
0 1𝑦𝑡={𝑖} d𝑡 and the jump counts 𝑛𝑖𝑗 from

state 𝑖 to 𝑗, we find that they are a sufficient statistic:

𝜋(𝑦|𝜆) ∝ ∏
𝑖

(𝑒−𝜆𝑖𝜒𝑖 ∏
𝑗≠𝑖

𝜆𝑛𝑖𝑗
𝑖𝑗) . (6.66)

We set the following conjugate product prior:

𝜋(𝜆) = ∏
𝑖≠𝑗

Gamma [𝜆𝑖𝑗; 𝛼, 𝛽] , (6.67)

105

6 Exact Inference for Markov Switching Diffusion Models

that is, the free elements of Λ are independent a priori. The posterior distribution then
becomes

𝜋(𝜆|𝑦) = ∏
𝑖≠𝑗

Gamma [𝜆𝑖𝑗; 𝑛𝑖𝑗 + 𝛼, 𝜒𝑖 + 𝛽] . (6.68)

The reader interested in applications should note that this prior is necessarily informative
- 𝑌 is usually ill-identified by the data 𝑣𝑠 alone. This is especially the case if 𝜆 allows
for states that are ephemeral relative to the observation frequency on the diffusion path
and therefore vacuous. Accordingly, the prior expectation of Λ𝑖, given by

E [Λ𝑖] = ∑
𝑖≠𝑗

E [Λ𝑖𝑗] = ∑
𝑖≠𝑗

𝛼𝑖𝑗
𝛽𝑖𝑗

, (6.69)

should be chosen such that it is smaller than the mean observation rate.

6.3.3 Independence Hidden Data Update

We begin by considering an independence proposal for updating 𝜋(𝑣𝑟, 𝑧, 𝑦|𝑣𝑠, 𝜃, 𝜆). This
is computationally feasible when 𝑣𝑠 is fairly uninformative, or the time horizon short,
and results in notation that is easier to parse. We construct a Barker-within Gibbs
update with a hierarchical proposal

𝜅(𝑣†
𝑟† , 𝑧†, 𝑦†|𝑣𝑠) ∝ 𝜅(𝑦†)𝜅(𝑣†

𝑟|𝑣𝑠, 𝑦†) ∏
(̇𝜏∼ ̈𝜏)∈𝜏

𝜅(𝑧†
(̇𝜏, ̈𝜏)), (6.70)

where 𝑍†
(̇𝜏, ̈𝜏) ∼ 𝔹(̇𝜏, ̈𝜏) and 𝜅(𝑧†

(̇𝜏, ̈𝜏)) = 1. 𝑌 † is proposed independently from its prior
distribution, i.e. 𝜅(𝑦†) = 𝜋(𝑦†|𝜆). The prior is easily simulated from according to the
algorithm in Section 6.2.1. Given 𝑌 †, the proposal for 𝑉 †

𝑟† is most readily understood
in terms of 𝑋†

𝑟† = 𝜂𝜃(𝑉 †
𝑟†). We propose 𝑋†

𝑟† according to the dominating SDE d𝑋𝑡 =
𝜌𝜃(𝑌 †

𝑡) d𝑊𝑡 with induced measure 𝕄|(𝑥𝑠, 𝑦†, 𝜃). By the Markov property,

𝕄|(𝑥𝑠, 𝑦, 𝜃)(d𝑥𝑟) = ∏
(̇𝑠∼ ̈𝑠)∈𝑠

𝕄|(𝑥{ ̇𝑠, ̈𝑠}, 𝑦[̇𝑠, ̈𝑠), 𝜃)(d𝑥𝑟∩(̇𝑠, ̈𝑠))

= ∏
(̇𝑠∼ ̈𝑠)∈𝑠

∏(̇𝜏∼ ̈𝜏)∈𝑟∩(̇𝑠, ̈𝑠) 𝕄|(𝑥 ̇𝜏 , 𝑦 ̇𝜏 , 𝜃)(d𝑥 ̈𝜏)
𝕄|(𝑥 ̇𝑠, 𝑦[̇𝑠, ̈𝑠), 𝜃)(d𝑥 ̈𝑠) ,

(6.71)

and each subset 𝑋†
𝑟†∩(̇𝑠, ̈𝑠) may be simulated independently. We do so by observing that

by the time change representation of the stochastic integral, the transformation

(𝑡, 𝑥𝑡) ↦ (∫
𝑡

̇𝑠
𝜌2

𝜃(𝑦†
𝑢) d𝑢, 𝑥𝑡) (6.72)

maps 𝑋 to a unit volatility Brownian bridge connecting (0, 𝑥 ̇𝑠) → (∫ ̈𝑠
̇𝑠 𝜌2

𝜃(𝑦†
𝑢) d𝑢, 𝑥 ̈𝑠).

Conversely, a sample from that bridge at time ∫𝑡
̇𝑠 𝜌2

𝜃(𝑦†
𝑢) d𝑢 follows the proposal law

106

6 Exact Inference for Markov Switching Diffusion Models

of 𝑋†
𝑡 . We then obtain 𝑉 †

𝑟† = 𝜂−1
𝜃 (𝑋†

𝑟†). The measure 𝕄|(𝑥{ ̇𝑠, ̈𝑠}, 𝑦[̇𝑠, ̈𝑠), 𝜃)(d𝑥𝑟∩(̇𝑠, ̈𝑠)) is
Gaussian and has density

𝜅(𝑥†
𝑟†∩(̇𝑠, ̈𝑠)|𝑥{ ̇𝑠, ̈𝑠}, 𝑦†) =

∏(̇𝜏∼ ̈𝜏)∈𝑟†∩(̇𝑠, ̈𝑠) N [𝑥†
̈𝜏 ; 𝑥†

̇𝜏 , (̈𝜏 − ̇𝜏)𝜌2
𝜃(𝑦†

̇𝜏)]
N [𝑥 ̈𝑠; 𝑥 ̇𝑠, ∑(̇𝜏∼ ̈𝜏)∈𝑟†∩(̇𝑠, ̈𝑠)(̈𝜏 − ̇𝜏)𝜌2

𝜃(𝑦†
̇𝜏)]

, (6.73)

from which we recover the proposal density on 𝑉 †
𝑟†∩(̇𝑠, ̈𝑠) by the change of variable for-

mula:

𝜅(𝑣†
𝑟†∩(̇𝑠, ̈𝑠)|𝑣{ ̇𝑠, ̈𝑠}, 𝑦†) =

∏(̇𝜏∼ ̈𝜏)∈𝑟†∩(̇𝑠, ̈𝑠) |𝜂−1
𝜃 (𝑣 ̈𝜏)| N [𝜂𝜃(𝑣†

̈𝜏); 𝜂𝜃(𝑣†
̇𝜏), (̈𝜏 − ̇𝜏)𝜌2

𝜃(𝑦†
̇𝜏)]

N [𝜂𝜃(𝑣 ̈𝑠); 𝜂𝜃(𝑣 ̇𝑠), ∑(̇𝜏∼ ̈𝜏)∈𝑟†∩(̇𝑠, ̈𝑠)(̈𝜏 − ̇𝜏)𝜌2
𝜃(𝑦†

̇𝜏)]
. (6.74)

Thus, the proposal density on 𝑉𝑟† is given by 𝜅(𝑣†
𝑟† |𝑣𝑠, 𝑦†) = ∏(̇𝑠∼ ̈𝑠)∈𝑠 𝜅(𝑣†

𝑟†∩(̇𝑠, ̈𝑠)|𝑣{ ̇𝑠, ̈𝑠}, 𝑦†).
We give the step-by-step routine below.

Algorithm 18 Algorithm for generating proposal from 𝜅(𝑣𝑟|𝑣𝑠, 𝑦).
𝑥𝑠 ← 𝜂𝜃(𝑣𝑠)
for (̇𝑠 ∼ ̈𝑠) ∈ 𝑠 do

𝑢 ← {∫ ̇𝑟
̇𝑠 𝜌2

𝜃(𝑦𝑡) d𝑡 ∶ ̇𝑟 ∈ 𝑟}
𝑤𝑢 ∼ 𝕎|(𝑊0 = 𝑥 ̇𝑠, 𝑊(∫ ̈𝑠

̇𝑠 𝜌2
𝜃(𝑦𝑡) d𝑡) = 𝑥 ̈𝑠)

𝑥𝑟∩(̇𝑠, ̈𝑠) ← 𝑤𝑢
𝑣𝑟∩(̇𝑠, ̈𝑠) ← 𝜂−1

𝜃 (𝑥𝑟∩(̇𝑠, ̈𝑠))

With the proposal fully specified, we state the acceptance odds as

𝛼(𝑉𝑅,𝑍,𝑌)
1 − 𝛼(𝑉𝑅,𝑍,𝑌)

= 𝜅(𝑣𝑟, 𝑧, 𝑦|𝑣𝑠)
𝜅(𝑣†

𝑟† , 𝑧†, 𝑦†|𝑣𝑠)
𝜋(𝑣†

𝑟† , 𝑧†, 𝑦†|𝑣𝑠, 𝜃, 𝜆)
𝜋(𝑣𝑟, 𝑧, 𝑦|𝑣𝑠, 𝜃, 𝜆)

= 𝜅(𝑣𝑟|𝑣𝑠, 𝑦)
𝜅(𝑣†

𝑟† |𝑣𝑠, 𝑦†)
∏(̇𝜏∼ ̈𝜏)∈𝜏† 𝜋(𝑧†

(̇𝜏, ̈𝜏), 𝑣†
̈𝜏 |𝑣†

̇𝜏 , 𝑦†
̇𝜏 , 𝜃)

∏(̇𝜏∼ ̈𝜏)∈𝜏 𝜋(𝑧(̇𝜏, ̈𝜏), 𝑣 ̈𝜏 |𝑣 ̇𝜏 , 𝑦 ̇𝜏 , 𝜃)

= 𝜅(𝑣𝑟|𝑣𝑠, 𝑦)
𝜅(𝑣†

𝑟† |𝑣𝑠, 𝑦†)
∏(̇𝜏∼ ̈𝜏)∈𝜏† 𝑑𝜃(𝑣†

{ ̇𝜏, ̈𝜏}, 𝑦†
̇𝜏)𝑒− ∫�̈�

�̇� �̃�𝜃(𝑧†
𝑡 ,𝑦†

�̇�,𝑣†
{�̇�,�̈�}) d𝑡

∏(̇𝜏∼ ̈𝜏)∈𝜏 𝑑𝜃(𝑣{ ̇𝜏, ̈𝜏}, 𝑦 ̇𝜏)𝑒− ∫�̈�
�̇� �̃�𝜃(𝑧𝑡,𝑦�̇�,𝑣{�̇�,�̈�}) d𝑡

.

(6.75)

For any two intersecting event pairs (̇𝜏 ∼ ̈𝜏) ∈ 𝜏 and (̇𝜏† ∼ ̈𝜏†) ∈ 𝜏†, we define the
differenced integrand

𝜉𝑡 = �̃�𝜃(𝑧†
𝑡 , 𝑦†

̇𝜏† , 𝑣†
{ ̇𝜏†, ̈𝜏†}) − �̃�𝜃(𝑧𝑡, 𝑦 ̇𝜏 , 𝑣†

{ ̇𝜏, ̈𝜏}), (𝑡 ∈ (̇𝜏 , ̈𝜏) ∩ (̇𝜏†, ̈𝜏†)) (6.76)

107

6 Exact Inference for Markov Switching Diffusion Models

and denote its positive and negative parts 𝜉(+)
𝑡 and 𝜉(−)

𝑡 . We obtain the 2-coin algorithm

𝛼(𝑉𝑅,𝑍,𝑌)
1 − 𝛼(𝑉𝑅,𝑍,𝑌)

=

𝑐1

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞𝜅(𝑣𝑟|𝑣𝑠, 𝑦) ∏(̇𝜏∼ ̈𝜏)∈𝜏† 𝑑𝜃(𝑣†
{ ̇𝜏, ̈𝜏}, 𝑦†

̇𝜏)
𝜅(𝑣†

𝑟† |𝑣𝑠, 𝑦†) ∏(̇𝜏∼ ̈𝜏)∈𝜏 𝑑𝜃(𝑣{ ̇𝜏, ̈𝜏}, 𝑦 ̇𝜏)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑐2

𝑝1

⏞⏞⏞⏞⏞⏞⏞⏞⏞∏(̇𝑠∼ ̈𝑠)∈𝑠 𝑒− ∫�̈�
�̇� 𝜉(+)

𝑡 d𝑡

∏(̇𝑠∼ ̈𝑠)∈𝑠 𝑒− ∫�̈�
�̇� 𝜉(−)

𝑡 d𝑡
⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑝2

, (6.77)

with integrand bounds in the range (̇𝑠, ̈𝑠) given by

𝜉(+)
𝑡 ≤ max

(̇𝜏∼ ̈𝜏)∈𝜏†∩[̇𝑠, ̈𝑠]
�̃�↑

𝜃(𝑧†
(̇𝜏, ̈𝜏), 𝑦†

̇𝜏 , 𝑣†
{ ̇𝜏, ̈𝜏}) − min

(̇𝜏∼ ̈𝜏)∈𝜏∩[̇𝑠, ̈𝑠]
�̃�↓

𝜃(𝑧(̇𝜏, ̈𝜏), 𝑦 ̇𝜏 , 𝑣{ ̇𝜏, ̈𝜏}, 𝑦 ̇𝜏), (6.78)

𝜉(−)
𝑡 ≤ max

(̇𝜏∼ ̈𝜏)∈𝜏∩[̇𝑠, ̈𝑠]
�̃�↑

𝜃(𝑧(̇𝜏, ̈𝜏), 𝑦 ̇𝜏 , 𝑣{ ̇𝜏, ̈𝜏}) − min
(̇𝜏∼ ̈𝜏)∈𝜏†∩[̇𝑠, ̈𝑠]

�̃�↓
𝜃(𝑧†

(̇𝜏, ̈𝜏), 𝑦†
̇𝜏 , 𝑣†

{ ̇𝜏, ̈𝜏}). (6.79)

Remark 5 (Sensitivity to Proposal). The form of the integrand 𝜉𝑡 illustrates some of
the incremental difficulty of the Markov switching diffusion case. For any two 𝑦𝑡 ≠ 𝑦†

𝑡 ,
the integrand can take large values if the drift behavior of the diffusion differs strongly
between states. Large values of the integrand slow down the 2-coin algorithm, increasing
the iteration time.

6.3.4 Conditional Hidden Data Update

The simple independence proposal described in the previous section will tend to break
down in various ways as data accrues. We consider the infill asymptotic regime, where
mesh 𝑠 → 0, and the asymptotic extension regime, where |𝑠| , 𝜔 → ∞, and develop
strategies to maintain good computational performance in both. Both in the infill and
the extension regime, the independence proposal from 𝜋(𝑦†|𝜆) will be an increasingly
bad fit for the full conditional, causing a degradation in the acceptance probability and
slow mixing of the algorithm. Similarly, the independence proposal from 𝕄|(𝑥𝑠, 𝑦†, 𝜃)
becomes a bad fit as the time interval between observation increases, or in the presence
of transitions in 𝑦 and the associated discontinuities in the drift function. To those
obstacles we add the aforementioned phenomenon of the exponential slowdown of the
2-coin algorithm as the time horizon recedes. Thus, we devise a localized, scalable
(𝑉𝑅, 𝑍, 𝑌)-update that addresses both the infill and the extension asymptotic regime.

The approach consists of conditioning the (𝑉𝑅, 𝑍, 𝑌)-update on 𝑉 and 𝑌 at a random
set of times Ν. If no time is included in Ν with probability 1, this update may be thought
of as a random scan Gibbs update, which preserves ergodicity of the Markov chain. The
main impediment to doing so is that in its EA2/EA3 representation, 𝑍 is only semi-
Markovian at times 𝜏 , and therefore the full conditional does not factorize neatly at
times 𝜈 ⊄ 𝜏 . The solution we propose is to introduce a set of virtual observation times
̆𝑠 at which we also noncenter the diffusion path, resulting in the parameterization

ℎ = {𝑣𝑟∪ ̆𝑠} ∪ {𝑧(̇𝜏, ̈𝜏) ∶ (̇𝜏 ∼ ̈𝜏) ∈ 𝑠 ∪ 𝑟 ∪ ̆𝑠} . (6.80)

108

6 Exact Inference for Markov Switching Diffusion Models

We then evolve that set by proposing ̆𝑠† in a way that preserves ergodicity, and set
𝜈 = ̆𝑠 ∩ ̆𝑠†. When using virtual observation times ̆𝑠, we understand the extended event
times 𝜏 to be defined as 𝑠 ∪ 𝑟 ∪ ̆𝑠.

We immediately observe multiple advantages to updating 𝜋(ℎ, 𝑦|𝑣𝑠∪𝜈, 𝑦𝜈, 𝜃, 𝜆). On the
one hand, the conditional 𝜅(ℎ†, 𝑦†|𝑣𝑠∪𝜈, 𝑦𝜈) has a smaller step size, thereby increasing
the acceptance probability. On the other hand, by the Markov property, we immediately
benefit from the factorizations

𝜋(ℎ, 𝑦|𝑣𝑠∪𝜈, 𝑦𝜈, 𝜃, 𝜆) = ∏
(̇𝜈∼ ̈𝜈)∈𝜈

𝜋(ℎ(̇𝜈, ̈𝜈), 𝑦(̇𝜈, ̈𝜈)|𝑣𝑠∪{ ̇𝜈, ̈𝜈}, 𝑦{ ̇𝜈, ̈𝜈}, 𝜃, 𝜆)

× 𝜋(ℎ(0,𝜈1), 𝑦[0,𝜈1)|𝑣𝑠∪{𝜈1}, 𝑦𝜈1
, 𝜃, 𝜆)

× 𝜋(ℎ(𝜈|𝜈|,𝜔), 𝑦(𝜈|𝜈|,𝜔]|𝑣𝑠∪{𝜈|𝜈|}, 𝑦𝜈|𝜈|
, 𝜃, 𝜆),

(6.81)

𝜅(ℎ†, 𝑦†|𝑣𝑠∪𝜈, 𝑦𝜈) = ∏
(̇𝜈∼ ̈𝜈)∈𝜈

𝜅(ℎ†
(̇𝜈, ̈𝜈), 𝑦†

(̇𝜈, ̈𝜈)|𝑣𝑠∪{ ̇𝜈, ̈𝜈}, 𝑦{ ̇𝜈, ̈𝜈})

× 𝜅(ℎ†
(0,𝜈1), 𝑦†

[0,𝜈1)|𝑣𝑠∪{𝜈1}, 𝑦𝜈1
)

× 𝜅(ℎ†
(𝜈|𝜈|,𝜔), 𝑦†

(𝜈|𝜈|,𝜔]|𝑣𝑠∪{𝜈|𝜈|}, 𝑦𝜈|𝜈|
),

(6.82)

where
ℎ(̇𝜈, ̈𝜈) = {𝑣(𝑟∪ ̆𝑠)∩(̇𝜈, ̈𝜈)} ∪ {𝑧(̇𝜏, ̈𝜏) ∶ (̇𝜏 ∼ ̈𝜏) ∈ 𝜏 ∩ [̇𝜈, ̈𝜈]} , (6.83)

so generation and acceptance of the proposal is partitioned according to 𝜈. This fur-
ther increases the acceptance probability, and reduces Bernoulli factory run time. The
proposal law

𝜅(ℎ†
(̇𝜈, ̈𝜈), 𝑦†

(̇𝜈, ̈𝜈)|𝑣𝑠∪{ ̇𝜈, ̈𝜈}, 𝑦{ ̇𝜈, ̈𝜈})
= 𝜋(𝑦†

(̇𝜈, ̈𝜈)|𝑦{ ̇𝜈, ̈𝜈}, 𝜆)𝜅(𝑣†
(𝑟†∪ ̆𝑠†)∩(̇𝜈, ̈𝜈)|𝑣𝑠∪{ ̇𝜈, ̈𝜈}, 𝑦†

[̇𝜈, ̈𝜈]) ∏
(̇𝜏∼ ̈𝜏)∈𝜏†∩[̇𝜈, ̈𝜈]

𝜅(𝑧†
(̇𝜏, ̈𝜏)) (6.84)

involves the Markov jump process bridge law 𝜋(𝑦†
(̇𝜈, ̈𝜈)|𝑦{ ̇𝜈, ̈𝜈}, 𝜆). Section 6.2.2 gives a

summary of [64] on the simulation of such bridges. Notice that the edge proposals

𝜅(ℎ†
(0,𝜈1), 𝑦†

[0,𝜈1)|𝑣𝑠∪{𝜈1}, 𝑦𝜈1
)

= 𝜋(𝑦†
[0,𝜈1)|𝑦𝜈1

, 𝜆)𝜅(𝑣†
(𝑟†∪ ̆𝑠†)∩(0,𝜈1)|𝑣𝑠∪{0,𝜈1}, 𝑦†

[0,𝜈1]) ∏
(̇𝜏∼ ̈𝜏)∈𝜏†∩[0,𝜈1]

𝜅(𝑧†
(̇𝜏, ̈𝜏)), (6.85)

𝜅(ℎ†
(𝜈|𝜈|,𝜔), 𝑦†

(𝜈†
|𝜈|,𝜔]|𝑣𝑠∪{𝜈|𝜈|}, 𝑦𝜈|𝜈|

)

= 𝜋(𝑦†
(𝜈|𝜈|,𝜔]|𝑦𝜈|𝜈|

, 𝜆)𝜅(𝑣†
(𝑟†∪ ̆𝑠†)∩(𝜈|𝜈|,𝜔)|𝑣𝑠∪{𝜈|𝜈|,𝜔}, 𝑦†

[𝜈|𝜈|,𝜔]) ∏
(̇𝜏∼ ̈𝜏)∈𝜏∩[𝜈|𝜈|,𝜔]

𝜅(𝑧†
(̇𝜏, ̈𝜏)),

(6.86)

merely involve the backward and forward law 𝜋(𝑦†
[0,𝜈1)|𝑦𝜈1

, 𝜆) and 𝜋(𝑦†
(𝜈|𝜈|,𝜔]|𝑦𝜈|𝜈|

, 𝜆) re-
spectively.

109

6 Exact Inference for Markov Switching Diffusion Models

Simulation of the Markov jump process bridges from 𝜋(𝑦†
(̇𝜈, ̈𝜈)|𝑦 ̇𝜈, 𝑦 ̈𝜈, 𝜆) may be carried

out according to any of the schemes proposed in Sections 6.2.3, 6.2.4 and 6.2.5, while
the terms 𝜋(𝑦†

0|𝑦𝜈1
, 𝜆) and 𝜋(𝑦†

𝜔|𝑦𝜈|𝜈|
, 𝜆) correspond to simple forward and backward

simulation respectively. Simulation according to 𝜅(𝑣†
(𝑟†∪ ̆𝑠†)∩(̇𝜈, ̈𝜈)|𝑣𝑠∪{ ̇𝜈, ̈𝜈}, 𝑦†

[̇𝜈, ̈𝜈]) proceeds
as in the independence update with Algorithm 18, and the density is given by

𝜅(𝑣†
(𝑟†∪ ̆𝑠†)∩(̇𝜈, ̈𝜈)|𝑣𝑠∪{ ̇𝜈, ̈𝜈}, 𝑦†

[̇𝜈, ̈𝜈])

= ∏
(̇𝑠∼ ̈𝑠)∈(𝑠∪𝜈)∩[̇𝜈, ̈𝜈]

∏(̇𝜏∼ ̈𝜏)∈𝜏†∩[̇𝑠, ̈𝑠] |𝜂−1
𝜃 (𝑣 ̈𝜏)| N [𝜂𝜃(𝑣†

̈𝜏); 𝜂𝜃(𝑣†
̇𝜏), (̈𝜏 − ̇𝜏)𝜌2

𝜃(𝑦†
̇𝜏)]

N [𝜂𝜃(𝑣 ̈𝑠); 𝜂𝜃(𝑣 ̇𝑠), ∑(̇𝜏∼ ̈𝜏)∈𝑟†∩(̇𝑠, ̈𝑠)(̈𝜏 − ̇𝜏)𝜌2
𝜃(𝑦†

̇𝜏)]
,

(6.87)

for (̇𝜈, ̈𝜈) ∈ 𝜈∪{0, 𝜔}. The proposals (𝑣†
(𝑟†∪ ̆𝑠†)∩(̇𝜈, ̈𝜈), 𝑧†

(̇𝜈, ̈𝜈), 𝑦†
(̇𝜈, ̈𝜈)) are accepted with odds

𝛼(𝐻(�̇�,�̈�),𝑌(�̇�,�̈�))
1 − 𝛼(𝐻(�̇�,�̈�),𝑌(�̇�,�̈�))

=
𝜅(ℎ(̇𝜈, ̈𝜈), 𝑦(̇𝜈, ̈𝜈)|𝑣𝑠∪{ ̇𝜈, ̈𝜈}, 𝑦{ ̇𝜈, ̈𝜈})
𝜅(ℎ†

(̇𝜈, ̈𝜈), 𝑦†
(̇𝜈, ̈𝜈)|𝑣𝑠∪{ ̇𝜈, ̈𝜈}, 𝑦{ ̇𝜈, ̈𝜈})

×
𝜋(ℎ†

(̇𝜈, ̈𝜈), 𝑦†
(̇𝜈, ̈𝜈)|𝑣𝑠∪{ ̇𝜈, ̈𝜈}, 𝑦{ ̇𝜈, ̈𝜈}, 𝜃, 𝜆)

𝜋(ℎ(̇𝜈, ̈𝜈), 𝑦(̇𝜈, ̈𝜈)|𝑣𝑠∪{ ̇𝜈, ̈𝜈}, 𝑦{ ̇𝜈, ̈𝜈}, 𝜃, 𝜆)

=
𝜅(𝑣(𝑟∪ ̆𝑠)∩(̇𝜈, ̈𝜈)|𝑣𝑠∪{ ̇𝜈, ̈𝜈}, 𝑦[̇𝜈, ̈𝜈])

𝜅(𝑣†
(𝑟†∪ ̆𝑠†)∩(̇𝜈, ̈𝜈)|𝑣𝑠∪{ ̇𝜈, ̈𝜈}, 𝑦†

[̇𝜈, ̈𝜈])

×
∏(̇𝜏∼ ̈𝜏)∈𝜏†∩[̇𝜈, ̈𝜈] 𝜋(𝑧†

(̇𝜏, ̈𝜏), 𝑣†
̈𝜏 |𝑣†

̇𝜏 , 𝑦†
̇𝜏 , 𝜃)

∏(̇𝜏∼ ̈𝜏)∈𝜏∩[̇𝜈, ̈𝜈] 𝜋(𝑧(̇𝜏, ̈𝜏), 𝑣 ̈𝜏 |𝑣 ̇𝜏 , 𝑦 ̇𝜏 , 𝜃) ,

(6.88)

where the last equality applies to the edge sections (ℎ†
[0,𝜈1), 𝑦†

[0,𝜈1)) and (ℎ†
(𝜈|𝜈|,𝜔), 𝑦†

(𝜈†
|𝜈|,𝜔])

as well.

Updates to ̆𝑠 may be carried out in a flexible way, assuming that they are irreducible.
Ideally, the size of the overlap |𝜈| is locally chosen or adapted to maintain a given
acceptance probability in a certain interval, e.g. (̇𝑠, ̈𝑠). We proceed to describing such a
procedure. Let the time axis be partitioned by a set of times, for example observation
times 𝑠. In between any neighbouring pair (̇𝑠, ̈𝑠) we introduce a proposal scale parameter
𝜙 ̇𝑠, ̈𝑠, i.e. smaller values 𝜙 ̇𝑠, ̈𝑠 result in a more local proposal. We then generate virtual
observations at rate Pois [𝑒(̇𝑠− ̈𝑠)𝜙�̇�,�̈�], uniformly deleting elements from ̆𝑠 or uniformly
sampling additional ones from the interval (̇𝑠, ̈𝑠) as needed. The exact algorithm is
given below. The hidden data update is then carried out independently for sections
(̇𝜈 ∼ ̈𝜈) ∈ 𝜈, yielding a corresponding acceptance indicator 𝛼 ̇𝜈, ̈𝜈. We compute the
average acceptance rate

𝛼 ̇𝑠, ̈𝑠 =
∑(̇𝜈∼ ̈𝜈)∈𝜈∶(̇𝜈, ̈𝜈)∩(̇𝑠, ̈𝑠)≠∅ 𝛼 ̇𝜈, ̈𝜈

|{(̇𝜈 ∼ ̈𝜈) ∈ 𝜈 ∶ (̇𝜈, ̈𝜈) ∩ (̇𝑠, ̈𝑠) ≠ ∅}| , (6.89)

taking into account all updates that overlap with (̇𝑠, ̈𝑠). We then apply a standard
Robbins-Monro recursion to increase 𝜙 ̇𝑠, ̈𝑠 if 𝛼 ̇𝑠, ̈𝑠 is above the target acceptance rate and
vice versa.

110

6 Exact Inference for Markov Switching Diffusion Models

A slight complication arises when ̆𝑠, and therefore 𝜈, is empty in a part of the trajectory
where the acceptance rate is low. This will cause rejection of ̆𝑠†, and failure to populate 𝜈
and increase the acceptance rate. A workaround consists of adding the observation times
𝑠 to 𝜈 with probability 𝑝𝑠 ≪ 1. This will facilitate acceptance of ̆𝑠†, making subsequent
updates easier. To preserve irreducibility, 𝑝𝑠 must be less than one. Otherwise, 𝑌 would
forever be held constant at the observation times. Moreover, since adding 𝑠 to 𝜈 increases
the acceptance probability, the algorithm should not be adapted on those iterations.

Algorithm 19 Algorithm for generating virtual observation times.
̆𝑠† ← ∅

for (̇𝑠 ∼ ̈𝑠) ∈ 𝑠 do
𝑛 ̇𝑠, ̈𝑠 ∼ Pois [𝑒(̇𝑠− ̈𝑠)𝜙�̇�,�̈�]
if 𝑛 ̇𝑠, ̈𝑠 > | ̆𝑠 ∩ [̇𝑠, ̈𝑠]| then

append ̆𝑠 ∩ [̇𝑠, ̈𝑠] to ̆𝑠†

draw 𝑛 ̇𝑠, ̈𝑠 − | ̆𝑠 ∩ [̇𝑠, ̈𝑠]| samples from Unif [̇𝑠, ̈𝑠] and append them to ̆𝑠†

else
draw 𝑛 ̇𝑠, ̈𝑠 elements without replacement from ̆𝑠 ∩ [̇𝑠, ̈𝑠] and append them to ̆𝑠†

𝜈 ← ̆𝑠 ∩ ̆𝑠†

With probability 𝑝𝑠 ∈ (0, 1), append 𝑠 to 𝜈

Notice that while the conditional hidden data update mostly addresses the concerns
raised in this Section, it does not address the fundamental issue that 𝜉𝑡 is highly dis-
continuous in 𝑦𝑡 if the drift of the diffusion strongly differs between the available states,
and the algorithm remains liable to visit or propose moves to parts of the state space
where the cost of a single iteration is very large.

6.4 Auxiliary Algorithm

We continue with the development a fully tractable MCMC algorithm that targets the
extended posterior

𝜋(𝑣𝑟, 𝜓, 𝑧, 𝑦, 𝜃, 𝜆|𝑣𝑠) ∝ 𝜋(𝜃)𝜋(𝜆) ∏
(̇𝜏∼ ̈𝜏)∈𝜏

𝜋(𝜓(̇𝜏, ̈𝜏), 𝑧(̇𝜏, ̈𝜏), 𝑣 ̈𝜏 |𝑣 ̇𝜏 , 𝑦 ̇𝜏 , 𝜃)𝜋(𝑦 ̈𝜏 |𝑦 ̇𝜏 , 𝜆). (6.90)

We construct a Gibbs sampler with full conditionals

𝜋(𝜃, 𝜆|𝑣𝜏 , 𝜓, 𝑧, 𝑦) ∝ 𝜋(𝜃)𝜋(𝜆) ∏
(̇𝜏∼ ̈𝜏)∈𝜏

𝜋(𝜓(̇𝜏, ̈𝜏), 𝑧(̇𝜏, ̈𝜏), 𝑣 ̈𝜏 |𝑣 ̇𝜏 , 𝑦 ̇𝜏 , 𝜃)𝜋(𝑦 ̈𝜏 |𝑦 ̇𝜏 , 𝜆), (6.91)

𝜋(𝑣𝑟, 𝜓, 𝑧, 𝑦|𝑣𝑠, 𝜃, 𝜆) ∝ ∏
(̇𝜏∼ ̈𝜏)∈𝜏

𝜋(𝜓(̇𝜏, ̈𝜏), 𝑧(̇𝜏, ̈𝜏), 𝑣 ̈𝜏 |𝑣 ̇𝜏 , 𝑦 ̇𝜏 , 𝜃)𝜋(𝑦 ̈𝜏 |𝑦 ̇𝜏 , 𝜆), (6.92)

111

6 Exact Inference for Markov Switching Diffusion Models

where the dominating measure of the latter is the product measure

𝕃(d𝑦) ∏
(̇𝜏∼ ̈𝜏)∈𝜏

ℙ(̇𝜏, ̈𝜏)(d𝜓(̇𝜏, ̈𝜏))𝔹(̇𝜏, ̈𝜏)(d𝑧(̇𝜏, ̈𝜏)) ∏
̇𝑟∈𝑟

Leb(d𝑣 ̇𝑟). (6.93)

In contrast with the marginal algorithm of Section 6.3, there is the disadvantage of addi-
tional conditioning in the Θ-update. The (Θ, Λ) update decomposes into the independent
updates

Θ ∶ 𝜋(𝜃|𝑣𝜏 , 𝜓, 𝑧, 𝑦) ∝ 𝜋(𝜃) ∏
(̇𝜏∼ ̈𝜏)∈𝜏

𝜋(𝜓(̇𝜏, ̈𝜏), 𝑧(̇𝜏, ̈𝜏), 𝑣 ̈𝜏 |𝑣 ̇𝜏 , 𝑦 ̇𝜏 , 𝜃), (6.94)

Λ ∶ 𝜋(𝜆|𝑦) ∝ 𝜋(𝜆) ∏
(̇𝜏∼ ̈𝜏)∈𝜏

𝜋(𝑦 ̈𝜏 |𝑦 ̇𝜏 , 𝜆). (6.95)

Furthermore, the Θ-update simplifies further for models in the class

d𝑉𝑡 = 𝜇𝜃𝑌𝑡
(𝑉𝑡) d𝑡 + 𝜎(𝑉𝑡)𝜌𝜃𝑌𝑡

d𝑊𝑡, 𝜃 = (𝜃1, … , 𝜃�̂�), (6.96)

with product prior 𝜋(𝜃) = ∏�̂�
𝑘=1 𝜋(𝜃𝑘). Now, each Θ𝑘 may be updated independently

according to

𝜋(𝜃𝑘|𝑣𝜏 , 𝜓, 𝑧, 𝑦) ∝ 𝜋(𝜃𝑘) ∏
(̇𝜏∼ ̈𝜏)∈𝜏∶𝑦�̇�=𝑘

𝜋(𝜓(̇𝜏, ̈𝜏), 𝑧(̇𝜏, ̈𝜏), 𝑣 ̈𝜏 |𝑣 ̇𝜏 , 𝑦 ̇𝜏 , 𝜃𝑘). (6.97)

Remark 6 (Infinite-dimensional representation). Our representation of the infinite-
dimensional objects 𝑧 and 𝜓 remains unchanged from Section 5.3.1.

6.4.1 Diffusion Parameter Update

We implement the update to 𝜋(𝜃|𝑣𝜏 , 𝜓, 𝑧, 𝑦) as a Metropolis-within-Gibbs update, anal-
ogously to Section 5.3.2. For a generic proposal 𝜅(𝜃†|𝜃), the acceptance probability
is

𝛼Θ = 1 ∧ 𝜋(𝜃†|𝑣𝑠, 𝜓, 𝑧, 𝑦)
𝜋(𝜃|𝑣𝑠, 𝜓, 𝑧, 𝑦)

𝜅(𝜃|𝜃†)
𝜅(𝜃†|𝜃)

= 1 ∧ 𝜅(𝜃|𝜃†)
𝜅(𝜃†|𝜃)

𝜋(𝜃†)
𝜋(𝜃) ∏

(̇𝜏∼ ̈𝜏)∈𝜏

𝜋(𝜓(̇𝜏, ̈𝜏), 𝑧(̇𝜏, ̈𝜏), 𝑣 ̈𝜏 |𝑣 ̇𝜏 , 𝑦 ̇𝜏 , 𝜃†)
𝜋(𝜓(̇𝜏, ̈𝜏), 𝑧(̇𝜏, ̈𝜏), 𝑣 ̈𝜏 |𝑣 ̇𝜏 , 𝑦 ̇𝜏 , 𝜃)

= 1 ∧ 𝜅(𝜃|𝜃†)
𝜅(𝜃†|𝜃)

𝜋(𝜃†)
𝜋(𝜃) ∏

(̇𝜏∼ ̈𝜏)∈𝜏

𝑑𝜃†(𝑣{ ̇𝜏, ̈𝜏}, 𝑦 ̇𝜏)
𝑑𝜃(𝑣{ ̇𝜏, ̈𝜏}, 𝑦 ̇𝜏)

̄𝑞𝜃†(𝜓(̇𝜏, ̈𝜏), 𝑧(̇𝜏, ̈𝜏), 𝑣{ ̇𝜏, ̈𝜏}, 𝑦 ̇𝜏)
̄𝑞𝜃(𝜓(̇𝜏, ̈𝜏), 𝑧(̇𝜏, ̈𝜏), 𝑣{ ̇𝜏, ̈𝜏}, 𝑦 ̇𝜏) .

(6.98)

6.4.2 Regime Parameter Update

The update to 𝜋(𝜆|𝑦) is identical to the one given in Section 6.3.2, and carried out by
sampling directly from the tractable full conditional.

112

6 Exact Inference for Markov Switching Diffusion Models

6.4.3 Independence Hidden Data Update

We implement the update to 𝜋(𝑣𝑟, 𝜓, ℎ, 𝑦|𝑣𝑠, 𝜃, 𝜆) as a Metropolis-within-Gibbs update
with independence proposal

𝜅(𝑣†
𝑟† , 𝜓†, 𝑧†, 𝑦†|𝑣𝑠) ∝ 𝜅(𝑣†

𝑟† , 𝑧†, 𝑦†|𝑣𝑠)𝜅(𝜓†|𝑦†)
∝ 𝜅(𝑦†)𝜅(𝑣†

𝑟† |𝑣𝑠, 𝑦†) ∏
(̇𝜏∼ ̈𝜏)∈𝜏

𝜅(𝑧†
(̇𝜏, ̈𝜏))𝜅(𝜓†

(̇𝜏, ̈𝜏)), (6.99)

where (𝑉 †
𝑅† , 𝑍†, 𝑌 †) is simulated and 𝜅(𝑣†

𝑟† , 𝜓†, 𝑧†|𝑣𝑠) evaluated as in Section 6.3.3. In
particular, 𝜅(𝑣†

𝑟† |𝑣𝑠, 𝑦†) is given by (6.74). We further set Ψ†
(̇𝜏, ̈𝜏) ∼ ℙ(̇𝜏, ̈𝜏) with 𝜅(𝜓†

(̇𝜏, ̈𝜏)) =
1 with respect to the dominating measure ℙ(̇𝜏, ̈𝜏). The acceptance probability is

𝛼(𝑉𝑅,Ψ,𝑍,𝑌)

= 1 ∧ 𝜅(𝑣𝑟, 𝜓, 𝑧, 𝑦|𝑣𝑠)
𝜅(𝑣†

𝑟† , 𝜓†, 𝑧†, 𝑦†|𝑣𝑠)
𝜋(𝑦†|𝜆)
𝜋(𝑦|𝜆)

𝜋(𝑣†
𝑟† , 𝜓†, 𝑧†, 𝑦†|𝑣𝑠, 𝜃, 𝜆)

𝜋(𝑣𝑟, 𝜓, 𝑧, 𝑦|𝑣𝑠, 𝜃, 𝜆)

= 1 ∧ 𝜅(𝑣𝑟|𝑣𝑠, 𝑦)
𝜅(𝑣†

𝑟† |𝑣𝑠, 𝑦†)
∏(̇𝜏∼ ̈𝜏)∈𝜏† 𝜋(𝜓†

(̇𝜏, ̈𝜏), 𝑧†
(̇𝜏, ̈𝜏), 𝑣†

̈𝜏 |𝑣†
̇𝜏 , 𝑦†

̇𝜏 , 𝜃)
∏(̇𝜏∼ ̈𝜏)∈𝜏 𝜋(𝜓(̇𝜏, ̈𝜏), 𝑧(̇𝜏, ̈𝜏), 𝑣 ̈𝜏 |𝑣 ̇𝜏 , 𝑦 ̇𝜏 , 𝜃)

= 1 ∧ 𝜅(𝑣𝑟|𝑣𝑠, 𝑦)
𝜅(𝑣†

𝑟† |𝑣𝑠, 𝑦†)
∏(̇𝜏∼ ̈𝜏)∈𝜏† 𝑑𝜃(𝑣†

{ ̇𝜏, ̈𝜏}, 𝑦†
̇𝜏) ̄𝑞𝜃(𝜓†

(̇𝜏, ̈𝜏), 𝑧†
(̇𝜏, ̈𝜏), 𝑣†

{ ̇𝜏, ̈𝜏}, 𝑦†
̇𝜏)

∏(̇𝜏∼ ̈𝜏)∈𝜏 𝑑𝜃(𝑣{ ̇𝜏, ̈𝜏}, 𝑦 ̇𝜏) ̄𝑞𝜃(𝜓(̇𝜏, ̈𝜏), 𝑧(̇𝜏, ̈𝜏), 𝑣{ ̇𝜏, ̈𝜏}, 𝑦 ̇𝜏) .

(6.100)

Remark 7 (Sensitivity to Proposal). This update runs into similar proposal sensitivity
issues as in Section 6.3.3, since evaluation of ̄𝑞𝜃(𝜓†

(̇𝜏, ̈𝜏), 𝑧†
(̇𝜏, ̈𝜏), 𝑣†

{ ̇𝜏, ̈𝜏}, 𝑦†
̇𝜏) might be much

more expensive for a proposed 𝑦†
̇𝜏 ≠ 𝑦 ̇𝜏 .

6.4.4 Conditional Hidden Data Update

The logic of the conditional hidden data of the marginal algorithm of Section 6.3.4 carries
over 1 to 1. Since the elements of 𝜏 -partitions of Ψ are a priori independent, we obtain
factorized conditionals and proposal densities:

𝜋(𝜓, ℎ, 𝑦|𝑣𝑠∪𝜈, 𝑦𝜈, 𝜃, 𝜆) = ∏
(̇𝜈∼ ̈𝜈)∈𝜈

𝜋(𝜓(̇𝜈, ̈𝜈), ℎ(̇𝜈, ̈𝜈), 𝑦(̇𝜈, ̈𝜈)|𝑣𝑠∪{ ̇𝜈, ̈𝜈}, 𝑦{ ̇𝜈, ̈𝜈}, 𝜃, 𝜆)

× 𝜋(𝜓(0,𝜈1), ℎ(0,𝜈1), 𝑦[0,𝜈1)|𝑣𝑠∪{𝜈1}, 𝑦𝜈1
, 𝜃, 𝜆)

× 𝜋(𝜓(𝜈|𝜈|,𝜔), ℎ(𝜈|𝜈|,𝜔), 𝑦(𝜈|𝜈|,𝜔]|𝑣𝑠∪{𝜈|𝜈|}, 𝑦𝜈|𝜈|
, 𝜃, 𝜆),

(6.101)

𝜅(𝜓†, ℎ†, 𝑦†|𝑣𝑠∪𝜈, 𝑦𝜈) = ∏
(̇𝜈∼ ̈𝜈)∈𝜈

𝜅(𝜓†
(̇𝜈, ̈𝜈), ℎ†

(̇𝜈, ̈𝜈), 𝑦†
(̇𝜈, ̈𝜈)|𝑣𝑠∪{ ̇𝜈, ̈𝜈}, 𝑦{ ̇𝜈, ̈𝜈})

× 𝜅(𝜓†
(0,𝜈1), ℎ†

(0,𝜈1), 𝑦†
[0,𝜈1)|𝑣𝑠∪{𝜈1}, 𝑦𝜈1

)
× 𝜅(𝜓†

(𝜈|𝜈|,𝜔), ℎ†
(𝜈|𝜈|,𝜔), 𝑦†

(𝜈|𝜈|,𝜔]|𝑣𝑠∪{𝜈|𝜈|}, 𝑦𝜈|𝜈|
).

(6.102)

113

6 Exact Inference for Markov Switching Diffusion Models

Proposals (𝜓†
(̇𝜈, ̈𝜈), ℎ†

(̇𝜈, ̈𝜈), 𝑦†
(̇𝜈, ̈𝜈)) are accepted with probability

𝛼(Ψ(�̇�,�̈�),𝐻(�̇�,�̈�),𝑌(�̇�,�̈�)) = 1 ∧
𝜅(𝜓(̇𝜈, ̈𝜈), ℎ(̇𝜈, ̈𝜈), 𝑦(̇𝜈, ̈𝜈)|𝑣𝑠∪{ ̇𝜈, ̈𝜈}, 𝑦{ ̇𝜈, ̈𝜈})
𝜅(𝜓†

(̇𝜈, ̈𝜈), ℎ†
(̇𝜈, ̈𝜈), 𝑦†

(̇𝜈, ̈𝜈)|𝑣𝑠∪{ ̇𝜈, ̈𝜈}, 𝑦{ ̇𝜈, ̈𝜈})

×
𝜋(𝜓†

(̇𝜈, ̈𝜈), ℎ†
(̇𝜈, ̈𝜈), 𝑦†

(̇𝜈, ̈𝜈)|𝑣𝑠∪{ ̇𝜈, ̈𝜈}, 𝑦{ ̇𝜈, ̈𝜈}, 𝜃, 𝜆)
𝜋(𝜓(̇𝜈, ̈𝜈), ℎ(̇𝜈, ̈𝜈), 𝑦(̇𝜈, ̈𝜈)|𝑣𝑠∪{ ̇𝜈, ̈𝜈}, 𝑦{ ̇𝜈, ̈𝜈}, 𝜃, 𝜆)

= 1 ∧
𝜅(𝑣(𝑟∪ ̆𝑠)∩(̇𝜈, ̈𝜈)|𝑣𝑠∪{ ̇𝜈, ̈𝜈}, 𝑦[̇𝜈, ̈𝜈])

𝜅(𝑣†
(𝑟†∪ ̆𝑠†)∩(̇𝜈, ̈𝜈)|𝑣𝑠∪{ ̇𝜈, ̈𝜈}, 𝑦†

[̇𝜈, ̈𝜈])

×
∏(̇𝜏∼ ̈𝜏)∈𝜏†∩[̇𝜈, ̈𝜈] 𝜋(𝜓†

(̇𝜏, ̈𝜏), 𝑧†
(̇𝜏, ̈𝜏), 𝑣†

̈𝜏 |𝑣†
̇𝜏 , 𝑦†

̇𝜏 , 𝜃)
∏(̇𝜏∼ ̈𝜏)∈𝜏∩[̇𝜈, ̈𝜈] 𝜋(𝜓†

(̇𝜏, ̈𝜏), 𝑧(̇𝜏, ̈𝜏), 𝑣 ̈𝜏 |𝑣 ̇𝜏 , 𝑦 ̇𝜏 , 𝜃)
,

(6.103)

where the last equality applies to the edge sections (𝜓†
[0,𝜈1), ℎ†

[0,𝜈1), 𝑦†
[0,𝜈1)) and (𝜓†

(𝜈|𝜈|,𝜔), ℎ†
(𝜈|𝜈|,𝜔), 𝑦†

(𝜈†
|𝜈|,𝜔])

as well, and all elements have been defined previously. In particular, 𝜅(𝑣(𝑟∪ ̆𝑠)∩(̇𝜈, ̈𝜈)|𝑣𝑠∪{ ̇𝜈, ̈𝜈}, 𝑦[̇𝜈, ̈𝜈])
is given by (6.87). Adaptation is done with the same scheme as in Algorithm 19.

6.5 Approximate Algorithm

We now propose an approximate Bayesian inference algorithm building on Section 5.4.
Let 𝑢[̇𝜏, ̈𝜏] be a partition of [̇𝜏 , ̈𝜏] and define �̄�(̇𝜏, ̈𝜏) = 𝑋𝑢[�̇�,�̈�]\{ ̇𝜏, ̈𝜏}. We obtain the approx-
imate density

̄𝜋(𝑣 ̈𝜏 , ̄𝑥(̇𝜏, ̈𝜏)|𝑣 ̇𝜏 , 𝑦 ̇𝜏 , 𝜃) = |𝜂′
𝜃(𝑣 ̈𝜏)| ∏

(�̇�∼�̈�)∈𝑢[�̇�,�̈�]

N [𝑥 ̈𝜏 ; 𝑥�̇�+(̈𝜏− ̇𝜏)𝛿𝜃(𝑥�̇�),
(̈𝜏− ̇𝜏)𝜌2

𝜃(𝑦�̇�)] , (6.104)

lim
mesh 𝑢[�̇�,�̈�]→0

E�̄�(�̇�,�̈�)
[̄𝜋(𝑣 ̈𝜏 , �̄�(̇𝜏, ̈𝜏)|𝑣 ̇𝜏 , 𝑦 ̇𝜏 , 𝜃)|𝑣{ ̇𝜏, ̈𝜏}, 𝑦 ̇𝜏 , 𝜃] = 𝜋(𝑣 ̈𝜏 |𝑣 ̇𝜏 , 𝑦 ̇𝜏 , 𝜃). (6.105)

As in the Itō diffusion case, due to weak convergence the scheme recovers the exact
transition density as the maximum discretization interval mesh 𝑢[̇𝜏, ̈𝜏] → 0 goes to 0. The
corresponding noncentered approximate density is

̄𝜋(𝑣 ̈𝜏 , ̄𝑧(̇𝜏, ̈𝜏)|𝑣 ̇𝜏 , 𝑦 ̇𝜏 , 𝜃)
= |𝜂′

𝜃(𝑣�̈�)| ∏
𝑧𝑡∈ ̄𝑧(�̇�,�̈�)

∣𝜕𝑧𝑡
𝜁−1

𝜃 (𝑧𝑡; 𝑦 ̇𝜏 , 𝑣{ ̇𝜏, ̈𝜏})∣

∏
(�̇�∼�̈�)∈𝑢[�̇�,�̈�]

N [𝜁−1
𝜃 (𝑧�̈�; 𝑦 ̇𝜏 , 𝑣{ ̇𝜏, ̈𝜏}); 𝜁−1

𝜃 (𝑧�̇�;𝑦�̇�,𝑣{�̇�,�̈�})+(�̈�−�̇�) ̃𝛿𝜃(𝑧�̇�,𝑦�̇�,𝑣{�̇�,�̈�}),
(�̈�−�̇�)𝜌2

𝜃(𝑦�̇�)] .
(6.106)

where we slightly abuse notation by setting 𝜁−1
𝜃 (𝑧 ̇𝜏 ; 𝑦 ̇𝜏 , 𝑣{ ̇𝜏, ̈𝜏}) = 𝑣 ̇𝜏 and 𝜁−1

𝜃 (𝑧 ̈𝜏 ; 𝑦 ̇𝜏 , 𝑣{ ̇𝜏, ̈𝜏}) =
𝑣 ̈𝜏 , and the Jacobian is given by

∣𝜕𝑧𝑡
𝜁−1

𝜃 (𝑧𝑡; 𝑦 ̇𝜏 , 𝑣{ ̇𝜏, ̈𝜏})∣ = 𝜌𝜃(𝑦 ̇𝜏). (𝑡 ∈ (̇𝜏 , ̈𝜏)) (6.107)

114

6 Exact Inference for Markov Switching Diffusion Models

This parameterization of the missing data conserves ergodicity as mesh 𝑢[̇𝜏, ̈𝜏] → 0, and
gives us a viable, approximate augmentation scheme within the same Gibbs blocking
scheme as in the marginal algorithm of Section 6.3. The approximate posterior targeted
by that sampler is

̄𝜋(𝑣𝑟, ̄𝑧, 𝑦, 𝜃, 𝜆|𝑣𝑠) ∝ 𝜋(𝜃)𝜋(𝜆) ∏
(̇𝜏∼ ̈𝜏)∈𝜏

̄𝜋(𝑣 ̈𝜏 , ̄𝑧(̇𝜏, ̈𝜏)|𝑣 ̇𝜏 , 𝑦 ̇𝜏 , 𝜃)𝜋(𝑦 ̈𝜏 |𝑦 ̇𝜏 , 𝜆), (6.108)

and its Gibbs updates are

(𝑉𝑅, ̄𝑍, 𝑌) ∶ ̄𝜋(𝑣𝑟, ̄𝑧, 𝑦|𝑣𝑠, 𝜃, 𝜆) ∝ ∏
(̇𝜏∼ ̈𝜏)∈𝜏

̄𝜋(̄𝑧(̇𝜏, ̈𝜏), 𝑣 ̈𝜏 |𝑣 ̇𝜏 , 𝑦 ̇𝜏 , 𝜃)𝜋(𝑦 ̈𝜏 |𝑦 ̇𝜏 , 𝜆), (6.109)

Θ ∶ ̄𝜋(𝜃|𝑣𝜏 , ̄𝑧, 𝑦) ∝ 𝜋(𝜃) ∏
(̇𝜏∼ ̈𝜏)∈𝜏

̄𝜋(̄𝑧(̇𝜏, ̈𝜏), 𝑣 ̈𝜏 |𝑣 ̇𝜏 , 𝑦 ̇𝜏 , 𝜃), (6.110)

𝜆 ∶ 𝜋(𝜆|𝑦) ∝ 𝜋(𝜆)𝜋(𝑦|𝜆). (6.111)

Since the inference problem for Markov switching diffusions is harder than for Itō dif-
fusions, warm-starting the exact algorithms from a run of the approximate algorithm is
even more important. We follow that practice in our simulation studies.

6.5.1 Diffusion Parameter Update

We implement the update to ̄𝜋(𝜃|𝑣𝜏 , 𝑧, 𝑦) as a Metropolis-within-Gibbs update. For a
generic proposal 𝜅(𝜃†|𝜃), the acceptance probability is

𝛼Θ = 1 ∧ ̄𝜋(𝜃†|𝑣𝜏 , ̄𝑧, 𝑦)
̄𝜋(𝜃|𝑣𝜏 , ̄𝑧, 𝑦)

𝜅(𝜃|𝜃†)
𝜅(𝜃†|𝜃)

= 1 ∧ 𝜅(𝜃|𝜃†)
𝜅(𝜃†|𝜃)

𝜋(𝜃†)
𝜋(𝜃) ∏

(̇𝜏∼ ̈𝜏)∈𝜏

̄𝜋(̄𝑧(̇𝜏, ̈𝜏), 𝑣 ̈𝜏 |𝑣 ̇𝜏 , 𝑦 ̇𝜏 , 𝜃†)
̄𝜋(̄𝑧(̇𝜏, ̈𝜏), 𝑣 ̈𝜏 |𝑣 ̇𝜏 , 𝑦 ̇𝜏 , 𝜃) .

(6.112)

6.5.2 Regime Parameter Update

The update to 𝜋(𝜆|𝑦) is identical to the one given in Section 6.3.2, and carried out by
sampling directly from the tractable full conditional.

6.5.3 Independence Hidden Data Update

We again implement the update ̄𝜋(𝑣𝑟, ̄𝑧, 𝑦|𝑣𝑠, 𝜃, 𝜆) as a Metropolis-within-Gibbs update,
with hierarchical proposal

𝜅(𝑣†
𝑟† , ̄𝑧†, 𝑦†|𝑣𝑠) = 𝜅(𝑣†

𝑟† , 𝑦†|𝑣𝑠)𝜅(̄𝑧†|𝑦†)
∝ 𝜅(𝑦†)𝜅(𝑣†

𝑟|𝑣𝑠, 𝑦†) ∏
(̇𝜏∼ ̈𝜏)∈𝜏

𝜅(̄𝑧†
(̇𝜏, ̈𝜏)), (6.113)

115

6 Exact Inference for Markov Switching Diffusion Models

where 𝜅(𝑣†
𝑟† , 𝑦†|𝑣𝑠) is constructed as in Sections 6.3.3 and 6.5.3. ̄𝑍†

(̇𝜏, ̈𝜏) follows 𝔹(̇𝜏, ̈𝜏) and

has density with respect to Leb∣ ̄𝑧†
(�̇�,�̈�)∣ given by

𝜅(̄𝑧†
(̇𝜏, ̈𝜏)) =

∏(�̇�∼�̈�)∈𝑢[�̇�,�̈�]
N [𝑧†

�̈�; 𝑧†
�̇�, �̈� − �̇�]

N [0; 0, ̈𝜏 − ̇𝜏] . (6.114)

We empirically observed that setting 𝑢[̇𝜏, ̈𝜏] deterministically was detrimental to mixing
when 𝑢[̇𝜏, ̈𝜏] was chosen to be dense. Randomizing 𝑢[̇𝜏, ̈𝜏] as a fixed-rate Poisson process
somewhat alleviated that issue. We accept the proposal with probability

𝛼(𝐻,𝑌) = 1 ∧ 𝜅(𝑣†
𝑟† , 𝑦†|𝑣𝑠)

𝜅(𝑣𝑟, 𝑦|𝑣𝑠)
∏(̇𝜏∼ ̈𝜏)∈𝜏 𝜅(̄𝑧(̇𝜏, ̈𝜏))
∏(̇𝜏∼ ̈𝜏)∈𝜏† 𝜅(̄𝑧†

(̇𝜏, ̈𝜏))
∏(̇𝜏∼ ̈𝜏)∈𝜏† ̄𝜋(̄𝑧†

(̇𝜏, ̈𝜏)|𝑣{ ̇𝜏, ̈𝜏}, 𝜃)
∏(̇𝜏∼ ̈𝜏)∈𝜏 ̄𝜋(̄𝑧(̇𝜏, ̈𝜏)|𝑣{ ̇𝜏, ̈𝜏}, 𝜃)

= 1 ∧ 𝜅(𝑣†
𝑟† , 𝑦†|𝑣𝑠)

𝜅(𝑣𝑟, 𝑦|𝑣𝑠)
∏(̇𝜏∼ ̈𝜏)∈𝜏 𝜅(̄𝑧(̇𝜏, ̈𝜏))
∏(̇𝜏∼ ̈𝜏)∈𝜏† 𝜅(̄𝑧†

(̇𝜏, ̈𝜏))
∏(̇𝜏∼ ̈𝜏)∈𝜏† ̄𝜋(̄𝑧†

(̇𝜏, ̈𝜏), 𝑣 ̈𝜏 |𝑣 ̇𝜏 , 𝑦 ̇𝜏 , 𝜃)
∏(̇𝜏∼ ̈𝜏)∈𝜏 ̄𝜋(̄𝑧(̇𝜏, ̈𝜏), 𝑣 ̈𝜏 |𝑣 ̇𝜏 , 𝑦 ̇𝜏 , 𝜃) .

(6.115)

6.5.4 Conditional Hidden Data Update

While in this instance it is not strictly necessary to adhere to the virtual observation
scheme of Section 6.3.4, for the purposes of warm starting the exact algorithm it is useful
to follow the same approach to conditional updates. Fix a set of virtual observation times

̆𝑠 and define
ℎ̄ = {𝑣𝑟∪ ̆𝑠} ∪ { ̄𝑧(̇𝜏, ̈𝜏) ∶ (̇𝜏 ∼ ̈𝜏) ∈ 𝑠 ∪ 𝑟 ∪ ̆𝑠} . (6.116)

For some finite set of conditioning times 𝜈 = ̆𝑠 ∩ ̆𝑠†, we obtain the analogous factoriza-
tions

̄𝜋(ℎ̄, 𝑦|𝑣𝑠∪𝜈, 𝑦𝜈, 𝜃, 𝜆) = ∏
(̇𝜈∼ ̈𝜈)∈𝜈

̄𝜋(ℎ̄(̇𝜈, ̈𝜈), 𝑦(̇𝜈, ̈𝜈)|𝑣𝑠∪{ ̇𝜈, ̈𝜈}, 𝑦{ ̇𝜈, ̈𝜈}, 𝜃, 𝜆)

× ̄𝜋(ℎ̄(0,𝜈1), 𝑦[0,𝜈1)|𝑣𝑠∪{𝜈1}, 𝑦𝜈1
, 𝜃, 𝜆)

× ̄𝜋(ℎ̄(𝜈|𝜈|,𝜔), 𝑦(𝜈|𝜈|,𝜔]|𝑣𝑠∪{𝜈|𝜈|}, 𝑦𝜈|𝜈|
, 𝜃, 𝜆),

(6.117)

𝜅(ℎ̄†, 𝑦†|𝑣𝑠∪𝜈, 𝑦𝜈) = ∏
(̇𝜈∼ ̈𝜈)∈𝜈

𝜅(ℎ̄†
(̇𝜈, ̈𝜈), 𝑦†

(̇𝜈, ̈𝜈)|𝑣𝑠∪{ ̇𝜈, ̈𝜈}, 𝑦{ ̇𝜈, ̈𝜈})

× 𝜅(ℎ̄†
(0,𝜈1), 𝑦†

[0,𝜈1)|𝑣𝑠∪{𝜈1}, 𝑦𝜈1
)

× 𝜅(ℎ̄†
(𝜈|𝜈|,𝜔), 𝑦†

(𝜈|𝜈|,𝜔]|𝑣𝑠∪{𝜈|𝜈|}, 𝑦𝜈|𝜈|
).

(6.118)

116

6 Exact Inference for Markov Switching Diffusion Models

We accept (ℎ̄†
(̇𝜈, ̈𝜈), 𝑦†

(̇𝜈, ̈𝜈)) with probability

𝛼(�̄�(�̇�,�̈�),𝑌(�̇�,�̈�)) = 1 ∧
𝜅(ℎ̄(̇𝜈, ̈𝜈), 𝑦(̇𝜈, ̈𝜈)|𝑣𝑠∪{ ̇𝜈, ̈𝜈}, 𝑦{ ̇𝜈, ̈𝜈})
𝜅(ℎ̄†

(̇𝜈, ̈𝜈), 𝑦†
(̇𝜈, ̈𝜈)|𝑣𝑠∪{ ̇𝜈, ̈𝜈}, 𝑦{ ̇𝜈, ̈𝜈})

×
̄𝜋(ℎ̄†

(̇𝜈, ̈𝜈), 𝑦†
(̇𝜈, ̈𝜈)|𝑣𝑠∪{ ̇𝜈, ̈𝜈}, 𝑦{ ̇𝜈, ̈𝜈}, 𝜃, 𝜆)

̄𝜋(ℎ̄(̇𝜈, ̈𝜈), 𝑦(̇𝜈, ̈𝜈)|𝑣𝑠∪{ ̇𝜈, ̈𝜈}, 𝑦{ ̇𝜈, ̈𝜈}, 𝜃, 𝜆)

= 1 ∧
𝜅(𝑣(𝑟∪ ̆𝑠)∩(̇𝜈, ̈𝜈)|𝑣𝑠∪{ ̇𝜈, ̈𝜈}, 𝑦[̇𝜈, ̈𝜈])

𝜅(𝑣†
(𝑟†∪ ̆𝑠†)∩(̇𝜈, ̈𝜈)|𝑣𝑠∪{ ̇𝜈, ̈𝜈}, 𝑦†

[̇𝜈, ̈𝜈])
∏(̇𝜏∼ ̈𝜏)∈𝜏∩[̇𝜈, ̈𝜈] 𝜅(̄𝑧(̇𝜏, ̈𝜏))
∏(̇𝜏∼ ̈𝜏)∈𝜏†∩[̇𝜈, ̈𝜈] 𝜅(̄𝑧†

(̇𝜏, ̈𝜏))

×
∏(̇𝜏∼ ̈𝜏)∈𝜏†∩[̇𝜈, ̈𝜈] ̄𝜋(̄𝑧†

(̇𝜏, ̈𝜏), 𝑣†
̈𝜏 |𝑣†

̇𝜏 , 𝑦†
̇𝜏 , 𝜃)

∏(̇𝜏∼ ̈𝜏)∈𝜏∩[̇𝜈, ̈𝜈] ̄𝜋(̄𝑧(̇𝜏, ̈𝜏), 𝑣 ̈𝜏 |𝑣 ̇𝜏 , 𝑦 ̇𝜏 , 𝜃) ,

(6.119)

where the last equality applies to the edge sections (ℎ̄†
[0,𝜈1), 𝑦†

[0,𝜈1)) and (ℎ̄†
(𝜈|𝜈|,𝜔), 𝑦†

(𝜈†
|𝜈|,𝜔]) as

well, and all elements have been defined previously. In particular, 𝜅(𝑣(𝑟∪ ̆𝑠)∩(̇𝜈, ̈𝜈)|𝑣𝑠∪{ ̇𝜈, ̈𝜈}, 𝑦[̇𝜈, ̈𝜈])
is given by (6.87). Adaptation is done with the same scheme as in Section 6.3.3.

6.6 MAP Estimation

We now construct an algorithm for MAP estimation, i.e. finding the set of values (𝜃‡, 𝜆‡)
such that

(𝜃‡, 𝜆‡) = argmax
𝜃,𝜆

𝜋(𝜃, 𝜆, 𝑣𝑠\{0}|𝑣0). (6.120)

The MAP estimator also corresponds to the maximum likelihood estimator when setting
𝜋(𝜃, 𝜆) ∝ 1. In this section, we combine the MAP estimation algorithm from Section 5.5
with the new tools developed in this chapter to obtain a corresponding MCEM algorithm
for Markov switching diffusions.

6.6.1 Log Transition Density Estimation

In order to construct a MCEM algorithm, we require an unbiased estimator of the path
integral in the log complete transition density:

log 𝜋(𝑧(̇𝜏, ̈𝜏), 𝑣 ̈𝜏 |𝑣 ̇𝜏 , 𝑦 ̇𝜏 , 𝜃) = log 𝑑𝜃(𝑣{ ̇𝜏, ̈𝜏}, 𝑦 ̇𝜏) − ∫
̈𝜏

̇𝜏
𝜑𝜃(𝑥𝑡, 𝑦 ̇𝜏) d𝑡. (6.121)

Unbiased estimation is easily accomplished by uniform sampling along the path:

−(̈𝜏 − ̇𝜏)𝜑𝜃(𝑥𝑈 , 𝑦 ̇𝜏), 𝑈 ∼ Unif [̇𝜏 , ̈𝜏] . (6.122)

117

6 Exact Inference for Markov Switching Diffusion Models

Thus, we define the log augmented transition density estimator

̄ℓ𝑢(𝑧(̇𝜏, ̈𝜏), 𝑣 ̈𝜏 |𝑣 ̇𝜏 , 𝑦 ̇𝜏 , 𝜃) = log 𝑑𝜃(𝑣{ ̇𝜏, ̈𝜏}, 𝑦 ̇𝜏) − (̈𝜏 − ̇𝜏)𝜑𝜃(𝑥𝑢, 𝑦 ̇𝜏), (6.123)
E𝑈 [̄ℓ𝑈(𝑧(̇𝜏, ̈𝜏), 𝑣 ̈𝜏 |𝑣 ̇𝜏 , 𝑦 ̇𝜏 , 𝜃)] = log 𝜋(𝑧(̇𝜏, ̈𝜏), 𝑣 ̈𝜏 |𝑣 ̇𝜏 , 𝑦 ̇𝜏 , 𝜃). (6.124)

The relative simplicity of the log augmented transition estimator is the main benefit of
taking the MCEM approach.

6.6.2 E-Step

The E-step consists of finding a lower bound on the objective 𝜋(𝜃, 𝜆, 𝑣𝑠\{0}|𝑣0). It is
obtained by averaging the joint density over the posterior of the latent variables, i.e.

𝑄(𝜃†, 𝜆†, 𝜃, 𝜆) = E𝑉𝑅,𝑍,𝑌 [log 𝜋(𝑉𝑅, 𝑍, 𝑌 , 𝜃†, 𝜆†, 𝑣𝑠\{0}|𝑣0)|𝑣𝑠, 𝜃, 𝜆]
= E𝑉𝑅,𝑍,𝑌 [log 𝜋(𝑉𝑅, 𝑍, 𝑣𝑠\{0}|𝑌 , 𝜃†, 𝑣0) + log 𝜋(𝑌 |𝜆†)|𝑣𝑠, 𝜃, 𝜆]

+ log 𝜋(𝜃†) + log 𝜋(𝜆†).
(6.125)

where we take expectations with respect to 𝜋(𝑣𝑟, 𝑧, 𝑦|𝑣𝑠, 𝜃, 𝜆). Because the 𝑄-function
decomposes into separate functions of 𝜃† and 𝜆†, we define separate Q-functions

𝑄Θ(𝜃†, 𝜃) = E𝑉𝑅,𝑍,𝑌 [log 𝜋(𝑉𝑅, 𝑍, 𝑣𝑠\{0}|𝑣0, 𝑦, 𝜃†)|𝑣𝑠, 𝜃, 𝜆] + log 𝜋(𝜃†), (6.126)
𝑄Λ(𝜆†, 𝜆) = E𝑉𝑅,𝑍,𝑌 [log 𝜋(𝑌 |𝜆†)|𝑣𝑠, 𝜃, 𝜆] + log 𝜋(𝜆†). (6.127)

We may obtain samples from 𝜋(𝑣𝑟, 𝑧, 𝑦|𝑣𝑠, 𝜃, 𝜆) by iterating the corresponding MCMC
update from Section 6.3.3 or 6.3.4. That results in a dependent sequence of ̂𝑙 samples
(𝑣(𝑙)

𝑟 , 𝑧(𝑙), 𝑦(𝑙)), to which we independently add the uniform variates (𝑢(𝑙)
(̇𝜏, ̈𝜏) ∶ (̇𝜏 ∼ ̈𝜏) ∈

𝜏 (𝑙)). Given such a sequence, we obtain the unbiased 𝑄-estimators:

�̄�Θ(𝜃†) = log 𝜋(𝜃†) + ̂𝑙−1
̂𝑙

∑
𝑙=1

∑
(̇𝜏∼ ̈𝜏)∈𝜏 (𝑙)

̄ℓ𝑢(𝑙)
�̇�,�̈�

(𝑧(𝑙)
(̇𝜏, ̈𝜏), 𝑣(𝑙)

̈𝜏 |𝑣(𝑙)
̇𝜏 , 𝑦(𝑙)

̇𝜏 , 𝜃), (6.128)

�̄�Λ(𝜆†) = log 𝜋(𝜆†) + ̂𝑙−1
̂𝑙

∑
𝑙=1

log 𝜋(𝑦(𝑙)|𝜆†). (6.129)

6.6.3 M-Step

Having computed the weights in the E-step, we proceed to maximize the estimated lower
bound functions by solving the optimization problems

(argmax
𝜃†

�̄�Θ(𝜃†), argmax
𝜆†

�̄�Λ(𝜆†)) . (6.130)

118

6 Exact Inference for Markov Switching Diffusion Models

Analogously to the MCMC parameter update, for models in the class

d𝑉𝑡 = 𝜇𝜃𝑌𝑡
(𝑉𝑡) d𝑡 + 𝜎(𝑉𝑡)𝜌𝜃𝑌𝑡

d𝑊𝑡, 𝜃 = (𝜃1, … , 𝜃�̂�), (6.131)

with product prior 𝜋(𝜃) = ∏�̂�
𝑘=1 𝜋(𝜃𝑘) the M-step decomposes into independent M-steps

for each 𝜃𝑘:

argmax
𝜃†

�̄�Θ(𝜃†) =
⎧{
⎨{⎩

argmax
𝜃†

𝑘

�̄�Θ𝑘
(𝜃†

𝑘)
⎫}
⎬}⎭

�̂�

𝑘=1

, (6.132)

�̄�Θ𝑘
(𝜃†

𝑘) = log 𝜋(𝜃†
𝑘) + ̂𝑙−1

̂𝑙
∑
𝑙=1

∑
(̇𝜏∼ ̈𝜏)∈𝜏(𝑙)∶𝑦(𝑙)

�̇� =𝑘

̄ℓ𝑢(𝑙)
�̇�,�̈�

(𝑧(𝑙)
(̇𝜏, ̈𝜏), 𝑣(𝑙)

̈𝜏 |𝑣(𝑙)
̇𝜏 , 𝑦(𝑙)

̇𝜏 , 𝜃𝑘). (6.133)

If we assume that 𝜋(𝜃), 𝜇𝜃, 𝜎𝜃 and 𝜌𝜃 are continuous in 𝜃, as is usually the case in
applications, �̄�Θ(𝜃†) is also continuous and it is easily optimized with the help of a
numerical optimization routine, e.g. BFGS. Conversely, we may optimize �̄�Λ(𝜆†) exactly
for a range of priors. Recall that the complete data likelihood of the realization 𝑦(𝑙) may
be expressed in terms of the jump counts 𝑛𝑖𝑗 from state 𝑖 to 𝑗 and the cumulative
state holding times 𝜒𝑖. As above, we assume that 𝜆𝑖𝑗 ∼ Gamma(𝛼, 𝛽) a priori. The
corresponding Q-estimator is

�̄�Λ(𝜆†) = ∑
𝑖≠𝑗

⎛⎜
⎝

̂𝑙−1
̂𝑙

∑
𝑙=1

(𝑛(𝑙)
𝑖𝑗 log 𝜆†

𝑖𝑗 + 𝜒(𝑙)
𝑖 𝜆†

𝑖) + (𝛼 − 1) log 𝜆†
𝑖𝑗 − 𝛽𝜆†

𝑖𝑗
⎞⎟
⎠

. (6.134)

Taking derivatives results in independent FOCs and yields the optimal value:

𝜆†
𝑖𝑗 =

⎧{{
⎨{{⎩

𝛼 − 1 + ̂𝑙−1 ∑ ̂𝑙
𝑙=1 𝑛(𝑙)

𝑖𝑗

𝛽 + ̂𝑙−1 ∑ ̂𝑙
𝑙=1 𝜒(𝑙)

𝑖

if 𝛼 − 1 + ̂𝑙−1
̂𝑙

∑
𝑙=1

𝑛(𝑙)
𝑖𝑗 > 0

0 otherwise

(6.135)

6.6.4 Standard Error Estimation

Derivation of standard error estimators follows the same trajectory as in Section 5.5.4,
and we do not provide a boilerplate variation here. It is worth pointing out that the
conditions guaranteeing asymptotic normality of the MLE are necessarily more compli-
cated, so estimates need to be treated with more caution as to their theoretical validity.
Within the framework of Section 5.5.4, it is easiest to provide separate estimates of
Cov [𝜃‡] and Cov [𝜆‡] separately, though the joint sampling covariance could also be
estimated if needed, for a loss of elegance in notation and implementation.

119

6 Exact Inference for Markov Switching Diffusion Models

6.6.5 Avoiding Absorbing States

The solution to the M-step reveals a limitation of the algorithm: If 𝜆†
𝑖𝑗 = 0, then the

E-step will generate 0 transitions from 𝑖 to 𝑗, permanently fixing 𝜆†
𝑖𝑗 at 0. Such absorbing

states may be avoided by choosing a value 𝛼 > 1, but this excludes the pure maximum
likelihood case which corresponds to the hyperparameters 𝛼 = 1, 𝛽 = 0.

If pure ML estimation is required, the absorbing states can be avoided by using a stable
algorithm which resets the generator to a safe value when the M-step enters a forbidden,
progressively vanishing set. This method was proposed by [42] for the purpose of analyz-
ing the convergence properties of MCEM algorithms, but it also represents a convenient
framework for avoiding absorbing states. By shrinking the forbidden set successively,
we ensure that the MAP value is not excluded.

One such heuristic consists of checking whether 𝜆†
𝑖𝑗 = 0 after the M-step. If so, reset 𝜆†

𝑖𝑗
to the largest value in 𝜆. Depending on the specific setting, 𝜃 may have to be constrained
as well. In the instance corresponding to (6.96), if 𝜆†

𝑖𝑗 = 0 for all 𝑖, then 𝜃†
𝑗 reverts to its

prior mode. For this value, the E-step may be very unlikely to generate transitions to
state 𝑗. It is therefore preferable to reset 𝜃†

𝑗 to 𝜃†
𝑖 for some 𝑖 ≠ 𝑗, e.g. the state 𝑖 which

has the largest stationary probability under 𝜆†.

6.7 Simulation Study

0 200 400 800 1600
t

0

1

2v t

1Figure 6.6: Input time series for the extension regime, generated according to the switch-
ing logistic growth model with parameters (𝛽0, 𝜅0, 𝜌0) = (1, 1/2, 1/8) and
(𝛽1, 𝜅1, 𝜌1) = (1, 1, 1/8). The blue line corresponds to the trajectory of 𝑉
when in state 1, and the orange to state 0. The darkest region corresponds
to the smallest input series, with lighter regions being appended successively
to obtain the larger input series.

In this section, we explore the scaling behavior of our methods in the same regimes we
investigated in Section 6.7, i.e. the extension regime, where we append further data

120

6 Exact Inference for Markov Switching Diffusion Models

0 200
t

1

2v t

1Figure 6.7: Input time series for the infill regime, generated according to the switch-
ing logistic growth model with parameters (𝛽0, 𝜅0, 𝜌0) = (1, 1/2, 1/8) and
(𝛽1, 𝜅1, 𝜌1) = (1, 1, 1/8). The lightest dots correspond to the slowest obser-
vation frequency, with darker dots filled in to obtain the higher observation
frequencies.

to the time series, and the infill regime, where we increase observation frequency. The
input data simulation protocol uses a deterministic trajectory of 𝑦 which switches states
every 100 time units, ensuring that as data is added, it is taken in equal parts during the
activity of each regime. Figure 6.6 illustrates the deterministic regime switching pattern
of the input data. We then investigate the efficiency of the marginal and the auxiliary
algorithm under both regimes.

We adopt a regime-switching version of the logistic growth model, defined by the SDE

d𝑉𝑡 = 𝜌𝑌𝑡
𝑉𝑡(𝛽𝑌𝑡

(1 − 𝑉𝑡/𝜅𝑌𝑡
) d𝑡 + d𝑊𝑡), (𝜌𝑖, 𝛽𝑖, 𝜅𝑖 > 0, 𝑖 = 0, 1) (6.136)

where 𝜌 is a scale parameter, 𝛽 is the reproduction rate and 𝜅−1 is the carrying capacity
of the environment. We also set symmetrical priors for all states:

log 𝛽𝑖, log 𝜅𝑖, log 𝜌𝑖 ∼ N [0, 1] , 𝜆𝑖𝑗 ∼ Exp [1/32] , (𝑖, 𝑗 = 0, 1). (6.137)

In the instance where 𝑌 is ill-identified a posteriori, such a prior can result in substantial
posterior mass allocated to the event where 𝑌 remains in a single state. This is difficult
to interpret from an inference perspective, since conditional on state 𝑖 being dropped, the
Θ𝑖 follows the prior, therefore posterior inference can be largely prior-driven. Besides,
computational issues arise when the algorithm starts random walking on the prior of Θ𝑖.
If Θ𝑖 walks off to the tails to the prior, the update to (𝑍, 𝑌) can become prohibitively
difficult, as such values may imply unreasonable and misspecified diffusion dynamics
with very large and variable drift. We choose to avoid this scenario by truncating the
prior, and therefore the posterior, to trajectories of 𝑌 where both states are present.
This is enforced by rejecting single-state updates to 𝑌 . This is not a perfect fix, since
the algorithm can still move to trajectories of 𝑌 where very little time is spent in state
𝑖, whereupon Θ𝑖 may largely follow the prior.

121

6 Exact Inference for Markov Switching Diffusion Models

We implement the model using the following code snippet:

v = sp.symbols('v', positive=True)
x = sp.symbols('x', real=True)
b, k, r = sp.symbols('b k r', positive=True)
thi = sp.Array([b, k, r])
mu = b * r * v * (1 - k * v)
rho = r
sig = v

No further code or analysis is necessary for implementation.

We apply the same efficiency notion of average time per effective sample (T/ES) intro-
duced in Section 2.4 and (2.45). We decompose T/ES into the average time per iteration
(T/I) and the average number of iterations per effective sample (I/ES), and estimate
them from the output of the MCMC algorithm. The task of assessing the effective sam-
pling cost is further complicated by the fact that iteration times are random, so the
cost per iteration must be estimated as well. As in the Itō diffusion setting, iteration
costs have deterministic and random components, the former of which is linear in the
number of observations, while the latter depends on the degree of parameter and regime
uncertainty, among other things. Our working hypothesis is that scaling should be simi-
lar: For the extension regime, the optimistic scenario is that random costs and therefore
T/I remain linear in expectation, while I/ES remains constant, giving linear T/ES. For
the infill regime, we expect decreasing random costs and sublinear T/I with constant
I/ES and therefore sublinear T/ES. Other than for 𝜃 and 𝜆, we track these performance
metrics for various other statistics. Similarly to the Itō diffusion case given by (5.98),
we evaluate the density

𝜋(𝑣𝑠\{0}, ̆𝑧(𝑘), ̆𝜓(𝑘), 𝑦(𝑘), 𝜃(𝑘), 𝜆(𝑘)|𝑣0)
= 𝜋(𝜃(𝑘))𝜋(𝜆(𝑘))𝜋(𝑦(𝑘)|𝜆(𝑘)) ∏

(̇𝜏∼ ̈𝜏)∈𝑠
𝜋(𝑣 ̈𝜏 , ̆𝑧(𝑘)

(̇𝜏, ̈𝜏), ̆𝜓(𝑘)
(̇𝜏, ̈𝜏)|𝑣 ̇𝜏 , 𝑦(𝑘)

(̇𝜏, ̈𝜏], 𝜃(𝑘)), (6.138)

where (𝑦(𝑘), 𝜃(𝑘), 𝜆(𝑘)) is the value at MCMC iteration 𝑘, and ̆𝑧(𝑘)
(̇𝜏, ̈𝜏) and ̆𝜓(𝑘)

(̇𝜏, ̈𝜏) are ran-
dom samples from 𝔹(̇𝜏, ̈𝜏) and ℙ(̇𝜏, ̈𝜏), rather than being taken from the MCMC chain.
Therefore,

E𝔹(�̇�,�̈�)×ℙ(�̇�,�̈�)
[𝜋(𝑣𝑠\{0}, ̆𝑍, Ψ̆, 𝑦(𝑘), 𝜃(𝑘), 𝜆(𝑘)|𝑣0)] = 𝜋(𝑣𝑠\{0}, 𝑦(𝑘), 𝜃(𝑘), 𝜆(𝑘)|𝑣0) (6.139)

In addition, we also track the proportion of time that 𝑌 spends in state 0, i.e.

𝜔−1 ∫
𝜔

0
1[𝑦(𝑘)

𝑡 = 0] d𝑡, (6.140)

which can be useful to quickly detect meta-stable states, and the jump rate per time
unit, i.e. 𝜔−1 ∣𝑟(𝑘)∣.

122

6 Exact Inference for Markov Switching Diffusion Models

Each MCMC run that contributes to this section’s results consists of 100000 iterations,
of which we discard 10000 for burn-in. We precede the exact MCMC run by an approx-
imate run of 10000 iterations according to the algorithm of Section 5.4. We target an
acceptance probability of 23.4% for Metropolis-within-Gibbs steps, and 25% for Barker-
within-Gibbs, with a Portkey probability of 1%. Step sizes are adapted according to the
Adapting Increasingly Rarely (AIR) method of [25]. Notice that we do not enforce the
identifiability constraint discussed above in the approximate run, since dropping state
is in principle helpful to mixing, especially when initiating far from the posterior mode.
For both algorithms, we use the conditional hidden data update of Section 6.3.4, setting
the additional tuning parameter 𝑝𝑠 to 1/10.

For Poisson coin simulations within the marginal algorithm we adopt the limiting batch
EA version of Section 4.1.3. When the integrand bounds in Poisson estimator simulations
within the auxiliary algorithm exceed 10000, the proposal is rejected to avoid memory
errors. Such events occur a few times in the auxiliary simulations, and while they
represent a small departure from exactness, proposals implying such large bounds would
usually result in rejection even if the full simulation were to be carried out. Nevertheless,
in this instance, the marginal version is fully exact as the batch EA method avoids
carrying out excessively expensive simulations without loss of exactness.

6.7.1 Extension Regime

22 27 212

Sec. per Iter. [log2]

100

200

400

800N
o
of

O
bs

er
va

tio
ns

24 26 28

Iter. per Eff. Sample [log2]
25 29 213

Sec. per Eff. Sample [log2]

1Figure 6.8: Sampling efficiency in the infill regime for the auxiliary (blue) and marginal
(orange) algorithms. The left panel shows the distribution of CPU time
per iteration (T/I) throughout the MCMC run. The middle panel shows
estimates of the required number of MCMC iterations to generate an effective
sample (I/ES), where each dot corresponds to an element of Θ and Λ, and
the squares to the miscellaneous posterior summaries defined in (6.138) and
following. The right panel shows estimates of the required CPU time to
generate an effective sample (T/ES). Notice that the right panel is obtained
by scaling the middle panel by the mean of the distributions in the left panel.

123

6 Exact Inference for Markov Switching Diffusion Models

10−1

100

β0

100

4× 10−1

6× 10−1

κ0

10−3

10−2

10−1

λ0

10−1

2× 10−1

ρ0

10000 50000 90000
Iteration

10−1

100

β1

10000 50000 90000

100

4× 10−1

6× 10−1

κ1

10000 50000 90000

10−3

10−2

10−1

λ1

10000 50000 90000

10−1

2× 10−1

ρ1

1Figure 6.9: Trace plots of Θ and Λ for the 800-observation time series in the extension
regime for the auxiliary (blue) and marginal (orange) algorithms. We plot
the y-axis on the log scale due to the heavy tails of the posterior.

10000 50000 90000
0.0

0.5

ω−1
∫ ω

1[y
(k)
t = 0]dt

10000 50000 90000
Iteration

0.00

0.05

ω−1|r(k)|

10000 50000 90000

−400

−200

π(vs\{0}, z̆
(k), ψ̆(k), y(k), θ(k), λ(k)|v0)

1Figure 6.10: Trace plot of various posterior summaries for the 800-observation time se-
ries in the extension regime for the auxiliary (blue) and marginal (orange)
algorithms.

For the extension regime, we run the marginal and augmented algorithms on a time series
of 200, 400, 800 and 1600 observations respectively, with an inter-observation interval
of 1. The series is generated from the switching logistic growth model with parameters
(𝛽0, 𝜅0, 𝜌0) = (1, 1/2, 1/8) and (𝛽1, 𝜅1, 𝜌1) = (1, 1, 1/8) and plotted in Figure 6.6. As
apparent in Figure 6.9, the model identifies a “high carrying capacity state” (small 𝜅)
and a “low carrying capacity state”. We assign the label 0 to the former and 1 to the
latter.

We observe very similar performance between the marginal and the auxiliary algorithms.
As seen in Figure 6.8, T/I is roughly linear and I/ES roughly constant at the upper end
of the observation scale, resulting in roughly linear T/ES. We again notice similar mean
T/I, but substantially larger variance for the marginal algorithm, with a pronounced
right tail. In particular, when 𝑌 is close to being entirely assigned to one state, the

124

6 Exact Inference for Markov Switching Diffusion Models

β0 κ0 λ0 ρ0

10−1 101

Param. value [log scale]

β1

10−1 100 101

κ1

10−5 10−2

λ1

10−1 100

ρ1

1Figure 6.11: Posterior marginals of Θ and Λ in the extension regime, as estimated by a
KDE. Darker shades correspond to a larger observation number. We plot
the y-axis on the log scale due to the heavy tails of the posterior.

difference between Θ0 and Θ1 may be very large, causing very long iteration times in
the marginal algorithm. This manifests itself in excursions into the tails, clearly visible
in the trace plots of Figure 6.9, corresponding to the largest data scenario with the most
posterior concentration. In fact, for all elements of Θ, we observe concentration of the
posterior around the true simulation values, see Figure 6.11.

6.7.2 Infill Regime

For the infill regime, we interpolate the first 200 observations used in the extension ex-
periment at frequencies 2, 4 and 8, with identical parameters (𝛽0, 𝜅0, 𝜌0) = (1, 1/2, 1/8)
and (𝛽1, 𝜅1, 𝜌1) = (1, 1, 1/8). The resulting observations are plotted in Figure 6.7. Com-
pared to the extension regimes, the regimes are not identified as clearly. In Figure 6.13
we observe a separation between a small 𝜌 and a large 𝜌 state for much of the run, but
the model (correctly) does not rule out 𝜌0 ≈ 𝜌1. It fails to clearly distinguish a small
and a large carrying capacity regime. Therefore, we do not relabel regimes.

We reproduce the observations of the Itō setting in finding a factor 2 improvement of
the marginal over the auxiliary algorithm in the higher observation frequency range,
see Figure 6.12. The auxiliary algorithm appears linear in T/I and increasing in I/ES,
resulting in superlinear T/ES. The marginal algorithm has slightly sublinear T/I and in-
creasing I/ES, with a roughly linear T/ES overall. The increasing I/ES (i.e. degradation
of mixing) in both instances stands in contrast to our observations in the Itō setting.

As seen in Figure 6.13, labels switch frequently throughout the run, and MCMC inference
reflects the label switching invariance of the model, providing near identical inference

125

6 Exact Inference for Markov Switching Diffusion Models

21 25 29

Sec. per Iter. [log2]

100

200

400

800N
o
of

O
bs

er
va

tio
ns

24 26 28

Iter. per Eff. Sample [log2]
24 27 210

Sec. per Eff. Sample [log2]

1Figure 6.12: Sampling efficiency in the infill regime for the auxiliary (blue) and marginal
(orange) algorithms. The left panel shows the distribution of CPU time per
iteration (T/I) throughout the MCMC run. The middle panel shows esti-
mates of the required number of MCMC iterations to generate an effective
sample (I/ES), where each dot corresponds to an element of Θ and Λ, and
the squares to the miscellaneous posterior summaries defined in (6.138) and
following. The right panel shows estimates of the required CPU time to gen-
erate an effective sample (T/ES). Notice that the right panel is obtained by
scaling the middle panel by the mean of the distributions in the left panel.

for Θ0 and Θ1. We observe little posterior concentration in the parameters, with the
exception of the scale parameters 𝜌𝑖, see Figure 6.15.

6.8 Demonstration: Weak Mean Reversion for T-Bill Spreads

We proceed with a demonstration of the marginal algorithm on a model for US T-
Bill spread, with the time series shown in Figure 6.16. To reliably sample from the
corresponding posterior, we need to leverage the full extent of the methodology developed
in this chapter. The data consists of weekly observations of the spread between 1-month
and 3-month bills over a 2-decade time span. We model it as a 3-state Markov switching
diffusion with subexponential mean reversion:

d𝑉𝑡 = 𝜌𝑌𝑡
(𝛽𝑌𝑡

tanh [𝜇𝑌𝑡
− 𝑉𝑡] d𝑡 + d𝑊𝑡). (𝛽𝑖, 𝜌𝑖 > 0, 𝑖 = 1, 2, 3) (6.141)

Accordingly, the drift function is bounded in absolute value by 𝜌𝑌𝑡
𝛽𝑌𝑡

and by the cor-
responding Vasicek process drift function 𝜌𝑌𝑡

𝛽𝑌𝑡
(𝜇𝑌𝑡

− 𝑉𝑡). The transition density for
this model is intractable, it therefore falls within the scope of our method. We use
symmetrical priors for all states:

𝜇𝑖, log 𝛽𝑖, log 𝜌𝑖 ∼ N [0, 1] , 𝜆𝑖𝑗 ∼ Exp [1/730] . (6.142)

This implies a prior expectation of one state transition per year. The specification results
in a posterior that is invariant to label permutations and therefore multimodal. When

126

6 Exact Inference for Markov Switching Diffusion Models

10−1

101

β0

10−1

100

101
κ0

10−5

10−3

10−1

λ0

10−1

2× 10−1

3× 10−1
4× 10−1

6× 10−1
ρ0

10000 50000 90000
Iteration

10−1

101

β1

10000 50000 90000

10−1

100

101
κ1

10000 50000 90000

10−5

10−3

10−1

λ1

10000 50000 90000

10−1

2× 10−1

3× 10−1
4× 10−1

6× 10−1
ρ1

1Figure 6.13: Trace plots of Θ and Λ for the 800-observation time series in the infill regime
for the auxiliary (blue) and marginal (orange) algorithms. We plot the y-
axis on the log scale due to the heavy tails of the posterior.

10000 50000 90000
0.0

0.5

ω−1
∫ ω

1[y
(k)
t = 0]dt

10000 50000 90000
Iteration

0.00

0.05

ω−1|r(k)|

10000 50000 90000

−400

−200

π(vs\{0}, z̆
(k), ψ̆(k), y(k), θ(k), λ(k)|v0)

1Figure 6.14: Trace plot of various posterior summaries for the 800-observation time series
in the infill regime for the auxiliary (blue) and marginal (orange) algorithms.

the posterior is concentrated, the algorithm will only be able to visit one of those modes,
and in this instance we do not face the identification issues pointed out in the previous
section, as the algorithm never drops states after warmup.

We merely require the following code snippet to implement the model:

v, x = sp.symbols('v x', real=True)
b, r = sp.symbols('b r', positive=True)
m = sp.symbols('m', real=True)
thi = sp.Array([m, b, r])
mu = r * b * sp.tanh(m - v)
sig = sp.Integer(1)
rho = r

127

6 Exact Inference for Markov Switching Diffusion Models

β0 κ0 λ0 ρ0

10−1 101

Param. value [log scale]

β1

10−1 101

κ1

10−5 10−3 10−1

λ1

10−2 10−1 100

ρ1

1Figure 6.15: Posterior marginals of Θ and Λ in the infill regime, as estimated by a KDE.
Darker shades correspond to a larger observation number. We plot the y-
axis on the log scale due to the heavy tails of the posterior.

−0.5

0.0

0.5

v t

2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

t

0.0

0.5

1.0

E
[Y

t
=

i|v
s
]

1Figure 6.16: (Top) Time series of T-Bill spreads. (Bottom) Stacked posterior regime
probabilities Pr [𝑌𝑡 = 𝑖|𝑣𝑠], as inferred by the MCMC algorithm.

25000 50000 75000100000

0.007

0.008

0.009

ρ1

25000 50000 75000100000

Iteration

0.020

0.025

ρ2

25000 50000 75000100000

0.075

0.100

0.125

ρ3

Figure 6.17: Trace plots of 𝜌𝑖 for the exact MCMC algorithm. These are the parameters
that mix most slowly.

128

6 Exact Inference for Markov Switching Diffusion Models

0.006 0.008

ρ1

0.015 0.020 0.025 0.030
Parameter value

ρ2

0.050 0.075 0.100 0.125 0.150

ρ3

Data imputation rate 0 1 10 ∞

Figure 6.18: Comparison of the posterior marginals of 𝜌𝑖 for the exact MCMC algorithm
and the approximate algorithm with various rates of data imputation per
day. These are the parameters for which the approximate algorithm exhibits
the largest bias.

0 250 500 750 1000
0

1
ρ1

0 250 500 750 1000
Lag

ρ2

0 250 500 750 1000

ρ3

Data imputation rate 0 1 10 ∞

Figure 6.19: Comparison of autocorrelation functions of 𝜌𝑖 for the exact MCMC algo-
rithm and the approximate algorithm with various rates of data imputation
per day. These are the parameters that mix most slowly.

129

6 Exact Inference for Markov Switching Diffusion Models

0.000 0.005 0.010 0.015 0.020

µ1

0.0 0.1

µ2

0.0 0.2 0.4

µ3

4 6 8 10 12

β1

0.0 0.5 1.0 1.5 2.0

β2

0.5 1.0 1.5

β3

0.007 0.008 0.009

ρ1

0.01750.02000.02250.02500.0275

ρ2

0.06 0.08 0.10 0.12 0.14

ρ3

0.000 0.005 0.010

λ1

0.000 0.005 0.010 0.015

λ2

0.000 0.005 0.010 0.015

λ3

Figure 6.20: Posterior marginals of the elements of 𝜃 for the exact MCMC algorithm.

130

6 Exact Inference for Markov Switching Diffusion Models

Each MCMC run that contributes to this section’s results consists of 100000 iterations,
of which we discard 10000 for burn-in. We precede the exact MCMC run by an approx-
imate run of 10000 iterations according to the algorithm of Section 5.4. We target an
acceptance probability of 23.4% for Metropolis-within-Gibbs steps, and 25% for Barker-
within-Gibbs, with a Portkey probability of 1%. Step sizes are adapted according to
the Adapting Increasingly Rarely (AIR) method of [25]. For Poisson coin simulations
we adopt the limiting batch EA version of Section 4.1.3. We use the conditional hidden
data update of Section 6.3.4, setting the additional tuning parameter 𝑝𝑠 to 1/10.

To validate the output and quantify the benefits of the exact method, we compare the
output of the exact algorithm to runs of the approximate method developed in Section
6.5. We run this algorithm with various discretization intensities and characterize the
rate at which the bias decreases. Additionally, the approximate algorithm allows us to
start the exact algorithm not too far from the stationary distribution. Thereby, we avoid
a long transient phase for the exact algorithm, where iteration times are typically the
longest and the most variable.

We observe decreasing, but substantial bias of the approximate methods for all the
attempted discretization rates, as seen in Figure 6.18. Moreover, as shown in Figure
6.19, mixing starts to degrade at the higher rates, at which the average rate of diffusion
imputation is much larger than for the exact algorithm.

6.9 Discussion

As in the previous chapter, the simulation results do not allow for strong recommenda-
tions for either the marginal or the auxiliary marginal approach. We again see reliable
scaling in both extension and infill regimes, with no departure from exactness for the
marginal algorithm, and minimal departure for the auxiliary one. The exact algorithm
is also capable of generating adequate efficient sample sizes on a realistic data set with
substantial drift discontinuities.

There are some important departures from previous conclusions. Both in instances where
regimes are very weakly or very strongly identified, the posterior is likely to support very
different values of 𝜃𝑖 for the different regimes. In such a situation, any proposal 𝑦† is akin
to a large move in parameter space, which tends to result in long and irregular iteration
times, regardless of the acceptance probability of the proposal. Even in the intermediate
and favorable scenario of Section 6.7, the distribution of iteration times can span many
orders of magnitude, as seen in Figures 6.8 and 6.12.

Conversely, we find that approximate algorithms exhibit substantial bias even at large
imputation frequencies, where we also observe degradation in MCMC mixing. At such
frequencies, the runtime of exact and approximate algorithms is comparable, indicating
that exact algorithms should be preferred when parameter inference is the primary goal
of the modelling exercise. Nonetheless, we believe that the Euler-discretized model

131

6 Exact Inference for Markov Switching Diffusion Models

could be leveraged to make more targeted proposals, especially in the 𝑌 -updates, e.g.
by doing filtering-smoothing according to the discretized model along the lines of [103].
Thereby, we may be able to mostly avoid proposals with low acceptance probability,
but large iteration time. This synthesis of approximate and exact approaches is already
supported by the substantial observed benefits of warm-starting.

132

7 Approximate Inference for Stochastic
Volatility Diffusions

Chapter 6 has investigated Markov Switching diffusions with dynamics that are modified
by discrete, exogenous shocks. Alternatively, we can introduce continuous modifications
of the dynamics by modelling the latent process as a diffusion itself. We may set up a
system of SDEs of form

d𝑉𝑡 = 𝜇𝜃(𝑉𝑡) d𝑡 + 𝜎𝜃(𝑉𝑡)𝜌(𝑈𝑡) d𝑊 𝑉
𝑡 , (7.1)

d𝑈𝑡 = 𝛽𝜉(𝑈𝑡) d𝑡 + 𝛾𝜉(𝑈𝑡) d𝑊 𝑈
𝑡 . (7.2)

where 𝑉 is the observed diffusion on 𝒱, 𝑈 the latent one on 𝒰, and 𝜃 and 𝜉 are parameter
vectors affecting the observed and latent diffusion, respectively. The link function 𝜌 ∶
𝒰 ↦ [0, ∞) with inverse 𝜌−1 ensures that the latent process is mapped to a nonnegative
volatility. We may further allow for dependence between the driving Brownian motions
by setting Cov [d𝑊 𝑉

𝑡 , d𝑊 𝑈
𝑡] = 𝜚 d𝑡. This type of system is known in the literature as a

(continuous) stochastic volatility system.

Sufficient conditions for existence of a solution to such multivariate SDE systems, given
e.g. by [77], are analogous to the univariate case in that the drift and volatility coefficients
must satisfy Lipschitz-like continuity properties. Since we will adopt an approximation
to the system, the specifics are of no further consequence - indeed, it will be sufficient for
𝑉 to satisfy existence conditions with 𝑈𝑡 being confined to a finite and bounded set.

Continuous stochastic volatility models were originally proposed in order to improve
on the Black-Scholes option pricing formula [110, 66, 125]. [60] developed one of the
canonical specifications, known as the Heston Model, where the observable process is a
Geometric Brownian motion and the diffusivity process corresponds to the Cox-Ingersoll-
Ross model:

d𝑉𝑡 = 𝜇𝑉 𝑉𝑡 d𝑡 + 𝜎𝑉 𝑉𝑡√𝑈𝑡 d𝑊 𝑉
𝑡 , (7.3)

d𝑈𝑡 = 𝛽𝑈(𝜇𝑈 − 𝑈𝑡) d𝑡 + 𝜎𝑈√𝑈𝑡 d𝑊 𝑈
𝑡 . (7.4)

See Figure 7.1 for a sample trajectory from this model. The specification is of particular
interest because the distribution of the integrated diffusivity is known [8]. By the time-
change representation of the stochastic integral, there is a Brownian motion 𝑊 ∗ such
that the SDE can be solved:

log 𝑉𝑡 = 𝜇𝑉 d𝑡 + 𝜎𝑉 𝑊 ∗ (∫
𝑡

0
𝑈𝑡 d𝑡) . (7.5)

133

7 Approximate Inference for Stochastic Volatility Diffusions

0 t↑

t

0

v t
,u

t

Figure 7.1: Example trajectory from the Heston model with (blue) d𝑉𝑡 = 𝑉𝑡√𝑈𝑡 d𝑊 𝑉
𝑡

and (orange) d𝑈𝑡 = (1 − 𝑈𝑡) d𝑡 + √𝑈𝑡 d𝑊 𝑈
𝑡 .

Therefore, the Heston model is somewhat tractable, allowing among other things for
evaluation of the Moment generating function of 𝑉𝑡, and the pricing of some options.
Under other notable specifications, such as the 3/2 model [61, 100] and the SABR model
[55], the stochastic volatility model becomes nontractable. These works typically do not
consider the question of parameter inference.

7.1 Inference Strategy

In greater generality, exact inference for continuous stochastic volatility models does
not directly fit our framework because we cannot transform the observed diffusion into
a constant volatility process. Standard practice consists of discretizing both observed
and latent process, see e.g. [75] and [67, 72]. Other works such as [105] adopt specific
volatility specifications driven by non-Wiener processes. As it happens, a milder form of
approximation puts the diffusive volatility model squarely into the realm of Chapter 6. It
consists of replacing the latent diffusion 𝑈 with a continuous-state Markov jump process
𝑌 on a relatively dense state space 𝒢 ⊂ 𝒰. If we adequately structure the generator
as a function of 𝜉, volatility can be mimicked by frequent state changes, and drift by
biasing state changes up or down. The approximation to the SDE system remains
a fully continuous, Markovian system. Moreover, by increasing the density of 𝒢, we
recover the diffusion system, in a sense made precise by the theory of local consistency,
developed by [78] and briefly presented in this chapter in Section 7.2. Figure 7.2 shows
how as 𝒢 becomes very dense, the effect on the dynamics of 𝑉 is eventually negligible.
In fact, the setup in this chapter straddles the spectrum between the fully discrete
Markov switching of Chapter 6, and the fully continuous exogenous variation of the
diffusion system. Markov jump process approximations to stochastic volatility systems
have previously been proposed by [26, 28], though those works do not consider the matter
of inference.

134

7 Approximate Inference for Stochastic Volatility Diffusions

Before investigating the specifics of the approximation, we must fix an appropriate model
class for which we may hope for effective inference methods. This becomes apparent when
orthogonalizing the diffusion system. We define

𝜂𝜃(𝑎) = ∫
𝑎

𝑣∗

1
𝜎𝜃(𝑐) d𝑐, (𝑎, 𝑣∗ ∈ 𝒱) (7.6)

𝜐𝜉(𝑏) = ∫
𝑏

𝑢∗

𝜌(𝑐)
𝛾𝜉(𝑐) d𝑐, (𝑏, 𝑢∗ ∈ 𝒰) (7.7)

and the auxiliary process 𝑋 = 𝜂𝜃(𝑉) − 𝜚𝜐𝜉(𝑈) to obtain the orthogonal system

d𝑋𝑡 = 𝛿𝜃,𝜉(𝑋𝑡, 𝑈𝑡) d𝑡 + 𝜌(𝑈𝑡)√1 − 𝜚2 d𝑊 𝑋
𝑡 , (7.8)

𝛿𝜃,𝜉(𝑎, 𝑏) = (𝜇𝜃
𝜎𝜃

− 𝜌2(𝑏)𝜎′
𝜃

2) ∘ (𝜂𝜃)−1(𝑎 + 𝜚𝜐𝜉(𝑏)) + 𝜚(𝛽𝜉𝜐′
𝜉 + 𝛾𝜉𝜐″

𝜉 /2)(𝑏), (7.9)

for which 𝑊 𝑋
𝑡 ⟂ 𝑊 𝑈

𝑡 . Therefore, the system (𝑋, 𝑈) is the natural system on which to
approximate 𝑈 , rather than (𝑉 , 𝑈). The presence of both 𝜃 and 𝜉 in the specification
of the auxiliary process 𝑋 results in a rather dense conditional independence graph,
complicating the design of good Gibbs blocking schemes and probably necessitating a
joint update. While this is by no means infeasible if the parameter dimensionality is
moderate, in this chapter we limit ourselves to investigating the no-correlation case
𝜚 = 0, where

d𝑋𝑡 = 𝛿𝜃(𝑋𝑡, 𝑈𝑡) d𝑡 + 𝜌(𝑈𝑡) d𝑊 𝑋
𝑡 , (7.10)

𝛿𝜃(𝑎, 𝑏) = (𝜇𝜃
𝜎𝜃

− 𝜌2(𝑏)𝜎′
𝜃

2) ∘ (𝜂𝜃)−1(𝑎), (𝑎 ∈ 𝒳, 𝑏 ∈ 𝒰) (7.11)

and changes in 𝜉 do not affect 𝑋. This allows for conditionally independent updates to
Θ and Ξ.

The rest of the chapter proceeds as follows. Section 7.2 introduces a diffusion approx-
imation scheme by a continuous-time Markov jump process 𝑌 , and states the mode of
convergence to the diffusion. Section 7.3 briefly adapts the familiar data augmentation
approach from Section 6.1.1. Section 7.5 presents a marginal Gibbs sampler in the style
of Section 6.3 that targets

𝜋(𝑣𝑟, 𝑧, 𝑦, 𝜃, 𝜉|𝑣𝑠) ∝ 𝜋(𝜃)𝜋(𝜉) ∏
(̇𝜏∼ ̈𝜏)∈𝜏

𝜋(𝑧(̇𝜏, ̈𝜏), 𝑣 ̈𝜏 |𝑣 ̇𝜏 , 𝑦 ̇𝜏 , 𝜃)𝜋(𝑦 ̈𝜏 |𝑦 ̇𝜏 , 𝜉), (7.12)

where Θ and Ξ are a priori independent, 𝑅 corresponds to the jump times of 𝑌 , 𝑇 =
𝑅 ∪ 𝑆, and 𝑍 results from noncentering 𝑋, as usual. Section 7.6 investigates numerical
performance of the algorithm, particularly in the regime where the approximation to 𝑈
is refined.

We note that there are complications and simplifications compared to the general Markov
switching diffusion setting of Chapter 6. On the one hand, 𝑌 is an approximation to a

135

7 Approximate Inference for Stochastic Volatility Diffusions

G↓

G↑
|G| = 4 |G| = 8

G↓

G↑
|G| = 16

0 t↑

|G| = 32

0 t↑

G↓

G↑
|G| = infinity

Figure 7.2: Illustration of approximating a trajectory of 𝑈 (|𝒢| = ∞) by a step function
on 𝒢 for different resolutions.

process that affects the SDE of 𝑉 continuously, and it does not affect the drift at all. This
substantially alleviates the issue of proposal sensitivity raised e.g. in Section 6.9. On the
other hand, posterior dependence between 𝑌 and Ξ is potentially large, with no obvious
reparameterization available to alleviate the associated slowdown of Gibbs sampling.
Other challenges around the simulation of continuous-time Markov jump processes with
large state spaces are addressed in Section 7.4

7.2 Latent Diffusion Approximation and Local Consistency

We will carry out inference for an approximate version of the stochastic volatility model,
where 𝑈 is approximated by a piecewise constant process. The key notion to such an
approximation is the concept of local consistency, developed by [78].

Definition 6 (Local consistency [78]). Let 𝑌 be a continuous time Markov jump process
on the grid 𝒢 ⊂ 𝒰 with generator 𝜆. Suppose that it satisfies local consistency with
respect to the diffusion process 𝑈 , i.e. 𝛽𝜉 and 𝛾𝜉 are Lipschitz-continuous for any 𝜉 and

E [𝑌𝑡+𝜖 − 𝑌𝑡|𝑌𝑡] = 𝛽𝜉(𝑌𝑡)𝜖 + 𝒪(𝜖), (7.13)
E [(𝑌𝑡+𝜖 − 𝑌𝑡)2|𝑌𝑡] = 𝛾𝜉(𝑌𝑡)𝛾′

𝜉(𝑌𝑡)𝜖 + 𝒪(𝜖). (7.14)

Then, as 𝒢 tends to cover 𝒰, 𝑌 weakly converges to 𝑈 .

136

7 Approximate Inference for Stochastic Volatility Diffusions

Figure 7.2 qualitatively illustrates how a finer grid affects the diffusion approximation.
The theory of Markov chain approximations for diffusions provides various ways of pa-
rameterizing 𝜆 in terms of 𝜉 such that local consistency applies. For a grid 𝒢 with
constant spacing 𝑑, local consistency is ensured by setting

𝜆𝑖𝑗 =

⎧{{{
⎨{{{⎩

(𝛾𝜉(𝑢𝑗)√
2𝑑)

2
+ ∣0∧𝛽𝜉(𝑢𝑗)∣

𝑑 𝑗 = 𝑖 − 1

(𝛾𝜉(𝑢𝑗)√
2𝑑)

2
+ ∣0∨𝛽𝜉(𝑢𝑗)∣

𝑑 𝑗 = 𝑖 − 1
−(𝜆𝑖,𝑗−1 + 𝜆𝑖,𝑗+1) 𝑖 = 𝑗
0 otherwise

. (7.15)

It is apparent from the formulation that states where 𝑈 has large volatility promote
moves to nearby states, while drift promotes moves up or down depending on size. A
smaller grid spacing also promotes state changes.

Similar, but nonuniformly spaced grids also have the local consistency property. [83]
point out how a nonuniform grid results in a better approximation for a given grid
size. Furthermore, the algorithm that we will propose is more stable when the volatility
cannot change by multiple orders of magnitude for each state change in 𝑌 , implying
that the volatility spacings 𝜌(𝒢) should follow a log scale. This is violated for example
when 𝑈 is the CIR process approximated with a uniform grid, resulting in volatility
spacings

√𝒢 that can vary by many degrees of magnitude, even for a high grid resolution.
Nonetheless, nonuniform grids must obey certain relationships that may be fulfilled for
some 𝜉 but not for others, which is inconvenient if we wish to infer 𝜉 on an unbounded
set. Therefore, we persist with the simple uniform grid. We can still obtain a grid for
which 𝜌(𝒢) follows the log scale by applying Itō’s formula to any starting specification
such that 𝜌(𝑈𝑡) = 𝑒𝑐𝑈𝑡 .

The remaining, and arguably more decisive degree of freedom is to set the width of
the grid. This should ideally be done such that 𝑌 only visits the boundaries of 𝒢 with
moderate probability, since otherwise the volatility process is being constrained unduly,
and the model is misspecified. On the other hand, if the probability of visiting the edges
of 𝒢 is very low, then the span of the grid should be reduced to save computational
resources and invest them in a denser grid. For known 𝜉, we can adopt the framework of
[92], who investigate the containment probability of Markov jump processes in order to
price barrier options. In particular, defining �̆� as the submatrix of 𝜆 excluding the first
and last rows and columns, ̆𝒢 as the interior of 𝒢 excluding ̌𝒢 and ̂𝒢, and 𝜈 as the first
escape time from ̆𝒢 onto the boundary of 𝒢, they find that �̆� is sufficient to evaluate

E [𝑓(𝑌𝜔) 1𝜈>𝜔 |𝑦0, 𝜉] = 𝑒(𝑦0)T𝑒𝜔�̆�𝑓(̆𝒢), (𝑦0 ∈ ̆𝒢, 𝑓 ∶ ̆𝒢 → 𝐑) (7.16)

where 𝑒(𝑦0) is the vector which is 1 at 𝑦0 and 0 otherwise, such that the RHS is a
quadratic form. We point out the special case where 𝑓 is the identity function, yielding
Pr [𝜈 > 𝜔|𝑦0, 𝜉]. If our prior on 𝜉 is not too diffuse, we can use this formula to make
sure that the a priori containment probability ∫ Pr [𝜈 > 𝜔|𝑦0, 𝜉] 𝜋(𝜉) d𝜉 is close to 1.

137

7 Approximate Inference for Stochastic Volatility Diffusions

𝑉 ̇𝜏

𝑉 ̈𝜏

𝑍(̇𝜏, ̈𝜏)

Θ

𝑌 ̇𝜏𝑌Ξ

(̇𝜏 ∼ ̈𝜏) ∈ 𝑠 ∪ 𝑅

Figure 7.3: Plate diagram for the approximate Stochastic volatility class considered in
this chapter. 𝑉 ̇𝜏 and 𝑉 ̈𝜏 may be observed or latent, depending on whether
̇𝜏 , ̈𝜏 ∈ 𝑠.

Conversely, if our prior is too diffuse to control the containment probability, we resort
to a simple heuristic where we use the observations 𝑣𝑠 to obtain a rough estimate of the
range of 𝑌 . We do so by postulating that 𝑉 is an accelerated Brownian motion following
𝜌(𝑈𝑡) d𝑊𝑡, giving the simple volatility estimate of

|𝑣 ̈𝑠 − 𝑣 ̇𝑠| /(̈𝑠 − ̇𝑠), (7.17)

in between observations 𝑣 ̇𝑠 and 𝑣 ̇𝑠. We then cover the 100(1 − 1/ |𝒢|)%-interval of the
sample

{𝜌−1(|𝑣 ̈𝑠 − 𝑣 ̇𝑠| /(̈𝑠 − ̇𝑠))}(̇𝑠∼ ̈𝑠)∈𝑠 , (7.18)

with an equidistant grid of |𝒢| points.

7.3 Complete Transition Density

After replacing 𝑈 with its approximation 𝑌 in (7.10), we obtain the model

d𝑋𝑡 = 𝛿𝜃(𝑋𝑡, 𝑌𝑡) d𝑡 + 𝜌(𝑌𝑡) d𝑊 𝑋
𝑡 , (7.19)

𝛿𝜃(𝑎, 𝑏) = (𝜇𝜃
𝜎𝜃

− 𝜌2(𝑏)𝜎′
𝜃

2) ∘ (𝜂𝜃)−1(𝑎), (𝑎 ∈ 𝒳, 𝑏 ∈ 𝒰) (7.20)

and observe that 𝑋 is now a Markov switching diffusion and a special case of the spec-
ification of Section 6.1.1. Hence, we can derive a complete transition density along
essentially identical lines. We require for any 𝜃 ∈ 𝒯, 𝑏 ∈ 𝒢 and ̇𝜏 < ̈𝜏 that

• 𝛿𝜃(𝑎, 𝑏) is continuously differentiable in 𝑎.

• The Novikov condition applies, i.e. E𝑋(�̇�,�̈�]
[exp [∫ ̈𝜏

̇𝜏 𝛿2
𝜃(𝑋𝑡, 𝑏) d𝑡] |𝑥 ̇𝜏 , {𝑦 ̇𝜏 = 𝑏} , 𝜃] <

∞. This is sufficient, albeit not necessary.

138

7 Approximate Inference for Stochastic Volatility Diffusions

Then, the centered complete transition density immediately follows from Section 6.1.1
and is given by

𝜋(𝑥(̇𝜏, ̈𝜏), 𝑣 ̈𝜏 |𝑣 ̇𝜏 , 𝑦 ̇𝜏 , 𝜃) = |𝜂′
𝜃(𝑣 ̈𝜏)| N [𝜂𝜃(𝑣 ̈𝜏); 𝜂𝜃(𝑣 ̇𝜏), (̈𝜏 − ̇𝜏)𝜌2(𝑦 ̇𝜏)]

× d𝕏|(𝑋 ̇𝜏 = 𝜂𝜃(𝑣 ̇𝜏), 𝑦 ̇𝜏 , 𝜃)
d𝕄|(𝑋 ̇𝜏 = 𝜂𝜃(𝑣 ̇𝜏), 𝑦 ̇𝜏) (𝑥(̇𝜏, ̈𝜏), 𝜂𝜃(𝑣 ̈𝜏)),

(7.21)

d𝕏|(𝑥 ̇𝜏 , 𝑦 ̇𝜏 , 𝜃)
d𝕄(𝑥 ̇𝜏 , 𝑦 ̇𝜏) (𝑥(̇𝜏, ̈𝜏]) = exp [Δ𝜃(𝑥 ̈𝜏 , 𝑦 ̇𝜏) − Δ𝜃(𝑥 ̇𝜏 , 𝑦 ̇𝜏)

𝜌2(𝑦 ̇𝜏) − ∫
̈𝜏

̇𝜏
𝜑𝜃(𝑥𝑡, 𝑦 ̇𝜏) d𝑡] , (7.22)

Δ𝜃(𝑎, 𝑏) = ∫ 𝛿𝜃(𝑐, 𝑏) d𝑐, (7.23)

𝜑𝜃(𝑎, 𝑏) = 1
2 (𝛿2

𝜃(𝑎, 𝑏)
𝜌2(𝑏) + 𝜕𝑎𝛿𝜃(𝑎, 𝑏)) , (7.24)

where the dominating measure is 𝕄|(𝑋{ ̇𝜏, ̈𝜏} = 𝜂𝜃(𝑣{ ̇𝜏, ̈𝜏}), 𝑦 ̇𝜏)×Leb, 𝕏|(𝑥 ̇𝜏 , 𝑦 ̇𝜏 , 𝜃) is induced
by 𝑋(̇𝜏, ̈𝜏] and 𝕄|(𝑥 ̇𝜏 , 𝑦 ̇𝜏) is induced by d𝑋𝑡 = 𝜌(𝑦 ̇𝜏) d𝑊𝑡. In addition, if we define
noncentering and centering functions 𝜁𝜃 and 𝜁−1

𝜃 by

𝜁𝜃(𝑥𝑡; 𝑦 ̇𝜏 , 𝑣{ ̇𝜏, ̈𝜏}) = 𝑥𝑡 − 𝜂𝜃(𝑣 ̇𝜏) − (𝜂𝜃(𝑣 ̈𝜏) − 𝜂𝜃(𝑣 ̇𝜏)) 𝑡− ̇𝜏
̈𝜏− ̇𝜏

𝜌(𝑦 ̇𝜏) , (𝑡 ∈ (̇𝜏 , ̈𝜏)) (7.25)

and set 𝑍(̇𝜏, ̈𝜏) = 𝜁𝜃(𝑋(̇𝜏, ̈𝜏); 𝑦 ̇𝜏 , 𝑣{ ̇𝜏, ̈𝜏}), the noncentered complete transition density is given
by

𝜋(𝑧(̇𝜏, ̈𝜏), 𝑣 ̈𝜏 |𝑣 ̇𝜏 , 𝑦 ̇𝜏 , 𝜃) = |𝜂′
𝜃(𝑣 ̈𝜏)| N [𝜂𝜃(𝑣 ̈𝜏); 𝜂𝜃(𝑣 ̇𝜏), (̈𝜏 − ̇𝜏)𝜌2(𝑦 ̇𝜏)]

× d𝕏|(𝑋 ̇𝜏 = 𝜂𝜃(𝑣 ̇𝜏), 𝑦 ̇𝜏 , 𝜃)
d𝕄|(𝑋 ̇𝜏 = 𝜂𝜃(𝑣 ̇𝜏), 𝑦 ̇𝜏) (𝜁−1

𝜃 (𝑧(̇𝜏, ̈𝜏); 𝑦 ̇𝜏 , 𝑣{ ̇𝜏, ̈𝜏}), 𝜂𝜃(𝑣 ̈𝜏))

=

𝑑𝜃(𝑣{�̇�,�̈�},𝑦�̇�)
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
∣𝜂′

𝜃(𝑣 ̈𝜏)∣ N [𝜂𝜃(𝑣 ̈𝜏); 𝜂𝜃(𝑣 ̇𝜏), (̈𝜏 − ̇𝜏)𝜌2(𝑦 ̇𝜏)] 𝑒Δ𝜃(𝜂𝜃(𝑣�̈�),𝑦�̇�)−Δ𝜃(𝜂𝜃(𝑣�̇�),𝑦�̇�)

× exp [− ∫
̈𝜏

̇𝜏
𝜑𝜃(𝜁−1

𝜃 (𝑧𝑡; 𝑦 ̇𝜏 , 𝑣{ ̇𝜏, ̈𝜏}), 𝑦 ̇𝜏) d𝑡]
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑞𝜃(𝑧(�̇�,�̈�),𝑣{�̇�,�̈�},𝑦�̇�)

,

(7.26)

where the dominating measure is 𝔹(̇𝜏, ̈𝜏) × Leb.

7.4 Markov Jump Processes with Tridiagonal Generators

Compared to the Markov jump processes that typically arise in the setting of Chapter
6, our current setting differs in two computationally relevant ways:

139

7 Approximate Inference for Stochastic Volatility Diffusions

1. 𝑌 has a much bigger state space of size |𝒢|.
2. 𝜆 is tridiagonal, i.e. all entries except for the main diagonal and its adjacent

diagonals are 0.

The larger state space represents an impediment to applying the methods of Section 6.2
naively - for example, the more robust bridge simulation algorithms have complexity
𝒪(|𝒢|3), which could be prohibitive for fine approximations. Furthermore, the number
of jumps typically increases as 𝒢 is refined, which in practice makes the scaling even less
favorable.

Fortunately, by exploiting the tridiagonal structure of 𝜆, we can reduce the complex-
ity of all simulation algorithms by at least an order of magnitude. Forward simulation
drops in complexity from linear to constant, the linear solve for computing the stationary
distribution drops from cubic to linear, and the eigendecomposition required for bridge
sampling algorithms drops from cubic to quadratic. The improvement for forward sim-
ulation is due to the fact that only 2 states can be accessed from any current state,
regardless of |𝒢|. In the following subsections, we give a brief description of the relevant
linear algebra of tridiagonal matrices that enables the other improvements.

7.4.1 Linear Solve and Stationary Distribution

In order to compute the stationary vector ̄𝑝 corresponding to 𝜆, we solve the linear
system

𝜆T ̄𝑝 = 0, 1T ̄𝑝 = 1. (7.27)

which generally comes at computational cost 𝒪(|𝒢|3). For tridiagonal 𝜆, we can solve
the system in linear time by applying the detailed balance equations

̄𝑝𝑖+1
̄𝑝𝑖

= 𝜆𝑖→𝑖+1
𝜆𝑖+1→𝑖

. (𝑖 = 1, … , |𝒢| − 1) (7.28)

For a given ̄𝑝1, we solve for the unnormalized stationary vector by cumulatively multi-
plying the balance equations:

̄𝑝𝑖
̄𝑝1

=
𝑖−1
∏
𝑗=1

̄𝑝𝑗+1
̄𝑝𝑗

=
𝑖−1
∏
𝑗=1

𝜆𝑗→𝑗+1
𝜆𝑗+1→𝑗

(7.29)

The corresponding normalizing constant then becomes ∑|𝒢|
𝑘=1

�̄�𝑘
�̄�1

, and the entries of the
stationary vector are given by

̄𝑝𝑖 =
∏𝑖−1

𝑗=1
𝜆𝑗→𝑗+1
𝜆𝑗+1→𝑗

∑|𝒢|
𝑘=1 ∏𝑘−1

𝑗=1
𝜆𝑗→𝑗+1
𝜆𝑗+1→𝑗

, (7.30)

all of which can be computed at linear cost in one sweep.

140

7 Approximate Inference for Stochastic Volatility Diffusions

7.4.2 Eigendecomposition and Bridge Simulation

While the direct sampling and uniformization algorithms are essentially interchangeable
for many scenarios, in the context of this chapter the choice is highly consequential. In
practice, the elements of diag 𝜆 often differ by multiple orders of magnitude, especially
when the grid 𝒢 is not optimally set. As a consequence, the vast majority of the transi-
tions in the uniformization algorithm are virtual. Therefore, the direct algorithm is the
much more robust choice.

Simulating bridges according to the direct sampling algorithm of Section 6.2.4 princi-
pally requires 2 operations: eigendecomposing 𝜆 upfront at cost 𝒪(|𝒢|3), and at each
iteration computing 𝜋(𝑦 ̈𝜏 |𝑦{ ̇𝜏,𝜔}) at cost 𝒪(|𝒢|) for |𝒢| possible states. Therefore, the
latter in general requires an expenditure of order 𝒪(|𝒢|2) per iteration. Conversely, in
the tridiagonal case, 𝜋(𝑦 ̈𝜏 |𝑦{ ̇𝜏,𝜔}) is only nonzero for 𝑗 ⊆ {𝑦 ̇𝜏 − 1, 𝑦 ̇𝜏 + 1}, and thus at
most 2 terms have to be computed, lowering the complexity at each iteration to lin-
ear. As for the eigendecomposition, the approach is to first symmetrize 𝜆 by way of the
similarity transformation

�̃� = (diag 𝑑)−1𝜆(diag 𝑑), (7.31)

𝑑𝑖 =
𝑖−1
∏
𝑗=1

√𝜆𝑗+1→𝑗/𝜆𝑗→𝑗+1, (7.32)

which yields the symmetric tridiagonal matrix �̃�. Various off-the-shelf algorithms are
available for eigendecomposing tridiagonal matrices, see for example [27] for a log-linear
algorithm. The eigenvalues of 𝜆 and �̃� coincide, and the eigenvectors of 𝜆 are obtained
by left-multiplying (diag 𝑑) onto the eigenvectors of �̃�, at quadratic cost.

7.5 Marginal Algorithm

We now proceed with the development of a Bernoulli factory MCMC algorithm target-
ing

𝜋(𝑣𝑟, 𝑧, 𝑦, 𝜃, 𝜉|𝑣𝑠) ∝ 𝜋(𝜃)𝜋(𝜉) ∏
(̇𝜏∼ ̈𝜏)∈𝜏

𝜋(𝑧(̇𝜏, ̈𝜏), 𝑣 ̈𝜏 |𝑣 ̇𝜏 , 𝑦 ̇𝜏 , 𝜃)𝜋(𝑦 ̈𝜏 |𝑦 ̇𝜏 , 𝜆) (7.33)

by way of the updates

(Θ, 𝜉) ∶ 𝜋(𝜃, 𝜉|𝑣𝜏 , 𝑧, 𝑦) ∝ 𝜋(𝜃)𝜋(𝜉) ∏
(̇𝜏∼ ̈𝜏)∈𝜏

𝜋(𝑧(̇𝜏, ̈𝜏), 𝑣 ̈𝜏 |𝑣 ̇𝜏 , 𝑦 ̇𝜏 , 𝜃)𝜋(𝑦 ̈𝜏 |𝑦 ̇𝜏 , 𝜆), (7.34)

(𝑉𝑅, 𝑍, 𝑌) ∶ 𝜋(𝑣𝑟, 𝑧, 𝑦|𝑣𝑠, 𝜃, 𝜆) ∝ ∏
(̇𝜏∼ ̈𝜏)∈𝜏

𝜋(𝑧(̇𝜏, ̈𝜏), 𝑣 ̈𝜏 |𝑣 ̇𝜏 , 𝑦 ̇𝜏 , 𝜃)𝜋(𝑦 ̈𝜏 |𝑦 ̇𝜏 , 𝜆), (7.35)

141

7 Approximate Inference for Stochastic Volatility Diffusions

keeping in mind that 𝜆 is a deterministic function of 𝜉. As in Section 6.3, the dominating
measure of the latter full conditional is

𝕃(d𝑦) ∏
(̇𝜏∼ ̈𝜏)∈𝜏

𝔹(̇𝜏, ̈𝜏)(d𝑧(̇𝜏, ̈𝜏)) ∏
̇𝑟∈𝑟

Leb(d𝑣 ̇𝑟). (7.36)

We exploit the 𝜚 = 0 case by decomposing the former full conditional into the indepen-
dent updates

Θ ∶ 𝜋(𝜃|𝑣𝜏 , 𝑧, 𝑦) ∝ 𝜋(𝜃) ∏
(̇𝜏∼ ̈𝜏)∈𝜏

𝜋(𝑧(̇𝜏, ̈𝜏), 𝑣 ̈𝜏 |𝑣 ̇𝜏 , 𝑦 ̇𝜏 , 𝜃), (7.37)

𝜉 ∶ 𝜋(𝜉|𝑦) ∝ 𝜋(𝜉) ∏
(̇𝜏∼ ̈𝜏)∈𝜏

𝜋(𝑦 ̈𝜏 |𝑦 ̇𝜏 , 𝜆). (7.38)

The main difference to the algorithm of Section 6.3 is that the 𝜉-update is not conjugate.
Nevertheless, it may be addressed rather conventionally within the Metropolis-within-
Gibbs framework.

Remark 8 (Alternative algorithms). Notice that we could develop an auxiliary and an
approximate MCMC algorithm, as well as a MCEM algorithm for MAP estimation by
making minor modifications to the algorithms of Chapter 6.

7.5.1 Diffusion Parameter Update

We carry out the diffusion parameter update by way of a Barker-within-Gibbs step with
generic proposal density 𝜅(𝜃†|𝜃). The formulae and mechanics are exactly as in Section
6.3.1, keeping in mind that some symbols are defined slightly differently.

7.5.2 Regime Parameter Update

We carry out the regime parameter update by way of a Metropolis-within-Gibbs step
with generic proposal density 𝜅(𝜉†|𝜉). Let 𝜆 and 𝜆† be the corresponding generators.
The acceptance probability is

𝛼Ξ = 1 ∧ 𝜋(𝜉†|𝑦)
𝜋(𝜉|𝑦)

𝜅(𝜉|𝜉†)
𝜅(𝜉†|𝜉)

𝜋(𝑦|𝜆†)
𝜋(𝑦|𝜆)

= 1 ∧ 𝜅(𝜉|𝜉†)
𝜅(𝜉†|𝜉)

𝜋(𝜉†)
𝜋(𝜉)

𝜋(𝑦|𝜆†)
𝜋(𝑦|𝜆)

= 1 ∧ 𝜅(𝜉|𝜉†)
𝜅(𝜉†|𝜉)

𝜋(𝜉†)
𝜋(𝜉) ∏

(̇𝜏∼ ̈𝜏)∈𝜏

𝜋(𝑦 ̈𝜏 |𝑦 ̇𝜏 , 𝜆†)
𝜋(𝑦 ̈𝜏 |𝑦 ̇𝜏 , 𝜆) ,

(7.39)

where 𝜋(𝑦|𝜆) is the complete data likelihood of 𝑌 and evaluated as in Section 6.3.2.

142

7 Approximate Inference for Stochastic Volatility Diffusions

7.5.3 Hidden Data Update

We carry out the update to 𝜋(𝑣𝑟, 𝑧, 𝑦|𝑣𝑠, 𝜃, 𝜆) by way of a Barker-within-Gibbs step.
For both the independence and the conditional update, the formulae and mechanics are
exactly as in Sections 6.3.3 and 6.3.4, keeping in mind that some symbols are defined
differently, and with the simplification that 𝜌 does not depend on 𝜃.

7.6 Simulation Studies and Discussion

The goal of this section is to analyze the scaling behavior of our method in the grid
resolution (𝒢) regime, where we both extend and refine the discrete approximation to
the volatility process. We keep the performance criterion of effective sampling rate set
out in Section 2.4 and previously applied in Sections 5.8 and 6.7.

0 10
t

−1

0

1

2

v t
,u

t

1Figure 7.4: Input time series 𝑣𝑠 (blue) and unknown volatility series 𝑢 (orange) for the
grid resolution (|𝒢|) regime, generated according to the Tanh-gCIR model
with parameters (𝜇𝑉 , 𝛽𝑉) = (0, 1) and (𝜇𝑈 , 𝛽𝑈 , 𝜌𝑈 , 𝛾𝑈) = (1, 1, 1, .75).

Our test case is the “Tanh-gCIR” process, consisting of a weakly mean-reverting speci-
fication for the observable process 𝑉 , and a diffusivity specification that generalizes on
the square-root specification of the Heston model given by (7.3):

d𝑉𝑡 = 𝜌𝑉 tanh [𝜇𝑉 − 𝑉𝑡] d𝑡 +
√

𝑒𝑈𝑡 d𝑊𝑡, (𝛽𝑉 > 0) (7.40)
d𝑒𝑈𝑡 = 𝛽𝑈(𝜇𝑈 − 𝑉𝑡) d𝑡 + 𝜌𝑈𝑒𝑈𝑡(1−𝛾𝑈) d𝑊𝑡. (𝜇𝑈 , 𝛽𝑈 , 𝜌𝑈 > 0, 𝛾𝑈 ∈ (0, 1/2)) (7.41)

The diffusivity specification is variably known as the generalized Cox-Ingersoll Ross
model (gCIR) or Constant elasticity of variance model (CEV), and reduces to the CIR
process for 𝛾𝑈 = 1/2. For 𝛾𝑈 = 0, we recover the Vasicek process. For 𝛾𝑈 ∈ (0, 1/2),
standard scale analysis shows that the process is confined to (0, ∞), with somewhat
heaver tails than the CIR process. We transform the diffusivity specification to the

143

7 Approximate Inference for Stochastic Volatility Diffusions

log scale to better accommodate the fixed-interval grid defined in Section 7.2. By Itō’s
formula, 𝑈 follows the SDE

d𝑈𝑡 = (𝛽𝑈(𝜇𝑈𝑒−𝑈𝑡 − 1) − (𝜌2
𝑈𝑒2𝑈𝑡(𝛾𝑈−1)) d𝑡 + 𝜌𝑈𝑒𝑈𝑡(𝛾𝑈−1) d𝑊𝑡. (7.42)

We complete the specification of the model with the following prior distribution on the
unknown parameters:

𝜇𝑉 , log 𝛽𝑉 , log 𝜇𝑈 , log 𝛽𝑈 , log 𝜌𝑈 , log 1 − 2𝛾𝑈
2𝛾𝑈 − 2 ∼ N [0, 1] . (7.43)

This may be implemented with a similar symbolic preprocessor as for the other model
classes. The specification above is implemented by the following, slightly more extensive
code snippet:

v, x = sp.symbols('v x', real=True)
u = sp.symbols('u', real=True)
m_v = sp.symbols('m_v', real=True)
b_v, m_u, b_u, s_u, g_u = sp.symbols('b_v m_u b_u s_u g_u', positive=

True)
thi = sp.Array([m_v, b_v])
xi = sp.Array([m_u, b_u, s_u, g_u])
mu_v = b_v * sp.tanh(m_v - v)
sig_v = sp.Integer(1)
gg_u = (1 + 2 * g_u) / (2 + 2 * g_u)
mu_u = b_u * (m_u * sp.exp(-u) - 1) - (s_u * sp.exp((gg_u - 1) * u))

** 2
sig_u = s_u * sp.exp((gg_u - 1) * u)
rho_u = sp.exp(u / 2)

Our experimental protocol is as follows. Using the specification above, we approximately
simulate 𝑈 on the time interval [0, 10] using a large resolution |𝒢|, and generate 256
equidistant observations from 𝑉 according to the conditionally correct specification.
The resulting time series is shown in Figure 7.4 and exhibits the interesting feature of
large transitory volatility spikes causing fast deviation from the stationary mean 0, while
only slowly reverting back to 0 after volatility dies back down. The series is shown in
Figure 7.4.

Using the time series as input to the resulting specification, we run the MCMC algorithm
of Section 7.5 for 100000 iterations, including 10000 for burn-in, with the grid resolution
setting |𝒢| = 8, 16, 32, 64. This is preceded by 10000 iterations using an approximate al-
gorithm similar to the one described in Section 6.5. We target an acceptance probability
of 23.4% for Metropolis-within-Gibbs steps, and 25% for Barker-within-Gibbs, with a
Portkey probability of 1%. Step sizes are adapted according to the Adapting Increasingly
Rarely (AIR) method of [25]. For Poisson coin simulations we adopt the limiting batch
EA version of Section 4.1.3. We use a conditional hidden data update akin to Section
6.3.4, setting the additional tuning parameter 𝑝𝑠 to 1/10.

144

7 Approximate Inference for Stochastic Volatility Diffusions

2−2 22 26

Sec. per Iter. [log2]

8

16

32

64

|G
|

27 29

Iter. per Eff. Sample [log2]
28 210 212

Sec. per Eff. Sample [log2]

1Figure 7.5: Sampling efficiency in the grid resolution regime. The left panel shows the
distribution of CPU time per iteration (T/I) throughout the MCMC run.
The middle panel shows estimates of the required number of MCMC itera-
tions to generate an effective sample (I/ES), where dots refer to elements of
Θ and diamonds to Ξ. Notice that the right panel is obtained by scaling the
middle panel by the mean of the distributions in the left panel.

We adopt the same efficiency notion of average time per effective sample (T/ES) intro-
duced in Section 2.4 and (2.45). We decompose T/ES into the average time per iteration
(T/I) and the average number of iterations per effective sample (I/ES), and estimate
them from the output of the MCMC algorithm. We then investigate the efficiency of
the algorithm as |𝒢| increases.

Efficiency measurements in Figure 7.5 indicate that both T/I and T/ES increase super-
linearly in |𝒢|, with only a minor slowdown in I/ES. We deem the T/I slowdown to
be largely due to the higher jump frequency in 𝑌 as |𝒢| increases. The I/ES increase
at the lower end is largely due to the larger span of 𝒢, upon which the prior 𝜋(𝑦|𝜉)
becomes a worse proposal for the full conditional, slowing down the hidden data update
of Section 7.5.3. Fortuitously, as foreshadowed in Section 7.1, the distribution of T/I
is much better behaved than in the vanilla Markov switching diffusion simulations of
Section 6.7. Unfortunately, we also observe substantial posterior dependence between Ξ
and 𝑌 , which results in the slow mixing of Ξ observed in Figures 7.5 and 7.6, particularly
for the parameters affecting the meta-volatility 𝛾𝜉.

Figure 7.5 shows that parameter inference is relatively insensitive when |𝒢| ≥ 16, except
for the case of 𝛾𝑈 which seems better identified, though we note that the estimated
effective sample size is only 100 in that instance, and the corresponding KDE is rather
heavily smoothed. Figure 7.8 reveals that the automatically chosen grid 𝒢 unduly re-
stricts volatility inference, which may drive the discrepancy in parameter estimates.
The misspecification manifests as a low-uncertainty plateau at the upper end of 𝒢 in the
inferred volatility trajectory. Nonetheless, for moderate resolutions, the automatically
chosen grid is adequate, and the model correctly captures the volatility spike around
𝑡 = 8.

In the light of those results, we recommend an iterative approach to estimation, starting

145

7 Approximate Inference for Stochastic Volatility Diffusions

0

2

4

βU

0

1

2

βV

0.6

0.7

0.8

0.9

γU

10000 50000 90000
0

5

10

15

µU

10000 50000 90000
Iteration

0

1

µV

10000 50000 90000
1

2

3

ρU

1Figure 7.6: Trace plots of Θ and Ξ for |𝒢| = 64.

with moderate values of |𝒢|, and increasing when identifying low-uncertainty plateaus
at the boundaries, such as in Figure 7.8. In this instance, |𝒢| = 32 adequately covers
the volatility range, and more expensive simulation could be avoided. Larger values
of |𝒢| are inherently computationally challenging, as jumps occur more often, and the
algorithms of Section 7.4.2 are quadratic in |𝒢|, even for fixed jump counts. This could
be mitigated for more restrictive specifications, for which Ξ is typically better identified
a posteriori.

146

7 Approximate Inference for Stochastic Volatility Diffusions

0.0 2.5 5.0 7.5

βU

0 2

βV

0.4 0.6 0.8 1.0

γU

0 10

µU

0 2
Parameter Value

µV

2 4

ρU

1Figure 7.7: Posterior marginals of Θ and Ξ in the grid resolution regime, as estimated
by a KDE. Darker shades correspond to a larger |𝒢|.

0

1

2

3

ρ
(u

t)

|G| = 8 |G| = 16

0.0 2.5 5.0 7.5 10.0
t

0

1

2

3

|G| = 32

0.0 2.5 5.0 7.5 10.0

|G| = 64

1Figure 7.8: Posterior marginals of 𝜌(𝑌𝑡) in the grid resolution regime. The solid colored
lines denote the posterior median, and shading in decreasing opacity denotes
50%, 75% and 87.5% credibility intervals, respectively. The solid black line
corresponds to the ground truth volatility trajectory.

147

8 Automatic Implementation of
Retrospective Algorithms

Throughout this thesis, we have sought to develop algorithms for generic specifications,
e.g. an Itō diffusion model with drift and volatility functions 𝜇 and 𝜎. Notice that we
are suppressing dependence on parameters 𝜃, even though our framework easily accom-
modates those. In practice, these algorithms require the evaluation of various transfor-
mations of those functions, and bounds thereon. For the purpose of illustration, the
pivotal function 𝜑 involves the computation of

𝜂(𝑎) = ∫
𝑎

𝑣∗

d𝑏
𝜎(𝑏) , 𝛿(𝑎) = (𝜇

𝜎 − 𝜎′

2) ∘ 𝜂−1(𝑎), 𝜑(𝑎) = 1
2 (𝛿2 + 𝛿′) (𝑎), (8.1)

which is error prone and time consuming to carry out manually, even for rather simple
specifications such as the CEV model with SDE d𝑉𝑡 = 𝛽(𝜇 − 𝑉𝑡) d𝑡 + 𝜌𝑉 𝛾

𝑡 d𝑊𝑡. More
challenging is the need for bounds

𝜑↓(𝑎↓, 𝑎↑) ≤ inf
𝑎∈[𝑎↓,𝑎↑]

𝜑(𝑎), 𝜑↑(𝑎↓, 𝑎↑) ≥ sup
𝑎∈[𝑎↓,𝑎↑]

𝜑(𝑎), (8.2)

because the roots of 𝜑′ are often not analytically available, and could exist or not de-
pending on the parameters 𝜃. Therefore, an implementation that requires the manual
specification of all required quantities requires substantial effort on the part of the user,
far above the mere elementary building blocks of the model, 𝜇 and 𝜎. Automating away
such obstacles allows for far more flexible experimentation, and can substantially acceler-
ate adoption - for example, Bayesian statistics has gained popularity due the availability
of black box probabilistic programming engines such as BUGS [49], JAGS [101] and
Stan [45]. Therefore, we deem it useful to provide simple frontends, requiring as little
as the specification of 𝜇, 𝜎, the observable diffusion support 𝒱, and the parameter space
𝒯. The main complication compared to existing engines is that nonconvex functions
cannot reliably be bounded numerically. Therefore, we take a symbolic approach to
automation.

8.1 A Very Short Introduction to Symbolic Computation

Symbolic computation, most prominently implemented in the Wolfram Mathematica en-
gine, is the manipulation of mathematical expressions through computers. Mathematical

148

8 Automatic Implementation of Retrospective Algorithms

expressions are usually represented as trees, with nodes corresponding to variables or op-
erators, and with human rules and heuristics formalized and adapted to operate on those
trees. Tasks such as differentiation are fulfilled by rather straightforward substitution
rules, such as

d log 𝑥
d𝑥 → 1

𝑥. (8.3)

Rather more artfully, a simplification rule will automatically transform

2 × 𝑎/2 → 𝑎 (8.4)

by cancelling the fraction. Simplification is key to counteracting the tendency of pro-
grams to proliferate expressions, known as expression swell. Expansion rules break
parenthesized expressions into their constitutions, as in the polynomial expansion rule

(𝑎 + 𝑏)2 → 𝑎2 + 𝑏2 + 2𝑎𝑏. (8.5)

A further critical feature of symbolic libraries such as sympy [90] is the translation of
symbolic expressions into numerical code. For example, such a generator would translate
the symbolic expression 𝑓(𝑎, 𝑏) = 𝑎 + 𝑏 into the Python function

lambda a, b: a + b

Accordingly, once an adequate expression has been derived by symbolic manipulation,
it can be converted into code that provides efficient numerical evaluations within an-
other Python routine, such as an MCMC algorithm. This generation step is potentially
expensive, but only needs to be carried out once at the start of the program.

Armed with those tools, we can attempt to automatically generate symbolic represen-
tations of the required functions, and translate those into numerical code. The main
limitation of the tools at hand concerns discontinuities in representation. For example,
∫ 𝑎−𝑏 d𝑎, 𝑎 > 0 is discontinuous at 𝑏 = 1, in the sense that it is represented as

∫ 𝑎−𝑏 d𝑎 = {log 𝑎 (𝑏 = 1)
−𝑏𝑎𝑏−1 (otherwise) . (8.6)

This could in principle be resolved by supplying and processing sufficient domain in-
formation, such as 𝑏 < 1, but such restrictions are not always supported by symbolic
libraries. Nonetheless, there is usually an appropriate reparameterization that avoids
the discontinuity, e.g. 𝑐 = 1 − 𝑏 such that 𝑎1−𝑐, with the more straightforward positivity
constraint on 𝑐. Assuming that these issues have been resolved, we now investigate the
slightly more intricate matter of analytically bounding a function 𝑓 above and below.

8.2 A Simple Recursive Bound Generator

We now specify a simple recursive algorithm that typically succeeds in bounding general
functions 𝑓 . We note that the reliability of the algorithm partially depends on the level

149

8 Automatic Implementation of Retrospective Algorithms

of sophistication of the symbolic computation library, and the resulting bounds are not
necessarily optimal. Loosely speaking, the method we present succeeds if there is an
expansion 𝑓 → ∑𝑖 𝑓𝑖 such that the library can solve 𝑓 ′

𝑖 (𝑎) = 0 for all 𝑖. Nonetheless,
if the algorithm terminates without error, the resulting bounds are guaranteed to be
correct, and we have not encountered any failures to terminate successfully in practice.

Given any differentiable expression 𝑓(𝑎) defined on an interval [𝑎↓, 𝑎↑], its minimum 𝑓
must either lie at one of the roots 𝑓 ′(𝑎) = 0, or at the boundaries of the interval. Hence,
when the roots of 𝑓 ′ are analytically available, we apply a differentiation rule to 𝑓 ,
yielding 𝑓 ′, and a solution rule to obtain all 𝑎 such that 𝑓 ′(𝑎) = 0. We then return the
minimum of

{𝑓(𝑎↓), 𝑓(𝑎↑)} ∪ {𝑓(𝑎) ∶ 𝑓 ′(𝑎) = 0} (8.7)

as our solution for 𝑓↓. When the roots of 𝑓 ′ are not available, e.g. for

𝑎(𝑎 + 𝑒𝑎) (8.8)

the solution rule fails. The most straightforward relaxation of the problem, consists of
expanding 𝑓(𝑎) to a sum 𝑔(𝑎) + ℎ(𝑎), independently bounding each of the constituents,
i.e.

min
𝑎∈[𝑎↓,𝑎↑]

𝑔(𝑎) + min
𝑎∈[𝑎↓,𝑎↑]

ℎ(𝑎) ≤ inf
𝑎∈[𝑎↓,𝑎↑]

[𝑔(𝑎) + ℎ(𝑎)] , (8.9)

In the above example, we expand 𝑎(𝑎 + 𝑒𝑎) → 𝑎2 + 𝑎𝑒𝑎, and independently minimize 𝑎2

and 𝑎𝑒𝑎. We obtain the interior minima 0 = min𝑎∈[−1,1] 𝑎2 and −𝑒−1 = min𝑎∈[−1,1] 𝑎𝑒𝑎

for an overall bound of −𝑒−1 < 𝑎(𝑎 + 𝑒𝑎). If one of the constituents still cannot be
bounded, the algorithm could attempt a further expansion step.

The resulting algorithm may be specified as follows:

Algorithm 20 Bounding algorithm (infimum case), mapping a function 𝑓(𝑎) to a bound
𝑓↓(𝑎↓, 𝑎↑). The routine roots [𝑓] solves for the roots of 𝑓 and also returns the boolean
variable success, indicating whether the solver succeeded in finding all the roots. The
routine expand fully expands an expression 𝑓 into a sum of expressions ∑𝑖 𝑓𝑖, where 𝑓𝑖
is a pure product.

function BoundBelow(𝑓)
success, 𝑎∗ ← roots [𝑓 ′]
if success then

𝑓↓(𝑎↓, 𝑎↑) ← min [{𝑓(𝑎↓), 𝑓(𝑎↑)} ∪ {𝑓(𝑎) ∶ 𝑎 ∈ 𝑎∗}]
return simplify [𝑓↓]

for 𝑓𝑖 ∈ expand [𝑓] do
𝑓↓

𝑖 → BoundBelow [𝑓𝑖]
𝑓↓ ← ∑𝑖 𝑓↓

𝑖
return simplify [𝑓↓]

150

8 Automatic Implementation of Retrospective Algorithms

Notice that the algorithm generates 𝑓↓ as a function of (𝑎↓, 𝑎↑), since those are not known
before runtime. Moreover, there is no sense in which the resulting 𝑓↓ is guaranteed to
be optimal. In the next section, we show how to express bounds on the functions of
interest in terms of bounds on more simple functions, which we have been able to obtain
reliably through Algorithm 20.

8.3 Bounding the Path Integrand

We now return to the specific problem of bounding the path integrand

𝜑(𝑎) = 1
2 (𝛿2 + 𝛿′) (𝑎). (𝑎 ∈ 𝒳) (8.10)

While this may in principle be generically addressed by Algorithm 20, applying it to 𝜑
typically results in looser bounds, and is less reliable, than expressing a bound in terms
of more simple functions. We paraphrase 𝜑 = �̃� ∘ 𝜂−1, where

�̃�(𝑏) = 1
2 (̃𝛿2 + ̃𝛿′) (𝑏), ̃𝛿(𝑏) = (𝜇

𝜎 − 𝜎′

2) (𝑏), (𝑏 ∈ 𝒱) (8.11)

and observe that we can express bounds on 𝜑 in terms of bounds on �̃� and 𝜂−1, i.e.

�̃�↓((𝜂−1)↓(𝑎↓, 𝑎↑), (𝜂−1)↑(𝑎↓, 𝑎↑))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝜑↓(𝑎↓,𝑎↑)

≤ 𝜑(𝑎) ≤ �̃�↑((𝜂−1)↓(𝑎↓, 𝑎↑), (𝜂−1)↑(𝑎↓, 𝑎↑))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝜑↑(𝑎↓,𝑎↑)

(8.12)

for 𝑎 ∈ [𝑎↓, 𝑎↑]. We define bounds on �̃� by way of the more elementary bounds

(̃𝛿′)
↓
(𝑏↓, 𝑏↑)⏟⏟⏟⏟⏟

2�̃�↓(𝑏↓,𝑏↑)
≤ 2�̃�(𝑏) ≤ ̃𝛿↓(𝑏↓, 𝑏↑)2 ∨ ̃𝛿↑(𝑏↓, 𝑏↑)2 + (̃𝛿′)

↑
(𝑏↓, 𝑏↑)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

2�̃�↑(𝑏↓,𝑏↑)
. (𝑏 ∈ [𝑏↓, 𝑏↑]) (8.13)

Therefore, we have obtained bounds on 𝜑 in terms of bounds on the comparatively
simple functions ̃𝛿, ̃𝛿′ and 𝜂−1, which we can reliably obtain by Algorithm 20.

8.4 Specifying the CIR Process in Sympy

Having discussed how to assemble the building blocks of a retrospective algorithm from
the elementary diffusion specification, we now give an example of how to provide the
elementary diffusion specification in the symbolic Python library sympy, namely for the
CIR process with SDE

d𝑉𝑡 = 𝑏(𝑚 − 𝑉𝑡)⏟⏟⏟⏟⏟
𝜇𝜃

d𝑡 + 𝑟√𝑉𝑡⏟
𝜎𝜃

d𝑊𝑡. (𝑚, 𝑏, 𝑟 > 0) (8.14)

The process and its reduced analogue 𝜂𝜃(𝑉) both have support 𝒱 = 𝒳 = 𝐑, and the
parameter vector is 𝜃 = (𝑚, 𝑏, 𝑟). The full specification can be expressed in sympy as
follows:

151

8 Automatic Implementation of Retrospective Algorithms

v, x = sp.symbols('v x', positive=True)
b, m, r = sp.symbols('b m r', positive=True)
thi = sp.Array([b, m, r])
drift = b * r * (m - v)
vol = r * sp.sqrt(v)

Notice that the appropriate domain is passed as a keyword argument. The variables (v,
x, mu, sig, th) fully specify the model, and are provided to a backend which provides the
retrospective algorithm with the necessary functions and bounds. Hence, the overhead
to adapting an inference or forward simulation algorithm to a new diffusion specification
is minimal.

152

Bibliography

[1] Sanket Agrawal, Dootika Vats, Krzysztof Łatuszyński, and Gareth O Roberts.
“Optimal scaling of MCMC beyond Metropolis”. In: Advances in Applied Proba-
bility 55.2 (2023), pp. 492–509.

[2] Yacine Aı̈t-Sahalia. Closed-form likelihood expansions for multivariate diffusions.
2002.

[3] Yacine Aı̈t-Sahalia. “Maximum likelihood estimation of discretely sampled dif-
fusions: a closed-form approximation approach”. In: Econometrica 70.1 (2002),
pp. 223–262.

[4] Christophe Andrieu, Gareth O Roberts, et al. “The pseudo-marginal approach
for efficient Monte Carlo computations”. In: The Annals of Statistics 37.2 (2009),
pp. 697–725.

[5] Christophe Andrieu and Johannes Thoms. “A tutorial on adaptive MCMC”. In:
Statistics and computing 18.4 (2008), pp. 343–373.

[6] Soren Asmussen, Peter Glynn, Jim Pitman, et al. “Discretization error in simu-
lation of one-dimensional reflecting Brownian motion”. In: The Annals of Applied
Probability 5.4 (1995), pp. 875–896.

[7] Søren Asmussen, Peter W Glynn, and Hermann Thorisson. “Stationarity detec-
tion in the initial transient problem”. In: ACM Transactions on Modeling and
Computer Simulation (TOMACS) 2.2 (1992), pp. 130–157.

[8] Clifford A Ball and Antonio Roma. “Stochastic volatility option pricing”. In:
Journal of Financial and Quantitative Analysis 29.4 (1994), pp. 589–607.

[9] Av A Barker. “Monte carlo calculations of the radial distribution functions for a
proton? electron plasma”. In: Australian Journal of Physics 18.2 (1965), pp. 119–
134.

[10] Gopal K Basak, Arnab Bisi, and Mrinal K Ghosh. “Stability of a random diffusion
with linear drift”. In: Journal of Mathematical Analysis and Applications 202.2
(1996), pp. 604–622.

[11] Mark A Beaumont. “Estimation of population growth or decline in genetically
monitored populations”. In: Genetics 164.3 (2003), pp. 1139–1160.

[12] Jean Bérard, Pierre Del Moral, and Arnaud Doucet. “A lognormal central limit
theorem for particle approximations of normalizing constants”. In: Electronic
Journal of Probability 19 (2014), pp. 1–28.

153

Bibliography

[13] Jean Bertoin and Jim Pitman. “Path transformations connecting Brownian bridge,
excursion and meander”. In: Bulletin des sciences mathématiques 118.2 (1994),
pp. 147–166.

[14] Alexandros Beskos, Omiros Papaspiliopoulos, Gareth Roberts, et al. “Monte
Carlo maximum likelihood estimation for discretely observed diffusion processes”.
In: The Annals of Statistics 37.1 (2009), pp. 223–245.

[15] Alexandros Beskos, Omiros Papaspiliopoulos, and Gareth O Roberts. “A factori-
sation of diffusion measure and finite sample path constructions”. In: Methodology
and Computing in Applied Probability 10.1 (2008), pp. 85–104.

[16] Alexandros Beskos, Omiros Papaspiliopoulos, Gareth O Roberts, et al. “Retro-
spective exact simulation of diffusion sample paths with applications”. In: Bernoulli
12.6 (2006), pp. 1077–1098.

[17] Alexandros Beskos, Omiros Papaspiliopoulos, Gareth O Roberts, and Paul Fearn-
head. “Exact and computationally efficient likelihood-based estimation for dis-
cretely observed diffusion processes (with discussion)”. In: Journal of the Royal
Statistical Society: Series B (Statistical Methodology) 68.3 (2006), pp. 333–382.

[18] Alexandros Beskos, Gareth O Roberts, et al. “Exact simulation of diffusions”. In:
The Annals of Applied Probability 15.4 (2005), pp. 2422–2444.

[19] Fischer Black and Myron Scholes. “The pricing of options and corporate liabili-
ties”. In: Journal of political economy 81.3 (1973), pp. 637–654.

[20] PG Blackwell. “Bayesian inference for Markov processes with diffusion and dis-
crete components”. In: Biometrika 90.3 (2003), pp. 613–627.

[21] Mogens Bladt and Michael Sørensen. “Simple simulation of diffusion bridges
with application to likelihood inference for diffusions”. In: Bernoulli 20.2 (2014),
pp. 645–675.

[22] Steve Brooks, Andrew Gelman, Galin Jones, and Xiao-Li Meng. Handbook of
markov chain monte carlo. CRC press, 2011.

[23] Jun Cai. “A Markov model of switching-regime ARCH”. In: Journal of Business
& Economic Statistics 12.3 (1994), pp. 309–316.

[24] George Casella and Edward I George. “Explaining the Gibbs sampler”. In: The
American Statistician 46.3 (1992), pp. 167–174.

[25] Cyril Chimisov, Krzysztof Latuszynski, and Gareth Roberts. “Air Markov chain
Monte Carlo”. In: arXiv preprint arXiv:1801.09309 (2018).

[26] Kyriakos Chourdakis. “Continuous time regime switching models and applications
in estimating processes with stochastic volatility and jumps”. In: U of London
Queen Mary Economics Working Paper 464 (2002).

[27] Ed S Coakley and Vladimir Rokhlin. “A fast divide-and-conquer algorithm for
computing the spectra of real symmetric tridiagonal matrices”. In: Applied and
Computational Harmonic Analysis 34.3 (2013), pp. 379–414.

154

Bibliography

[28] Zhenyu Cui, J Lars Kirkby, and Duy Nguyen. “A general valuation framework
for SABR and stochastic local volatility models”. In: SIAM Journal on Financial
Mathematics 9.2 (2018), pp. 520–563.

[29] Didier Dacunha-Castelle and Danielle Florens-Zmirou. “Estimation of the coeffi-
cients of a diffusion from discrete observations”. In: Stochastics: An International
Journal of Probability and Stochastic Processes 19.4 (1986), pp. 263–284.

[30] George Deligiannidis, Arnaud Doucet, and Michael K Pitt. “The correlated pseu-
domarginal method”. In: Journal of the Royal Statistical Society: Series B (Sta-
tistical Methodology) 80.5 (2018), pp. 839–870.

[31] Luc Devroye. “Sample-based non-uniform random variate generation”. In: Pro-
ceedings of the 18th conference on Winter simulation. ACM. 1986, pp. 260–265.

[32] Joseph L Doob. “Heuristic approach to the Kolmogorov-Smirnov theorems”. In:
The Annals of Mathematical Statistics (1949), pp. 393–403.

[33] Arnaud Doucet, Michael K Pitt, George Deligiannidis, and Robert Kohn. “Ef-
ficient implementation of Markov chain Monte Carlo when using an unbiased
likelihood estimator”. In: Biometrika 102.2 (2015), pp. 295–313.

[34] Garland B Durham and A Ronald Gallant. “Numerical techniques for maximum
likelihood estimation of continuous-time diffusion processes”. In: Journal of Busi-
ness & Economic Statistics 20.3 (2002), pp. 297–338.

[35] Ola Elerian, Siddhartha Chib, and Neil Shephard. “Likelihood inference for dis-
cretely observed nonlinear diffusions”. In: Econometrica 69.4 (2001), pp. 959–993.

[36] Charles Engel and James D Hamilton. “Long swings in the dollar: Are they in
the data and do markets know it?” In: The American Economic Review (1990),
pp. 689–713.

[37] Bjørn Eraker. “MCMC analysis of diffusion models with application to finance”.
In: Journal of Business & Economic Statistics 19.2 (2001), pp. 177–191.

[38] Paul Fearnhead and Zhen Liu. “On-line inference for multiple changepoint prob-
lems”. In: Journal of the Royal Statistical Society: Series B (Statistical Method-
ology) 69.4 (2007), pp. 589–605.

[39] Paul Fearnhead, Omiros Papaspiliopoulos, and Gareth O Roberts. “Particle filters
for partially observed diffusions”. In: Journal of the Royal Statistical Society:
Series B (Statistical Methodology) 70.4 (2008), pp. 755–777.

[40] Danielle Florens. “Estimation of the diffusion coefficient from crossings”. In: Sta-
tistical Inference for Stochastic Processes 1.2 (1998), pp. 175–195.

[41] Wai Mun Fong and Kim Hock See. “A Markov switching model of the conditional
volatility of crude oil futures prices”. In: Energy Economics 24.1 (2002), pp. 71–
95.

[42] Gersende Fort and Eric Moulines. “Convergence of the Monte Carlo expectation
maximization for curved exponential families”. In: The Annals of Statistics 31.4
(2003), pp. 1220–1259.

155

Bibliography

[43] Alan E Gelfand, Sujit K Sahu, and Bradley P Carlin. “Efficient parametrisations
for normal linear mixed models”. In: Biometrika 82.3 (1995), pp. 479–488.

[44] Alan E Gelfand and Adrian FM Smith. “Sampling-based approaches to calculat-
ing marginal densities”. In: Journal of the American statistical association 85.410
(1990), pp. 398–409.

[45] Andrew Gelman, Daniel Lee, and Jiqiang Guo. “Stan: A probabilistic program-
ming language for Bayesian inference and optimization”. In: Journal of Educa-
tional and Behavioral Statistics 40.5 (2015), pp. 530–543.

[46] Stuart Geman and Donald Geman. “Stochastic relaxation, Gibbs distributions,
and the Bayesian restoration of images”. In: IEEE Transactions on pattern anal-
ysis and machine intelligence 6 (1984), pp. 721–741.

[47] Charles J Geyer. “Practical markov chain monte carlo”. In: Statistical science
(1992), pp. 473–483.

[48] Mrinal K Ghosh, Aristotle Arapostathis, and Steven I Marcus. “Optimal control
of switching diffusions with application to flexible manufacturing systems”. In:
SIAM Journal on Control and Optimization 31.5 (1993), pp. 1183–1204.

[49] Wally R Gilks, Andrew Thomas, and David J Spiegelhalter. “A language and
program for complex Bayesian modelling”. In: Journal of the Royal Statistical
Society: Series D (The Statistician) 43.1 (1994), pp. 169–177.

[50] Daniel T Gillespie. “A general method for numerically simulating the stochas-
tic time evolution of coupled chemical reactions”. In: Journal of computational
physics 22.4 (1976), pp. 403–434.

[51] Tilmann Gneiting and Adrian E Raftery. “Strictly proper scoring rules, predic-
tion, and estimation”. In: Journal of the American statistical Association 102.477
(2007), pp. 359–378.

[52] Flávio B Gonçalves, Krzysztof Łatuszyński, Gareth O Roberts, et al. “Barker’s al-
gorithm for Bayesian inference with intractable likelihoods”. In: Brazilian Journal
of Probability and Statistics 31.4 (2017), pp. 732–745.

[53] Flávio B Gonçalves, Krzysztof Łatuszyński, and Gareth O Roberts. “Exact Monte
Carlo likelihood-based inference for jump-diffusion processes”. In: Journal of the
Royal Statistical Society Series B: Statistical Methodology (Apr. 2023). qkad022.
issn: 1369-7412. doi: 10.1093/jrsssb/qkad022. eprint: https://academic.
oup.com/jrsssb/advance- article- pdf/doi/10.1093/jrsssb/qkad022/
49737503/qkad022.pdf. url: https://doi.org/10.1093/jrsssb/qkad022.

[54] Peter J Green, Krzysztof Łatuszyński, Marcelo Pereyra, and Christian P Robert.
“Bayesian computation: a summary of the current state, and samples backwards
and forwards”. In: Statistics and Computing 25.4 (2015), pp. 835–862.

[55] Patrick S Hagan, Deep Kumar, Andrew S Lesniewski, and Diana E Woodward.
“Managing smile risk”. In: The Best of Wilmott 1 (2002), pp. 249–296.

156

https://doi.org/10.1093/jrsssb/qkad022
https://academic.oup.com/jrsssb/advance-article-pdf/doi/10.1093/jrsssb/qkad022/49737503/qkad022.pdf
https://academic.oup.com/jrsssb/advance-article-pdf/doi/10.1093/jrsssb/qkad022/49737503/qkad022.pdf
https://academic.oup.com/jrsssb/advance-article-pdf/doi/10.1093/jrsssb/qkad022/49737503/qkad022.pdf
https://doi.org/10.1093/jrsssb/qkad022

Bibliography

[56] James D Hamilton. “A new approach to the economic analysis of nonstationary
time series and the business cycle”. In: Econometrica: Journal of the Econometric
Society (1989), pp. 357–384.

[57] James D Hamilton and Raul Susmel. “Autoregressive conditional heteroskedas-
ticity and changes in regime”. In: Journal of econometrics 64.1-2 (1994), pp. 307–
333.

[58] W Keith Hastings. “Monte Carlo sampling methods using Markov chains and
their applications”. In: (1970).

[59] Hans Hersbach. “Decomposition of the continuous ranked probability score for
ensemble prediction systems”. In: Weather and Forecasting 15.5 (2000), pp. 559–
570.

[60] Steven L Heston. “A closed-form solution for options with stochastic volatility
with applications to bond and currency options”. In: The review of financial
studies 6.2 (1993), pp. 327–343.

[61] Steven L Heston. “A simple new formula for options with stochastic volatility”.
In: (1997).

[62] Max Hird, Samuel Livingstone, and Giacomo Zanella. “A fresh take on ‘Barker
dynamics’ for MCMC”. In: Monte Carlo and Quasi-Monte Carlo Methods: MC-
QMC 2020, Oxford, United Kingdom, August 10–14. Springer, 2022, pp. 169–
184.

[63] Asger Hobolth. “A Markov chain Monte Carlo expectation maximization algo-
rithm for statistical analysis of DNA sequence evolution with neighbor-dependent
substitution rates”. In: Journal of Computational and Graphical Statistics 17.1
(2008), pp. 138–162.

[64] Asger Hobolth and Eric A Stone. “Simulation from endpoint-conditioned, continuous-
time Markov chains on a finite state space, with applications to molecular evolu-
tion”. In: The annals of applied statistics 3.3 (2009), p. 1204.

[65] MEA Hodgson. “A Bayesian restoration of an ion channel signal”. In: Journal
of the Royal Statistical Society: Series B (Statistical Methodology) 61.1 (1999),
pp. 95–114.

[66] John Hull and Alan White. “The pricing of options on assets with stochastic
volatilities”. In: The journal of finance 42.2 (1987), pp. 281–300.

[67] Eric Jacquier, Nicholas G Polson, and Peter E Rossi. “Bayesian analysis of stochas-
tic volatility models”. In: Journal of Business & Economic Statistics 20.1 (2002),
pp. 69–87.

[68] Paul A Jenkins and Dario Spano. “Exact simulation of the Wright–Fisher diffu-
sion”. In: The Annals of Applied Probability 27.3 (2017), pp. 1478–1509.

[69] Christopher S Jones. Bayesian analysis of the short-term interest rate. Tech. rep.
Working paper, The Wharton School, University of Pennsylvania, 1997.

157

Bibliography

[70] Galin L Jones. “On the Markov chain central limit theorem”. In: Probability sur-
veys 1 (2004), pp. 299–320.

[71] Ioannis Karatzas and Steven E Shreve. “Brownian motion and stochastic calculus
Springer-Verlag”. In: New York (1991).

[72] Gregor Kastner, Sylvia Frühwirth-Schnatter, and Hedibert Freitas Lopes. “Effi-
cient Bayesian inference for multivariate factor stochastic volatility models”. In:
Journal of Computational and Graphical Statistics 26.4 (2017), pp. 905–917.

[73] Rebecca Killick, Paul Fearnhead, and Idris A Eckley. “Optimal detection of
changepoints with a linear computational cost”. In: Journal of the American Sta-
tistical Association 107.500 (2012), pp. 1590–1598.

[74] Chang-Jin Kim and Charles R Nelson. “Has the US economy become more stable?
A Bayesian approach based on a Markov-switching model of the business cycle”.
In: Review of Economics and Statistics 81.4 (1999), pp. 608–616.

[75] Sangjoon Kim, Neil Shephard, and Siddhartha Chib. “Stochastic volatility: likeli-
hood inference and comparison with ARCH models”. In: The review of economic
studies 65.3 (1998), pp. 361–393.

[76] Peter Eris Kloeden, Eckhard Platen, and Henri Schurz. Numerical solution of
SDE through computer experiments. Springer Science & Business Media, 2012.

[77] Nikolaj Vladimirovič Krylov. Controlled diffusion processes. Vol. 14. Springer
Science & Business Media, 2008.

[78] Harold J Kushner and Paul G Dupuis. Numerical methods for stochastic control
problems in continuous time. Vol. 24. Springer Science & Business Media, 2001.

[79] Krzysztof Łatuszyński, Ioannis Kosmidis, Omiros Papaspiliopoulos, and Gareth
O Roberts. “Simulating events of unknown probabilities via reverse time martin-
gales”. In: Random Structures & Algorithms 38.4 (2011), pp. 441–452.

[80] Krzysztof Łatuszyński and Gareth O Roberts. “CLTs and asymptotic variance of
time-sampled Markov chains”. In: Methodology and Computing in Applied Prob-
ability 15.1 (2013), pp. 237–247.

[81] John C Liechty and Gareth O Roberts. “Markov chain Monte Carlo methods for
switching diffusion models”. In: Biometrika 88.2 (2001), pp. 299–315.

[82] Jun S Liu. “The fraction of missing information and convergence rate for data
augmentation”. In: Computing Science and Statistics (1994), pp. 490–490.

[83] Chia Chun Lo and Konstantinos Skindilias. “An improved Markov chain approxi-
mation methodology: Derivatives pricing and model calibration”. In: International
Journal of Theoretical and Applied Finance 17.07 (2014), p. 1450047.

[84] Thomas A Louis. “Finding the observed information matrix when using the EM
algorithm”. In: Journal of the Royal Statistical Society: Series B (Methodological)
44.2 (1982), pp. 226–233.

158

Bibliography

[85] Xuerong Mao and Chenggui Yuan. Stochastic differential equations with Marko-
vian switching. Imperial college press, 2006.

[86] Harley H McAdams and Adam Arkin. “Stochastic mechanisms in gene expres-
sion”. In: Proceedings of the National Academy of Sciences 94.3 (1997), pp. 814–
819.

[87] Margaret M McConnell and Gabriel Perez-Quiros. “Output fluctuations in the
United States: What has changed since the early 1980’s?” In: American Economic
Review 90.5 (2000), pp. 1464–1476.

[88] Kerrie L Mengersen and Richard L Tweedie. “Rates of convergence of the Hastings
and Metropolis algorithms”. In: The annals of Statistics 24.1 (1996), pp. 101–121.

[89] Nicholas Metropolis, Arianna W Rosenbluth, Marshall N Rosenbluth, Augusta H
Teller, et al. “Equation of state calculations by fast computing machines”. In: The
journal of chemical physics 21.6 (1953), pp. 1087–1092.

[90] Aaron Meurer, Christopher P Smith, Mateusz Paprocki, Ondřej Čertı́k, et al.
“SymPy: symbolic computing in Python”. In: PeerJ Computer Science 3 (2017),
e103.

[91] Sean P Meyn and Richard L Tweedie. Markov chains and stochastic stability.
Springer Science & Business Media, 2012.

[92] Aleksandar Mijatović and Martijn Pistorius. “Continuously monitored barrier
options under Markov processes”. In: Mathematical Finance: An International
Journal of Mathematics, Statistics and Financial Economics 23.1 (2013), pp. 1–
38.

[93] Timothy D Mount, Yumei Ning, and Xiaobin Cai. “Predicting price spikes in elec-
tricity markets using a regime-switching model with time-varying parameters”. In:
Energy Economics 28.1 (2006), pp. 62–80.

[94] Şerban Nacu, Yuval Peres, et al. “Fast simulation of new coins from old”. In: The
Annals of Applied Probability 15.1A (2005), pp. 93–115.

[95] Rasmus Nielsen. “Mapping mutations on phylogenies”. In: Systematic biology 51.5
(2002), pp. 729–739.

[96] Bernt Oksendal. Stochastic differential equations: an introduction with applica-
tions. Springer Science & Business Media, 2013.

[97] Omiros Papaspiliopoulos, Gareth O Roberts, and Martin Sköld. “A general frame-
work for the parametrization of hierarchical models”. In: Statistical Science (2007),
pp. 59–73.

[98] Asger Roer Pedersen. “A new approach to maximum likelihood estimation for
stochastic differential equations based on discrete observations”. In: Scandinavian
journal of statistics (1995), pp. 55–71.

[99] Peter H Peskun. “Optimum monte-carlo sampling using markov chains”. In: Biometrika
60.3 (1973), pp. 607–612.

159

Bibliography

[100] Eckhard Platen. A non-linear stochastic volatility model. Centre for Mathematics
and Its Applications, Australian National University, 1998.

[101] Martyn Plummer et al. “JAGS: A program for analysis of Bayesian graphical
models using Gibbs sampling”. In: Proceedings of the 3rd international workshop
on distributed statistical computing. Vol. 124. 125.10. Vienna, Austria. 2003, pp. 1–
10.

[102] M Pollock, AM Johansen, and GO Roberts. “On the exact and e-strong simulation
of (jump) diffusions”. In: Bernoulli (2016).

[103] Vinayak Rao and Yee Teh. “MCMC for continuous-time discrete-state systems”.
In: Advances in Neural Information Processing Systems 25 (2012).

[104] Christian P Robert, George Casella, and George Casella. Monte Carlo statistical
methods. Vol. 2. Springer, 1999.

[105] Gareth O Roberts, Omiros Papaspiliopoulos, and Petros Dellaportas. “Bayesian
inference for non-Gaussian Ornstein–Uhlenbeck stochastic volatility processes”.
In: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
66.2 (2004), pp. 369–393.

[106] Gareth O Roberts and Jeffrey S Rosenthal. “Optimal scaling for various Metropolis-
Hastings algorithms”. In: Statistical science 16.4 (2001), pp. 351–367.

[107] Gareth O Roberts and Jeffrey S Rosenthal. “Variance bounding Markov chains”.
In: The Annals of Applied Probability 18.3 (2008), pp. 1201–1214.

[108] Gareth O Roberts and Osnat Stramer. “On inference for partially observed non-
linear diffusion models using the Metropolis–Hastings algorithm”. In: Biometrika
88.3 (2001), pp. 603–621.

[109] Pedro Santa-Clara. “Simulated Likeliehood Estimation of Diffusions With an Ap-
plication to the Short Tem Interest Rate”. In: (1997).

[110] Louis O Scott. “Option pricing when the variance changes randomly: Theory, es-
timation, and an application”. In: Journal of Financial and Quantitative analysis
22.4 (1987), pp. 419–438.

[111] Giorgos Sermaidis, Omiros Papaspiliopoulos, Gareth O Roberts, Alexandros Beskos,
et al. “Markov chain Monte Carlo for exact inference for diffusions”. In: Scandi-
navian Journal of Statistics 40.2 (2013), pp. 294–321.

[112] Chris Sherlock, Alexandre H Thiery, Gareth O Roberts, and Jeffrey S Rosenthal.
“On the efficiency of pseudo-marginal random walk Metropolis algorithms”. In:
The Annals of Statistics 43.1 (2015), pp. 238–275.

[113] Tokuzo Shiga, Akinobu Shimizu, et al. “Infinite dimensional stochastic differential
equations and their applications”. In: Journal of Mathematics of Kyoto University
20.3 (1980), pp. 395–416.

[114] Isao Shoji and Tohru Ozaki. “Estimation for nonlinear stochastic differential
equations by a local linearization method”. In: Stochastic Analysis and Appli-
cations 16.4 (1998), pp. 733–752.

160

Bibliography

[115] Adrian FM Smith and Gareth O Roberts. “Bayesian computation via the Gibbs
sampler and related Markov chain Monte Carlo methods”. In: Journal of the Royal
Statistical Society: Series B (Methodological) 55.1 (1993), pp. 3–23.

[116] Alan Sokal. “Monte Carlo methods in statistical mechanics: foundations and new
algorithms”. In: Functional integration. Springer, 1997, pp. 131–192.

[117] Robert H Swendsen and Jian-Sheng Wang. “Nonuniversal critical dynamics in
Monte Carlo simulations”. In: Physical review letters 58.2 (1987), p. 86.

[118] Luke Tierney. “A note on Metropolis-Hastings kernels for general state spaces”.
In: Annals of applied probability (1998), pp. 1–9.

[119] Luke Tierney. “Introduction to general state-space Markov chain theory”. In:
Markov chain Monte Carlo in practice (1996), pp. 59–74.

[120] Luke Tierney. “Markov chains for exploring posterior distributions”. In: the Annals
of Statistics (1994), pp. 1701–1728.

[121] NG Van Kampen. “Stochastic processes in chemistry and physics”. In: Chaos
(1981).

[122] D Vats, FB Gonçalves, K Łatuszyński, and GO Roberts. “Efficient Bernoulli
factory Markov chain Monte Carlo for intractable posteriors”. In: Biometrika
109.2 (2022), pp. 369–385.

[123] Dootika Vats, James M Flegal, and Galin L Jones. “Multivariate output analysis
for Markov chain Monte Carlo”. In: Biometrika 106.2 (2019), pp. 321–337.

[124] Greg CG Wei and Martin A Tanner. “A Monte Carlo implementation of the EM
algorithm and the poor man’s data augmentation algorithms”. In: Journal of the
American statistical Association 85.411 (1990), pp. 699–704.

[125] James B Wiggins. “Option values under stochastic volatility: Theory and empir-
ical estimates”. In: Journal of financial economics 19.2 (1987), pp. 351–372.

[126] Yaming Yu and Xiao-Li Meng. “To center or not to center: That is not the
question—an Ancillarity–Sufficiency Interweaving Strategy (ASIS) for boosting
MCMC efficiency”. In: Journal of Computational and Graphical Statistics 20.3
(2011), pp. 531–570.

161

	Introduction
	Summary of Thesis
	Conventions
	Symbols

	MCMC Methods for Intractable Likelihood Models
	A Very Short Introduction to Markov Chain Monte Carlo
	Accept-Reject MCMC
	Metropolis-Hastings Kernel
	Barker Kernel

	Augmented MCMC
	Gibbs Sampling and Model Parameterization
	Pseudo-Marginal MCMC

	Bernoulli Factory MCMC
	2-Coin Barker Algorithm
	Portkey Barker Algorithm

	Assessing MCMC Performance
	Discussion

	Data Augmentation for Stochastic Differential Equations
	Diffusion Processes as SDE Solutions
	Theory and Properties of Itō Diffusions
	Markov Property and Likelihood
	Quadratic Variation
	Itō's Formula and Closure under Transformation
	Change of Volatility and the Lamperti Transform
	Change of Drift and the Girsanov Theorem

	Complete Transition Density
	Alternative Dominating Measures
	Approximate Simulation and Estimation

	Retrospective Simulation and Estimation
	Sample Path Simulation
	Poisson Coin
	Exact Algorithm
	Batch EA

	Transition Density Estimation
	Poisson Estimator
	Auxiliary Transition Density

	Simulation of Lower Bounded Brownian Bridges (EA2)
	Simulating the Brownian Bridge Minimum
	Filling in the Lower Bounded Bridge

	Simulation of Bounded Brownian Bridges (EA3)
	Probabilities as Alternating Cauchy Sequences
	Simulating the Brownian Bridge Bounds
	Filling in the Bounded Bridge
	Layer Refinement

	Discussion

	Exact Inference for Itō Diffusion Models
	Data Augmentation Strategy
	Standing Assumptions and Complete Transition Density
	Marginal Noncentered Transition Density
	Auxiliary Noncentered Transition Density

	Marginal Algorithm
	Retrospective Simulation
	Parameter Update
	Bridge Update

	Auxiliary Algorithm
	Retrospective Simulation
	Parameter Update
	Bridge and Poisson Process Update

	Approximate Algorithm
	Parameter Update
	Bridge Update

	MAP and Maximum Likelihood Estimation
	Log Transition Density Estimation
	E-Step
	M-Step
	Standard Error Estimation

	Bayesian Prediction
	Bayesian Model Evaluation
	Simulation Study
	Extension Regime
	Infill Regime

	Discussion

	Exact Inference for Markov Switching Diffusion Models
	Data Augmentation Strategy
	Standing Assumptions and Complete Transition Density
	Marginal Noncentered Transition Density
	Auxiliary Noncentered Transition Density

	Simulation of Markov Jump Processes
	Transition and Stationary Distribution
	Forward and Backward Simulation
	Rejection Bridge Simulation
	Direct Bridge Simulation
	Uniformized Bridge Simulation

	Marginal Algorithm
	Diffusion Parameter Update
	Regime Parameter Update
	Independence Hidden Data Update
	Conditional Hidden Data Update

	Auxiliary Algorithm
	Diffusion Parameter Update
	Regime Parameter Update
	Independence Hidden Data Update
	Conditional Hidden Data Update

	Approximate Algorithm
	Diffusion Parameter Update
	Regime Parameter Update
	Independence Hidden Data Update
	Conditional Hidden Data Update

	MAP Estimation
	Log Transition Density Estimation
	E-Step
	M-Step
	Standard Error Estimation
	Avoiding Absorbing States

	Simulation Study
	Extension Regime
	Infill Regime

	Demonstration: Weak Mean Reversion for T-Bill Spreads
	Discussion

	Approximate Inference for Stochastic Volatility Diffusions
	Inference Strategy
	Latent Diffusion Approximation and Local Consistency
	Complete Transition Density
	Markov Jump Processes with Tridiagonal Generators
	Linear Solve and Stationary Distribution
	Eigendecomposition and Bridge Simulation

	Marginal Algorithm
	Diffusion Parameter Update
	Regime Parameter Update
	Hidden Data Update

	Simulation Studies and Discussion

	Automatic Implementation of Retrospective Algorithms
	A Very Short Introduction to Symbolic Computation
	A Simple Recursive Bound Generator
	Bounding the Path Integrand
	Specifying the CIR Process in Sympy

	Insert from: "WRAP_Coversheet_Theses_new3.pdf"
	http://wrap.warwick.ac.uk/179156

